JP2014133296A - Method and device for centerless grinding of taper surface edge part - Google Patents

Method and device for centerless grinding of taper surface edge part Download PDF

Info

Publication number
JP2014133296A
JP2014133296A JP2013004117A JP2013004117A JP2014133296A JP 2014133296 A JP2014133296 A JP 2014133296A JP 2013004117 A JP2013004117 A JP 2013004117A JP 2013004117 A JP2013004117 A JP 2013004117A JP 2014133296 A JP2014133296 A JP 2014133296A
Authority
JP
Japan
Prior art keywords
workpiece
grinding
tapered surfaces
grinding wheel
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013004117A
Other languages
Japanese (ja)
Other versions
JP2014133296A5 (en
JP6005529B2 (en
Inventor
Masato Yugi
雅人 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Machine Systems Corp
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP2013004117A priority Critical patent/JP6005529B2/en
Priority to CN201410011502.4A priority patent/CN103921182B/en
Publication of JP2014133296A publication Critical patent/JP2014133296A/en
Publication of JP2014133296A5 publication Critical patent/JP2014133296A5/ja
Application granted granted Critical
Publication of JP6005529B2 publication Critical patent/JP6005529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/18Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centreless means for supporting, guiding, floating or rotating work
    • B24B5/24Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centreless means for supporting, guiding, floating or rotating work for grinding conical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0069Other grinding machines or devices with means for feeding the work-pieces to the grinding tool, e.g. turntables, transfer means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a centerless grinding technique of performing grinding work at a boundary edge part of a consecutive taper surface of a workpiece with high accuracy.SOLUTION: In a workpiece W having consecutive two taper surfaces t1 and t2, when performing the centering grinding of a boundary edge part e of both of the taper surfaces t1 and t2, both of the taper surfaces t1 and t2 are simultaneously subjected to grinding work by relatively performing infeed of a grinding wheel 1 having a profile corresponding to both of the taper surfaces t1 and t2 to the workpiece W supported and rotated, and rotating at high-speed. Then, one taper surface t2 of the taper surfaces t1 and t2 is subjected to the grinding work by further relatively performing infeed after the grinding wheel 1 is relatively moved in an axial direction to the workpiece W only by a predetermined amount. Thereby, the boundary edge part e of adjacent taper surfaces t1 and t2 can be subjected to the grinding work with high accuracy, in the workpiece W having the consecutive two taper surfaces t1 and t2.

Description

この発明は、テーパ面エッジ部のセンタレス研削方法およびセンタレス研削装置に関し、さらに詳細には、連続する複数のテーパ面の境界エッジ部を高精度に研削加工するセンタレス研削技術に関する。   The present invention relates to a centerless grinding method and a centerless grinding apparatus for taper surface edge portions, and more particularly to a centerless grinding technique for grinding boundary edge portions of a plurality of continuous taper surfaces with high accuracy.

例えば、図8(a)に示すような鍔付き棒状の工作物(以下ワークと称する。)Wにおいて、鍔部Wbの角部Tは、2つの連続するテーパ面t1、t2で形成されている。   For example, in a rod-shaped workpiece (hereinafter referred to as a workpiece) W with a hook as shown in FIG. 8A, a corner T of the hook Wb is formed by two continuous tapered surfaces t1 and t2. .

この角部T(t1、t2)をセンタレス研削する場合、従来は、図9に示すように、角部Tを形成するテーパ面t1、t2に対応したプロフィールを有する砥石車aにより、同時に研削して仕上げる方法がとられていた。このように連続する異なる2つの外周面(テーパ面とテーパ面、テーパ面と直円筒面)を同時にセンタレス研削する技術としては、例えば特許文献1〜3に開示されるものがある。   When centerless grinding of the corner T (t1, t2), conventionally, as shown in FIG. 9, grinding is simultaneously performed by a grinding wheel a having a profile corresponding to the tapered surfaces t1, t2 forming the corner T. The method of finishing was taken. Examples of techniques for simultaneously centerless grinding of two different outer peripheral surfaces (tapered surface and tapered surface, tapered surface and right cylindrical surface) at the same time include those disclosed in Patent Documents 1 to 3, for example.

このように連続する2つのテーパ面t1、t2のように、異なる2つの外周面を同時に研削して仕上げる場合、以下に述べるような不具合ないしは問題があり、特に高精度な仕上加工が要望されるワークにおいては、さらなる改良が要望されていた。   When two different outer peripheral surfaces are simultaneously ground and finished like the two continuous tapered surfaces t1 and t2 in this way, there are problems or problems as described below, and particularly high-precision finishing is required. There has been a demand for further improvements in workpieces.

すなわち、これら両テーパ面t1、t2を同時に仕上げると、これら両テーパ面t1、t2の交差するエッジ部eに対応した砥石車aの角立ったエッジ研削部cが早期に摩耗してR形状に潰れてしまい、この潰れたエッジ研削部cの形状がそのままワークWに転写されてしまう。その結果、仕上げられたワークWのエッジ部eは、目的とする2つのテーパ面t1、t2の外周輪郭が交差する直線交差輪郭形状(角立った形状)ではなく、曲線輪郭形状(いわゆるR形状)になってしまうという問題があった。   That is, when both the taper surfaces t1 and t2 are finished at the same time, the angular edge grinding portion c of the grinding wheel a corresponding to the edge portion e where the both taper surfaces t1 and t2 intersect with each other is worn early and becomes an R shape. The shape of the crushed edge grinding part c is transferred to the workpiece W as it is. As a result, the edge e of the finished workpiece W is not a straight crossing contour shape (cornered shape) where the outer peripheral contours of the target two tapered surfaces t1 and t2 intersect but a curved contour shape (so-called R shape). ).

しかも、このワークWのエッジ部eは、ワークWの研削前の形状にもよるが、研削する砥石車aに摩耗を生じやすい部位で、上記R形状を助長する傾向が強い。   Moreover, the edge portion e of the workpiece W depends on the shape of the workpiece W before grinding, but tends to promote the R shape at a portion where the grinding wheel a to be ground is likely to be worn.

