JP2014139492A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2014139492A
JP2014139492A JP2013008227A JP2013008227A JP2014139492A JP 2014139492 A JP2014139492 A JP 2014139492A JP 2013008227 A JP2013008227 A JP 2013008227A JP 2013008227 A JP2013008227 A JP 2013008227A JP 2014139492 A JP2014139492 A JP 2014139492A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
temperature
load
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013008227A
Other languages
Japanese (ja)
Other versions
JP6039869B2 (en
Inventor
Masanori Ueda
真典 上田
Takashi Sato
剛史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2013008227A priority Critical patent/JP6039869B2/en
Publication of JP2014139492A publication Critical patent/JP2014139492A/en
Application granted granted Critical
Publication of JP6039869B2 publication Critical patent/JP6039869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump device capable of improving a system COP during a low load operation in a heating operation or a cooling operation.SOLUTION: In a heat pump device in which control means 21 controls a rotational speed of a heat-source-side circulation pump 14 so that a temperature detected by refrigerant temperature detection means 10 is equal to a predetermined target temperature, the control means 21 can suppress power consumption of the heat-source-side circulation pump 14 and improve a system COP of the heat pump device while executing optimum heat sampling according to a load by setting the predetermined target temperature in accordance with a rotational speed or frequency of a compressor 4, and can execute the optimum heat sampling, shorten time required until a predetermined load is output, and perform a load operation while keeping high the system COP of the heat pump system by controlling the rotational speed of the heat-source-side circulation pump 14 so that the temperature detected by the refrigerant temperature detection means 10 is equal to the predetermined target temperature, and by regulating a flow volume of a heat medium circulating in a heat-source-side circulation circuit 13.

Description

この発明は、ヒートポンプ回路の蒸発側の冷媒温度を安定させて、効率の良い暖房や冷房等の負荷運転を行わせるヒートポンプ装置に関するものである。   The present invention relates to a heat pump device that stabilizes the refrigerant temperature on the evaporation side of a heat pump circuit and performs efficient load operation such as heating and cooling.

従来この種のヒートポンプ装置においては、図12に示すように、空気調和機等のヒートポンプユニット101と、熱媒循環式の熱源熱交換部102と、負荷熱交換部103とを備え、ヒートポンプユニット101は、圧縮機104と、圧縮機104から吐出された高圧冷媒を流通させ負荷側の熱媒と熱交換する凝縮器としての負荷側熱交換器105と、減圧手段としての膨張弁106と、膨張弁106からの低圧冷媒を流通させ外部の熱媒と熱交換する蒸発器としての熱源側熱交換器107と、熱源側熱交換器107側の冷媒の温度を検出する冷媒温度センサ108とを備え、圧縮機104、負荷側熱交換器105、膨張弁106、熱源側熱交換器107を冷媒配管で環状に接続しヒートポンプ回路109を形成しているものである。また、熱源熱交換部102は、熱源側熱交換器107の冷媒を加熱する熱源110と、熱源側熱交換器107と熱源110との間を熱媒配管で環状に接続する熱源側循環回路111と、熱源側循環回路111に熱媒である水や不凍液を循環させる回転数可変の熱源側循環ポンプ112とを備え、また、負荷熱交換部103は、床暖房パネル等の負荷端末113と、負荷側熱交換器105と負荷端末113を循環可能に接続する負荷側循環回路114と、負荷側循環回路114に熱媒を循環させる負荷側循環ポンプ115とを備え、さらに、各センサの信号を受けて、各アクチュエータの駆動を制御するマイコンを有する制御手段116を備えたものであった。   Conventionally, in this type of heat pump apparatus, as shown in FIG. 12, a heat pump unit 101 such as an air conditioner, a heat medium circulation type heat source heat exchange unit 102, and a load heat exchange unit 103 are provided. Includes a compressor 104, a load-side heat exchanger 105 serving as a condenser for circulating the high-pressure refrigerant discharged from the compressor 104 and exchanging heat with the load-side heat medium, an expansion valve 106 serving as a decompression unit, and an expansion A heat source side heat exchanger 107 as an evaporator that circulates the low-pressure refrigerant from the valve 106 and exchanges heat with an external heat medium, and a refrigerant temperature sensor 108 that detects the temperature of the refrigerant on the heat source side heat exchanger 107 side. The compressor 104, the load side heat exchanger 105, the expansion valve 106, and the heat source side heat exchanger 107 are connected in a ring shape with a refrigerant pipe to form a heat pump circuit 109. The heat source heat exchanging unit 102 also includes a heat source 110 that heats the refrigerant of the heat source side heat exchanger 107, and a heat source side circulation circuit 111 that connects the heat source side heat exchanger 107 and the heat source 110 in a ring shape with a heat medium pipe. And a heat source side circulation pump 112 that circulates water or antifreeze as a heat medium in the heat source side circulation circuit 111, and the load heat exchange unit 103 includes a load terminal 113 such as a floor heating panel, A load-side circulation circuit 114 that connects the load-side heat exchanger 105 and the load terminal 113 in a circulating manner; and a load-side circulation pump 115 that circulates a heat medium in the load-side circulation circuit 114. The control means 116 having a microcomputer for controlling the drive of each actuator is provided.

このようなヒートポンプ装置において、圧縮機104、熱源側循環ポンプ112、負荷側循環ポンプ115を駆動させ、熱源側熱交換器107を蒸発器として機能させると同時に、負荷側熱交換器105を凝縮器として機能させて負荷側を加熱する負荷運転としての暖房運転を行う場合、制御手段116は、暖房運転中に、冷媒温度センサ108の検出する温度が所定の目標温度になるように熱源側循環ポンプ112の回転数を制御することで、熱源側循環ポンプ112の消費電力低減、ヒートポンプ装置のシステムCOP(=「暖房負荷÷(圧縮機104消費電力+熱源側循環ポンプ112消費電力)」とする)の向上を図っていた。(例えば、特許文献1参照。)   In such a heat pump apparatus, the compressor 104, the heat source side circulation pump 112, and the load side circulation pump 115 are driven to cause the heat source side heat exchanger 107 to function as an evaporator, and at the same time, the load side heat exchanger 105 is a condenser. When the heating operation as a load operation for heating the load side is performed, the control means 116 is configured so that the temperature detected by the refrigerant temperature sensor 108 becomes a predetermined target temperature during the heating operation. By controlling the number of revolutions 112, the power consumption of the heat source side circulation pump 112 is reduced, and the system COP of the heat pump device (= “heating load ÷ (compressor 104 power consumption + heat source side circulation pump 112 power consumption)”) I was trying to improve. (For example, refer to Patent Document 1.)

特開2011−94840号公報JP 2011-94840 A

この従来のヒートポンプ装置は、前記暖房運転時に、冷媒温度センサ108の検出する冷媒の温度が所定の目標温度になるように、熱源側循環ポンプ112の回転数を制御するものであるが、前記所定の目標温度を暖房負荷の全負荷領域で固定の温度とし、全負荷領域において前記固定の温度になるように熱源側循環ポンプ112の回転数を制御しようとすると、暖房負荷が低負荷の場合、前記固定の温度を維持しようとして熱源側循環ポンプ112の回転数を制御した結果、その暖房負荷に対して地中からの採熱量が過剰な状態となる、すなわち、熱源側循環ポンプ112が過剰に回転する状態となり、暖房負荷が低負荷のときは、熱源側循環ポンプ112の消費電力が大きくなってしまっており、ヒートポンプ装置のシステムCOPの向上を妨げているという問題点を有するものであった。   This conventional heat pump device controls the rotation speed of the heat source side circulation pump 112 so that the temperature of the refrigerant detected by the refrigerant temperature sensor 108 becomes a predetermined target temperature during the heating operation. The target temperature is set to a fixed temperature in the full load region of the heating load, and when the rotation speed of the heat source side circulation pump 112 is controlled so as to be the fixed temperature in the full load region, when the heating load is low, As a result of controlling the rotation speed of the heat source side circulation pump 112 in order to maintain the fixed temperature, the amount of heat collected from the ground is excessive with respect to the heating load, that is, the heat source side circulation pump 112 is excessive. When the heating load is low and the heating load is low, the power consumption of the heat source side circulation pump 112 is large, and the direction of the system COP of the heat pump device is increased. It had a problem that is preventing.

また、従来のヒートポンプ装置のヒートポンプ回路109を逆サイクルとし、圧縮機104、熱源側循環ポンプ112、負荷側循環ポンプ115を駆動させ、負荷側熱交換器105を蒸発器として機能させると同時に、熱源側熱交換器107を凝縮器として機能させて負荷側を冷却する負荷運転としての冷房運転を行わせる場合、冷房運転時に、冷媒温度センサ108の検出する冷媒の温度が所定の目標温度になるように、熱源側循環ポンプ112の回転数を制御することが考えられるが、前記所定の目標温度を冷房負荷の全負荷領域で固定の温度とし、全負荷領域において前記固定の温度になるように熱源側循環ポンプ112の回転数を制御しようとすると、冷房負荷が低負荷の場合、前記固定の温度を維持しようとして熱源側循環ポンプ112の回転数を制御した結果、その冷房負荷に対して地中への放熱量が過剰な状態となる、すなわち、熱源側循環ポンプ112が過剰に回転する状態となり、冷房負荷が低負荷のときは、熱源側循環ポンプ112の消費電力が大きくなってしまっており、ヒートポンプ装置のシステムCOPの向上を妨げているという問題点を有するものであった。   In addition, the heat pump circuit 109 of the conventional heat pump device is set in the reverse cycle, the compressor 104, the heat source side circulation pump 112, and the load side circulation pump 115 are driven, and the load side heat exchanger 105 functions as an evaporator, and at the same time When the cooling operation is performed as a load operation for cooling the load side by causing the side heat exchanger 107 to function as a condenser, the refrigerant temperature detected by the refrigerant temperature sensor 108 is set to a predetermined target temperature during the cooling operation. It is conceivable to control the number of revolutions of the heat source side circulation pump 112. The predetermined target temperature is set to a fixed temperature in the entire load region of the cooling load, and the heat source is set to the fixed temperature in the entire load region. When the rotation speed of the side circulation pump 112 is controlled, when the cooling load is low, the heat source side circulation pump tries to maintain the fixed temperature. As a result of controlling the rotational speed of 12, the heat radiation amount to the ground is excessive with respect to the cooling load, that is, the heat source side circulation pump 112 is excessively rotated, and the cooling load is low. Has the problem that the power consumption of the heat source side circulation pump 112 has become large, which hinders the improvement of the system COP of the heat pump device.

この発明は上記課題を解決するために、特に請求項1ではその構成を、圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、前記熱源側熱交換器の冷媒を加熱する熱媒循環式の熱源部と、該熱源部の熱源と前記熱源側熱交換器との間を熱媒配管で環状に接続した熱源側循環回路と、該熱源側循環回路に熱媒を循環させる熱源側循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、これらの作動を制御する制御手段とを備え、前記熱源側熱交換器を蒸発器として機能させると同時に前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転中に、前記制御手段が、前記冷媒温度検出手段の検出する温度が所定の目標温度になるように前記熱源側循環ポンプの回転数を制御するヒートポンプ装置において、前記制御手段は、前記所定の目標温度を、前記圧縮機の回転数または周波数に応じて設定するものとした。   In order to solve the above-described problems, the present invention is particularly configured in claim 1 and includes a heat pump circuit in which a compressor, a load-side heat exchanger, a decompression unit, and a heat-source-side heat exchanger are connected in a ring shape with a refrigerant pipe, A heat medium circulation type heat source section for heating the refrigerant of the heat source side heat exchanger, and a heat source side circulation circuit in which a heat medium pipe connects the heat source of the heat source section and the heat source side heat exchanger in an annular shape, A heat source side circulation pump that circulates a heat medium in the heat source side circulation circuit, refrigerant temperature detection means for detecting the temperature of the refrigerant on the heat source side heat exchanger side, and control means for controlling the operation thereof. During the load operation in which the side heat exchanger functions as an evaporator and the load side heat exchanger functions as a condenser to heat the load side, the temperature detected by the refrigerant temperature detecting means is The heat source side circulation so as to reach a predetermined target temperature. In the heat pump apparatus for controlling the rotational speed of the pump, said control means, said predetermined target temperature, and shall be set according to the rotational speed or frequency of the compressor.

また、請求項2では、前記制御手段は、前記圧縮機の回転数または周波数が下がるにつれて、前記所定の目標温度を下げるものとした。   According to a second aspect of the present invention, the control means lowers the predetermined target temperature as the rotational speed or frequency of the compressor decreases.

また、請求項3では、圧縮機、熱源側熱交換器、減圧手段、負荷側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、前記熱源側熱交換器の冷媒を冷却する熱媒循環式の熱源部と、該熱源部の熱源と前記熱源側熱交換器との間を熱媒配管で環状に接続した熱源側循環回路と、該熱源側循環回路に熱媒を循環させる熱源側循環ポンプと、前記減圧手段と前記熱源側熱交換器とを接続する前記冷媒配管を流れる冷媒の温度を検出する冷媒温度検出手段と、これらの作動を制御する制御手段とを備え、前記熱源側熱交換器を凝縮器として機能させると同時に前記負荷側熱交換器を蒸発器として機能させて負荷側を冷却する負荷運転中に、前記制御手段が、前記冷媒温度検出手段の検出する温度が所定の目標温度になるように前記熱源側循環ポンプの回転数を制御するヒートポンプ装置において、前記制御手段は、前記所定の目標温度を、前記圧縮機の回転数または周波数に応じて設定するものとした。   According to a third aspect of the present invention, there is provided a heat pump circuit in which a compressor, a heat source side heat exchanger, a pressure reducing means, and a load side heat exchanger are connected in an annular shape with refrigerant piping, and a heat medium circulation for cooling the refrigerant of the heat source side heat exchanger Source heat circuit, a heat source side circulation circuit in which the heat source of the heat source part and the heat source side heat exchanger are annularly connected by a heat medium pipe, and a heat source side circulation for circulating the heat medium in the heat source side circulation circuit A refrigerant temperature detecting means for detecting the temperature of the refrigerant flowing through the refrigerant pipe connecting the pump, the pressure reducing means and the heat source side heat exchanger, and a control means for controlling the operation of the refrigerant; During the load operation in which the load side heat exchanger is caused to function as an evaporator and the load side is cooled by causing the exchanger to function as a condenser, the temperature detected by the refrigerant temperature detecting means is a predetermined temperature. Heat source side circulation to reach target temperature In the heat pump apparatus for controlling the rotational speed of pump, the control means, the predetermined target temperature, and shall be set according to the rotational speed or frequency of the compressor.

