JP2014133936A - Surface-treated copper film, laminate sheet, printed wiring board and printed circuit board - Google Patents

Surface-treated copper film, laminate sheet, printed wiring board and printed circuit board Download PDF

Info

Publication number
JP2014133936A
JP2014133936A JP2013003859A JP2013003859A JP2014133936A JP 2014133936 A JP2014133936 A JP 2014133936A JP 2013003859 A JP2013003859 A JP 2013003859A JP 2013003859 A JP2013003859 A JP 2013003859A JP 2014133936 A JP2014133936 A JP 2014133936A
Authority
JP
Japan
Prior art keywords
copper foil
treated copper
treatment
treated
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013003859A
Other languages
Japanese (ja)
Other versions
JP5576514B2 (en
Inventor
Eita Arai
英太 新井
Ryo Fukuchi
亮 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013003859A priority Critical patent/JP5576514B2/en
Priority to PCT/JP2014/050355 priority patent/WO2014109396A1/en
Priority to TW103101084A priority patent/TWI526303B/en
Publication of JP2014133936A publication Critical patent/JP2014133936A/en
Application granted granted Critical
Publication of JP5576514B2 publication Critical patent/JP5576514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0242Structural details of individual signal conductors, e.g. related to the skin effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treated copper film, a laminate sheet, a printed wiring board and a printed circuit board having good suppressed transmission loss even when used in a high frequency circuit base board.SOLUTION: There is provided a surface-treated copper film having a surface-treated layer and being in an area surrounded by 4 linear lines of x=0, y=0, y=-0.000189x+1.400000 and y=-0.002333x+9.333333 in the coating weight-surface roughness graph drawn with x axis as the total coating weight (μg/dm) of Co, Ni, Fe and Mo in the surface-treated layer and y axis as the surface roughness of the surface-treated layer Rz(μm).

Description

本発明は、表面処理銅箔、積層板、プリント配線板及びプリント回路板に関する。   The present invention relates to a surface-treated copper foil, a laminate, a printed wiring board, and a printed circuit board.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して優れた高周波対応が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, high density mounting of mounted components and high frequency of signals have progressed, and excellent high frequency response is required for printed wiring boards.

高周波用基板には、出力信号の品質を確保するため、伝送損失の低減が求められている。伝送損失は、主に、樹脂(基板側)に起因する誘電体損失と、導体(銅箔側)に起因する導体損失からなっている。誘電体損失は、樹脂の誘電率及び誘電正接が小さくなるほど減少する。高周波信号において、導体損失は、周波数が高くなるほど電流は導体の表面しか流れなくなるという表皮効果によって電流が流れる断面積が減少し、抵抗が高くなることが主な原因となっている。   The high frequency board is required to reduce transmission loss in order to ensure the quality of the output signal. The transmission loss mainly consists of a dielectric loss due to the resin (substrate side) and a conductor loss due to the conductor (copper foil side). The dielectric loss decreases as the dielectric constant and dielectric loss tangent of the resin decrease. In a high-frequency signal, the conductor loss is mainly caused by a decrease in the cross-sectional area through which the current flows due to the skin effect that only the surface of the conductor flows as the frequency increases, and the resistance increases.

高周波用銅箔の伝送損失を低減させることを目的とした技術としては、例えば、特許文献1に、金属箔表面の片面又は両面に、銀又は銀合金属を被覆し、該銀又は銀合金被覆層の上に、銀又は銀合金以外の被覆層が前記銀又は銀合金被覆層の厚さより薄く施されている高周波回路用金属箔が開示されている。そして、これによれば、衛生通信で使用されるような超高周波領域においても表皮効果による損失を小さくした金属箔を提供することができると記載されている。   As a technique aimed at reducing the transmission loss of the high-frequency copper foil, for example, Patent Document 1 covers one or both surfaces of a metal foil surface with silver or a silver alloy metal, and the silver or silver alloy coating. A metal foil for a high-frequency circuit is disclosed in which a coating layer other than silver or a silver alloy is applied on the layer thinner than the thickness of the silver or silver alloy coating layer. And according to this, it describes that the metal foil which made the loss by a skin effect small can be provided also in the superhigh frequency area | region used by sanitary communication.

また、特許文献2には、圧延銅箔の再結晶焼鈍後の圧延面でのX線回折で求めた(200)面の積分強度(I(200))が、微粉末銅のX線回折で求めた(200)面の積分強度(I0(200))に対し、I(200)/I0(200)>40であり、該圧延面に電解めっきによる粗化処理を行った後の粗化処理面の算術平均粗さ(以下、Raとする)が0.02μm〜0.2μm、十点平均粗さ(以下、Rzとする)が0.1μm〜1.5μmであって、プリント回路基板用素材であることを特徴とする高周波回路用粗化処理圧延銅箔が開示されている。そして、これによれば、1GHzを超える高周波数下での使用が可能なプリント回路板を提供することができると記載されている。 Patent Document 2 discloses that the integrated intensity (I (200)) of (200) plane obtained by X-ray diffraction on the rolled surface after recrystallization annealing of the rolled copper foil is the X-ray diffraction of fine powder copper. The obtained integrated strength (I 0 (200)) of the (200) plane is I (200) / I 0 (200)> 40, and the rolled surface is subjected to roughening treatment by electrolytic plating. The arithmetic average roughness (hereinafter referred to as Ra) of the chemical treatment surface is 0.02 μm to 0.2 μm, the ten-point average roughness (hereinafter referred to as Rz) is 0.1 μm to 1.5 μm, and the printed circuit A roughened rolled copper foil for high-frequency circuits, which is a substrate material, is disclosed. And it is described that according to this, the printed circuit board which can be used under the high frequency exceeding 1 GHz can be provided.

さらに、特許文献3には、銅箔の表面の一部がコブ状突起からなる表面粗度が2〜4μmの凹凸面であることを特徴とする電解銅箔が開示されている。そして、これによれば、高周波伝送特性に優れた電解銅箔を提供することができると記載されている。   Furthermore, Patent Document 3 discloses an electrolytic copper foil characterized in that a part of the surface of the copper foil is an uneven surface having a surface roughness of 2 to 4 μm made of bump-shaped protrusions. And according to this, it describes that the electrolytic copper foil excellent in the high frequency transmission characteristic can be provided.

特許第4161304号公報Japanese Patent No. 4161304 特許第4704025号公報Japanese Patent No. 4770425 特開2004−244656号公報JP 2004-244656 A

導体(銅箔側)に起因する導体損失は、上述のように表皮効果によって抵抗が大きくなることに起因するが、この抵抗は、銅箔自体の抵抗のみならず、銅箔表面において樹脂基板との接着性を確保するために行われる粗化処理によって形成された表面処理層の抵抗の影響もあること、具体的には、銅箔表面の粗さが導体損失の主たる要因であり、粗さが小さいほど伝送損失が減少することが知られている。   The conductor loss due to the conductor (copper foil side) is caused by the increase in resistance due to the skin effect as described above. This resistance is not only the resistance of the copper foil itself but also the resin substrate on the copper foil surface. There is also the influence of the resistance of the surface treatment layer formed by the roughening process performed to ensure the adhesion of the copper, specifically, the roughness of the copper foil surface is the main factor of the conductor loss, the roughness It is known that the transmission loss decreases as the value decreases.