この点に関して、上記砥石車aに施すドレッシングのインターバルを短くすることにより、上記エッジ研削部cを所定の形状に可及的に回復維持させる方法もあるが、このためにはこの部位をドレッシングするドレッサの尖端形状が高精度に鋭利に仕上げられていることが前提となる。ところが、実際にはこの尖端形状を鋭利に角立たせることはドレッサの構造上非常に困難で、結局、砥石車aをドレッシングしても、ドレッサの上記尖端形状がそのまま上記砥石車aのエッジ研削部cに転写されてしまうことになり、ワークWのテーパ面t1、t2のエッジ部eを高精度に角立たせるには限度があった。   In this regard, there is a method of restoring and maintaining the edge grinding part c in a predetermined shape as much as possible by shortening the dressing interval applied to the grinding wheel a. For this purpose, this part is dressed. The premise is that the tip of the dresser is sharply finished with high accuracy. However, in reality, it is very difficult to sharpen this pointed shape sharply because of the structure of the dresser. After all, even if the grinding wheel a is dressed, the pointed shape of the dresser remains as it is for edge grinding of the grinding wheel a. As a result, the edge portion e of the taper surfaces t1 and t2 of the workpiece W has been limited to be highly accurate.

さらに、ワークWのテーパ面t1、t2をそれぞれ異なる研削装置で研削する方法もあるが、このような研削方法では、別個独立した研削装置の採用により、上記2つのテーパ面t1、t2の同軸度が変わってしまい、仕様の精度が得られないことも考えられる。また、この研削方法では2台以上の研削装置が必要となり、研削効率の低下や製造コストの上昇を招くことにもなる。   Further, there is a method of grinding the tapered surfaces t1 and t2 of the workpiece W with different grinding apparatuses. In such a grinding method, the coaxiality of the two tapered surfaces t1 and t2 is achieved by employing separate grinding apparatuses. It is possible that the accuracy of specifications could not be obtained. In addition, this grinding method requires two or more grinding devices, leading to a decrease in grinding efficiency and an increase in manufacturing cost.

特開平5−253819号公報Japanese Patent Laid-Open No. 5-253819 特開2001−105287号公報JP 2001-105287 A 特開2003−25194号公報JP 2003-25194 A

本発明は、かかる従来の問題点に鑑みてなされたものであって、その目的とするところは、連続する複数のテーパ面を有するワークにおいて、隣接するテーパ面の交差部である境界エッジ部を高精度に研削加工することができるテーパ面エッジ部のセンタレス研削方法を提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a boundary edge portion that is an intersection of adjacent tapered surfaces in a workpiece having a plurality of continuous tapered surfaces. An object of the present invention is to provide a centerless grinding method for tapered edge portions that can be ground with high precision.

本発明のもう一つの目的とするところは、上記研削方法を実施するのに適したテーパ面エッジ部のセンタレス研削装置を提供することにある。   Another object of the present invention is to provide a centerless grinding apparatus for taper surface edge portions suitable for carrying out the above grinding method.

上記目的を達成するため、本発明のセンタレス研削方法は、連続する複数のテーパ面を有するワークにおいて、隣接するテーパ面の交差部である境界エッジ部をセンタレス研削する方法であって、支持回転されるワークに対して、上記ワークの複数のテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、上記複数のテーパ面のすべてを同時に研削加工した後、上記砥石車をワークに対して軸方向に所定量だけ相対的に移動させて、上記砥石車をさらに相対的に切込み送りする動作を順次繰り返すことにより、上記複数のテーパ面のうち第2番目以降のテーパ面を研削加工することを特徴とする。   In order to achieve the above object, a centerless grinding method of the present invention is a method for centerless grinding of a boundary edge portion that is an intersection of adjacent tapered surfaces in a workpiece having a plurality of continuous tapered surfaces, and is supported and rotated. A workpiece having a profile corresponding to a plurality of tapered surfaces of the workpiece, relatively cutting and feeding a grinding wheel rotating at high speed, and grinding all of the plurality of tapered surfaces simultaneously, By moving the grinding wheel relatively by a predetermined amount in the axial direction with respect to the workpiece and sequentially repeating the operation of further cutting and feeding the grinding wheel relative to the workpiece, the second and later of the plurality of tapered surfaces are repeated. The taper surface is ground.

好適な実施態様として、以下の構成が採用される。
(1)連続する2つのテーパ面を有するワークにおいて、両テーパ面の交差部である境界エッジ部をセンタレス研削する方法であって、支持回転されるワークに対して、上記ワークの2つのテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、上記2つのテーパ面を同時に研削加工した後、上記砥石車をワークに対して軸方向に所定量だけ相対的に移動させて、上記砥石車をさらに相対的に切込み送りして、未使用の砥石面で一方のテーパ面を研削加工する。
The following configuration is adopted as a preferred embodiment.
(1) A method of centerless grinding a boundary edge portion that is an intersection of both tapered surfaces in a workpiece having two continuous tapered surfaces, the two tapered surfaces of the workpiece being supported and rotated The grinding wheel having a profile corresponding to the above is relatively cut and fed, and the two tapered surfaces are simultaneously ground, and then the grinding wheel is relative to the workpiece by a predetermined amount in the axial direction. Then, the grinding wheel is further cut and fed relatively to grind one tapered surface with an unused grinding wheel surface.