また、請求項4では、前記制御手段は、前記圧縮機の回転数または周波数が下がるにつれて、前記所定の目標温度を上げるものとした。   According to a fourth aspect of the present invention, the control means increases the predetermined target temperature as the rotational speed or frequency of the compressor decreases.

この発明の請求項1によれば、負荷側を加熱する負荷運転中において、制御手段が、冷媒温度検出手段の検出する温度が所定の目標温度になるように熱源側循環ポンプの回転数を制御し、熱源側循環回路を循環する熱媒の流量を調整することで、最適な採熱を行わせて所望の負荷を出力するまでの時間を短縮することができ、ヒートポンプ装置のシステムCOPを高く維持したまま負荷運転を行うことができ、さらに、制御手段は、所定の目標温度を、圧縮機の回転数または周波数に応じて設定することで、負荷に応じた最適な採熱を実行しつつ、熱源側循環ポンプの消費電力を抑え、ヒートポンプ装置のシステムCOPを向上させることができるものである。   According to claim 1 of the present invention, during the load operation for heating the load side, the control means controls the rotation speed of the heat source side circulation pump so that the temperature detected by the refrigerant temperature detection means becomes a predetermined target temperature. By adjusting the flow rate of the heat medium that circulates in the heat source side circulation circuit, it is possible to shorten the time required to perform optimum heat collection and output a desired load, and to increase the system COP of the heat pump device. It is possible to perform the load operation while maintaining it, and further, the control means sets the predetermined target temperature according to the rotation speed or frequency of the compressor, while performing optimum heat collection according to the load. The power consumption of the heat source side circulation pump can be suppressed, and the system COP of the heat pump device can be improved.

また、請求項2によれば、制御手段は、圧縮機の回転数または周波数が下がるにつれて、所定の目標温度を下げるようにしたことで、所望の負荷に対して熱源からの採熱量を減らし、熱源側循環ポンプの回転数を減少させることができ、特に、低負荷の時に、最適な採熱を行わせつつ熱源側循環ポンプの消費電力を抑えることができ、システムCOPを向上させることができるものである。   According to claim 2, the control means reduces the amount of heat collected from the heat source for a desired load by reducing the predetermined target temperature as the rotational speed or frequency of the compressor decreases. The number of rotations of the heat source side circulation pump can be reduced. In particular, when the load is low, the power consumption of the heat source side circulation pump can be suppressed while performing optimum heat collection, and the system COP can be improved. Is.

また、請求項3によれば、負荷側を冷却する負荷運転中において、制御手段が、冷媒温度検出手段の検出する温度が所定の目標温度になるように熱源側循環ポンプの回転数を制御し、熱源側循環回路を循環する熱媒の流量を調整することで、最適な放熱を行わせて所望の負荷を出力するまでの時間を短縮することができ、ヒートポンプ装置のシステムCOPを高く維持したまま負荷運転を行うことができ、さらに、制御手段は、所定の目標温度を、圧縮機の回転数または周波数に応じて設定することで、負荷に応じた最適な放熱を実行しつつ、熱源側循環ポンプの消費電力を抑え、ヒートポンプ装置のシステムCOPを向上させることができるものである。   According to claim 3, during the load operation for cooling the load side, the control means controls the rotation speed of the heat source side circulation pump so that the temperature detected by the refrigerant temperature detection means becomes a predetermined target temperature. By adjusting the flow rate of the heat medium circulating in the heat source side circulation circuit, it is possible to shorten the time until the desired load is output by performing optimal heat dissipation, and the system COP of the heat pump device is kept high. In addition, the control means can set the predetermined target temperature according to the rotation speed or frequency of the compressor, thereby performing optimum heat dissipation according to the load, while the heat source side It is possible to suppress the power consumption of the circulation pump and improve the system COP of the heat pump device.

また、請求項4によれば、制御手段は、圧縮機の回転数または周波数が下がるにつれて、所定の目標温度を上げるようにしたことで、所望の負荷に対して熱源への放熱量を減らし、熱源側循環ポンプの回転数を減少させることができ、特に、低負荷の時に、最適な放熱を行わせつつ熱源側循環ポンプの消費電力を抑えることができ、システムCOPを向上させることができるものである。   According to claim 4, the control means increases the predetermined target temperature as the rotational speed or frequency of the compressor decreases, thereby reducing the amount of heat released to the heat source for a desired load, The number of rotations of the heat source side circulation pump can be reduced. In particular, when the load is low, the power consumption of the heat source side circulation pump can be suppressed while performing optimum heat dissipation, and the system COP can be improved. It is.

この発明の一実施形態のヒートポンプ装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the heat pump apparatus of one Embodiment of this invention. 同一実施形態の暖房運転時の動作を示すフローチャート。The flowchart which shows the operation | movement at the time of the heating operation of the same embodiment. 同一実施形態の圧縮機の回転数と目標温度との関係を示す図。The figure which shows the relationship between the rotation speed of the compressor of the same embodiment, and target temperature. 同一実施形態の暖房運転時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the heating operation of the same embodiment. 従来のヒートポンプ装置の暖房運転時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the heating operation of the conventional heat pump apparatus. この発明の他の実施形態のヒートポンプ装置の概略構成図。The schematic block diagram of the heat pump apparatus of other embodiment of this invention. 同他の実施形態の冷房運転時の動作を示すフローチャート。The flowchart which shows the operation | movement at the time of the air_conditionaing | cooling operation of the other embodiment. 同他の実施形態の圧縮機の回転数と目標温度との関係を示す図。The figure which shows the relationship between the rotation speed of the compressor of other embodiment, and target temperature. 同他の実施形態の冷房運転時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the air_conditionaing | cooling operation of other embodiment. 従来のヒートポンプ装置を冷房運転させた場合の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of carrying out the cooling operation of the conventional heat pump apparatus. この発明のその他の実施形態のヒートポンプ装置におけるヒートポンプ回路の概略構成図。The schematic block diagram of the heat pump circuit in the heat pump apparatus of other embodiment of this invention. 従来のヒートポンプ装置の概略構成図。The schematic block diagram of the conventional heat pump apparatus.

次に、この発明の一実施形態のヒートポンプ装置を図1に基づき説明する。
図示のように、本実施形態のヒートポンプ装置は、大きく分けてヒートポンプユニット1と、熱源部としての熱媒循環式の熱源熱交換部2と、負荷熱交換部3とから構成されるものである。
Next, a heat pump device according to an embodiment of the present invention will be described with reference to FIG.
As shown in the figure, the heat pump device of the present embodiment is roughly composed of a heat pump unit 1, a heat medium circulation type heat source heat exchanging unit 2 as a heat source unit, and a load heat exchanging unit 3. .

前記ヒートポンプユニット1は、冷媒を圧縮する回転数可変の圧縮機4と、圧縮機4から吐出された高温高圧冷媒を流通させこの高温高圧冷媒と負荷熱交換部3の負荷側の熱媒との熱交換を行う凝縮器としての負荷側熱交換器5と、負荷側熱交換器5から流出する冷媒を減圧する減圧手段としての膨張弁6と、膨張弁6からの低温低圧冷媒を流通させこの低温低圧冷媒と熱源熱交換部2の熱源側の熱媒との熱交換を行う蒸発器としての熱源側熱交換器7とを備え、これらを冷媒配管8で環状に接続しヒートポンプ回路9を形成しているものである。なお、ヒートポンプユニット1の冷媒としては、二酸化炭素冷媒やHFC冷媒等の任意の冷媒を用いることができるものである。また、10は膨張弁6の出口と熱源熱交換器7の入口とを接続する熱源側熱交換器7側の冷媒配管8、つまり低圧側の冷媒配管8に設けられ、膨張弁6を流出し熱源側熱交換器7に流入するまでの冷媒の温度を検出する冷媒温度検出手段としての冷媒温度センサである。   The heat pump unit 1 circulates a variable-speed compressor 4 that compresses the refrigerant, and a high-temperature and high-pressure refrigerant discharged from the compressor 4, and the high-temperature and high-pressure refrigerant and a load-side heat medium of the load heat exchange unit 3. A load-side heat exchanger 5 as a condenser for performing heat exchange, an expansion valve 6 as a decompression means for decompressing the refrigerant flowing out from the load-side heat exchanger 5, and a low-temperature and low-pressure refrigerant from the expansion valve 6 are circulated. A heat source side heat exchanger 7 as an evaporator that performs heat exchange between the low temperature and low pressure refrigerant and the heat source side heat medium of the heat source heat exchanging unit 2, and these are connected in an annular shape by a refrigerant pipe 8 to form a heat pump circuit 9. It is what you are doing. In addition, as a refrigerant | coolant of the heat pump unit 1, arbitrary refrigerant | coolants, such as a carbon dioxide refrigerant | coolant and a HFC refrigerant | coolant, can be used. Reference numeral 10 is provided in the refrigerant pipe 8 on the heat source side heat exchanger 7 side connecting the outlet of the expansion valve 6 and the inlet of the heat source heat exchanger 7, that is, the refrigerant pipe 8 on the low pressure side, and flows out of the expansion valve 6. It is a refrigerant temperature sensor as refrigerant temperature detection means for detecting the temperature of the refrigerant until it flows into the heat source side heat exchanger 7.

前記熱源熱交換部2は、熱源側熱交換器7と、熱源側熱交換器7の冷媒を加熱する熱源として地中に埋設された地中熱交換器11と、熱源側熱交換器7と地中熱交換器11との間を熱媒配管12で環状に接続する熱源側循環回路としての地中熱循環回路13と、地中熱循環回路13に熱媒である水や不凍液を循環させる回転数可変の熱源側循環ポンプとしての地中熱循環ポンプ14とを備えているものである。   The heat source heat exchanging unit 2 includes a heat source side heat exchanger 7, a ground heat exchanger 11 embedded in the ground as a heat source for heating the refrigerant of the heat source side heat exchanger 7, a heat source side heat exchanger 7, A ground heat circulation circuit 13 as a heat source side circulation circuit that is connected to the ground heat exchanger 11 in a ring shape by a heat medium pipe 12, and water and antifreeze as a heat medium are circulated in the ground heat circulation circuit 13. A ground heat circulation pump 14 is provided as a heat source side circulation pump having a variable rotation speed.

ここで、前記熱源熱交換部2では、後述する負荷運転を行う際に、前記地中熱交換器11によって地中から地中熱を採熱し、その熱を帯びた熱媒が地中熱循環ポンプ14により熱源側熱交換器7に供給される。そして、熱源側熱交換器7にて冷媒と熱媒とが対向して流れて熱交換が行われ、地中熱交換器11にて採熱された地中熱がヒートポンプユニット1の冷媒側に汲み上げられ、熱源側熱交換器7は蒸発器として機能するものとなる。   Here, in the heat source heat exchanging unit 2, when performing a load operation to be described later, the underground heat exchanger 11 collects the underground heat from the ground, and the heat medium having the heat is the underground heat circulation. The heat is supplied to the heat source side heat exchanger 7 by the pump 14. Then, the heat and the heat medium are opposed to each other in the heat source side heat exchanger 7 to exchange heat, and the underground heat collected in the underground heat exchanger 11 is transferred to the refrigerant side of the heat pump unit 1. The heat source side heat exchanger 7 is pumped up and functions as an evaporator.

前記負荷熱交換部3は、負荷側に熱を与える前記負荷側熱交換器5と、被空調空間を加熱する床暖房パネル等の負荷端末15と、負荷側熱交換器5と負荷端末15との間を循環液配管16で環状に接続する負荷側循環回路17と、負荷側循環回路17に循環液として不凍液を循環させる負荷側循環ポンプ18と、負荷端末15毎に分岐した負荷側循環回路17に各々設けられその開閉により負荷端末15への循環液の供給を制御する熱動弁19(19a、19b)とを備えているものである。なお、20は負荷側循環回路17に設けられ、負荷端末15から流出し負荷側熱交換器5に戻ってくる循環液の温度を検出する負荷温度センサである。   The load heat exchanging unit 3 includes the load side heat exchanger 5 that applies heat to the load side, a load terminal 15 such as a floor heating panel that heats the air-conditioned space, the load side heat exchanger 5 and the load terminal 15 A load-side circulation circuit 17 that is connected in a ring shape with a circulating fluid pipe 16, a load-side circulation pump 18 that circulates antifreeze as a circulating fluid in the load-side circulation circuit 17, and a load-side circulation circuit that branches for each load terminal 15. 17 is provided with a thermal valve 19 (19a, 19b) that is provided in each of the control terminals 17 and controls the supply of the circulating fluid to the load terminal 15 by opening and closing thereof. Reference numeral 20 denotes a load temperature sensor that is provided in the load-side circulation circuit 17 and detects the temperature of the circulating fluid that flows out from the load terminal 15 and returns to the load-side heat exchanger 5.