本発明者は、銅箔表面の粗さと伝送損失との関係についてさらに踏み込んだ検討を行ったところ、必ずしも銅箔表面の粗さが小さいほど伝送損失が減少するとは限らず、特に、銅箔表面の粗さがある程度まで小さくなると、伝送損失の減少と銅箔表面の粗さとの関係に顕著なバラツキが見られ、銅箔表面の粗さの制御のみでは伝送損失を良好に減少させることが困難となることを見出した。
本発明は、高周波回路基板に用いても伝送損失が良好に抑制される表面処理銅箔、積層板、及びプリント配線板を提供することを目的とする。
The present inventor conducted further studies on the relationship between the roughness of the copper foil surface and the transmission loss. The smaller the roughness of the copper foil surface, the more the transmission loss does not necessarily decrease. When the roughness of the copper is reduced to a certain extent, there is a marked variation in the relationship between the reduction in transmission loss and the roughness of the copper foil surface, and it is difficult to satisfactorily reduce the transmission loss only by controlling the roughness of the copper foil surface. I found out that
It is an object of the present invention to provide a surface-treated copper foil, a laminated board, and a printed wiring board in which transmission loss is satisfactorily suppressed even when used for a high-frequency circuit board.

本発明者は、銅箔表面の粗さがある程度まで小さくなると、伝送損失の減少と銅箔表面の粗さとの関係に顕著なバラツキが見られ、銅箔表面の粗さの制御のみでは伝送損失を良好に減少させることが困難となる原因について検討した結果、銅箔の表面処理金属種及びその付着量が伝送損失に影響を与える別の因子であり、これらの因子を銅箔表面の粗さとともに制御することで、高周波回路基板に用いても伝送損失が良好に抑制される表面処理銅箔が得られることを見出した。   When the roughness of the copper foil surface is reduced to a certain extent, the present inventor found that there is a marked variation in the relationship between the reduction in transmission loss and the roughness of the copper foil surface. As a result of investigating the cause of the difficulty in reducing the thickness of the copper foil, the surface treated metal species of the copper foil and the amount of the deposited metal are another factor affecting the transmission loss. By controlling together with this, it was found that a surface-treated copper foil in which transmission loss is satisfactorily suppressed even when used for a high-frequency circuit board can be obtained.

以上の知見を基礎として完成された本発明は一側面において、表面処理層が形成された表面処理銅箔であって、
x軸を表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000189x+1.400000、及び
y=−0.002333x+9.333333
の4つの直線で囲まれた領域内にある表面処理銅箔である。
The present invention completed on the basis of the above knowledge, in one aspect, is a surface-treated copper foil in which a surface treatment layer is formed,
Adhesion amount-surface roughness drawn with the x axis as the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe and Mo in the surface treatment layer and the y axis as the surface roughness Rz (μm) of the surface treatment surface. In the graph,
x = 0,
y = 0,
y = −0.000189x + 1.400,000 and y = −0.002333x + 9.333333
The surface-treated copper foil in the region surrounded by the four straight lines.

本発明に係る表面処理銅箔の一実施形態においては、前記付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000183x+1.100000、及び
y=−0.002200x+7.150000
の4つの直線で囲まれた領域内にある。
In one embodiment of the surface-treated copper foil according to the present invention, in the adhesion amount-surface roughness graph,
x = 0,
y = 0,
y = −0.000183x + 1.100,000 and y = −0.002200x + 7.150,000
It is in the area surrounded by the four straight lines.

本発明に係る表面処理銅箔の別の実施形態においては、前記表面粗さRzが1.3以下である。   In another embodiment of the surface-treated copper foil according to the present invention, the surface roughness Rz is 1.3 or less.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記表面粗さRzが1.0以下である。   In still another embodiment of the surface-treated copper foil according to the present invention, the surface roughness Rz is 1.0 or less.

本発明に係る表面処理銅箔の更に別の実施形態においては、フレキシブルプリント配線板用である。   In another embodiment of the surface-treated copper foil which concerns on this invention, it is an object for flexible printed wiring boards.

本発明に係る表面処理銅箔の更に別の実施形態においては、5GHz以上の高周波回路基板用である。   In still another embodiment of the surface-treated copper foil according to the present invention, the surface-treated copper foil is for a high-frequency circuit board of 5 GHz or more.

本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理層を有しない。   In another embodiment of the surface-treated copper foil which concerns on this invention, it does not have a roughening process layer.

本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理層を有する。   In another embodiment of the surface-treated copper foil which concerns on this invention, it has a roughening process layer.

本発明は別の側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。   In another aspect, the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.

本発明は更に別の側面において、本発明の積層板を材料としたプリント配線板である。   In still another aspect, the present invention is a printed wiring board made from the laminate of the present invention.

本発明は更に別の側面において、本発明の積層板を材料としたプリント回路板である。   In still another aspect, the present invention is a printed circuit board made from the laminate of the present invention.

本発明によれば、高周波回路基板に用いても伝送損失が良好に抑制される表面処理銅箔、積層板、及びプリント配線板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses for a high frequency circuit board, the surface treatment copper foil, laminated board, and printed wiring board by which transmission loss is suppressed favorably can be provided.

x軸をCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた実施例及び比較例に係る付着量−表面粗さグラフである。Amounts of adhesion according to Examples and Comparative Examples in which the x-axis is the total adhesion amount of Co, Ni, Fe, and Mo (μg / dm 2 ) and the y-axis is the surface roughness Rz (μm) of the surface-treated surface− It is a surface roughness graph.

(銅箔基材)
本発明に用いることのできる銅箔基材の形態に特に制限はないが、典型的には圧延銅箔や電解銅箔の形態で用いることができる。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。屈曲性が要求される用途には圧延銅箔を適用することが多い。
銅箔基材の材料としてはプリント配線板の導体パターンとして通常使用されるタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
なお、銅箔基材の板厚は特に限定する必要は無いが、例えば1〜300μm、あるいは3〜100μm、あるいは5μm〜70μm、あるいは6μm〜35μm、あるいは9μm〜18μmである。
(Copper foil base material)
Although there is no restriction | limiting in particular in the form of the copper foil base material which can be used for this invention, Typically, it can use with the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. Rolled copper foil is often used for applications that require flexibility.
In addition to high-purity copper such as tough pitch copper and oxygen-free copper, which are usually used as conductor patterns for printed wiring boards, for example, Sn-containing copper, Ag-containing copper, Cr, Zr or Mg are added as the copper foil base material. It is also possible to use a copper alloy such as a copper alloy, a Corson copper alloy to which Ni, Si and the like are added. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
The plate thickness of the copper foil base material is not particularly limited, but is, for example, 1 to 300 μm, alternatively 3 to 100 μm, alternatively 5 μm to 70 μm, alternatively 6 μm to 35 μm, alternatively 9 μm to 18 μm.

(表面処理層)
銅箔基材の表面には、樹脂基板との接着性を確保するための粗化処理、防錆処理、耐熱処理、耐候処理、耐酸性処理、シラン処理から選択される一種以上の処理による表面処理層が形成されていることが好ましい。すなわち、本発明の表面処理層は、このように樹脂との接着面(マット面(M面))に形成されている。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであってもよい。また、粗化処理の後、かぶせめっき処理を行ってもよい。これらの粗化処理、防錆処理、耐熱処理、耐候処理、耐酸性処理、シラン処理、処理液への浸漬処理やめっき処理で形成される表面処理層は、Cu,Ni,Fe,Co,Zn,Cr,Mo,W,P,As,Ag,Sn,Geからなる群から選択されたいずれかの単体又はいずれか1種以上の合金、または有機物を含んでもよい。
(Surface treatment layer)
The surface of the copper foil base material is a surface obtained by one or more treatments selected from roughening treatment, rust prevention treatment, heat treatment, weathering treatment, acid resistance treatment, and silane treatment to ensure adhesion with the resin substrate. A treatment layer is preferably formed. That is, the surface treatment layer of the present invention is thus formed on the adhesive surface (mat surface (M surface)) with the resin. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. Moreover, you may perform a covering plating process after a roughening process. Surface treatment layers formed by these roughening treatment, rust prevention treatment, heat resistance treatment, weather resistance treatment, acid resistance treatment, silane treatment, immersion treatment in the treatment liquid and plating treatment are Cu, Ni, Fe, Co, Zn , Cr, Mo, W, P, As, Ag, Sn, Ge, any single element selected from the group consisting of, or any one or more alloys, or an organic substance.