(2)連続する3つのテーパ面を有するワークにおいて、隣接するテーパ面の交差部である2つの境界エッジ部をセンタレス研削する方法であって、支持回転されるワークに対して、上記ワークの3つのテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、上記3つテーパ面のすべてを同時に研削加工した後、上記砥石車をワークに対して軸方向に所定量だけ相対的に移動させて、上記砥石車をさらに相対的に切込み送りして、未使用の砥石面で上記3つのテーパ面のうちの中間部位に位置するテーパ面を研削加工する。 (2) A method of centerless grinding of two boundary edge portions which are intersecting portions of adjacent tapered surfaces in a workpiece having three continuous tapered surfaces, wherein the workpiece 3 is supported with respect to a workpiece which is supported and rotated. A grinding wheel having a profile corresponding to two tapered surfaces is relatively cut and fed, and after grinding all three tapered surfaces at the same time, the grinding wheel is moved axially with respect to the workpiece. The wheel is moved relatively by a predetermined amount, and the grinding wheel is further cut and fed relatively to grind the tapered surface located at the intermediate portion of the three tapered surfaces with the unused grinding wheel surface.

(3)上記ワークは、軸部本体の一端部に大径の鍔部が同軸状に設けられてなる鍔付き棒状のワークの形態とされ、上記鍔部の角部が、上記連続する複数のテーパ面により形成されている。 (3) The workpiece is in the form of a rod-shaped workpiece with a hook in which a large-diameter collar is provided coaxially at one end of the shaft body, and the corner of the collar has a plurality of continuous portions. It is formed by a tapered surface.

(4)上記ワークの支持回転は、予め仕上研削した上記ワークの軸部本体をブレードと調整車で支持するとともに、押圧手段により上記軸部本体を押し付け支持することにより行う。 (4) The support rotation of the work is performed by supporting the shaft main body of the work, which has been previously ground, with a blade and an adjustment wheel, and pressing and supporting the shaft main body with a pressing means.

(5)上記ワークの軸方向制御は、上記調整車と押圧手段による支持回転によりワークに生じる推力に抗して、ワークを軸方向へ送り込む送り手段の送り動作により行う。 (5) Axial direction control of the workpiece is performed by a feeding operation of a feeding unit that feeds the workpiece in the axial direction against a thrust generated on the workpiece by the support rotation by the adjusting wheel and the pressing unit.

また、本発明のセンタレス研削装置は、上記センタレス研削方法を実施するのに適した装置であって、ワークの軸部本体を支持するブレードと、回転駆動されて、ワークの軸部本体を支持回転する第1の調整車と、回転駆動されて、ワークのテーパ面隣接位置を支持回転する第2の調整車と、上記ブレードおよび第1の調整車に対してワークを押し付け支持する押圧手段と、回転駆動されて、上記調整車により支持回転されるワークのテーパ面を研削する砥石車と、上記調整車およびブレードにより回転支持されるワークを、上記砥石車に対して軸方向へ相対的に送る送り手段と、上記調整車、押圧手段、砥石車および送り手段を相互に連動して制御する制御手段とを備えてなり、上記制御手段により、上記調整車、押圧手段、砥石車および送り手段が相互に連動して制御されて、上記センタレス研削方法が実行される構成とされていることを特徴とする。   The centerless grinding apparatus of the present invention is an apparatus suitable for carrying out the above-mentioned centerless grinding method. The centerless grinding apparatus is driven to rotate with a blade that supports the shaft main body of the work, and supports and rotates the shaft main body of the work. A first adjustment wheel that rotates, a second adjustment wheel that is driven to rotate and supports and rotates a position adjacent to the tapered surface of the workpiece, and a pressing means that presses and supports the workpiece against the blade and the first adjustment wheel, The grinding wheel that is driven to rotate and grinds the tapered surface of the work supported and rotated by the adjusting wheel, and the work that is rotated and supported by the adjusting wheel and the blade are relatively fed to the grinding wheel in the axial direction. And a control means for controlling the adjusting wheel, the pressing means, the grinding wheel and the feeding means in conjunction with each other, and the control means allows the adjusting wheel, the pressing means, the grinding wheel and Ri means is controlled in conjunction with each other, characterized in that it is configured to the centerless grinding method is performed.

好適な実施態様として、以下の構成が採用される。
(1)上記押圧手段は、ワークの軸部本体の外周面に転接可能な押えローラと、この押えローラをワークの軸部本体の外周面に対して所定の押圧力をもって押圧する加圧手段とを備えてなる。
The following configuration is adopted as a preferred embodiment.
(1) The pressing means includes a pressing roller capable of rolling contact with the outer peripheral surface of the workpiece shaft main body, and a pressing means for pressing the pressing roller against the outer peripheral surface of the workpiece shaft main body with a predetermined pressing force. And comprising.

(2)上記送り手段は、ワークの後端面に当接可能なワークプッシャと、このワークプッシャをワークの軸方向へ移動させる移動手段とを備えてなる。 (2) The feeding means includes a work pusher capable of coming into contact with the rear end surface of the work and a moving means for moving the work pusher in the axial direction of the work.

本発明によれば、連続する複数のテーパ面を有するワークにおいて、隣接するテーパ面の交差部である境界エッジ部をセンタレス研削する方法であって、支持回転されるワークに対して、上記ワークの複数のテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、上記複数のテーパ面のすべてを同時に研削加工した後、上記砥石車をワークに対して軸方向に所定量だけ相対的に移動させて、上記砥石車をさらに相対的に切込み送りする動作を順次繰り返すことにより、上記複数のテーパ面のうち第2番目以降のテーパ面を順次研削加工するから、連続する複数のテーパ面を有するワークにおいて、隣接するテーパ面の交差部である境界エッジ部を高精度に研削加工することができる。   According to the present invention, in a workpiece having a plurality of continuous tapered surfaces, a method for centerless grinding of a boundary edge portion that is an intersection of adjacent tapered surfaces, the workpiece is supported and rotated with respect to the workpiece. A grinding wheel having a profile corresponding to a plurality of tapered surfaces is relatively cut and fed, and after grinding all of the plurality of tapered surfaces at the same time, the grinding wheel is axially oriented with respect to the workpiece. The second and subsequent tapered surfaces of the plurality of tapered surfaces are sequentially ground by sequentially moving the grinding wheel relative to the predetermined amount and sequentially repeating the operation of cutting and feeding the grinding wheel. In a workpiece having a plurality of continuous tapered surfaces, a boundary edge portion that is an intersection of adjacent tapered surfaces can be ground with high accuracy.