前記負荷端末15によって加熱される被空調空間には、リモコン(図示せず)が各々設置されており、このリモコンにより被空調空間の加熱の指示がなされると、圧縮機4および地中熱循環ポンプ14および負荷側循環ポンプ18の駆動が開始され、熱源側熱交換器7を蒸発器として機能させると同時に、負荷側熱交換器5を凝縮器として機能させて負荷側を加熱する負荷運転としての暖房運転が行われる。この暖房運転の際、前記負荷側熱交換器5では、冷媒と循環液とが対向して流れて熱交換が行われ、負荷側熱交換器5にて加熱された循環液は、熱動弁19を介して負荷端末15に送られ、リモコンにより指示を受けた被空調空間を加熱するものである。   A remote control (not shown) is installed in each air-conditioned space heated by the load terminal 15. When the remote controller instructs to heat the air-conditioned space, the compressor 4 and the underground heat circulation are provided. The drive of the pump 14 and the load side circulation pump 18 is started, and at the same time as the heat source side heat exchanger 7 functions as an evaporator, the load side heat exchanger 5 functions as a condenser to heat the load side. The heating operation is performed. During the heating operation, in the load-side heat exchanger 5, the refrigerant and the circulating fluid flow oppositely to exchange heat, and the circulating fluid heated in the load-side heat exchanger 5 The air-conditioned space sent to the load terminal 15 via 19 and received an instruction from the remote controller is heated.

21は冷媒温度センサ10、負荷温度センサ20の入力や前記リモコンからの信号を受けて、圧縮機4、膨張弁6、地中熱循環ポンプ14、負荷側循環ポンプ18の各アクチュエータの作動を制御するマイコンを有する制御手段であり、制御手段21は前記暖房運転の際に、冷媒温度センサ10の検出する温度が所定の目標温度になるように地中熱循環ポンプ14の回転数を制御して地中熱循環回路13を循環する熱媒の流量を調整するものであり、また、負荷温度センサ20の検出する温度が所定温度になるように圧縮機4の回転数または周波数を制御するものである。   21 receives inputs from the refrigerant temperature sensor 10 and the load temperature sensor 20 and signals from the remote controller, and controls the operations of the actuators of the compressor 4, the expansion valve 6, the underground heat circulation pump 14, and the load side circulation pump 18. The control means 21 controls the rotation speed of the underground heat circulation pump 14 so that the temperature detected by the refrigerant temperature sensor 10 becomes a predetermined target temperature during the heating operation. The flow rate of the heat medium circulating in the underground heat circulation circuit 13 is adjusted, and the rotation speed or frequency of the compressor 4 is controlled so that the temperature detected by the load temperature sensor 20 becomes a predetermined temperature. is there.

次に、図1に示す一実施形態の暖房運転時の動作について図2に示すフローチャートに基づき説明する。
前記リモコンにより負荷端末15による被空調空間の暖房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ14、負荷側循環ポンプ18を駆動させ、暖房運転を開始させ、負荷側熱交換器5では負荷側循環ポンプ18により循環される循環液と圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された循環液が負荷端末15に供給され被空調空間を加熱すると共に、熱源側熱交換器7では、地中熱循環ポンプ14により循環され地中熱交換器11を介して地中熱を採熱した熱媒と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。
Next, the operation | movement at the time of the heating operation of one Embodiment shown in FIG. 1 is demonstrated based on the flowchart shown in FIG.
When the load terminal 15 instructs the heating of the air-conditioned space by the remote controller, the control means 21 drives the compressor 4, the geothermal circulation pump 14 and the load-side circulation pump 18, and starts the heating operation. In the load-side heat exchanger 5, heat is exchanged between the circulating fluid circulated by the load-side circulation pump 18 and the high-temperature and high-pressure refrigerant discharged from the compressor 4, and the heated circulating fluid is supplied to the load terminal 15 to be air-conditioned. While heating the space, the heat source side heat exchanger 7 is circulated by the ground heat circulation pump 14 and the low temperature discharged from the expansion valve 6 and the heat medium that has collected the ground heat through the ground heat exchanger 11. Heat is exchanged with the low-pressure refrigerant, and the refrigerant is heated and evaporated by underground heat.

前記暖房運転中、制御手段21は、後述する設定方法に基づき、圧縮機4の回転数に応じて低圧側の冷媒の目標温度を所定の目標温度Xに設定し(ステップS1)、冷媒温度センサ10で低圧側の冷媒の温度を検出し(ステップS2)、検出した冷媒の温度と前記所定の目標温度Xとの比較を行うものである(ステップS3)。   During the heating operation, the control means 21 sets the target temperature of the low-pressure side refrigerant to a predetermined target temperature X according to the rotational speed of the compressor 4 based on the setting method described later (step S1), and the refrigerant temperature sensor 10 detects the temperature of the low-pressure refrigerant (step S2), and compares the detected refrigerant temperature with the predetermined target temperature X (step S3).

前記ステップS3で、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Xであると判断したら、それまでの地中熱循環ポンプ14の回転数を維持するように制御して地中熱循環回路13を循環する熱媒の循環流量を一定に保つようにし(ステップS4)、前記ステップS1の処理に戻るものである。   In step S3, when the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is the predetermined target temperature X, the control means 21 performs control so as to maintain the rotation speed of the underground heat circulation pump 14 until then. Then, the circulation flow rate of the heat medium circulating in the underground heat circulation circuit 13 is kept constant (step S4), and the process returns to the process of step S1.

また、前記ステップS3にて、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Xでないと判断したら、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Xより低いか否か判断し(ステップS5)、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Xより低いと判断したら、地中熱循環ポンプ14の回転数を所定回転数増加させ、地中熱循環回路13を循環する熱媒の循環流量を増加させ(ステップS6)、前記ステップS1の処理に戻るものである。一方、前記ステップS5にて、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Xより高いと判断したら、地中熱循環ポンプ14の回転数を所定回転数減少させ、地中熱循環回路13を循環する熱媒の循環流量を減少させ(ステップS7)、前記ステップS1の処理に戻るものである。   If the control unit 21 determines in step S3 that the refrigerant temperature detected by the refrigerant temperature sensor 10 is not the predetermined target temperature X, the refrigerant temperature detected by the refrigerant temperature sensor 10 is the predetermined target temperature X. If it is determined whether the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than a predetermined target temperature X, the rotational speed of the geothermal circulation pump 14 is increased by a predetermined rotational speed, The circulation flow rate of the heat medium circulating in the underground heat circulation circuit 13 is increased (step S6), and the process returns to step S1. On the other hand, when it is determined in step S5 that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the predetermined target temperature X, the control unit 21 decreases the rotation speed of the geothermal circulation pump 14 by a predetermined rotation speed. Then, the circulation flow rate of the heat medium circulating in the underground heat circulation circuit 13 is decreased (step S7), and the process returns to the process of step S1.

ここで、前記ステップS1における所定の目標温度Xの設定方法について説明すると、図3に示すように、圧縮機4の回転数に応じた複数のゾーンz1〜z3を設け、各々のゾーンz1〜z3に所定の目標温度Xが設定されており、例えば、太線αより下の領域であるゾーンz1では前記目標温度Xを−1.5℃、太線αと太線βとで挟まれた領域であるゾーンz2では前記目標温度Xを0℃、太線βより上の領域であるゾーンz3では前記目標温度Xを2℃とした場合、前記暖房運転中に、圧縮機4が2200rpmで回転しているときは、圧縮機4の回転数はゾーンz1に含まれるので、制御手段21は所定の目標温度Xを−1.5℃に設定し、圧縮機4が3000rpmで回転しているときは、圧縮機4の回転数はゾーンz2に含まれるので、制御手段21は所定の目標温度Xを0℃に設定し、圧縮機4が4500rpmで回転しているときは、圧縮機4の回転数はゾーンz3に含まれるので、制御手段21は所定の目標温度Xを2℃に設定するものである。   Here, the setting method of the predetermined target temperature X in the step S1 will be described. As shown in FIG. 3, a plurality of zones z1 to z3 corresponding to the rotational speed of the compressor 4 are provided, and each zone z1 to z3 is provided. Is set to a predetermined target temperature X. For example, in the zone z1, which is a region below the thick line α, the target temperature X is −1.5 ° C., and the zone is a region between the thick line α and the thick line β. When the target temperature X is 0 ° C. at z2 and the target temperature X is 2 ° C. in the zone z3, which is the region above the thick line β, when the compressor 4 is rotating at 2200 rpm during the heating operation, Since the rotation speed of the compressor 4 is included in the zone z1, the control means 21 sets the predetermined target temperature X to −1.5 ° C., and when the compressor 4 is rotating at 3000 rpm, the compressor 4 Is included in zone z2 Then, the control means 21 sets the predetermined target temperature X to 0 ° C., and when the compressor 4 is rotating at 4500 rpm, the rotational speed of the compressor 4 is included in the zone z3, so the control means 21 The target temperature X is set to 2 ° C.

また、図3に示した上向き矢印u1のように、ゾーンz1に含まれる回転数で回転していた圧縮機4が、暖房負荷の増加に伴い、ゾーンz1とゾーンz2の境界線である太線αを越えてゾーンz2に含まれる回転数に上がる場合、すなわち、2200rpmで回転していた圧縮機4が、暖房負荷の増加に伴い、ゾーンz1とゾーンz2の境界である2700rpmを越えて、3000rpmに上がった場合、所定の目標温度Xは、−1.5℃から0℃に変更されるものであり、さらに、図3に示した上向き矢印u2のように、ゾーンz2に含まれる回転数で回転していた圧縮機4が、暖房負荷の増加に伴い、ゾーンz2とゾーンz3の境界線である太線βを越えてゾーンz3に含まれる回転数に上がる場合、すなわち、3000rpmで回転していた圧縮機4が、暖房負荷の増加に伴い、ゾーンz2とゾーンz3の境界である3600rpmを越えて、4500rpmに上がった場合、所定の目標温度Xは、0℃から2℃に変更されるものである。   Further, as indicated by the upward arrow u1 shown in FIG. 3, the compressor 4 that has been rotated at the rotational speed included in the zone z1 increases with the increase in the heating load, and the thick line α that is the boundary line between the zone z1 and the zone z2 When the compressor 4 that has been rotating at 2200 rpm exceeds 2700 rpm, which is the boundary between the zone z1 and the zone z2, increases to 3000 rpm. When the temperature rises, the predetermined target temperature X is changed from −1.5 ° C. to 0 ° C., and as shown by the upward arrow u2 shown in FIG. 3, the predetermined target temperature X rotates at the rotational speed included in the zone z2. When the compressor 4 that has been moved up to the rotational speed included in the zone z3 exceeds the thick line β that is the boundary line between the zone z2 and the zone z3 as the heating load increases, that is, the compressor 4 rotates at 3000 rpm. When the compressor 4 that has been used rises to 3500 rpm, which is the boundary between the zone z2 and the zone z3, and rises to 4500 rpm as the heating load increases, the predetermined target temperature X is changed from 0 ° C. to 2 ° C. Is.

逆に、図3に示した下向き矢印d1のように、ゾーンz3に含まれる回転数で回転していた圧縮機4の回転数が、暖房負荷の減少に伴い、ゾーンz3とゾーンz2の境界線である太線βを越えてゾーンz2に含まれる回転数に下がる場合、すなわち、4500rpmで回転していた圧縮機4の回転数が、暖房負荷の減少に伴い、ゾーンz3とゾーンz2の境界である3300rpmを越えて、3000rpmに下がった場合、所定の目標温度Xは、2℃から0℃に変更されるものであり、さらに、図3に示した下向き矢印d2のように、ゾーンz2に含まれる回転数で回転していた圧縮機4の回転数が、暖房負荷の減少に伴い、ゾーンz2とゾーンz1の境界線である太線αを越えてゾーンz1に含まれる回転数に下がる場合、すなわち、3000rpmで回転していた圧縮機4の回転数が、暖房負荷の減少に伴い、ゾーンz2とゾーンz1の境界である2400rpmを越えて、2200rpmに下がった場合、所定の目標温度Xは、0℃から−1.5℃に変更されるものである。なお、前記制御手段21には、この図3に示した圧縮機4の回転数と所定の目標温度Xとの関係が予め記憶されており、暖房運転中はその情報を基に、圧縮機4の回転数に応じて所定の目標温度Xを設定しているものである。   On the contrary, as indicated by the downward arrow d1 shown in FIG. 3, the rotational speed of the compressor 4 that has been rotating at the rotational speed included in the zone z3 increases with the decrease in the heating load, and the boundary line between the zone z3 and the zone z2 , The rotational speed of the compressor 4 rotating at 4500 rpm is the boundary between the zone z3 and the zone z2 as the heating load decreases. When it exceeds 3300 rpm and falls to 3000 rpm, the predetermined target temperature X is changed from 2 ° C. to 0 ° C., and is further included in the zone z 2 as indicated by the downward arrow d 2 shown in FIG. When the rotational speed of the compressor 4 that has been rotating at the rotational speed is reduced to the rotational speed included in the zone z1 across the thick line α that is the boundary line between the zone z2 and the zone z1, as the heating load decreases, 30 When the rotation speed of the compressor 4 rotating at 00 rpm exceeds 2400 rpm which is the boundary between the zone z2 and the zone z1 and decreases to 2200 rpm as the heating load decreases, the predetermined target temperature X is 0 ° C. To -1.5 ° C. The control means 21 stores in advance the relationship between the rotational speed of the compressor 4 shown in FIG. 3 and a predetermined target temperature X, and the compressor 4 is based on the information during the heating operation. The predetermined target temperature X is set according to the number of rotations.