(付着金属量及び表面粗さ)
表面処理銅箔は表面粗さRzが小さいほど伝送損失が減少するが、ある程度まで表面粗さRzが小さくなると、表面粗さよりも表面処理層における所定の金属の付着量が伝送損失に顕著に影響を与える。本発明者の検討により、そのような表面処理金属種のうち、特に透磁率が比較的高く導電率が比較的低いCo,Ni,Fe,Moが伝送損失に影響を与えることが判明した。このため、本発明の表面処理銅箔は、表面処理層において、Co,Ni,Fe,Moの合計付着量が、表面粗さRzとの関係において制御されている。具体的には、種々の製造工程を実施し、表面処理層におけるCo,Ni,Fe,Moの合計付着量と表面粗さRzとを変えて、伝送損失を測定した結果、x軸を表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000189x+1.400000、及び
y=−0.002333x+9.333333
の4つの直線で囲まれた領域内に制御された銅箔であれば、高周波回路基板に用いても伝送損失が良好に抑制されることがわかった。
本発明の表面処理銅箔は、Co,Ni,Fe,Moの合計付着量と表面粗さRzとが上記4つの直線で囲まれた領域内にあるために、例えば、好ましくは5GHz以上、より好ましくは20GHz以上の高周波回路基板に用いても伝送損失を4dB/10cm以下という非常に小さい値に抑えることができる。
当該領域を、図1の付着量−表面粗さグラフに示す。図1からもわかるように、Co,Ni,Fe,Moの合計付着量は、表面粗さRzとの関係において、表面粗さRzの減少に対して増加するように制御されているが、単純に一定して増加するのではなく、付着量が3700μg/dm2付近から増加の割合が低下するように制御されている。
(Amount of adhered metal and surface roughness)
The surface-treated copper foil has a smaller transmission loss as the surface roughness Rz is smaller. However, when the surface roughness Rz is reduced to a certain extent, the amount of adhesion of a predetermined metal on the surface-treated layer significantly affects the transmission loss rather than the surface roughness. give. As a result of the study by the present inventor, it has been found that among such surface-treated metal species, Co, Ni, Fe, and Mo, which have a relatively high permeability and a relatively low conductivity, affect transmission loss. Therefore, in the surface-treated copper foil of the present invention, the total adhesion amount of Co, Ni, Fe, and Mo is controlled in relation to the surface roughness Rz in the surface treatment layer. Specifically, various manufacturing processes were performed, and the total loss of Co, Ni, Fe, and Mo in the surface treatment layer and the surface roughness Rz were changed, and the transmission loss was measured. In the adhesion amount-surface roughness graph drawn with the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe, and Mo in the layer and the y-axis as the surface roughness Rz (μm) of the surface treatment surface,
x = 0,
y = 0,
y = −0.000189x + 1.400,000 and y = −0.002333x + 9.333333
It has been found that if the copper foil is controlled within the area surrounded by the four straight lines, transmission loss is satisfactorily suppressed even when used for a high-frequency circuit board.
In the surface-treated copper foil of the present invention, the total amount of Co, Ni, Fe, and Mo and the surface roughness Rz are in the region surrounded by the four straight lines. The transmission loss can be suppressed to a very small value of 4 dB / 10 cm or less even if it is preferably used for a high frequency circuit board of 20 GHz or more.
The said area | region is shown in the adhesion amount-surface roughness graph of FIG. As can be seen from FIG. 1, the total adhesion amount of Co, Ni, Fe, and Mo is controlled so as to increase with respect to the decrease in the surface roughness Rz in relation to the surface roughness Rz. The amount of adhesion is controlled so that the rate of increase decreases from around 3700 μg / dm 2 .

また、本発明の表面処理銅箔は、上記付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000183x+1.100000、及び
y=−0.002200x+7.150000
の4つの直線で囲まれた領域内に制御されているのが好ましい。
また、当該領域を規定している4つの直線のうち、直線x=0は、x=1、3、5、10、又は、100の各直線であってもよい。
さらに、当該領域を規定している4つの直線のうち、直線y=0は、y=0.001、0.01、0.05、0.10、0.20、又は、0.30の各直線であってもよい。
なお、Co,Ni,Fe,Moの合計付着量の値が大きい場合、耐熱性、耐候性、耐酸性等がより優れるという効果もある。
表面粗さRzの値が大きい場合、ピール強度がより高くなるという効果もある。
また、本発明の表面処理銅箔は、上記付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000189x+1.400000、及び
x=445
の4つの直線で囲まれた領域内に制御されているのが好ましい。Co,Ni,Fe,Moの合計付着量の値が小さい場合、Rzをそれほど小さい値としなくても、伝送損失が小さいという効果がある。また、Niはアルカリエッチング性に悪影響を与えるため、このようにNiの付着量が445μg/dm2以下となる場合は、アルカリエッチング性が良好となるため好ましい。アルカリエッチング性の向上の観点からは、上記直線x=445が、x=400であるのが更に好ましく、x=350であるのが更により好ましく、x=300であるのが更により好ましく、x=250であるのが更により好ましく、x=200であるのが更により好ましい。
また、本発明の表面処理銅箔は、上記付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000183x+1.100000、及び
x=445
の4つの直線で囲まれた領域内に制御されているのが好ましい。Co,Ni,Fe,Moの合計付着量の値が小さい場合、Rzをそれほど小さい値としなくても、伝送損失が小さいという効果がある。また、Niはアルカリエッチング性に悪影響を与えるため、このようにNiの付着量が445μg/dm2以下となる場合は、アルカリエッチング性が良好となるため好ましい。アルカリエッチング性の向上の観点からは、上記直線x=445が、x=400であるのがより好ましく、x=350であるのがさらにより好ましく、x=300であるのが更により好ましく、x=250であるのが更により好ましく、x=200であるのが更により好ましい。
また、本発明の表面処理銅箔は、上記付着量−表面粗さグラフにおいて、
x=3010、
y=0、
y=−0.000189x+1.400000、及び
y=−0.002333x+9.333333
の4つの直線で囲まれた領域内に制御されているのが好ましい。Co,Ni,Fe,Moの合計付着量の値が大きい場合、耐薬品性が向上するという効果がある。
また、本発明の表面処理銅箔は、上記付着量−表面粗さグラフにおいて、
x=3010、
y=0、及び
y=−0.002200x+7.150000
の3つの直線で囲まれた領域内に制御されているのが好ましい。Co,Ni,Fe,Moの合計付着量の値が大きい場合、耐薬品性が向上するという効果がある。
Moreover, the surface-treated copper foil of the present invention is the above adhesion amount-surface roughness graph,
x = 0,
y = 0,
y = −0.000183x + 1.100,000 and y = −0.002200x + 7.150,000
It is preferable to control within the area surrounded by the four straight lines.
Of the four straight lines defining the region, the straight line x = 0 may be each of x = 1, 3, 5, 10, or 100.
Further, among the four straight lines defining the region, the straight line y = 0 is y = 0.001, 0.01, 0.05, 0.10, 0.20, or 0.30. It may be a straight line.
In addition, when the value of the total adhesion amount of Co, Ni, Fe, and Mo is large, there is an effect that heat resistance, weather resistance, acid resistance, and the like are more excellent.
When the value of the surface roughness Rz is large, there is also an effect that the peel strength becomes higher.
Moreover, the surface-treated copper foil of the present invention is the above adhesion amount-surface roughness graph,
x = 0,
y = 0,
y = −0.000189x + 1.400,000 and x = 445
It is preferable to control within the area surrounded by the four straight lines. When the total adhesion amount of Co, Ni, Fe, and Mo is small, there is an effect that transmission loss is small even if Rz is not set to a very small value. Further, since Ni has an adverse effect on the alkali etching property, it is preferable that the Ni adhesion amount is 445 μg / dm 2 or less because the alkali etching property is good. From the viewpoint of improving the alkali etching property, the straight line x = 445 is more preferably x = 400, still more preferably x = 350, still more preferably x = 300, = 250 is even more preferred, and x = 200 is even more preferred.
Moreover, the surface-treated copper foil of the present invention is the above adhesion amount-surface roughness graph,
x = 0,
y = 0,
y = −0.000183x + 1.100,000 and x = 445
It is preferable to control within the area surrounded by the four straight lines. When the total adhesion amount of Co, Ni, Fe, and Mo is small, there is an effect that transmission loss is small even if Rz is not set to a very small value. Further, since Ni has an adverse effect on the alkali etching property, it is preferable that the Ni adhesion amount is 445 μg / dm 2 or less because the alkali etching property is good. From the viewpoint of improving alkali etching property, the straight line x = 445 is more preferably x = 400, even more preferably x = 350, still more preferably x = 300, = 250 is even more preferred, and x = 200 is even more preferred.
Moreover, the surface-treated copper foil of the present invention is the above adhesion amount-surface roughness graph,
x = 3010,
y = 0,
y = −0.000189x + 1.400,000 and y = −0.002333x + 9.333333
It is preferable to control within the area surrounded by the four straight lines. When the total adhesion amount of Co, Ni, Fe, and Mo is large, there is an effect that chemical resistance is improved.
Moreover, the surface-treated copper foil of the present invention is the above adhesion amount-surface roughness graph,
x = 3010,
y = 0, and y = −0.002200x + 1.
It is preferable to control within the area surrounded by the three straight lines. When the total adhesion amount of Co, Ni, Fe, and Mo is large, there is an effect that chemical resistance is improved.