すなわち、例えば、鍔付き棒状のワークのように、鍔部の角部に2つ(複数)の連続するテーパ面が形成される場合に、これら2つのテーパ面に対応したプロフィールを有する砥石車を用いて、最初にこれら2つのテーパ面を同時に研削する。次に、上記砥石車の位置をワークに対して軸方向に所定量だけ相対的にずらせて、砥石車をさらに相対的に切込み送りして、一方のテーパ面を研削加工する。これにより、1台のセンタレス研削装置で連続する2つのテーパ面を所定のテーパ角度や寸法精度に仕上げることができるとともに、隣接するテーパ面の交差部である境界エッジ部についても、上記テーパ面を2回に分けて研削することで、エッジ部がいわゆるR形状になることを防止して、角立った形状に高精度に仕上げることができる。   That is, for example, when two (a plurality) of continuous tapered surfaces are formed at the corners of the flange portion, such as a rod-shaped workpiece with a flange, a grinding wheel having a profile corresponding to these two tapered surfaces is used. First, these two tapered surfaces are ground simultaneously. Next, the position of the grinding wheel is shifted relative to the workpiece by a predetermined amount in the axial direction, and the grinding wheel is further cut and fed to grind one of the tapered surfaces. As a result, two continuous taper surfaces can be finished with a predetermined taper angle and dimensional accuracy with a single centerless grinding apparatus, and the above-mentioned taper surfaces are also applied to boundary edge portions that are intersections of adjacent taper surfaces. By grinding in two steps, the edge portion can be prevented from becoming a so-called R shape, and can be finished into a square shape with high accuracy.

このような構成の研削方法によれば、ワークWの2のテーパ面の境界エッジ部に対応する砥石車の砥石面の角立つべき隅部がR形状になっていても、上記境界エッジ部を正確に角立ったエッジに形成することができる。   According to the grinding method having such a configuration, even if the corner portion of the grinding wheel surface of the grinding wheel corresponding to the boundary edge portion of the two tapered surfaces of the workpiece W has an R shape, the boundary edge portion is It can be formed into an accurately angular edge.

さらに、上述のごとく1台のセンタレス研削装置での研削加工が可能となり、設備コストを低く抑えることができ、大幅なコストの低減化を図ることができる。   Furthermore, as described above, grinding can be performed with one centerless grinding apparatus, equipment cost can be kept low, and cost can be significantly reduced.

本発明の実施形態1であるセンタレス研削装置の主要部の概略構成を示す平面図である。It is a top view which shows schematic structure of the principal part of the centerless grinding apparatus which is Embodiment 1 of this invention. 同じく同センタレス研削装置の主要部の概略構成を示し、図2(a)は図1のA−A線に沿った正面図、図2(b)は図1のB−B線に沿った断面図である。2 shows a schematic configuration of a main part of the centerless grinding apparatus, FIG. 2A is a front view taken along the line AA in FIG. 1, and FIG. 2B is a cross section taken along the line BB in FIG. FIG. 図3(a)〜(c)は同センタレス研削装置における研削工程を説明するため平面図で、(ii)はそれぞれ(i)における一点鎖線円内の部位の拡大図である。FIGS. 3A to 3C are plan views for explaining a grinding process in the centerless grinding apparatus, and FIG. 3A is an enlarged view of a portion within a chain line in FIG. 同研削工程における砥石車とワークプッシャの切込み量の変化を示すサイクル線図である。It is a cycle diagram which shows the change of the cutting amount of a grinding wheel and a work pusher in the grinding process. 図5(a)〜(e)は、本発明の実施形態2であるセンタレス研削装置による研削工程を説明するための平面図で、それぞれ図3における (ii)に対応する拡大図である。5A to 5E are plan views for explaining a grinding process by the centerless grinding apparatus according to the second embodiment of the present invention, and are enlarged views corresponding to (ii) in FIG. 3, respectively. 図6(a)〜(d)は、本発明の実施形態3であるセンタレス研削装置による研削工程を説明するための平面図で、図6(a)は砥石車の砥石面の拡大図、図6(b)〜(d)はそれぞれ図3における (ii)に対応する拡大図である。6A to 6D are plan views for explaining a grinding process by the centerless grinding apparatus according to the third embodiment of the present invention, and FIG. 6A is an enlarged view of the grinding wheel surface of the grinding wheel. 6 (b) to (d) are enlarged views corresponding to (ii) in FIG. 図7(a)〜(c)は本発明の実施形態4であるセンタレス研削装置における研削工程を説明するため平面図である。FIGS. 7A to 7C are plan views for explaining a grinding process in the centerless grinding apparatus according to the fourth embodiment of the present invention. 同センタレス研削装置により研削される鍔付き棒状のワークを示す正面図であり、図8(a)は全体正面図、図8(b)は実施形態1における研削対象部位である図8(a)の一点鎖線円内の部位の拡大図、図8(c)は実施形態2および3における研削対象部位である図8(a)の一点鎖線円内の部位の拡大図であるIt is a front view which shows the rod-shaped workpiece | work with a flange | grip ground by the same centerless grinding apparatus, Fig.8 (a) is a whole front view, FIG.8 (b) is a grinding | polishing object site | part in Embodiment 1 Fig.8 (a). FIG. 8C is an enlarged view of a portion within a one-dot chain line circle in FIG. 8A that is a portion to be ground in the second and third embodiments. 従来のセンタレス研削装置により鍔付き棒状のワークのテーパ面を研削加工する状態を拡大して示す平面図である。It is a top view which expands and shows the state which grinds the taper surface of a rod-shaped workpiece | work with a hook with the conventional centerless grinding apparatus.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、図面全体にわたって同一の符号は同一の構成部材または要素を示している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Throughout the drawings, the same reference numeral indicates the same component or element.