次に、一実施形態のヒートポンプ装置における暖房運転の動作を、先に説明した図2の制御を交えて図4のタイムチャートを用いて説明する。ここで、図4のタイムチャートにおいて、時間t0は暖房運転を開始した時間ではなく、暖房運転がある程度行われ安定した後の任意の時間とする。なお、図5のタイムチャートは、図12に示した従来のヒートポンプ装置で暖房運転を行ったときのタイムチャートで、図4のタイムチャートとの比較に用いるものであり、図5のタイムチャートにおいて、時間t0は暖房運転を開始した時間ではなく、暖房運転がある程度行われ安定した後の任意の時間とし、時間t0〜時間t12は図4のタイムチャートの時間t0〜t12と同タイミングを表しているものである。また、図5のタイムチャート中において、低圧側の冷媒の目標温度は固定の温度(2℃)に設定してあるものとする。   Next, the operation of the heating operation in the heat pump device of one embodiment will be described using the time chart of FIG. 4 together with the control of FIG. 2 described above. Here, in the time chart of FIG. 4, the time t0 is not the time when the heating operation is started, but is an arbitrary time after the heating operation is performed to a certain degree and stabilized. The time chart of FIG. 5 is a time chart when the heating operation is performed by the conventional heat pump apparatus shown in FIG. 12, and is used for comparison with the time chart of FIG. 4. In the time chart of FIG. The time t0 is not the time when the heating operation is started, but is an arbitrary time after the heating operation is performed and stabilized to some extent, and the time t0 to the time t12 represent the same timing as the times t0 to t12 in the time chart of FIG. It is what. Further, in the time chart of FIG. 5, it is assumed that the target temperature of the low-pressure side refrigerant is set to a fixed temperature (2 ° C.).

まず、図4中の前記暖房運転がある程度行われ安定した後の時間t0において、制御手段21は圧縮機4の回転数を4500rpmで制御しており、制御手段21は、この時の低圧側の冷媒の目標温度Xを、図3に示した圧縮機4と目標温度との関係から2℃に設定し(前記ステップS1)、冷媒温度センサ10で低圧側の冷媒の温度を検出し(前記ステップS2)、冷媒温度センサ10で検出した冷媒の温度が2℃であるか否かを判断し(前記ステップS3)、検出した冷媒の温度が2℃であるので、地中熱循環ポンプ14の回転数をそれまでの回転数である3500rpmに維持する(前記ステップS4)。時間t0から時間t1までは、圧縮機4の回転数は4500rpmなので、この期間は目標温度Xを2℃に設定しているものである。   First, at time t0 after the heating operation in FIG. 4 is performed and stabilized to some extent, the control means 21 controls the rotation speed of the compressor 4 at 4500 rpm, and the control means 21 The target temperature X of the refrigerant is set to 2 ° C. from the relationship between the compressor 4 and the target temperature shown in FIG. 3 (step S1), and the refrigerant temperature sensor 10 detects the temperature of the low-pressure side refrigerant (the step). S2) It is determined whether or not the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is 2 ° C. (step S3). Since the detected temperature of the refrigerant is 2 ° C., the rotation of the underground heat circulation pump 14 is performed. The number is maintained at 3500 rpm, which is the number of rotations up to that time (step S4). From time t0 to time t1, the rotational speed of the compressor 4 is 4500 rpm, so the target temperature X is set to 2 ° C. during this period.

続いて、時間t1から時間t2にかけて、負荷端末15での暖房負荷が5kWから徐々に減少していくと、制御手段21は圧縮機4の回転数を徐々に減少させていく。それと連動して低圧側の冷媒の温度が上昇していくものであるが、この時、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xより高いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS7)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの2℃になるように制御するものである。次に、時間t2において、制御手段21は、圧縮機4の回転数が図3に示すゾーンz3とゾーンz2の境界である3300rpmを越えて下がったことを検知すると、目標温度Xを2℃から0℃に変更するものである。   Subsequently, when the heating load at the load terminal 15 gradually decreases from 5 kW from time t1 to time t2, the control means 21 gradually decreases the rotational speed of the compressor 4. In conjunction with this, the temperature of the refrigerant on the low-pressure side rises. At this time, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature X (the aforementioned step). S5), the rotational speed of the underground heat circulation pump 14 is decreased (step S7), and the refrigerant temperature detected by the refrigerant temperature sensor 10 is controlled to be 2 ° C. of the target temperature X. Next, at time t2, when the control means 21 detects that the rotation speed of the compressor 4 has dropped below 3300 rpm, which is the boundary between the zone z3 and the zone z2 shown in FIG. 3, the target temperature X is reduced from 2 ° C. Change to 0 ° C.

そして、時間t2から時間t3の間に、圧縮機4の回転数が3000rpmまで減少するが、3000rpmは図3に示すゾーンz2に含まれる回転数なので、目標温度Xの設定は0℃のままである。この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xの0℃より高いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS7)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの0℃になるように制御するものであり、時間t3において、制御手段21が冷媒温度センサ10で検出した冷媒の温度が目標温度Xと同温度の0℃であると判断すると(前記ステップS3)、地中熱循環ポンプ14の回転数を2500rpmに維持する(前記ステップS4)。時間t3から時間t4までは、圧縮機4の回転数は3000rpmなので、この期間は目標温度Xを0℃に設定しているものである。   Then, during the time t2 to the time t3, the rotation speed of the compressor 4 decreases to 3000 rpm, but since 3000 rpm is the rotation speed included in the zone z2 shown in FIG. 3, the setting of the target temperature X remains 0 ° C. is there. During this period, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature X of 0 ° C. (step S5), and decreases the rotation speed of the underground heat circulation pump 14 (see above). In step S7), the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 0 ° C. of the target temperature X. At time t3, the temperature of the refrigerant detected by the control means 21 using the refrigerant temperature sensor 10 is determined. If it is determined that the temperature is 0 ° C., which is the same temperature as the target temperature X (step S3), the rotational speed of the underground heat circulation pump 14 is maintained at 2500 rpm (step S4). From time t3 to time t4, since the rotation speed of the compressor 4 is 3000 rpm, the target temperature X is set to 0 ° C. during this period.

続いて、時間t4から時間t5にかけて、負荷端末15での暖房負荷が4kWから徐々に減少していくと、制御手段21は圧縮機4の回転数を徐々に減少させていく。それと連動して低圧側の冷媒の温度が上昇していくものであるが、この時、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xより高いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS7)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの0℃になるように制御するものである。次に、時間t5において、制御手段21は、圧縮機4の回転数が図3に示すゾーンz2とゾーンz1の境界である2400rpmを越えて下がったことを検知すると、目標温度Xを0℃から−1.5℃に変更するものである。   Subsequently, when the heating load at the load terminal 15 gradually decreases from 4 kW from time t4 to time t5, the control means 21 gradually decreases the rotational speed of the compressor 4. In conjunction with this, the temperature of the refrigerant on the low-pressure side rises. At this time, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature X (the aforementioned step). S5) The rotational speed of the underground heat circulation pump 14 is decreased (step S7), and the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 0 ° C. of the target temperature X. Next, at time t5, when the control means 21 detects that the rotational speed of the compressor 4 has dropped below 2400 rpm, which is the boundary between the zone z2 and the zone z1 shown in FIG. 3, the target temperature X is changed from 0 ° C. Change to -1.5 ° C.

そして、時間t5から時間t6の間に、圧縮機4の回転数が2200rpmまで減少するが、2200rpmは図3に示すゾーンz1に含まれる回転数なので、目標温度Xの設定は−1.5℃のままである。この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xの−1.5℃より高いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS7)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの−1.5℃になるように制御するものであり、時間t6において、制御手段21が冷媒温度センサ10で検出した冷媒の温度が目標温度Xと同温度の−1.5℃であると判断すると(前記ステップS3)、地中熱循環ポンプ14の回転数を1500rpmに維持する(前記ステップS4)。時間t6から時間t7までは、圧縮機4の回転数は2200rpmなので、この期間は目標温度Xを−1.5℃に設定しているものである。   Then, during the time t5 to the time t6, the rotational speed of the compressor 4 decreases to 2200 rpm, but since 2200 rpm is the rotational speed included in the zone z1 shown in FIG. 3, the setting of the target temperature X is −1.5 ° C. Remains. During this period, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature X of −1.5 ° C. (step S5), and decreases the rotation speed of the underground heat circulation pump 14. (Step S7), and the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be −1.5 ° C. of the target temperature X. At time t6, the control means 21 is controlled by the refrigerant temperature sensor 10. When it is determined that the detected refrigerant temperature is −1.5 ° C., which is the same temperature as the target temperature X (step S3), the rotation speed of the underground heat circulation pump 14 is maintained at 1500 rpm (step S4). From time t6 to time t7, the rotational speed of the compressor 4 is 2200 rpm, so the target temperature X is set to −1.5 ° C. during this period.

続いて、時間t7から時間t8にかけて、負荷端末15での暖房負荷が3kWから徐々に増加していくと、制御手段21は圧縮機4の回転数を徐々に増加させていく。それと連動して低圧側の冷媒の温度が低下していくものであるが、この時、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xより低いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を増加させ(前記ステップS6)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの−1.5℃になるように制御するものである。次に、時間t8において、制御手段21は、圧縮機4の回転数が図3に示すゾーンz1とゾーンz2の境界である2700rpmを越えて上がったことを検知すると、目標温度Xを−1.5℃から0℃に変更するものである。   Subsequently, when the heating load at the load terminal 15 gradually increases from 3 kW from time t7 to time t8, the control means 21 gradually increases the rotational speed of the compressor 4. In conjunction with this, the temperature of the refrigerant on the low-pressure side decreases. At this time, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than the target temperature X (the aforementioned step). S5) The rotational speed of the underground heat circulation pump 14 is increased (step S6), and the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be the target temperature X of −1.5 ° C. . Next, at time t8, when the control means 21 detects that the rotational speed of the compressor 4 has increased beyond 2700 rpm, which is the boundary between the zone z1 and the zone z2 shown in FIG. The temperature is changed from 5 ° C to 0 ° C.

そして、時間t8から時間t9にかけて、暖房負荷が徐々に増加していき、制御手段21は圧縮機4の回転数を徐々に増加させるが、この期間の圧縮機4の回転数は図3に示すゾーンz2に含まれる回転数なので、目標温度Xの設定は0℃のままである。また、この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xの0℃より低いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を増加させ(前記ステップS6)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの0℃になるように制御するものである。次に、時間t9において、制御手段21は、圧縮機4の回転数が図3に示すゾーンz2とゾーンz3の境界である3600rpmを越えて上がったことを検知すると、目標温度Xを0℃から2℃に変更するものである。   The heating load gradually increases from time t8 to time t9, and the control means 21 gradually increases the rotation speed of the compressor 4. The rotation speed of the compressor 4 during this period is shown in FIG. Since the rotation speed is included in the zone z2, the setting of the target temperature X remains 0 ° C. During this period, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than the target temperature X of 0 ° C. (step S5), and increases the rotation speed of the underground heat circulation pump 14. (Step S6) The temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 0 ° C. of the target temperature X. Next, at time t9, when the control means 21 detects that the rotational speed of the compressor 4 has increased beyond 3600 rpm, which is the boundary between the zone z2 and the zone z3 shown in FIG. 3, the target temperature X is changed from 0 ° C. Change to 2 ° C.

続いて、時間t9から時間t10の間に、圧縮機4の回転数が4500rpmまで増加するが、4500rpmは図3に示すゾーンz3に含まれる回転数なので、目標温度Xの設定は2℃のままである。この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Xの2℃より低いと判断し(前記ステップS5)、地中熱循環ポンプ14の回転数を増加させ(前記ステップS6)、冷媒温度センサ10の検出する冷媒の温度が目標温度Xの2℃になるように制御するものであり、時間t10において、制御手段21が冷媒温度センサ10で検出した冷媒の温度が目標温度Xと同温度の2℃であると判断すると(前記ステップS3)、地中熱循環ポンプ14の回転数を3500rpmに維持する(前記ステップS4)。時間t10から時間t11までは、圧縮機4の回転数は4500rpmなので、この期間は目標温度Xが2℃に設定されており、冷媒温度センサ10で検出する冷媒の温度は目標温度Xと同温度の2℃であり、地中熱循環ポンプ14の回転数が3500rpmに維持されるものであり、前記リモコンから暖房運転の停止指示がなされるまで、図4のタイムチャートに示したような動作で暖房運転を行うものである。   Subsequently, during the period from time t9 to time t10, the rotation speed of the compressor 4 increases to 4500 rpm. Since 4500 rpm is the rotation speed included in the zone z3 shown in FIG. 3, the setting of the target temperature X remains 2 ° C. It is. During this period, the control means 21 determines that the refrigerant temperature detected by the refrigerant temperature sensor 10 is lower than the target temperature X of 2 ° C. (step S5), and increases the rotation speed of the underground heat circulation pump 14 (see above). In step S6), the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 2 ° C. of the target temperature X. At time t10, the temperature of the refrigerant detected by the control means 21 using the refrigerant temperature sensor 10 is determined. If it is determined that the temperature is 2 ° C., which is the same temperature as the target temperature X (step S3), the rotation speed of the underground heat circulation pump 14 is maintained at 3500 rpm (step S4). From time t10 to time t11, since the rotation speed of the compressor 4 is 4500 rpm, the target temperature X is set to 2 ° C. during this period, and the refrigerant temperature detected by the refrigerant temperature sensor 10 is the same temperature as the target temperature X. 4 ° C., the rotation speed of the underground heat circulation pump 14 is maintained at 3500 rpm, and the operation shown in the time chart of FIG. 4 is performed until an instruction to stop the heating operation is issued from the remote controller. Heating operation is performed.