表面粗さRzは、上記領域内のものであれば特に限定されないが、より伝送損失を抑制するためには、1.3μm以下に制御されているのが好ましく、1.0μm以下に制御されているのがさらに好ましく、0.9μm以下に制御されているのがさらに好ましく、0.8μm以下に制御されているのがさらに好ましく、0.7μm以下に制御されているのがさらに好ましく、0.6μm以下に制御されているのがさらに好ましい。   The surface roughness Rz is not particularly limited as long as it is within the above range, but in order to further suppress transmission loss, it is preferably controlled to 1.3 μm or less, and is controlled to 1.0 μm or less. More preferably, it is controlled to 0.9 μm or less, more preferably controlled to 0.8 μm or less, further preferably 0.7 μm or less. More preferably, it is controlled to 6 μm or less.

(表面処理銅箔の製造方法)
本発明において、銅箔基材(圧延銅箔又は電解銅箔)の、樹脂基材と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施されることが好ましい。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。本発明においては、この粗化処理は例えばCu,Ni,Fe,Co,Zn,Cr,Mo,W,P,As,Ag,Sn,Geからなる群から選択されたいずれかの単体又はいずれか1種以上の合金のめっき、または有機物による表面処理等により行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後には表面処理として、耐熱性、耐薬品性を付与するために上記金属でかぶせめっきを行うこともある。なお、粗化処理を行わずにCu,Ni,Fe,Co,Zn,Cr,Mo,W,P,As,Ag,Sn,Geからなる群から選択されたいずれかの単体又はいずれか1種以上の合金のめっきを行ってもよい。その後、表面処理として、耐熱性、耐薬品性を付与するために上記金属でかぶせめっきを行うこともある。粗化処理を行う場合には、樹脂との密着強度が高くなるという利点がある。また、粗化処理を行わない場合には、表面処理銅箔の製造工程が簡略化されるため生産性が向上すると共に、コストを低減することができ、また粗さを小さくすることができるという利点がある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。このような銅箔表面のめっき処理の液組成、めっき時間、電流密度を調整することで、本発明に係る表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm2)と表面処理面の表面粗さRz(μm)との関係を制御することができる。
(Method for producing surface-treated copper foil)
In the present invention, the surface of the copper foil base material (rolled copper foil or electrolytic copper foil) to be bonded to the resin base material, that is, the roughened surface, is intended to improve the peel strength of the copper foil after lamination. It is preferable that a roughening treatment is performed on the surface of the degreased copper foil to perform fist-like electrodeposition. Although the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment. In the present invention, the roughening treatment is performed by, for example, any single element selected from the group consisting of Cu, Ni, Fe, Co, Zn, Cr, Mo, W, P, As, Ag, Sn, and Ge. It can be performed by plating one or more alloys, or surface treatment with an organic substance. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and after the roughening, the plating may be performed with the above metal to impart heat resistance and chemical resistance. It should be noted that any single element or any one selected from the group consisting of Cu, Ni, Fe, Co, Zn, Cr, Mo, W, P, As, Ag, Sn, and Ge without roughening treatment. The above alloy may be plated. Then, as surface treatment, in order to give heat resistance and chemical resistance, it may cover and coat with the said metal. When the roughening treatment is performed, there is an advantage that the adhesion strength with the resin is increased. In addition, when the roughening treatment is not performed, the manufacturing process of the surface-treated copper foil is simplified, so that the productivity is improved, the cost can be reduced, and the roughness can be reduced. There are advantages. The content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil. By adjusting the liquid composition, plating time, and current density of the plating treatment on the copper foil surface, the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe, and Mo in the surface treatment layer according to the present invention The relationship with the surface roughness Rz (μm) of the surface treatment surface can be controlled.

なお、表面処理面の表面粗さRz(μm)を制御するためには表面処理前の銅箔の処理側の表面のTDの粗さ(Rz)及び光沢度を制御しておくことも重要である。具体的には、表面処理前の銅箔のTDの表面粗さ(Rz)が0.20〜0.80μm、好ましくは0.20〜0.50μmであり、圧延方向(MD)の入射角60度での光沢度が350〜800%、好ましくは500〜800%であって、更に従来の表面処理よりも電流密度を高くし、表面処理時間を短縮すれば、表面処理を行った後の、表面粗さRzを小さくすることができる。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨を行う、また、所定の添加剤を添加して電解銅箔を製造することにより作製することができる。このように、処理前の銅箔のTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の表面粗さ(Rz)を制御しやすくすることができる。   In order to control the surface roughness Rz (μm) of the surface-treated surface, it is also important to control the TD roughness (Rz) and glossiness of the surface on the treated side of the copper foil before the surface treatment. is there. Specifically, the surface roughness (Rz) of TD of the copper foil before the surface treatment is 0.20 to 0.80 μm, preferably 0.20 to 0.50 μm, and the incident angle 60 in the rolling direction (MD). When the gloss is 350 to 800%, preferably 500 to 800%, and the current density is higher than that of the conventional surface treatment and the surface treatment time is shortened, The surface roughness Rz can be reduced. As such a copper foil, rolling is performed by adjusting the oil film equivalent of the rolling oil (high gloss rolling), or chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution is performed, It can produce by adding an additive and manufacturing electrolytic copper foil. Thus, the surface roughness (Rz) of the copper foil after the treatment can be easily controlled by setting the surface roughness (Rz) and the glossiness of the TD of the copper foil before the treatment within the above range. .