実施形態1
本発明に係るセンタレス研削装置が図1および図2に示されており、この研削装置は、具体的には、図8(a)に示すような軸部本体Waの一端部に大径の鍔部Wbが同軸状に設けられてなる鍔付き棒状のワ−クWにおいて、上記鍔部Wbの角部Tをセンタレス研削するものである。この角部Tは、2つの連続するテーパ面、より具体的には図示のごとく外径側へ膨出状に連続する2つのテーパ面t1、t2(テーパ角度:α1>α2)で形成されており、本実施形態の研削装置は、これら2つのテーパ面t1、t2を、図8(b)に示すような角立った境界エッジ部eを有するテーパ面にセンタレス研削する。なお、ワークWの上記鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面は、後述するように前工程において予め仕上げ加工されており、この軸部本体Waの大径軸部Wcを加工基準として上記2つのテーパ面t1、t2を研削加工する構成とされている。
Embodiment 1
A centerless grinding apparatus according to the present invention is shown in FIGS. 1 and 2. Specifically, this grinding apparatus has a large-diameter ridge at one end of a shaft body Wa as shown in FIG. In the rod-shaped work W with a flange having the portion Wb provided coaxially, the corner portion T of the flange Wb is centerless ground. The corner portion T is formed by two continuous tapered surfaces, more specifically, two tapered surfaces t1 and t2 (taper angle: α1> α2) that bulge out toward the outer diameter side as shown in the figure. In addition, the grinding apparatus of the present embodiment performs centerless grinding of these two tapered surfaces t1 and t2 into a tapered surface having a corner boundary edge portion e as shown in FIG. In addition, the cylindrical outer peripheral surface of the flange portion Wb of the workpiece W and the large-diameter shaft portion Wc of the shaft portion main body Wa is finished in advance in a previous step as described later, and the large-diameter shaft portion of the shaft portion main body Wa. The two tapered surfaces t1 and t2 are ground by using Wc as a processing reference.

センタレス研削装置は、いわゆるプッシュスルーフィード研削が行える構成とされ、砥石車1、第1の調整車2、第2の調整車3、ブレード4、押圧装置(押圧手段)5、送り装置(送り手段)6および制御装置(制御手段)7を主要部として備えてなる。   The centerless grinding apparatus is configured to perform so-called push-through feed grinding, and includes a grinding wheel 1, a first adjustment wheel 2, a second adjustment wheel 3, a blade 4, a pressing device (pressing means) 5, and a feeding device (feeding means). ) 6 and a control device (control means) 7 as main parts.

砥石車1は、図1〜図3に示すように、ワークWにおける鍔部Wbの角部Tを連続する2つのテーパ面t1、t2に研削加工するもので、その外周の砥石面1aが上記鍔部Wbの角部Tの外周面に対応したプロフィールを備え、特に砥石面1aにおけるテーパ研削部10は、ワークWのテーパ面t1、t2の最終仕上げ形状に対応したプロフィールを備える形状寸法とされている。   As shown in FIGS. 1 to 3, the grinding wheel 1 grinds the two tapered surfaces t1 and t2 of the corner portion T of the flange portion Wb of the workpiece W. A profile corresponding to the outer peripheral surface of the corner portion T of the flange portion Wb is provided. In particular, the taper grinding portion 10 on the grindstone surface 1a has a shape dimension including a profile corresponding to the final finished shape of the taper surfaces t1 and t2 of the workpiece W. ing.

この砥石車1の駆動系は従来公知の一般的基本構造を備えている。具体的には、砥石車1は、砥石軸15に取外し可能に取付け固定され、この砥石軸15が固定的に設けられた砥石車台上(図示省略)に回転可能に軸承されるとともに、動力伝導ベルトや歯車機構を介して駆動モータ等の駆動源に駆動連結されている。また、具体的には図示しないが、上記砥石車台は、切込み装置により砥石車1の切込み方向Xへ往復移動可能な構成とされている。そして、砥石車1の駆動源および上記切込み装置の駆動源は、制御装置7に電気的に接続されている。   The drive system of the grinding wheel 1 has a conventionally known general basic structure. Specifically, the grinding wheel 1 is detachably attached and fixed to the grinding wheel shaft 15, and is rotatably supported on a grinding wheel base (not shown) on which the grinding wheel shaft 15 is fixedly mounted. It is drivingly connected to a driving source such as a driving motor via a belt or a gear mechanism. Although not specifically shown, the grinding wheel carriage is configured to be reciprocally movable in the cutting direction X of the grinding wheel 1 by a cutting device. The driving source of the grinding wheel 1 and the driving source of the cutting device are electrically connected to the control device 7.

なお、上記砥石車台は、上記のごとく切込み装置により砥石車1の切込み方向Xへ往復移動可能とされることに加えて、送り装置により上記切込み方向Xと直交する送り方向Yへ往復移動可能な構成とされてもよい。   In addition to being able to reciprocate in the cutting direction X of the grinding wheel 1 by the cutting device as described above, the grinding wheel carriage can be reciprocated in the feeding direction Y orthogonal to the cutting direction X by the feeding device. It may be configured.

第1の調整車2は、図1、図2(b)および図3に示すように、ワークWの研削対象でない軸部本体Wa、より具体的には軸部本体Waにおける予め仕上研削された大径軸部Wcのみを支持回転するもので、円筒面からなる回転支持面2aを備える。この調整車2は、摩擦係数の高いラバー製とされ、具体的には、砥粒をラバーで結合した摩擦係数の高いラバー砥石の形態とされている。   As shown in FIGS. 1, 2 (b), and 3, the first adjustment wheel 2 has been subjected to finish grinding in advance on the shaft body Wa that is not the object to be ground of the workpiece W, more specifically, on the shaft body Wa. Only the large-diameter shaft portion Wc is supported and rotated, and includes a rotation support surface 2a formed of a cylindrical surface. The adjusting wheel 2 is made of rubber having a high friction coefficient, and specifically, a rubber grindstone having a high friction coefficient in which abrasive grains are combined with rubber.