なお、上述の暖房運転において、制御手段21は、冷媒温度センサ10の検出する冷媒温度を監視することで、暖房負荷の変動を素早く把握することができたが、例えば暖房負荷に変動がなく一定の状態で推移している時に、地中の熱を連続して採熱したために地中の温度が低下してきた場合においても、冷媒温度センサ10の検出する冷媒温度は低下するので、制御手段21は、冷媒温度センサ10の検出する冷媒温度を監視することで、地中の温度の変動、すなわち採熱出力の変動も素早く把握することができ、その場合も制御手段21は、冷媒温度センサ10の検出する冷媒温度が所定の目標温度Xになるように地中熱循環ポンプ14の回転数を制御するものである。   In the above-described heating operation, the control means 21 can quickly grasp the change in the heating load by monitoring the refrigerant temperature detected by the refrigerant temperature sensor 10, but the heating load is constant without any change, for example. Since the refrigerant temperature detected by the refrigerant temperature sensor 10 is lowered even when the underground temperature is decreased because the underground heat is continuously collected during the transition in the state, the control means 21 By monitoring the refrigerant temperature detected by the refrigerant temperature sensor 10, it is possible to quickly grasp the fluctuation of the underground temperature, that is, the fluctuation of the heat collection output. In this case, the control means 21 also detects the refrigerant temperature sensor 10. The number of revolutions of the underground heat circulation pump 14 is controlled so that the refrigerant temperature detected by the engine reaches a predetermined target temperature X.

以上説明した暖房運転において、制御手段21が、冷媒温度センサ10の検出する温度が所定の目標温度Xになるように地中熱循環ポンプ14の回転数を制御し、地中熱循環回路13を循環する熱媒の流量を調整することで、最適な採熱を行わせて所望の暖房負荷を出力するまでの時間を短縮することができ、ヒートポンプ装置のシステムCOPを高く維持したまま暖房運転を行うことができ、さらに、制御手段21は、低圧側の冷媒の目標温度を、圧縮機4の回転数に応じて所定の目標温度Xに設定することで、暖房負荷に応じた最適な採熱を実行しつつ、地中熱循環ポンプ14の消費電力を抑えることができ、ヒートポンプ装置のシステムCOP(=「暖房負荷÷(圧縮機4消費電力+地中熱循環ポンプ14消費電力」とする)を向上させることができるものである。   In the heating operation described above, the control means 21 controls the number of revolutions of the underground heat circulation pump 14 so that the temperature detected by the refrigerant temperature sensor 10 becomes the predetermined target temperature X, and the underground heat circulation circuit 13 is controlled. By adjusting the flow rate of the circulating heat medium, it is possible to shorten the time required to perform optimum heat collection and output the desired heating load, and to perform the heating operation while maintaining the system COP of the heat pump device high. Furthermore, the control means 21 sets the target temperature of the low-pressure side refrigerant to a predetermined target temperature X according to the number of rotations of the compressor 4, so that the optimum heat collection according to the heating load is achieved. , The power consumption of the underground heat circulation pump 14 can be suppressed, and the system COP of the heat pump device (= “heating load / (power consumption of the compressor 4 + power consumption of the underground heat circulation pump 14)”) Improved It is those that can Rukoto.

また、図4のタイムチャートと図5のタイムチャートとの比較から分かるように、図4のタイムチャートの時間t0〜時間t7のように、暖房負荷の減少に伴い、圧縮機4の回転数が下がるにつれて、前記所定の目標温度Xの設定を下げるようにしたことで、所望の暖房負荷に対して地中からの採熱量を減らし、地中熱循環ポンプ14の回転数を減少させることができ、暖房負荷に対して地中からの採熱量が過剰な状態、すなわち、地中熱循環ポンプ14が過剰に回転する状態がなく、特に、暖房負荷が低負荷の時に、最適な採熱を行わせつつ地中熱循環ポンプ14の消費電力を従来よりも抑えることができ、システムCOPを向上させることができるものである。   Further, as can be seen from the comparison between the time chart of FIG. 4 and the time chart of FIG. 5, as the heating load decreases, the rotation speed of the compressor 4 increases as time t <b> 0 to time t <b> 7 of the time chart of FIG. 4. Since the setting of the predetermined target temperature X is lowered as the temperature decreases, the amount of heat collected from the ground can be reduced for the desired heating load, and the rotation speed of the underground heat circulation pump 14 can be reduced. In the state where the amount of heat collected from the ground is excessive with respect to the heating load, that is, there is no state where the underground heat circulation pump 14 rotates excessively, especially when the heating load is low, optimum heat collection is performed. In addition, the power consumption of the underground heat circulation pump 14 can be suppressed as compared with the conventional one, and the system COP can be improved.

また、本発明は上記の一実施形態に限定されるものではなく、本実施形態では、圧縮機4の回転数に応じて所定の目標温度を設定するようにしたが、圧縮機4の回転数の代わりに圧縮機4の周波数を用いて、圧縮機4の周波数に応じて所定の目標温度を設定するようにしてもよいものである。   Further, the present invention is not limited to the above-described embodiment. In the present embodiment, the predetermined target temperature is set according to the rotational speed of the compressor 4, but the rotational speed of the compressor 4 is set. Instead of the above, a predetermined target temperature may be set according to the frequency of the compressor 4 by using the frequency of the compressor 4.

また、本実施形態では、圧縮機4の回転数に応じて3つ目標温度を設定できるようにしたが、3つに限定する必要はなく、圧縮機4の回転数に応じた目標温度を必要分用意すればよいものである。   In the present embodiment, three target temperatures can be set according to the number of rotations of the compressor 4. However, the target temperature is not limited to three and needs to be set according to the number of rotations of the compressor 4. All you need to do is prepare.

また、本実施形態では、負荷側熱交換器5で熱交換して加熱された循環液を床暖房パネル等の負荷端末15に供給することにより被空調空間である室内を暖房する暖房運転時に本発明の制御を適用したが、一般的にエアコンと呼ばれるような、被空調空間である室内に設置された空調用室内機に直接的に圧縮機4から吐出された高温高圧冷媒を供給して室内を暖房するものにおいて、暖房運転時に本発明の制御を適用してもよいものであり、本発明の要旨を変更しない範囲で様々な変形が可能であり、これを妨げるものではない。   In the present embodiment, the circulating fluid heated by exchanging heat in the load-side heat exchanger 5 is supplied to the load terminal 15 such as a floor heating panel, thereby heating the room that is the air-conditioned space during the heating operation. Although the control of the invention is applied, the high-temperature and high-pressure refrigerant discharged from the compressor 4 is directly supplied to an indoor unit for air conditioning that is generally called an air conditioner and is installed in the room. In the heating, the control of the present invention may be applied during heating operation, and various modifications are possible without departing from the scope of the present invention, and this is not disturbed.

また、本実施形態では、熱媒循環式の熱源部として、地中熱を地中熱交換器11で採熱する熱源熱交換部2を採用したが、熱源部としては、川・湖・海の水を循環させて熱源側熱交換器7の冷媒を加熱するような熱媒循環式のものでもよく、さらに、貯湯タンクに貯湯された湯水を直接的または間接的に利用、または井戸水を直接的または間接的に利用して熱源側熱交換器7の冷媒を加熱するような熱媒循環式のものでもよく、本発明の要旨を変更しない範囲で様々な変形が可能であり、これを妨げるものではない。   Further, in the present embodiment, the heat source heat exchange unit 2 that collects the geothermal heat with the underground heat exchanger 11 is adopted as the heat medium circulation type heat source unit. However, as the heat source unit, the river, lake, sea It is also possible to use a heat medium circulation type that circulates the water in the heat source and heats the refrigerant in the heat source side heat exchanger 7, and directly or indirectly uses the hot water stored in the hot water storage tank, or directly uses the well water. It may be a heat medium circulation type that heats the refrigerant of the heat source side heat exchanger 7 by using it or indirectly, and various modifications are possible without departing from the scope of the present invention, and this is hindered. It is not a thing.

次に、図6に示すこの発明の他の実施形態のヒートポンプ装置について説明するが、この実施形態は先に説明した一実施形態と同じ構成についての説明は省略し、相違点についてのみ説明すると、負荷熱交換部3が空調用の室内機で、被空調空間を冷房するものであり、負荷熱交換部3としての室内機には、室内の空調を行う負荷側熱交換器5と、負荷側熱交換器5に送風し負荷側熱交換器5の放熱を行って室内に供給する送風ファン22とが備えられ、負荷熱交換部3としての室内機によって冷房される被空調空間には、リモコン(図示せず)が設置されており、このリモコンにより被空調空間の冷房の指示がなされると、圧縮機4の駆動を開始させ、負荷側熱交換器5を蒸発器として機能させて負荷側を冷却する負荷運転としての冷房運転が行われる。冷房運転の際、負荷側熱交換器5では、膨張弁6から吐出された低温低圧冷媒と送風ファン22の駆動により送風される被空調空間の空気とで熱交換が行われ、負荷側熱交換器5にて冷却された空気は被空調空間に送られ、リモコンにより指示を受けた被空調空間を冷房するものである。なお、本実施形態のヒートポンプ装置における熱源熱交換部3は、熱源側熱交換器7の冷媒を冷却する熱媒循環式のものであり、また、冷媒温度センサ10は、凝縮器として機能する熱源側熱交換器7の出口と膨張弁6の入口とを接続する冷媒配管8、つまり高圧側の冷媒配管8に設けられ、熱源側熱交換器7を流出し膨張弁6に流入するまでの冷媒の温度を検出するものとなる。   Next, a heat pump device according to another embodiment of the present invention shown in FIG. 6 will be described. However, in this embodiment, description of the same configuration as that of the embodiment described above will be omitted, and only differences will be described. The load heat exchanging unit 3 is an indoor unit for air conditioning, and cools the air-conditioned space. The indoor unit as the load heat exchanging unit 3 includes a load side heat exchanger 5 that performs indoor air conditioning, a load side A blower fan 22 that blows air to the heat exchanger 5 and radiates heat from the load-side heat exchanger 5 and supplies the air to the room is provided. The air-conditioned space that is cooled by the indoor unit as the load heat exchanger 3 has a remote controller (Not shown) is installed, and when the air-conditioning space is instructed to cool by this remote controller, the compressor 4 starts to be driven, and the load-side heat exchanger 5 functions as an evaporator to load side Cooling operation as a load operation to cool It is carried out. During the cooling operation, the load-side heat exchanger 5 performs heat exchange between the low-temperature and low-pressure refrigerant discharged from the expansion valve 6 and the air in the air-conditioned space blown by driving the blower fan 22, and load-side heat exchange is performed. The air cooled by the vessel 5 is sent to the air-conditioned space and cools the air-conditioned space that has been instructed by the remote controller. The heat source heat exchanging unit 3 in the heat pump apparatus of the present embodiment is a heat medium circulation type that cools the refrigerant in the heat source side heat exchanger 7, and the refrigerant temperature sensor 10 is a heat source that functions as a condenser. A refrigerant pipe 8 that connects the outlet of the side heat exchanger 7 and the inlet of the expansion valve 6, that is, a refrigerant pipe 8 on the high-pressure side, flows from the heat source side heat exchanger 7 and flows into the expansion valve 6. The temperature is detected.

ここで、前記冷房運転の際、熱源熱交換部2の熱源側熱交換器7では、圧縮機4から吐出された高温高圧の冷媒と、地中熱循環ポンプ14の駆動により地中熱循環回路13を循環する熱媒とが対向して流れて熱交換が行われ、熱源側熱交換器7を凝縮器として機能させて熱源熱交換部2側に熱を与え、その熱を帯びた熱媒が地中熱交換器11に供給され、地中熱交換器11により地中に放熱されるものである。   Here, in the cooling operation, in the heat source side heat exchanger 7 of the heat source heat exchanging unit 2, the high-temperature and high-pressure refrigerant discharged from the compressor 4 and the underground heat circulation pump 14 are driven to generate the underground heat circulation circuit. The heat medium that circulates through 13 flows oppositely to perform heat exchange, and the heat source side heat exchanger 7 functions as a condenser to apply heat to the heat source heat exchanging unit 2 side. Is supplied to the underground heat exchanger 11 and radiated to the ground by the underground heat exchanger 11.

次に、図6に示す他の実施形態の冷房運転時の動作について図7に示すフローチャートに基づき説明する。
前記リモコンにより負荷熱交換部3としての室内機による被空調空間の冷房の指示がなされると、前記制御手段21は圧縮機4、地中熱循環ポンプ14、送風ファン22を駆動させ、冷房運転を開始させ、負荷側熱交換器5では送風ファンにより送風される被空調空間の空気と膨張弁6から吐出された低温低圧の冷媒とが熱交換され、冷却された空気が被空調空間に供給され被空調空間の冷房が行われると共に、熱源側熱交換器7では、圧縮機4から吐出された高温高圧の冷媒と地中熱循環ポンプ14により循環された熱媒(不凍液)とが熱交換され、その熱を帯びた熱媒が地中熱交換器11に供給され、地中熱交換器11により地中に放熱されるものである。
Next, the operation | movement at the time of the air_conditionaing | cooling operation of other embodiment shown in FIG. 6 is demonstrated based on the flowchart shown in FIG.
When the remote controller instructs the cooling of the air-conditioned space by the indoor unit as the load heat exchange unit 3, the control means 21 drives the compressor 4, the underground heat circulation pump 14, and the blower fan 22 to perform the cooling operation. The load-side heat exchanger 5 exchanges heat between the air in the air-conditioned space blown by the blower fan and the low-temperature and low-pressure refrigerant discharged from the expansion valve 6, and supplies the cooled air to the air-conditioned space Then, the air-conditioned space is cooled, and in the heat source side heat exchanger 7, the high-temperature and high-pressure refrigerant discharged from the compressor 4 and the heat medium (antifreeze) circulated by the underground heat circulation pump 14 exchange heat. The heat medium having the heat is supplied to the underground heat exchanger 11 and is radiated to the ground by the underground heat exchanger 11.