また、表面処理前の銅箔は、MDの60度光沢度が500〜800%であるのが好ましく、501〜800%であるのがより好ましく、510〜750%であるのが更により好ましい。表面処理前の銅箔のMDの60度光沢度が500%未満であると500%以上の場合よりもRzが高くなるおそれがあり、800%を超えると、製造することが難しくなるという問題が生じるおそれがある。
なお、高光沢圧延は以下の式で規定される油膜当量を13000〜18000以下とすることで行うことができる。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
圧延油粘度[cSt]は40℃での動粘度である。
油膜当量を13000〜18000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
Moreover, it is preferable that the 60 degree glossiness of MD is 500-800%, as for the copper foil before surface treatment, it is more preferable that it is 501-800%, and it is still more preferable that it is 510-750%. If the 60 degree gloss of MD of the copper foil before the surface treatment is less than 500%, Rz may be higher than the case of 500% or more, and if it exceeds 800%, it is difficult to produce. May occur.
High gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13,000 to 18000 or less.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to set the oil film equivalent to 13,000 to 18000, a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.

また、表面粗さRz並びに光沢度が前述の範囲となる電解銅箔は以下の方法で作製することができる。
<電解液組成>
銅:90〜110g/L
硫酸:90〜110g/L
塩素:50〜100ppm
レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10〜30ppm
レベリング剤2(アミン化合物):10〜30ppm
上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
Moreover, the electrolytic copper foil in which the surface roughness Rz and the glossiness are in the above-described ranges can be produced by the following method.
<Electrolyte composition>
Copper: 90-110 g / L
Sulfuric acid: 90-110 g / L
Chlorine: 50-100ppm
Leveling agent 1 (bis (3sulfopropyl) disulfide): 10 to 30 ppm
Leveling agent 2 (amine compound): 10 to 30 ppm
As the amine compound, an amine compound having the following chemical formula can be used.

Figure 2014133936
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
Figure 2014133936
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.)

<製造条件>
電流密度:70〜100A/dm2
電解液温度:50〜60℃
電解液線速:3〜5m/sec
電解時間:0.5〜10分間
<Production conditions>
Current density: 70 to 100 A / dm 2
Electrolyte temperature: 50-60 ° C
Electrolyte linear velocity: 3-5 m / sec
Electrolysis time: 0.5 to 10 minutes

本発明の表面処理銅箔を、表面処理層側から樹脂基板に貼り合わせて積層板を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、フッ素樹脂含浸クロス、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、フレキシブルプリント基板(FPC)用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、フッ素樹脂およびフッ素樹脂・ポリイミド複合材等を使用する事ができる。なお、液晶ポリマー(LCP)は誘電損失が小さいため、高周波回路用途のプリント配線板には液晶ポリマー(LCP)フィルムを用いることが好ましい。   The surface-treated copper foil of the present invention can be bonded to a resin substrate from the surface-treated layer side to produce a laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like. For example, a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Fluorine resin impregnated cloth, glass cloth / paper composite base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, etc., polyester film and polyimide for flexible printed circuit board (FPC) A film, a liquid crystal polymer (LCP) film, a fluororesin, and a fluororesin / polyimide composite material can be used. In addition, since a liquid crystal polymer (LCP) has a small dielectric loss, it is preferable to use a liquid crystal polymer (LCP) film for the printed wiring board for a high frequency circuit use.

貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔をプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、液晶ポリマーやポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。   In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be performed by stacking a copper foil on a prepreg and heating and pressing. In the case of FPC, a liquid crystal polymer or a polyimide film is bonded to a copper foil under high temperature and pressure without using an adhesive, or a polyimide precursor is applied and dried via an adhesive. -A laminated board can be manufactured by performing hardening etc.

本発明の積層板は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。   The laminated board of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayer PWB (3 It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.

実施例1〜35及び比較例1〜28の銅箔基材として、厚さ18μmの圧延銅箔(JX日鉱日石金属製C1100)、又は、厚さ18μmの電解銅箔を用意した。
次に、表面処理として、表1〜3に示す条件でめっきを行った。表1は、各液1〜11の液組成、pH、温度、電流密度を示している。表2及び表3は、表記の浴組成及び時間で、めっき処理1〜4を順に行ったことを示している。なお、このめっきの後にZn、Niまたはそれらの合金めっき、およびクロメート処理によって耐熱性を確保し、さらにアミノ系シランを塗布することでピール強度を向上させた。
アミノ系シランの塗布条件は以下の通りである。
・アミノ系シラン:N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン
・シラン濃度:5.0vol%(残部:水)
・処理温度:45〜55℃
・処理時間:5秒
・シラン処理後の乾燥:100℃×3秒
なお、実施例5、11、18、20、21、25、26、27、31、34、比較例27の表面処理は平滑めっき処理(粗化処理でない表面処理)に相当し、それ以外の実施例および比較例における表面処理は粗化処理に相当する。
As copper foil base materials of Examples 1 to 35 and Comparative Examples 1 to 28, a rolled copper foil having a thickness of 18 μm (C1100 made by JX Nippon Mining & Metals) or an electrolytic copper foil having a thickness of 18 μm was prepared.
Next, plating was performed under the conditions shown in Tables 1 to 3 as a surface treatment. Table 1 shows the liquid composition, pH, temperature, and current density of each liquid 1-11. Tables 2 and 3 show that the plating treatments 1 to 4 were sequentially performed with the indicated bath composition and time. In addition, after this plating, heat resistance was ensured by Zn, Ni or their alloy plating, and chromate treatment, and further peel strength was improved by applying amino-based silane.
The application conditions of amino silane are as follows.
Amino silane: N-2- (aminoethyl) -3-aminopropyltrimethoxysilane Silane concentration: 5.0 vol% (remainder: water)
-Processing temperature: 45-55 ° C
Treatment time: 5 seconds Drying after silane treatment: 100 ° C. × 3 seconds The surface treatment of Examples 5, 11, 18, 20, 21, 25, 26, 27, 31, 34, and Comparative Example 27 is smooth. It corresponds to plating treatment (surface treatment that is not roughening treatment), and the surface treatment in other examples and comparative examples corresponds to roughening treatment.

Figure 2014133936
Figure 2014133936

Figure 2014133936
Figure 2014133936

Figure 2014133936
Figure 2014133936

上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。   Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.