第2の調整車3は、図1、図2(a)および図3に示すように、ワークWの研削対象であるテーパ面t1、t2に隣接する予め仕上研削された鍔部Wbのみを支持回転するもので、円筒面からなる回転支持面3aを備える。この調整車3は、耐摩耗性が大でかつ摩擦係数の低い鋳物製とされ、具体的には、耐摩耗性が大で、摩擦係数が低く、しかも被削性(被加工性)の良い鋳鉄製とされ、図示の実施形態においてはダクタイル鋳鉄の焼き入れ品が使用されている。なお、第2の調整車3と同様に上記第1の調整車2も同様な鋳物製とされても良い。   As shown in FIGS. 1, 2 (a) and 3, the second adjusting wheel 3 supports only the flange Wb which has been previously ground and is adjacent to the tapered surfaces t 1 and t 2 to be ground of the workpiece W. A rotating support surface 3a made of a cylindrical surface is provided. The adjusting wheel 3 is made of a casting having a high wear resistance and a low friction coefficient. Specifically, the adjustment wheel 3 has a high wear resistance, a low friction coefficient, and good machinability (machinability). It is made of cast iron. In the illustrated embodiment, a ductile cast iron hardened product is used. The first adjustment wheel 2 may be made of the same casting as the second adjustment wheel 3.

これら調整車2、3は、ワークWの送り方向Yへの移動範囲においてワークWの軸部本体Waにおける大径軸部Wcおよび鍔部Wbをそれぞれ常時回転支持する軸方向幅寸法を有するとともに、その共通する駆動系は従来公知の一般的基本構造を備えている。具体的には、調整車2、3は、共通の調整車軸16にスペーサ17を介して取外し可能に取付け固定され、この調整車軸16が調整車台上(図示省略)に回転可能に軸承されるとともに、動力伝導ベルトや歯車機構を介して駆動モータ等の駆動源に駆動連結され、この駆動源が上記制御装置7に電気的に接続されている。   These adjusting wheels 2 and 3 have axial width dimensions that always rotate and support the large-diameter shaft portion Wc and the flange portion Wb in the shaft portion main body Wa of the workpiece W in the movement range in the feed direction Y of the workpiece W, The common drive system has a conventionally known general basic structure. Specifically, the adjustment wheels 2 and 3 are detachably attached and fixed to a common adjustment axle 16 via a spacer 17, and the adjustment axle 16 is rotatably supported on an adjustment carriage (not shown). The drive source is connected to a drive source such as a drive motor via a power transmission belt or a gear mechanism, and this drive source is electrically connected to the control device 7.

また、上記第1および第2の調整車2、3の配置構成は、後述するように、押圧装置5との協働作用によるワークWの回転支持により、このワークWに生じる推力が、上記送り装置6によるワークWの送り方向Yに対して逆方向となるように設定されている。具体的には、図示の実施形態においては、調整車2、3の軸心つまり調整車軸16の傾斜角が、後述する押圧装置5との協働作用により、ワークWに反送り方向(図1および図3において、送り方向Yの逆方向)への推力を与える構造とされている。   In addition, as will be described later, the arrangement of the first and second adjusting wheels 2 and 3 is such that the thrust generated on the workpiece W is supported by the rotation of the workpiece W by the cooperative action with the pressing device 5. It is set so as to be opposite to the feed direction Y of the workpiece W by the device 6. Specifically, in the illustrated embodiment, the axis of the adjustment wheels 2 and 3, that is, the inclination angle of the adjustment axle 16 is counter-feeding to the workpiece W due to the cooperative action with the pressing device 5 described later (FIG. 1). And in FIG. 3, it is set as the structure which gives the thrust to the reverse direction of the feed direction Y).

ブレード4は、図1および図2に示すように、第1の調整車2と共にワークWの軸部本体Waを支持するもので、上記調整車2と同様に上記調整車台上に設置されており、ワークWの軸部本体Waの大径軸部Wcを下方から支持する傾斜支持面4aを備えている。   As shown in FIGS. 1 and 2, the blade 4 supports the shaft body Wa of the workpiece W together with the first adjustment wheel 2, and is installed on the adjustment stand like the adjustment wheel 2. The inclined support surface 4a for supporting the large-diameter shaft portion Wc of the shaft portion main body Wa of the workpiece W from below is provided.

押圧装置5は、第1の調整車2に対してワークWを押し付け支持するもので、主要部として押えローラ20および加圧手段21を備える。   The pressing device 5 presses and supports the workpiece W against the first adjustment wheel 2, and includes a pressing roller 20 and a pressurizing unit 21 as main parts.

押えローラ20は、ワークWの軸部本体Waの大径軸部Wcの外周面に所定の押圧力をもって転接する構成とされ、具体的には、ローラ軸22により自由回転可能に支持されるとともに、上記加圧手段21により、ワークWの大径軸部Wcの外周面に所定力をもって転接されている。図示の実施形態においては、上記加圧手段21として、弾発スプリング等の弾発付勢手段が採用されて、この弾発付勢手段21により押えローラ20がワークWの大径軸部Wcの外周面に常時弾発付勢されている。   The presser roller 20 is configured to be in rolling contact with the outer peripheral surface of the large-diameter shaft portion Wc of the shaft portion main body Wa of the workpiece W with a predetermined pressing force. Specifically, the presser roller 20 is supported by the roller shaft 22 so as to be freely rotatable. The pressing means 21 is in rolling contact with the outer peripheral surface of the large-diameter shaft portion Wc of the workpiece W with a predetermined force. In the illustrated embodiment, a bullet biasing means such as a bullet spring is employed as the pressurizing means 21, and the press roller 20 of the large-diameter shaft portion Wc of the workpiece W is caused by the bullet biasing means 21. Bullet is always applied to the outer peripheral surface.