前記冷房運転中、制御手段21は、後述する設定方法に基づき、圧縮機4の回転数に応じて高圧側の冷媒の目標温度を所定の目標温度Yに設定し(ステップS8)、冷媒温度センサ10で高圧側の冷媒の温度を検出し(ステップS9)、検出した冷媒の温度と前記所定の目標温度Yとの比較を行うものである(ステップS10)。   During the cooling operation, the control means 21 sets the target temperature of the high-pressure side refrigerant to a predetermined target temperature Y according to the rotational speed of the compressor 4 based on the setting method described later (step S8), and the refrigerant temperature sensor 10 detects the temperature of the high-pressure side refrigerant (step S9), and compares the detected refrigerant temperature with the predetermined target temperature Y (step S10).

前記ステップS10で、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Yであると判断したら、それまでの地中熱循環ポンプ14の回転数を維持するように制御して地中熱循環回路13を循環する熱媒の循環流量を一定に保つようにし(ステップS11)、前記ステップS8の処理に戻るものである。   In step S10, when the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is the predetermined target temperature Y, the control means 21 performs control so as to maintain the rotation speed of the underground heat circulation pump 14 until then. Then, the circulation flow rate of the heat medium circulating in the underground heat circulation circuit 13 is kept constant (step S11), and the process returns to step S8.

また、前記ステップS10にて、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Yでないと判断したら、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Yより低いか否か判断し(ステップS12)、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Yより低いと判断したら、地中熱循環ポンプ14の回転数を所定回転数減少させ、地中熱循環回路13を循環する熱媒の循環流量を減少させ(ステップS13)、前記ステップS8の処理に戻るものである。一方、前記ステップS12にて、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が所定の目標温度Yより高いと判断したら、地中熱循環ポンプ14の回転数を所定回転数増加させ、地中熱循環回路13を循環する熱媒の循環流量を増加させ(ステップS14)、前記ステップS8の処理に戻るものである。   If the control unit 21 determines in step S10 that the refrigerant temperature detected by the refrigerant temperature sensor 10 is not the predetermined target temperature Y, the refrigerant temperature detected by the refrigerant temperature sensor 10 is the predetermined target temperature Y. It is determined whether or not the temperature is lower (step S12), and if it is determined that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than the predetermined target temperature Y, the rotation speed of the underground heat circulation pump 14 is decreased by a predetermined rotation speed, The circulation flow rate of the heat medium circulating in the underground heat circulation circuit 13 is decreased (step S13), and the process returns to step S8. On the other hand, if it is determined in step S12 that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the predetermined target temperature Y, the control unit 21 increases the rotation speed of the geothermal circulation pump 14 by a predetermined rotation speed. Then, the circulation flow rate of the heat medium circulating in the underground heat circulation circuit 13 is increased (Step S14), and the process returns to Step S8.

ここで、前記ステップS8における所定の目標温度Yの設定方法について説明すると、図8に示すように、圧縮機4の回転数に応じた複数のゾーンz4〜z6を設け、各々のゾーンz4〜z6に所定の目標温度Yが設定されており、例えば、太線γより下の領域であるゾーンz4では前記目標温度Yを31℃、太線γと太線δとで挟まれた領域であるゾーンz5では前記目標温度Yを29℃、太線δより上の領域であるゾーンz6では前記目標温度Yを27.5℃とした場合、前記冷房運転中に、圧縮機4が2200rpmで回転しているときは、圧縮機4の回転数はゾーンz4に含まれるので、制御手段21は所定の目標温度Yを31℃に設定し、圧縮機4が3000rpmで回転しているときは、圧縮機4の回転数はゾーンz5に含まれるので、制御手段21は所定の目標温度Yを29℃に設定し、圧縮機4が4500rpmで回転しているときは、圧縮機4の回転数はゾーンz6に含まれるので、制御手段21は所定の目標温度Yを27.5℃に設定するものである。   Here, the setting method of the predetermined target temperature Y in the step S8 will be described. As shown in FIG. 8, a plurality of zones z4 to z6 corresponding to the rotation speed of the compressor 4 are provided, and each of the zones z4 to z6 is provided. Is set to a predetermined target temperature Y. For example, in the zone z4 which is an area below the thick line γ, the target temperature Y is 31 ° C., and in the zone z5 which is an area between the thick line γ and the thick line δ, When the target temperature Y is 29 ° C. and the target temperature Y is 27.5 ° C. in the zone z6 which is the region above the thick line δ, when the compressor 4 is rotating at 2200 rpm during the cooling operation, Since the rotation speed of the compressor 4 is included in the zone z4, the control means 21 sets the predetermined target temperature Y to 31 ° C., and when the compressor 4 is rotating at 3000 rpm, the rotation speed of the compressor 4 is Included in zone z5 Then, the control means 21 sets the predetermined target temperature Y to 29 ° C., and when the compressor 4 rotates at 4500 rpm, the rotation speed of the compressor 4 is included in the zone z6. The target temperature Y is set to 27.5 ° C.

また、図8に示した上向き矢印u3のように、ゾーンz4に含まれる回転数で回転していた圧縮機4の回転数が、冷房負荷の増加に伴い、ゾーンz4とゾーンz5の境界線である太線γを越えてゾーンz5に含まれる回転数に上がる場合、すなわち、2200rpmで回転していた圧縮機4の回転数が、冷房負荷の増加に伴い、ゾーンz4とゾーンz5の境界である2700rpmを越えて、3000rpmに上がった場合、所定の目標温度Yは、31℃から29℃に変更されるものであり、さらに、図8に示した上向き矢印u4のように、ゾーンz5に含まれる回転数で回転していた圧縮機4の回転数が、冷房負荷の増加に伴い、ゾーンz5とゾーンz6の境界線である太線δを越えてゾーンz6に含まれる回転数に上がる場合、すなわち、3000rpmで回転していた圧縮機4の回転数が、冷房負荷の増加に伴い、ゾーンz5とゾーンz6の境界である3600rpmを越えて、4500rpmに上がった場合、所定の目標温度Yは、29℃から27.5℃に変更されるものである。   Further, as indicated by the upward arrow u3 shown in FIG. 8, the rotational speed of the compressor 4 that has been rotating at the rotational speed included in the zone z4 increases along the boundary line between the zone z4 and the zone z5 as the cooling load increases. When the rotational speed included in the zone z5 rises beyond a certain thick line γ, that is, the rotational speed of the compressor 4 rotating at 2200 rpm increases to 2700 rpm which is the boundary between the zone z4 and the zone z5 as the cooling load increases. When the rotational speed is increased to 3000 rpm, the predetermined target temperature Y is changed from 31 ° C. to 29 ° C., and the rotation included in the zone z5 as indicated by the upward arrow u4 shown in FIG. When the rotational speed of the compressor 4 that has been rotating by the number increases with the increase in cooling load, the rotational speed increases to the rotational speed included in the zone z6 beyond the thick line δ that is the boundary line between the zone z5 and the zone z6. When the rotation speed of the compressor 4 rotating at 3000 rpm exceeds 3600 rpm, which is the boundary between the zone z5 and the zone z6, and increases to 4500 rpm as the cooling load increases, the predetermined target temperature Y is 29 ° C. To 27.5 ° C.

逆に、図8に示した下向き矢印d3のように、ゾーンz6に含まれる回転数で回転していた圧縮機4の回転数が、冷房負荷の減少に伴い、ゾーンz6とゾーンz5の境界線である太線δを越えてゾーンz5に含まれる回転数に下がる場合、すなわち、4500rpmで回転していた圧縮機4の回転数が、冷房負荷の減少に伴い、ゾーンz6とゾーンz5の境界である3300rpmを越えて、3000rpmに下がった場合、所定の目標温度Yは、27.5℃から29℃に変更されるものであり、さらに、図8に示した下向き矢印d4のように、ゾーンz5に含まれる回転数で回転していた圧縮機4の回転数が、冷房負荷の減少に伴い、ゾーンz5とゾーンz4の境界線である太線γを越えてゾーンz4に含まれる回転数に下がる場合、すなわち、3000rpmで回転していた圧縮機4の回転数が、冷房負荷の減少に伴い、ゾーンz5とゾーンz4の境界である2400rpmを越えて、2200rpmに下がった場合、所定の目標温度Yは、29℃から31℃に変更されるものである。なお、前記制御手段21には、この図8に示した圧縮機4の回転数と所定の目標温度Yとの関係が予め記憶されており、冷房運転中はその情報を基に、圧縮機4の回転数に応じて所定の目標温度Yを設定しているものである。   On the contrary, as indicated by the downward arrow d3 shown in FIG. 8, the rotational speed of the compressor 4 that has been rotating at the rotational speed included in the zone z6 increases as the cooling load decreases, and the boundary line between the zone z6 and the zone z5 When the rotational speed falls within the zone z5 beyond the thick line δ, that is, the rotational speed of the compressor 4 rotating at 4500 rpm is the boundary between the zone z6 and the zone z5 as the cooling load decreases. When it exceeds 3300 rpm and falls to 3000 rpm, the predetermined target temperature Y is changed from 27.5 ° C. to 29 ° C. Further, as indicated by the downward arrow d4 shown in FIG. When the rotation speed of the compressor 4 that has been rotating at the included rotation speed decreases to the rotation speed included in the zone z4 across the thick line γ that is the boundary line between the zone z5 and the zone z4 as the cooling load decreases, Snow That is, when the rotational speed of the compressor 4 that has been rotating at 3000 rpm exceeds 2400 rpm that is the boundary between the zone z5 and the zone z4 and decreases to 2200 rpm as the cooling load decreases, the predetermined target temperature Y is The temperature is changed from 29 ° C to 31 ° C. The control means 21 stores in advance the relationship between the rotational speed of the compressor 4 shown in FIG. 8 and a predetermined target temperature Y. Based on the information during the cooling operation, the compressor 4 A predetermined target temperature Y is set according to the number of rotations.

次に、他の実施形態のヒートポンプ装置における冷房運転の動作を、先に説明した図7の制御を交えて図9のタイムチャートを用いて説明する。ここで、図9のタイムチャートにおいて、時間t0は冷房運転を開始した時間ではなく、冷房運転がある程度行われ安定した後の任意の時間とする。なお、図10のタイムチャートは、図12に示した従来のヒートポンプ装置で冷房運転を行った場合のタイムチャートで、図9のタイムチャートとの比較に用いるものであり、図10のタイムチャートにおいて、時間t0は冷房運転を開始した時間ではなく、冷房運転がある程度行われ安定した後の任意の時間とし、時間t0〜時間t12は図9のタイムチャートの時間t0〜t12と同タイミングを表しているものである。また、図10のタイムチャート中において、熱源側熱交換器7を流出し膨張弁6に流入するまでの高圧側の冷媒の目標温度は固定の温度(27.5℃)に設定してあるものとする。   Next, the operation of the cooling operation in the heat pump apparatus of another embodiment will be described using the time chart of FIG. 9 together with the control of FIG. 7 described above. Here, in the time chart of FIG. 9, the time t0 is not the time when the cooling operation is started, but is an arbitrary time after the cooling operation is performed and stabilized to some extent. The time chart of FIG. 10 is a time chart when the cooling operation is performed by the conventional heat pump apparatus shown in FIG. 12, and is used for comparison with the time chart of FIG. 9. In the time chart of FIG. The time t0 is not the time when the cooling operation is started, but is an arbitrary time after the cooling operation is performed and stabilized to some extent, and the time t0 to the time t12 represent the same timing as the times t0 to t12 in the time chart of FIG. It is what. In the time chart of FIG. 10, the target temperature of the high-pressure side refrigerant until it flows out of the heat source side heat exchanger 7 and into the expansion valve 6 is set to a fixed temperature (27.5 ° C.). And

まず、図9中の前記冷房運転がある程度行われ安定した後の時間t0において、制御手段21は圧縮機4の回転数を4500rpmで制御しており、制御手段21は、この時の前記高圧側の冷媒の目標温度Yを、図8に示した圧縮機4と目標温度との関係から27.5℃に設定し(前記ステップS8)、冷媒温度センサ10で高圧側の冷媒の温度を検出し(前記ステップS9)、冷媒温度センサ10で検出した冷媒の温度が27.5℃であるか否かを判断し(前記ステップS10)、検出した冷媒の温度が27.5℃であるので、地中熱循環ポンプ14の回転数をそれまでの回転数である3500rpmに維持する(前記ステップS11)。時間t0から時間t1までは、圧縮機4の回転数は4500rpmなので、この期間は目標温度Yを27.5℃に設定しているものである。   First, at time t0 after the cooling operation in FIG. 9 is performed to a certain degree and stabilized, the control means 21 controls the rotational speed of the compressor 4 at 4500 rpm, and the control means 21 controls the high pressure side at this time. Is set to 27.5 ° C. from the relationship between the compressor 4 and the target temperature shown in FIG. 8 (step S8), and the refrigerant temperature sensor 10 detects the temperature of the high-pressure side refrigerant. (Step S9), it is determined whether or not the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is 27.5 ° C. (Step S10), and the detected temperature of the refrigerant is 27.5 ° C. The rotational speed of the intermediate heat circulation pump 14 is maintained at 3500 rpm, which is the rotational speed up to that time (step S11). From the time t0 to the time t1, the rotation speed of the compressor 4 is 4500 rpm, so the target temperature Y is set to 27.5 ° C. during this period.