<付着量の測定>
表面処理層の各種金属の付着量の測定については、50mm×50mmの銅箔表面の皮膜をHNO3(2重量%)とHCl(5重量%)を混合した溶液に溶解し、その溶液中の金属濃度をICP発光分光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SFC−3100)にて定量し、単位面積当たりの金属量(μg/dm2)を算出して導いた。このとき、測定したい面と反対面の金属付着量が混入しないよう、必要に応じてマスキングを行い、分析を行った。なお、測定は前述のZn、Niまたはそれらの合金めっき、およびクロメート処理、さらにアミノ系シラン処理を行った後のサンプルについて行った。
<Measurement of adhesion amount>
For the measurement of the adhesion amount of various metals on the surface treatment layer, the film on the surface of the copper foil of 50 mm × 50 mm was dissolved in a mixed solution of HNO 3 (2% by weight) and HCl (5% by weight). The metal concentration was quantified with an ICP emission spectroscopic analyzer (SFC-3100, manufactured by SII Nanotechnology Co., Ltd.), and the amount of metal (μg / dm 2 ) per unit area was calculated and derived. At this time, the analysis was performed by masking as necessary so that the metal adhesion amount on the surface opposite to the surface to be measured was not mixed. In addition, the measurement was performed about the sample after performing the above-mentioned Zn, Ni, or those alloy plating, chromate treatment, and also amino-type silane treatment.

<表面粗さRzの測定>
株式会社小阪研究所製接触粗さ計SP−11を使用してJIS B0601−1994に準拠して十点平均粗さを表面処理面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で測定位置を変えて10回行い、10回の測定での値を求めた。
<Measurement of surface roughness Rz>
Using a contact roughness meter SP-11 manufactured by Kosaka Laboratory, the 10-point average roughness was measured for the surface-treated surface in accordance with JIS B0601-1994. The measurement position was changed 10 times under the conditions of a measurement standard length of 0.8 mm, an evaluation length of 4 mm, a cut-off value of 0.25 mm, and a feed rate of 0.1 mm / second, and values obtained by 10 measurements were obtained. .

<伝送損失の測定>
18μm厚の各サンプルについて、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ−50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzおよび周波数40GHzでの伝送損失を求めた。周波数20GHzにおける伝送損失の評価として、3.7dB/10cm未満を◎、3.7dB/10cm以上且つ4.1dB/10cm未満を○、4.1dB/10cm以上且つ5.0dB/10cm未満を△、5.0dB/10cm以上を×とした。
<Measurement of transmission loss>
For each sample having a thickness of 18 μm, after bonding with a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.), a microstrip line is formed by etching so that the characteristic impedance is 50Ω. The transmission coefficient was measured using a network analyzer HP8720C, and the transmission loss at a frequency of 20 GHz and a frequency of 40 GHz was determined. As an evaluation of transmission loss at a frequency of 20 GHz, 未 満 less than 3.7 dB / 10 cm, ◎ 3.7 dB / 10 cm or more and less than 4.1 dB / 10 cm, 、 4 4.1 dB / 10 cm or more and less than 5.0 dB / 10 cm, △, 5.0 dB / 10 cm or more was defined as x.

<接着性>
まず、被覆層を設けた銅箔に対して、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ−50μm)の液晶ポリマーフィルムを真空加熱プレスで接着した。
次に、液晶ポリマーを積層した銅箔について、ピール強度を90°剥離法(JIS C 6471 8.1)に準拠して測定した。
<Adhesiveness>
First, a liquid crystal polymer film of a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.) was bonded to a copper foil provided with a coating layer by a vacuum heating press.
Next, about the copper foil which laminated | stacked the liquid crystal polymer, the peel strength was measured based on the 90 degree peeling method (JIS C6471 8.1).

<アルカリエッチング性>
なお、実施例11と実施例34については、前述の液晶ポリマーを積層した銅箔についてアルカリエッチング性の調査を行った。
・使用薬液:メルテックス株式会社製 エープロセス
・温度:50℃
・撹拌速度:200rpm
その結果、実施例11は300秒で全溶解されることが目視にて確認された。一方、実施例34は全溶解までに315秒の時間を要した。このため、実施例11の方がアルカリエッチング性に優れていることがわかる。
評価結果を表4及び表5に示す。また、図1に、x軸をCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた実施例及び比較例に係る付着量−表面粗さグラフを示す。
<Alkali etching property>
In addition, about Example 11 and Example 34, the alkali etching property was investigated about the copper foil which laminated | stacked the above-mentioned liquid crystal polymer.
-Chemicals used: A-process manufactured by Meltex Co., Ltd.-Temperature: 50 ° C
・ Agitation speed: 200 rpm
As a result, it was visually confirmed that Example 11 was completely dissolved in 300 seconds. On the other hand, Example 34 required 315 seconds to completely dissolve. For this reason, it turns out that the direction of Example 11 is excellent in alkali etching property.
The evaluation results are shown in Tables 4 and 5. In addition, in FIG. 1, the x-axis is the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe, and Mo, and the y-axis is the surface roughness Rz (μm) of the surface-treated surface. The adhesion amount-surface roughness graph which concerns on an example is shown.

Figure 2014133936
Figure 2014133936

Figure 2014133936
Figure 2014133936

(評価結果)
実施例はいずれもx軸を表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた付着量−表面粗さグラフにおいて、x=0、y=0、y=−0.000189x+1.400000、及び、y=−0.002333x+9.333333の4つの直線で囲まれた領域内にあったため、伝送損失が4.0dB/10cm以下と良好に抑制されていた。さらにいずれの実施例も良好な接着性を有していた。
一方、比較例はいずれも上記4つの直線で囲まれた領域外であったため、伝送損失が4.0dB/10cmより大きいと不良であった。
なお、本実施例では、厚さ18μmの銅箔を用いたが、前述の通り、高周波領域においては電流は導体の表面のみに流れるという表皮効果の現象があるため、銅箔厚みはインピーダンスコントロールに影響するが伝送損失には大きく関与しない。そのため、18μm以外の厚みの銅箔についても、本発明の粗さと表面処理の金属量制御によって、伝送損失を抑えることができると考えられる。
(Evaluation results)
In all the examples, the x-axis represents the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe, and Mo in the surface treatment layer, and the y-axis represents the surface roughness Rz (μm) of the surface treatment surface. In the quantity-surface roughness graph, x = 0, y = 0, y = −0.000189x + 1.400,000, and y = −0.002333x + 9.333333. The loss was well suppressed to 4.0 dB / 10 cm or less. Furthermore, all the examples had good adhesiveness.
On the other hand, since all the comparative examples were outside the region surrounded by the four straight lines, the transmission loss was poor when the transmission loss was larger than 4.0 dB / 10 cm.
In this embodiment, a copper foil having a thickness of 18 μm was used. However, as described above, in the high frequency region, there is a phenomenon of the skin effect that current flows only on the surface of the conductor. Affects but does not contribute significantly to transmission loss. For this reason, it is considered that the transmission loss can be suppressed even with a copper foil having a thickness other than 18 μm by the roughness of the present invention and the metal amount control of the surface treatment.

以上の知見を基礎として完成された本発明は一側面において、表面処理層が形成された表面処理銅箔であって、
x軸を表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた付着量−表面粗さグラフにおいて、
x=10
y=0、
y=−0.000183x+1.100000、及び
y=−0.002200x+7.150000
の4つの直線で囲まれた領域内にあり、
前記表面粗さRzが0.5μm以下である表面処理銅箔である。
The present invention completed on the basis of the above knowledge, in one aspect, is a surface-treated copper foil in which a surface treatment layer is formed,
Adhesion amount-surface roughness drawn with the x axis as the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe and Mo in the surface treatment layer and the y axis as the surface roughness Rz (μm) of the surface treatment surface. In the graph,
x = 10 ,
y = 0,
y = −0.000183x + 1.100,000 and y = −0.002200x + 7.150,000
Area near surrounded by four straight lines is,
The surface-treated copper foil has a surface roughness Rz of 0.5 μm or less .