そして、ワークWの軸部本体Waの大径軸部Wcの外周面がブレード4と回転駆動される第1の調整車2により支持された状態において、押圧装置5の押えローラ20が上記軸部本体Waの大径軸部Wcを押し付け支持することにより、上記ワークWが強制支持回転される。これと同時に、ワークWには、後述する送り装置6によるワークWの送り方向Yに対して逆方向となる推力が生じる。   In the state where the outer peripheral surface of the large-diameter shaft portion Wc of the shaft portion main body Wa of the workpiece W is supported by the blade 4 and the first adjustment wheel 2 that is rotationally driven, the press roller 20 of the pressing device 5 is The work W is forcibly supported and rotated by pressing and supporting the large-diameter shaft portion Wc of the main body Wa. At the same time, a thrust is generated on the workpiece W in a direction opposite to the feeding direction Y of the workpiece W by the feeding device 6 described later.

送り装置6は、第1および第2の調整車2、3およびブレード4により強制回転支持されるワークWを、砥石車1に対して軸方向(送り方向)へ相対的に送るもので、具体的には、上記送り方向Yへ相対的に送る構成とされている。   The feeding device 6 feeds the workpiece W forcibly supported by the first and second adjusting wheels 2 and 3 and the blade 4 relative to the grinding wheel 1 in the axial direction (feeding direction). Specifically, the feed direction is relatively set in the feed direction Y.

図示の実施形態の送り装置6は、ワークWの後端面つまり鍔部Wbの端面に当接可能なワークプッシャ25と、このワークプッシャ25をワークWの軸方向つまり上記送り方向Yへ移動させる移動手段(図示省略)とを備えてなる。   The feeding device 6 of the illustrated embodiment includes a work pusher 25 that can contact the rear end surface of the workpiece W, that is, the end surface of the flange Wb, and a movement that moves the workpiece pusher 25 in the axial direction of the workpiece W, that is, the feeding direction Y. Means (not shown).

なお、前述したように砥石車1も送り方向Yへ往復移動可能な構成とされる場合、ワークWは、送り装置6により砥石車1に対して送り方向Yへ強制的に送り込まれるとともに、このワークWに対して上記砥石車1も送り方向Yへ相対的に移動可能な構成とされ得る。   As described above, when the grinding wheel 1 is also configured to be reciprocally movable in the feed direction Y, the workpiece W is forcibly fed in the feed direction Y to the grinding wheel 1 by the feeding device 6, and this The grinding wheel 1 can also be configured to be relatively movable in the feed direction Y with respect to the workpiece W.

ワークプッシャ25は、具体的には図示しないが、第1および第2の調整車2、3とブレード4により支持されるワークWとほぼ同軸上に配置されて、このワークWの軸方向つまり送り方向Yへ往復移動可能に支持されるとともに、上記移動手段に駆動連結されている。このワークプッシャ25を送り方向Yへ往復移動させる移動手段としては、リニアモータや、あるいは送りねじ機構を備えた従来公知の送り駆動装置が適宜採用される。   Although not specifically shown, the work pusher 25 is disposed substantially coaxially with the work W supported by the first and second adjusting wheels 2 and 3 and the blade 4, and the work W is axially or fed. It is supported so as to be able to reciprocate in the direction Y, and is drivingly connected to the moving means. As the moving means for reciprocating the work pusher 25 in the feed direction Y, a linear motor or a conventionally known feed drive device having a feed screw mechanism is appropriately employed.

そして、上記送り装置6により、ワークプッシャ25の先端部25aがワークWの鍔部Wbの端面に当接されて、このワークWを予め設定された速度で送り方向Yへ所定距離だけ送り込む。   Then, the leading end portion 25a of the work pusher 25 is brought into contact with the end face of the flange portion Wb of the work W by the feeding device 6, and the work W is fed at a predetermined speed in the feeding direction Y by a predetermined distance.

この場合、ワークWには第1の調整車2と押圧装置5の押えローラ20との支持回転により上記送り方向Yと逆方向の推力が生じており、したがって、ワークWの軸方向制御は、第1の調整車2と押圧装置5による支持回転によりワークWに生じる推力に抗して、ワークWを送り方向Yへ送り込む送り装置6の送り動作により行われる。   In this case, a thrust in the direction opposite to the feed direction Y is generated in the workpiece W due to the support rotation of the first adjusting wheel 2 and the pressing roller 20 of the pressing device 5. This is performed by the feeding operation of the feeding device 6 that feeds the workpiece W in the feeding direction Y against the thrust generated on the workpiece W by the support rotation by the first adjusting wheel 2 and the pressing device 5.

以上の送り装置6の送り動作は、後述するように、制御装置7により砥石車1の切込み動作と同期して制御されて、砥石車1のワークWに対する相対的な切込み送りが行われる。   The feed operation of the feed device 6 is controlled in synchronism with the cutting operation of the grinding wheel 1 by the control device 7 as described later, and relative cutting feed to the workpiece W of the grinding wheel 1 is performed.

制御装置7は、上記砥石車1、第1および第2の調整車2、3、押圧装置5および送り装置6の各駆動源を相互に連動して制御するもので、具体的には、CPU、ROM、RAMおよびI/Oポートなどからなるマイクロコンピュータで構成されたCNC装置である。この制御装置7には、以下に述べる研削工程(センタレス研削方法)を実行するための制御プログラムが、数値制御データとして、予めまたは図示しない操作盤のキーボード等により適宜選択的に入力設定される。   The control device 7 controls the driving sources of the grinding wheel 1, the first and second adjusting wheels 2, 3, the pressing device 5 and the feeding device 6 in conjunction with each other. , A CNC device composed of a microcomputer comprising a ROM, a RAM, an I / O port, and the like. A control program for executing a grinding process (centerless grinding method) described below is selectively input and set in the control device 7 as numerical control data in advance or with a keyboard of an operation panel (not shown).