続いて、時間t1から時間t2にかけて、負荷端末15での冷房負荷が5kWから徐々に減少していくと、制御手段21は圧縮機4の回転数を徐々に減少させていく。それと連動して高圧側の冷媒の温度が低下していくものであるが、この時、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yより低いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS13)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの27.5℃になるように制御するものである。次に、時間t2において、制御手段21は、圧縮機4の回転数が図8に示すゾーンz6とゾーンz5の境界である3300rpmを越えて下がったことを検知すると、目標温度Yを27.5℃から29℃に変更するものである。   Subsequently, when the cooling load at the load terminal 15 gradually decreases from 5 kW from time t1 to time t2, the control means 21 gradually decreases the rotational speed of the compressor 4. In conjunction with this, the temperature of the refrigerant on the high-pressure side decreases. At this time, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than the target temperature Y (the step). S12), the number of rotations of the underground heat circulation pump 14 is decreased (step S13), and the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be the target temperature Y of 27.5 ° C. Next, at time t2, when the control means 21 detects that the rotational speed of the compressor 4 has dropped below 3300 rpm, which is the boundary between the zone z6 and the zone z5 shown in FIG. 8, the target temperature Y is set to 27.5. The temperature is changed from ° C to 29 ° C.

そして、時間t2から時間t3の間に、圧縮機4の回転数が3000rpmまで減少するが、3000rpmは図8に示すゾーンz5に含まれる回転数なので、目標温度Yの設定は29℃のままである。この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yの29℃より低いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS13)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの29℃になるように制御するものであり、時間t3において、制御手段21が冷媒温度センサ10で検出した冷媒の温度が目標温度Yと同温度の29℃であると判断すると(前記ステップS10)、地中熱循環ポンプ14の回転数を2500rpmに維持する(前記ステップS11)。時間t3から時間t4までは、圧縮機4の回転数は3000rpmなので、この期間は目標温度Yを29℃に設定しているものである。   Then, during the period from time t2 to time t3, the rotation speed of the compressor 4 decreases to 3000 rpm. Since 3000 rpm is the rotation speed included in the zone z5 shown in FIG. 8, the setting of the target temperature Y remains 29 ° C. is there. During this period, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than the target temperature Y of 29 ° C. (step S12), and decreases the rotation speed of the underground heat circulation pump 14 (see above). In step S13), the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 29 ° C., which is the target temperature Y. At time t3, the temperature of the refrigerant detected by the control means 21 using the refrigerant temperature sensor 10 is If it is determined that the temperature is 29 ° C., which is the same temperature as the target temperature Y (step S10), the rotational speed of the underground heat circulation pump 14 is maintained at 2500 rpm (step S11). From time t3 to time t4, since the rotation speed of the compressor 4 is 3000 rpm, the target temperature Y is set to 29 ° C. during this period.

続いて、時間t4から時間t5にかけて、負荷端末15での冷房負荷が4kWから徐々に減少していくと、制御手段21は圧縮機4の回転数を徐々に減少させていく。それと連動して高圧側の冷媒の温度が低下していくものであるが、この時、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yより低いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS13)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの29℃になるように制御するものである。次に、時間t5において、制御手段21は、圧縮機4の回転数が図8に示すゾーンz5とゾーンz4の境界である2400rpmを越えて下がったことを検知すると、目標温度Yを29℃から31℃に変更するものである。   Subsequently, when the cooling load at the load terminal 15 gradually decreases from 4 kW from time t4 to time t5, the control means 21 gradually decreases the rotational speed of the compressor 4. In conjunction with this, the temperature of the refrigerant on the high-pressure side decreases. At this time, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is lower than the target temperature Y (the step). S12), the number of rotations of the underground heat circulation pump 14 is decreased (step S13), and the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 29 ° C. of the target temperature Y. Next, at time t5, when the control means 21 detects that the rotational speed of the compressor 4 has dropped below 2400 rpm, which is the boundary between the zone z5 and the zone z4 shown in FIG. 8, the target temperature Y is changed from 29 ° C. The temperature is changed to 31 ° C.

そして、時間t5から時間t6の間に、圧縮機4の回転数が2200rpmまで減少するが、2200rpmは図8に示すゾーンz4に含まれる回転数なので、目標温度Yの設定は31℃のままである。この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yの31℃より低いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を減少させ(前記ステップS13)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの31℃になるように制御するものであり、時間t6において、制御手段21が冷媒温度センサ10で検出した冷媒の温度が目標温度Yと同温度の31℃であると判断すると(前記ステップS10)、地中熱循環ポンプ14の回転数を1500rpmに維持する(前記ステップS11)。時間t6から時間t7までは、圧縮機4の回転数は2200rpmなので、この期間は目標温度Yを31℃に設定しているものである。   Then, during the time t5 to the time t6, the rotation speed of the compressor 4 decreases to 2200 rpm. Since 2200 rpm is the rotation speed included in the zone z4 shown in FIG. 8, the setting of the target temperature Y remains 31 ° C. is there. During this period, the control means 21 determines that the refrigerant temperature detected by the refrigerant temperature sensor 10 is lower than the target temperature Y of 31 ° C. (step S12), and decreases the rotation speed of the underground heat circulation pump 14 (see above). In step S13), the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 31 ° C., which is the target temperature Y. At time t6, the temperature of the refrigerant detected by the control means 21 using the refrigerant temperature sensor 10 is determined. If it judges that it is 31 degreeC of the same temperature as the target temperature Y (said step S10), the rotation speed of the underground heat circulation pump 14 will be maintained at 1500 rpm (said step S11). From time t6 to time t7, since the rotation speed of the compressor 4 is 2200 rpm, the target temperature Y is set to 31 ° C. during this period.

続いて、時間t7から時間t8にかけて、負荷端末15での冷房負荷が3kWから徐々に増加していくと、制御手段21は圧縮機4の回転数を徐々に増加させていく。それと連動して高圧側の冷媒の温度が上昇していくものであるが、この時、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yより高いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を増加させ(前記ステップS14)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの31℃になるように制御するものである。次に、時間t8において、制御手段21は、圧縮機4の回転数が図8に示すゾーンz4とゾーンz5の境界である2700rpmを越えて上がったことを検知すると、目標温度Yを31℃から29℃に変更するものである。   Subsequently, when the cooling load at the load terminal 15 gradually increases from 3 kW from time t7 to time t8, the control means 21 gradually increases the rotational speed of the compressor 4. In conjunction with this, the temperature of the refrigerant on the high-pressure side rises. At this time, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature Y (the step). S12), the rotation speed of the underground heat circulation pump 14 is increased (step S14), and the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 31 ° C. of the target temperature Y. Next, at time t8, when the control means 21 detects that the rotation speed of the compressor 4 has increased beyond 2700 rpm, which is the boundary between the zone z4 and the zone z5 shown in FIG. The temperature is changed to 29 ° C.

そして、時間t8から時間t9にかけて、冷房負荷が徐々に増加していき、制御手段21は圧縮機4の回転数を徐々に増加させるが、この期間の圧縮機4の回転数は図8に示すゾーンz5に含まれる回転数なので、目標温度Yの設定は29℃のままである。また、この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yの29℃より高いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を増加させ(前記ステップS14)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの29℃になるように制御するものである。次に、時間t9において、制御手段21は、圧縮機4の回転数が図8に示すゾーンz5とゾーンz6の境界である3600rpmを越えて上がったことを検知すると、目標温度Yを29℃から27.5℃に変更するものである。   The cooling load gradually increases from time t8 to time t9, and the control means 21 gradually increases the rotational speed of the compressor 4. The rotational speed of the compressor 4 during this period is shown in FIG. Since the rotational speed is included in the zone z5, the setting of the target temperature Y remains at 29 ° C. During this period, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature Y of 29 ° C. (step S12), and increases the rotation speed of the underground heat circulation pump 14. (Step S14), the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 29 ° C. of the target temperature Y. Next, at time t9, when the control means 21 detects that the rotational speed of the compressor 4 has increased beyond 3600 rpm, which is the boundary between the zone z5 and the zone z6 shown in FIG. The temperature is changed to 27.5 ° C.

続いて、時間t9から時間t10の間に、圧縮機4の回転数が4500rpmまで増加するが、4500rpmは図8に示すゾーンz6に含まれる回転数なので、目標温度Yの設定は27.5℃のままである。この期間、制御手段21は、冷媒温度センサ10の検出した冷媒の温度が目標温度Yの27.5℃より高いと判断し(前記ステップS12)、地中熱循環ポンプ14の回転数を増加させ(前記ステップS14)、冷媒温度センサ10の検出する冷媒の温度が目標温度Yの27.5℃になるように制御するものであり、時間t10において、制御手段21が冷媒温度センサ10で検出した冷媒の温度が目標温度Yと同温度の27.5℃であると判断すると(前記ステップS10)、地中熱循環ポンプ14の回転数を3500rpmに維持する(前記ステップS11)。時間t10から時間t11までは、圧縮機4の回転数は4500rpmなので、この期間は目標温度Yが27.5℃に設定されており、冷媒温度センサ10で検出する冷媒の温度は目標温度Yと同温度の27.5℃であり、地中熱循環ポンプ14の回転数が3500rpmに維持されるものであり、前記リモコンから冷房運転の停止指示がなされるまで、図9のタイムチャートに示したような動作で冷房運転を行うものである。   Subsequently, during the time t9 to the time t10, the rotation speed of the compressor 4 increases to 4500 rpm. Since 4500 rpm is the rotation speed included in the zone z6 shown in FIG. 8, the setting of the target temperature Y is 27.5 ° C. Remains. During this period, the control means 21 determines that the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is higher than the target temperature Y of 27.5 ° C. (step S12), and increases the rotation speed of the underground heat circulation pump 14. (Step S14), the temperature of the refrigerant detected by the refrigerant temperature sensor 10 is controlled to be 27.5 ° C. of the target temperature Y, and the control means 21 detects the refrigerant temperature sensor 10 at time t10. If it is determined that the temperature of the refrigerant is 27.5 ° C., which is the same temperature as the target temperature Y (step S10), the rotation speed of the underground heat circulation pump 14 is maintained at 3500 rpm (step S11). From time t10 to time t11, since the rotation speed of the compressor 4 is 4500 rpm, the target temperature Y is set to 27.5 ° C. during this period, and the refrigerant temperature detected by the refrigerant temperature sensor 10 is equal to the target temperature Y. The temperature is 27.5 ° C., the rotation speed of the underground heat circulation pump 14 is maintained at 3500 rpm, and the time chart of FIG. 9 shows until the cooling operation is instructed from the remote controller. The cooling operation is performed by such an operation.

なお、上述の冷房運転において、制御手段21は、冷媒温度センサ10の検出する冷媒温度を監視することで、冷房負荷の変動を素早く把握することができ、冷媒温度センサ10の検出する冷媒温度が所定の目標温度Yになるように地中熱循環ポンプ14の回転数を制御するものである。   In the cooling operation described above, the control unit 21 monitors the refrigerant temperature detected by the refrigerant temperature sensor 10 to quickly grasp the change in the cooling load, and the refrigerant temperature detected by the refrigerant temperature sensor 10 is The rotational speed of the underground heat circulation pump 14 is controlled so as to reach a predetermined target temperature Y.

以上説明した冷房運転において、制御手段21が、冷媒温度センサ10の検出する温度が所定の目標温度Yになるように地中熱循環ポンプ14の回転数を制御し、地中熱循環回路13を循環する熱媒の流量を調整することで、最適な放熱を行わせて所望の冷房負荷を出力するまでの時間を短縮することができ、ヒートポンプ装置のシステムCOPを高く維持したまま冷房運転を行うことができ、さらに、制御手段21は、熱源側熱交換器7を流出し膨張弁6に流入するまでの高圧側の冷媒の目標温度を、圧縮機4の回転数に応じて所定の目標温度Yに設定したことで、冷房負荷に応じた最適な放熱を実行しつつ、地中熱循環ポンプ14の消費電力を抑えることができ、ヒートポンプ装置のシステムCOP(=「冷房負荷÷(圧縮機4消費電力+地中熱循環ポンプ14消費電力」とする)を向上させることができるものである。   In the cooling operation described above, the control means 21 controls the number of revolutions of the geothermal circulation pump 14 so that the temperature detected by the refrigerant temperature sensor 10 becomes the predetermined target temperature Y, and the geothermal heat circulation circuit 13 is controlled. By adjusting the flow rate of the circulating heat medium, it is possible to reduce the time until the desired cooling load is output by performing optimal heat dissipation, and the cooling operation is performed while maintaining the system COP of the heat pump device high. Further, the control means 21 can set the target temperature of the high-pressure side refrigerant until it flows out of the heat source side heat exchanger 7 and into the expansion valve 6 according to the rotational speed of the compressor 4. By setting to Y, it is possible to suppress the power consumption of the underground heat circulation pump 14 while performing optimal heat radiation according to the cooling load, and the system COP (= “cooling load / (compressor 4) of the heat pump device”. power consumption Is capable of improving the geothermal heat circulation pump 14 power consumption ").

また、図9のタイムチャートと図10のタイムチャートとの比較から分かるように、図9のタイムチャートの時間t0〜時間t7のように、冷房負荷の減少に伴い、圧縮機4の回転数が下がるにつれて、前記所定の目標温度Yの設定を上げるようにしたことで、所望の冷房負荷に対して地中への放熱量を減らし、地中熱循環ポンプ14の回転数を減少させることができ、冷房負荷に対して地中への放熱量が過剰な状態、すなわち、地中熱循環ポンプ14が過剰に回転する状態がなく、特に、冷房負荷が低負荷の時に、最適な放熱を行わせつつ地中熱循環ポンプ14の消費電力を従来よりも抑えることができ、システムCOPを向上させることができるものである。   Further, as can be seen from the comparison between the time chart of FIG. 9 and the time chart of FIG. 10, as the cooling load decreases, the rotation speed of the compressor 4 increases as the cooling load decreases as shown in the time chart of FIG. 9. By increasing the predetermined target temperature Y as the temperature decreases, the amount of heat released to the ground can be reduced for the desired cooling load, and the rotation speed of the underground heat circulation pump 14 can be reduced. In the state where the amount of heat radiation to the ground is excessive with respect to the cooling load, that is, the ground heat circulation pump 14 does not rotate excessively, especially when the cooling load is low, optimal heat radiation is performed. However, the power consumption of the underground heat circulation pump 14 can be suppressed as compared with the conventional one, and the system COP can be improved.