本発明に係る表面処理銅箔の別の一側面においては、表面処理層が形成された表面処理銅箔であって、
x軸を表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm 2 )とし、y軸を表面処理面の表面粗さRz(μm)として描かれた付着量−表面粗さグラフにおいて、
x=2010
y=0、
y=−0.000183x+1.100000、及び
y=−0.002200x+7.150000
の4つの直線で囲まれた領域内にある表面処理銅箔である
In another aspect of the surface-treated copper foil according to the present invention, a surface-treated copper foil in which a surface-treated layer is formed,
Adhesion amount-surface roughness drawn with the x axis as the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe and Mo in the surface treatment layer and the y axis as the surface roughness Rz (μm) of the surface treatment surface. In the graph,
x = 2010 ,
y = 0,
y = −0.000183x + 1.100,000 and y = −0.002200x + 7.150,000
The surface-treated copper foil in the region surrounded by the four straight lines.

本発明に係る表面処理銅箔の別の実施形態においては、前記表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm 2 )が1320以下である
In another embodiment of the surface-treated copper foil according to the present invention, the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe, and Mo in the surface treatment layer is 1320 or less .

参考例1〜11、14〜19、23、26〜35、実施例12〜13、20〜22、24〜25及び比較例1〜28の銅箔基材として、厚さ18μmの圧延銅箔(JX日鉱日石金属製C1100)、又は、厚さ18μmの電解銅箔を用意した。
次に、表面処理として、表1〜3に示す条件でめっきを行った。表1は、各液1〜11の液組成、pH、温度、電流密度を示している。表2及び表3は、表記の浴組成及び時間で、めっき処理1〜4を順に行ったことを示している。なお、このめっきの後にZn、Niまたはそれらの合金めっき、およびクロメート処理によって耐熱性を確保し、さらにアミノ系シランを塗布することでピール強度を向上させた。
アミノ系シランの塗布条件は以下の通りである。
・アミノ系シラン:N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン
・シラン濃度:5.0vol%(残部:水)
・処理温度:45〜55℃
・処理時間:5秒
・シラン処理後の乾燥:100℃×3秒
なお、参考例5、11、18、実施例20、21、25、参考例26、27、31、34、比較例27の表面処理は平滑めっき処理(粗化処理でない表面処理)に相当し、それ以外の参考例、実施例および比較例における表面処理は粗化処理に相当する。
As a copper foil base material of Reference Examples 1 to 11, 14 to 19, 23, 26 to 35, Examples 12 to 13, 20 to 22, 24 to 25 and Comparative Examples 1 to 28, a rolled copper foil having a thickness of 18 μm ( J1 Nippon Mining & Metals C1100) or 18 μm thick electrolytic copper foil was prepared.
Next, plating was performed under the conditions shown in Tables 1 to 3 as a surface treatment. Table 1 shows the liquid composition, pH, temperature, and current density of each liquid 1-11. Tables 2 and 3 show that the plating treatments 1 to 4 were sequentially performed with the indicated bath composition and time. In addition, after this plating, heat resistance was ensured by Zn, Ni or their alloy plating, and chromate treatment, and further peel strength was improved by applying amino-based silane.
The application conditions of amino silane are as follows.
Amino silane: N-2- (aminoethyl) -3-aminopropyltrimethoxysilane Silane concentration: 5.0 vol% (remainder: water)
-Processing temperature: 45-55 ° C
Treatment time: 5 seconds Drying after silane treatment: 100 ° C. × 3 seconds In addition, Reference Examples 5, 11, 18, Examples 20, 21, 25, Reference Examples 26, 27, 31, 34, Comparative Example 27 The surface treatment corresponds to smooth plating treatment (surface treatment that is not roughening treatment), and the surface treatments in other reference examples, examples, and comparative examples correspond to roughening treatment.

Figure 2014133936
Figure 2014133936

<アルカリエッチング性>
なお、参考例11と参考例34については、前述の液晶ポリマーを積層した銅箔についてアルカリエッチング性の調査を行った。
・使用薬液:メルテックス株式会社製 エープロセス
・温度:50℃
・撹拌速度:200rpm
その結果、参考例11は300秒で全溶解されることが目視にて確認された。一方、参考例34は全溶解までに315秒の時間を要した。このため、参考例11の方がアルカリエッチング性に優れていることがわかる。
評価結果を表4及び表5に示す。また、図1に、x軸をCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた参考例、実施例及び比較例に係る付着量−表面粗さグラフを示す。
<Alkali etching property>
In addition, for Reference Example 11 and Reference Example 34, the alkali etching property of the copper foil laminated with the above liquid crystal polymer was investigated.
-Chemicals used: A-process manufactured by Meltex Co., Ltd.-Temperature: 50 ° C
・ Agitation speed: 200 rpm
As a result, it was visually confirmed that Reference Example 11 was completely dissolved in 300 seconds. On the other hand, Reference Example 34 required 315 seconds to completely dissolve. For this reason, it turns out that the direction of the reference example 11 is excellent in alkali etching property.
The evaluation results are shown in Tables 4 and 5. Further, in FIG. 1, the x-axis Co, Ni, Fe, the total deposition amount of Mo and (μg / dm 2), reference example depicted the y-axis as the surface roughness Rz of the surface-treated surface ([mu] m), performed The adhesion amount-surface roughness graph concerning an example and a comparative example is shown.

Figure 2014133936
Figure 2014133936

Claims (11)

表面処理層が形成された表面処理銅箔であって、
x軸を表面処理層におけるCo,Ni,Fe,Moの合計付着量(μg/dm2)とし、y軸を表面処理面の表面粗さRz(μm)として描かれた付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000189x+1.400000、及び
y=−0.002333x+9.333333
の4つの直線で囲まれた領域内にある表面処理銅箔。
A surface-treated copper foil having a surface-treated layer formed thereon,
Adhesion amount-surface roughness drawn with the x axis as the total adhesion amount (μg / dm 2 ) of Co, Ni, Fe and Mo in the surface treatment layer and the y axis as the surface roughness Rz (μm) of the surface treatment surface. In the graph,
x = 0,
y = 0,
y = −0.000189x + 1.400,000 and y = −0.002333x + 9.333333
Surface-treated copper foil in the area surrounded by the four straight lines.
前記付着量−表面粗さグラフにおいて、
x=0、
y=0、
y=−0.000183x+1.100000、及び
y=−0.002200x+7.150000
の4つの直線で囲まれた領域内にある請求項1に記載の表面処理銅箔。
In the adhesion amount-surface roughness graph,
x = 0,
y = 0,
y = −0.000183x + 1.100,000 and y = −0.002200x + 7.150,000
The surface-treated copper foil according to claim 1, which is in a region surrounded by the four straight lines.
前記表面粗さRzが1.3以下である請求項1又は2に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1 or 2, wherein the surface roughness Rz is 1.3 or less. 前記表面粗さRzが1.0以下である請求項3に記載の表面処理銅箔。   The surface-treated copper foil according to claim 3, wherein the surface roughness Rz is 1.0 or less. フレキシブルプリント配線板用である請求項1〜4のいずれかに記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 1 to 4, which is for a flexible printed wiring board. 5GHz以上の高周波回路基板用である請求項1〜5のいずれかに記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 1 to 5, which is used for a high-frequency circuit board of 5 GHz or more. 粗化処理層を有しない請求項1〜6のいずれかに記載の表面処理銅箔。   The surface-treated copper foil in any one of Claims 1-6 which does not have a roughening process layer. 粗化処理層を有する請求項1〜6のいずれかに記載の表面処理銅箔。   The surface-treated copper foil in any one of Claims 1-6 which has a roughening process layer. 請求項1〜6のいずれかに記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。   The laminated board comprised by laminating | stacking the surface-treated copper foil and resin substrate in any one of Claims 1-6. 請求項9に記載の積層板を材料としたプリント配線板。   A printed wiring board made of the laminated board according to claim 9. 請求項9に記載の積層板を材料としたプリント回路板。   A printed circuit board made of the laminate according to claim 9.
JP2013003859A 2013-01-11 2013-01-11 Surface-treated copper foil, laminated board, printed wiring board and printed circuit board Active JP5576514B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013003859A JP5576514B2 (en) 2013-01-11 2013-01-11 Surface-treated copper foil, laminated board, printed wiring board and printed circuit board
PCT/JP2014/050355 WO2014109396A1 (en) 2013-01-11 2014-01-10 Surface treated copper foil, laminate board, copper foil with carrier, printed wiring board, printed circuit board, electronic device, and method for production of printed wiring board
TW103101084A TWI526303B (en) 2013-01-11 2014-01-10 Surface-processed copper foil, laminated circuit board, carrier copper foil, printed wiring board, printed circuit board, electronic machine and printed wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003859A JP5576514B2 (en) 2013-01-11 2013-01-11 Surface-treated copper foil, laminated board, printed wiring board and printed circuit board

Publications (2)

Publication Number Publication Date
JP2014133936A true JP2014133936A (en) 2014-07-24
JP5576514B2 JP5576514B2 (en) 2014-08-20

Family

ID=51167040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003859A Active JP5576514B2 (en) 2013-01-11 2013-01-11 Surface-treated copper foil, laminated board, printed wiring board and printed circuit board

Country Status (3)

Country Link
JP (1) JP5576514B2 (en)
TW (1) TWI526303B (en)
WO (1) WO2014109396A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023367B1 (en) * 2015-06-17 2016-11-09 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2017141489A (en) * 2016-02-09 2017-08-17 福田金属箔粉工業株式会社 High chroma treated copper foil, copper-clad laminate using the treated copper foil and manufacturing method of the treated copper foil
JP2018172790A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Surface treated copper foil, and laminate, copper foil with carrier, printed wiring board, method for manufacturing electronic device and method for manufacturing printed wiring board, each of which uses the surface treated copper foil
WO2021131359A1 (en) * 2019-12-24 2021-07-01 日本電解株式会社 Surface-treated copper foil and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178121A (en) * 2015-03-18 2016-10-06 タツタ電線株式会社 Stretchable cable and stretchable circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238647A (en) * 2003-02-04 2004-08-26 Furukawa Techno Research Kk Smoothened copper foil, and production method therefor
WO2005079130A1 (en) * 2004-02-17 2005-08-25 Nippon Mining & Metals Co., Ltd. Copper foil having blackened surface or layer
JP2006222185A (en) * 2005-02-09 2006-08-24 Furukawa Circuit Foil Kk Polyimide flexible copper clad laminate, copper foil therefor, and polyimide flexible printed wiring board
JP2008118163A (en) * 2002-05-13 2008-05-22 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil
JP4161304B2 (en) * 2003-02-04 2008-10-08 古河サーキットフォイル株式会社 Metal foil for high frequency circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118163A (en) * 2002-05-13 2008-05-22 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil
JP2004238647A (en) * 2003-02-04 2004-08-26 Furukawa Techno Research Kk Smoothened copper foil, and production method therefor
JP4161304B2 (en) * 2003-02-04 2008-10-08 古河サーキットフォイル株式会社 Metal foil for high frequency circuits
WO2005079130A1 (en) * 2004-02-17 2005-08-25 Nippon Mining & Metals Co., Ltd. Copper foil having blackened surface or layer
JP2006222185A (en) * 2005-02-09 2006-08-24 Furukawa Circuit Foil Kk Polyimide flexible copper clad laminate, copper foil therefor, and polyimide flexible printed wiring board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023367B1 (en) * 2015-06-17 2016-11-09 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2017007327A (en) * 2015-06-17 2017-01-12 Jx金属株式会社 Manufacturing method of copper foil with carrier, laminate, and printed wiring board and manufacturing method of electronic device
JP2017141489A (en) * 2016-02-09 2017-08-17 福田金属箔粉工業株式会社 High chroma treated copper foil, copper-clad laminate using the treated copper foil and manufacturing method of the treated copper foil
JP2018172790A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Surface treated copper foil, and laminate, copper foil with carrier, printed wiring board, method for manufacturing electronic device and method for manufacturing printed wiring board, each of which uses the surface treated copper foil
JP7055049B2 (en) 2017-03-31 2022-04-15 Jx金属株式会社 Surface-treated copper foil and laminated boards using it, copper foil with carriers, printed wiring boards, electronic devices, and methods for manufacturing printed wiring boards.
WO2021131359A1 (en) * 2019-12-24 2021-07-01 日本電解株式会社 Surface-treated copper foil and method for manufacturing same
CN114929944A (en) * 2019-12-24 2022-08-19 日本电解株式会社 Surface-treated copper foil and method for producing same
JP7421208B2 (en) 2019-12-24 2024-01-24 日本電解株式会社 Surface treated copper foil and its manufacturing method
US11952675B2 (en) 2019-12-24 2024-04-09 Nippon Denkai, Ltd. Surface-treated copper foil and method for manufacturing same

Also Published As

Publication number Publication date
JP5576514B2 (en) 2014-08-20
TW201438890A (en) 2014-10-16
WO2014109396A1 (en) 2014-07-17
TWI526303B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
JP5710737B1 (en) Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
KR102490491B1 (en) Roughened copper foil, copper-clad laminate, and printed wiring board
JP4682271B2 (en) Copper foil for printed wiring boards
JP2023133413A (en) Surface-treated copper foil, copper-clad laminate, and printed-wiring board
KR101607381B1 (en) Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil attached with carrier for high frequency circuit, electronic device, and method for manufacturing printed wiring board
JP6111017B2 (en) Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component
KR101736537B1 (en) Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil attached with carrier for high frequency circuit, electronic device, and method for manufacturing printed wiring board
JP5576514B2 (en) Surface-treated copper foil, laminated board, printed wiring board and printed circuit board
JP2013155415A (en) Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
JP2017106068A (en) Surface-treated copper foil for printed-wiring board, copper plated laminate sheet for printed-wiring board, and printed-wiring board
JP6722452B2 (en) Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board
KR20100076055A (en) Copper foil for printed wiring board
JP4659140B2 (en) Copper foil for printed wiring boards
JP2015105440A (en) Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus
TWI623639B (en) Surface treatment copper foil
JP2011014647A (en) Copper foil for printed wiring board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP5506368B2 (en) Copper foil for environmentally friendly printed wiring boards
JP2011014651A (en) Copper foil for printed wiring board
JP2010258398A (en) Copper foil for printed circuit board
JP5373453B2 (en) Copper foil for printed wiring boards
JP2011114204A (en) Copper foil for printed wiring board
JP2011009453A (en) Copper foil for printed wiring board
WO2022209989A1 (en) Roughened copper foil, copper-cladded laminate board, and printed wiring board
WO2022255422A1 (en) Roughened copper foil, copper-clad laminate board, and printed circuit board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5576514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250