また、本発明は上記の他の実施形態に限定されるものではなく、本実施形態では、圧縮機4の回転数に応じて所定の目標温度を設定するようにしたが、圧縮機4の回転数の代わりに圧縮機4の周波数を用いて、圧縮機4の周波数に応じて所定の目標温度を設定するようにしてもよいものである。   In addition, the present invention is not limited to the other embodiments described above. In this embodiment, the predetermined target temperature is set according to the rotational speed of the compressor 4. A predetermined target temperature may be set according to the frequency of the compressor 4 by using the frequency of the compressor 4 instead of the number.

また、本実施形態では、圧縮機4の回転数に応じて3つ目標温度を設定できるようにしたが、3つに限定する必要はなく、圧縮機4の回転数に応じた目標温度を必要分用意すればよいものである。   In the present embodiment, three target temperatures can be set according to the number of rotations of the compressor 4. However, the target temperature is not limited to three and needs to be set according to the number of rotations of the compressor 4. All you need to do is prepare.

また、本実施形態では、負荷熱交換部3としての室内機の負荷側熱交換器5にて膨張弁6から吐出された冷媒と被空調空間の空気とで直接熱交換して被空調空間を冷却する冷房運転をするものにおいて、本発明の制御を適用したが、本発明は上記の他の実施形態に限定されるものではなく、負荷熱交換部3を熱媒循環式のものとして、負荷側熱交換器5で膨張弁6から吐出された冷媒と負荷熱交換部3側の循環液とで熱交換して、循環液を循環させて負荷端末により被空調空間である室内を冷却する冷房運転を行うものにおいても、本制御を適用してもよいものであり、本発明の要旨を変更しない範囲で様々な変形が可能であり、これを妨げるものではない。   Further, in the present embodiment, the air to be conditioned space is obtained by directly exchanging heat between the refrigerant discharged from the expansion valve 6 and the air in the air conditioned space in the load side heat exchanger 5 of the indoor unit as the load heat exchanging unit 3. Although the control of the present invention is applied to the cooling operation for cooling, the present invention is not limited to the other embodiments described above, and the load heat exchanging unit 3 is a heat medium circulation type, Heat exchange is performed between the refrigerant discharged from the expansion valve 6 in the side heat exchanger 5 and the circulating fluid on the load heat exchanging unit 3 side, and the circulating fluid is circulated to cool the room as the air-conditioned space by the load terminal. The present control may be applied even to the operation, and various modifications are possible without departing from the scope of the present invention, and this is not prevented.

また、本実施形態では、熱媒循環式の熱源部として、地中熱交換器11を介して地中に熱を放熱する熱源熱交換部2を採用したが、熱源部としては、川・湖・海の水を循環させて熱源側熱交換器7の冷媒を冷却するような熱媒循環式のものでもよく、さらに、貯湯タンクに貯湯された湯水を直接的または間接的に利用、または井戸水を直接的または間接的に利用して熱源側熱交換器7の冷媒を冷却するような熱媒循環式のものでもよく、本発明の要旨を変更しない範囲で様々な変形が可能であり、これを妨げるものではない。   In the present embodiment, the heat source heat exchange unit 2 that radiates heat into the ground via the underground heat exchanger 11 is adopted as the heat medium circulation type heat source unit. -A heat medium circulation type that circulates sea water and cools the refrigerant in the heat source side heat exchanger 7 may be used, and hot water stored in a hot water storage tank is used directly or indirectly, or well water It may be a heat medium circulation type that cools the refrigerant of the heat source side heat exchanger 7 directly or indirectly, and various modifications are possible without changing the gist of the present invention. It does not prevent.

また、先に説明した本発明の一実施形態では、負荷側を加熱する暖房運転等の負荷運転のみが行えるヒートポンプ装置を示し、本発明の他の実施形態では、負荷側を冷却する冷房運転等の負荷運転のみが行えるヒートポンプ装置を示したが、図11に示すように、ヒートポンプ回路9に四方弁23を備え、四方弁23の切り替えにより、負荷側を加熱する暖房運転等の負荷運転と負荷側を冷却する冷房運転等の負荷運転との両方が行えるようなヒートポンプ装置において、暖房運転等の負荷運転時に一実施形態で説明した本発明の制御を、冷房運転等の負荷運転時に他の実施形態で説明した本発明の制御を適用してもよいものである。   Moreover, in one embodiment of the present invention described above, a heat pump device capable of performing only a load operation such as a heating operation for heating the load side is shown, and in another embodiment of the present invention, a cooling operation for cooling the load side or the like. 11 shows a heat pump device that can perform only the load operation, but as shown in FIG. 11, the heat pump circuit 9 includes a four-way valve 23, and by switching the four-way valve 23, the load operation and the load such as a heating operation that heats the load side In a heat pump apparatus that can perform both a load operation such as a cooling operation that cools the side, the control of the present invention described in one embodiment during a load operation such as a heating operation is performed in another manner during a load operation such as a cooling operation. The control of the present invention described in the embodiments may be applied.

2 熱源熱交換部
4 圧縮機
5 負荷側熱交換器
6 膨張弁
7 熱源側熱交換器
8 冷媒配管
9 ヒートポンプ回路
10 冷媒温度センサ
11 地中熱交換器
12 熱媒配管
13 地中熱循環回路
14 地中熱循環ポンプ
21 制御手段
2 Heat source heat exchanger 4 Compressor 5 Load side heat exchanger 6 Expansion valve 7 Heat source side heat exchanger 8 Refrigerant piping 9 Heat pump circuit 10 Refrigerant temperature sensor 11 Ground heat exchanger 12 Heat medium piping 13 Ground heat circulation circuit 14 Geothermal circulation pump 21 control means

Claims (4)

圧縮機、負荷側熱交換器、減圧手段、熱源側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、前記熱源側熱交換器の冷媒を加熱する熱媒循環式の熱源部と、該熱源部の熱源と前記熱源側熱交換器との間を熱媒配管で環状に接続した熱源側循環回路と、該熱源側循環回路に熱媒を循環させる熱源側循環ポンプと、前記熱源側熱交換器側の冷媒の温度を検出する冷媒温度検出手段と、これらの作動を制御する制御手段とを備え、前記熱源側熱交換器を蒸発器として機能させると同時に前記負荷側熱交換器を凝縮器として機能させて負荷側を加熱する負荷運転中に、前記制御手段が、前記冷媒温度検出手段の検出する温度が所定の目標温度になるように前記熱源側循環ポンプの回転数を制御するヒートポンプ装置において、前記制御手段は、前記所定の目標温度を、前記圧縮機の回転数または周波数に応じて設定するようにしたことを特徴とするヒートポンプ装置。   A heat pump circuit in which a compressor, a load-side heat exchanger, a decompression unit, a heat source-side heat exchanger are connected in a ring shape with a refrigerant pipe, a heat medium circulation type heat source for heating the refrigerant of the heat source-side heat exchanger, A heat source side circulation circuit in which the heat source of the heat source unit and the heat source side heat exchanger are annularly connected by a heat medium pipe, a heat source side circulation pump that circulates the heat medium in the heat source side circulation circuit, and the heat source side heat A refrigerant temperature detecting means for detecting the temperature of the refrigerant on the exchanger side and a control means for controlling the operation of the refrigerant are provided, and the heat source side heat exchanger functions as an evaporator and at the same time the load side heat exchanger is condensed. A heat pump for controlling the number of revolutions of the heat source side circulation pump so that the temperature detected by the refrigerant temperature detecting means becomes a predetermined target temperature during a load operation in which the load side is heated by functioning as a heater In the apparatus, the control means , The predetermined target temperature, the heat pump device being characterized in that so as to set in accordance with the rotational speed or frequency of the compressor. 前記制御手段は、前記圧縮機の回転数または周波数が下がるにつれて、前記所定の目標温度を下げるようにしたことを特徴とする請求項1記載のヒートポンプ装置。   2. The heat pump apparatus according to claim 1, wherein the control means lowers the predetermined target temperature as the rotation speed or frequency of the compressor decreases. 圧縮機、熱源側熱交換器、減圧手段、負荷側熱交換器を冷媒配管で環状に接続したヒートポンプ回路と、前記熱源側熱交換器の冷媒を冷却する熱媒循環式の熱源部と、該熱源部の熱源と前記熱源側熱交換器との間を熱媒配管で環状に接続した熱源側循環回路と、該熱源側循環回路に熱媒を循環させる熱源側循環ポンプと、前記減圧手段と前記熱源側熱交換器とを接続する前記冷媒配管を流れる冷媒の温度を検出する冷媒温度検出手段と、これらの作動を制御する制御手段とを備え、前記熱源側熱交換器を凝縮器として機能させると同時に前記負荷側熱交換器を蒸発器として機能させて負荷側を冷却する負荷運転中に、前記制御手段が、前記冷媒温度検出手段の検出する温度が所定の目標温度になるように前記熱源側循環ポンプの回転数を制御するヒートポンプ装置において、前記制御手段は、前記所定の目標温度を、前記圧縮機の回転数または周波数に応じて設定するようにしたことを特徴とするヒートポンプ装置。   A heat pump circuit in which a compressor, a heat source side heat exchanger, a decompression means, a load side heat exchanger are connected in an annular shape with a refrigerant pipe, a heat medium circulation type heat source section for cooling the refrigerant of the heat source side heat exchanger, A heat source side circulation circuit in which a heat source pipe and a heat source side heat exchanger are annularly connected with a heat medium pipe, a heat source side circulation pump that circulates the heat medium in the heat source side circulation circuit, and the pressure reducing means. A refrigerant temperature detecting means for detecting the temperature of the refrigerant flowing through the refrigerant pipe connecting the heat source side heat exchanger; and a control means for controlling the operation thereof, wherein the heat source side heat exchanger functions as a condenser. At the same time, during the load operation in which the load-side heat exchanger functions as an evaporator to cool the load side, the control means is configured so that the temperature detected by the refrigerant temperature detection means becomes a predetermined target temperature. Controls the rotation speed of the heat source side circulation pump That the heat pump apparatus, wherein, the predetermined target temperature, the heat pump device being characterized in that so as to set in accordance with the rotational speed or frequency of the compressor. 前記制御手段は、前記圧縮機の回転数または周波数が下がるにつれて、前記所定の目標温度を上げるようにしたことを特徴とする請求項3記載のヒートポンプ装置。   4. The heat pump apparatus according to claim 3, wherein the control means increases the predetermined target temperature as the rotational speed or frequency of the compressor decreases.
JP2013008227A 2013-01-21 2013-01-21 Heat pump equipment Active JP6039869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008227A JP6039869B2 (en) 2013-01-21 2013-01-21 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008227A JP6039869B2 (en) 2013-01-21 2013-01-21 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2014139492A true JP2014139492A (en) 2014-07-31
JP6039869B2 JP6039869B2 (en) 2016-12-07

Family

ID=51416274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008227A Active JP6039869B2 (en) 2013-01-21 2013-01-21 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP6039869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105318460A (en) * 2015-10-15 2016-02-10 珠海格力电器股份有限公司 Control system, control method and water chilling unit using control system and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257239A (en) * 1979-01-05 1981-03-24 Partin James R Earth coil heating and cooling system
JP2008215678A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Operation control method of air-conditioning system and air conditioning system
JP2009276002A (en) * 2008-05-15 2009-11-26 Daikin Ind Ltd Refrigeration device
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257239A (en) * 1979-01-05 1981-03-24 Partin James R Earth coil heating and cooling system
JP2008215678A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Operation control method of air-conditioning system and air conditioning system
JP2009276002A (en) * 2008-05-15 2009-11-26 Daikin Ind Ltd Refrigeration device
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105318460A (en) * 2015-10-15 2016-02-10 珠海格力电器股份有限公司 Control system, control method and water chilling unit using control system and control method

Also Published As

Publication number Publication date
JP6039869B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP5121747B2 (en) Geothermal heat pump device
JP5524571B2 (en) Heat pump equipment
JP5356900B2 (en) Geothermal heat pump device
JP5984456B2 (en) Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device
JP6231395B2 (en) Combined heat source heat pump device
JP2014035109A (en) Heat pump apparatus
JP6231403B2 (en) Combined heat source heat pump device
JP2013119954A (en) Heat pump hot water heater
JP6085207B2 (en) Heat pump equipment
JP6147659B2 (en) Heat pump equipment
JP5763361B2 (en) Geothermal heat pump device
JP6537990B2 (en) Heat pump type cold and hot water supply system
JP2017150791A (en) Composite heat source heat pump device
JP6800283B2 (en) Air conditioner
JP6039869B2 (en) Heat pump equipment
JP6359398B2 (en) Combined heat source heat pump device
JP6599812B2 (en) Combined heat source heat pump device
JP6359397B2 (en) Combined heat source heat pump device
JP6208086B2 (en) Combined heat source heat pump device
JP6208085B2 (en) Heat pump equipment
JP6830296B2 (en) Combined heat source heat pump device
JP6258800B2 (en) Combined heat source heat pump device
JP6609195B2 (en) Heat pump equipment
JP7041024B2 (en) Combined heat source heat pump device
JP7221541B2 (en) outside air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161105

R150 Certificate of patent or registration of utility model

Ref document number: 6039869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250