しかして、以上のように構成されたセンタレス研削装置において、ワークWの連続する複数(図示の場合は2つ)のテーパ面t1、t2を、その交差部である境界エッジ部eを含めてセンタレス研削するには、支持回転されるワークWに対して、高速回転する砥石車1を相対的に切込み送りして、その砥石面1aにおけるテーパ研削部10により上記両テーパ面t1、t2が同時に研削加工された後、砥石車1をワークWに対して軸方向に所定量だけ相対的に移動させて、砥石車1をさらに相対的に切込み送りすることにより、上記2つテーパ面t1、t2のうち小さなテーパ角度α2を有するテーパ面t2を研削加工する。   Thus, in the centerless grinding apparatus configured as described above, a plurality of (two in the illustrated case) taper surfaces t1 and t2 of the workpiece W are centerless including the boundary edge portion e which is an intersection thereof. For grinding, the grinding wheel 1 that rotates at a high speed is relatively cut and fed to the workpiece W that is supported and rotated, and the both tapered surfaces t1 and t2 are ground simultaneously by the tapered grinding part 10 on the grinding wheel surface 1a. After being processed, the grinding wheel 1 is moved relative to the workpiece W by a predetermined amount in the axial direction, and the grinding wheel 1 is further cut and fed relatively, so that the two tapered surfaces t1 and t2 are moved. Of these, the taper surface t2 having a small taper angle α2 is ground.

この場合、ワークWの鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面は、前工程において予め仕上げ研削加工されており、この軸部本体Waの大径軸部Wcの外周面を加工基準として上記2つのテーパ面t1、t2が研削加工される。このような構成とすることにより、高精度な研削加工が確保される(基準となる外径部つまり上記大径軸部Wcの外周面が仕上研削加工されていないと、支持回転されるワークWがフレて回転し、境界エッジ部eの所定の角度(テーパ面t1、t2の交差角度)や幅精度が得られない。)。   In this case, the cylindrical outer peripheral surface of the flange portion Wb of the workpiece W and the large-diameter shaft portion Wc of the shaft portion main body Wa are subjected to finish grinding in the previous step, and the outer periphery of the large-diameter shaft portion Wc of the shaft portion main body Wa. The two tapered surfaces t1 and t2 are ground by using the surface as a processing reference. By adopting such a configuration, high-precision grinding is ensured (the workpiece W that is supported and rotated unless the outer peripheral surface serving as a reference, that is, the outer peripheral surface of the large-diameter shaft portion Wc is subjected to finish grinding). And the predetermined angle of the boundary edge portion e (intersection angle between the tapered surfaces t1 and t2) and the width accuracy cannot be obtained.

上記研削加工工程の具体的構成を、図3および図4を参照して以下に説明する。   A specific configuration of the grinding process will be described below with reference to FIGS. 3 and 4.

(i)ワークWがブレード4と第1および第2の調整車2、3により支持されるとともに、砥石車1がワークWの2つのテーパ面t1、t2の初期研削(1段目研削)の切込み位置に配置された状態で、砥石車1および調整車2、3がそれぞれ所定の回転速度をもって所定の方向へ回転駆動されるとともに、送り装置6のワークプッシャ25の送り方向Yへの前進により、棒状のワークWがブレード4の傾斜支持面4a(図2参照)上に沿って所定の研削位置まで移動されて位置決めされる。この状態で、押圧装置5の押えローラ20がワークWの大径軸部Wcを所定の弾発付勢力をもって第1の調整車2に対して押し付ける結果、ワークWは、第1の調整車2の回転力により強制回転される。 (I) The workpiece W is supported by the blade 4 and the first and second adjusting wheels 2 and 3, and the grinding wheel 1 is used for initial grinding (first stage grinding) of the two tapered surfaces t1 and t2 of the workpiece W. With the grinding wheel 1 and the adjusting wheels 2 and 3 being rotated at predetermined rotational speeds in a predetermined direction while being arranged at the cutting position, the work pusher 25 of the feeding device 6 is advanced in the feeding direction Y. The rod-shaped workpiece W is moved and positioned along the inclined support surface 4a (see FIG. 2) of the blade 4 to a predetermined grinding position. In this state, as a result of the pressing roller 20 of the pressing device 5 pressing the large-diameter shaft portion Wc of the workpiece W against the first adjustment wheel 2 with a predetermined elastic urging force, the workpiece W becomes the first adjustment wheel 2. It is forcibly rotated by the rotational force of.

(ii)砥石車1がワークWに接触する直前まで切込み方向Xへ早送りされた後(図4の(a)早送り参照)、砥石車1と送り装置6のワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより(図4の(b)研削粗送り→(c)研削仕上送り参照)、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、ワークWのテーパ面t1、t2が境界エッジ部eを含めて同時に研削され(図3(a)参照)、その後スパークアウトして1段目研削が完了する(図4の(d)スパークアウト参照)。 (Ii) After the grinding wheel 1 is fast-forwarded in the cutting direction X until just before the workpiece W comes into contact with the workpiece W (see (a) fast-forwarding in FIG. 4), the grinding wheel 1 and the work pusher 25 of the feeding device 6 are simultaneously (synchronously synchronized). ) When the grinding wheel 1 is fed into the cutting direction X and the feeding direction Y by a predetermined amount (refer to (b) rough grinding feed → (c) grinding finish feed in FIG. The taper surfaces t1 and t2 of the workpiece W are ground at the same time including the boundary edge portion e (see FIG. 3A), and then sparked out to complete the first stage grinding (see FIG. 3). (Refer to (d) Sparkout of 4).

この1段目研削により、2つのテーパ面t1、t2が同時に研削されるとともに、テーパ面t1、t2のテーパ角度α1、α2と、大きなテーパ角度α1を有するテーパ面t1が仕上げられる。   By this first stage grinding, the two tapered surfaces t1 and t2 are simultaneously ground, and the tapered surfaces t1 and α2 of the tapered surfaces t1 and t2 and the tapered surface t1 having a large taper angle α1 are finished.

この場合、上記ワークプッシャ25が最初から所定の研削位置に停止配置された状態で、砥石車1のみがワークWに対して所定量だけ切込み送りされる構成とされても良い。また、これと逆に、砥石車1が最初から所定の切込み位置に停止配置された状態で、ワークプッシャ25のみが送り方向Yへ所定量だけ送り込まれることにより、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれる構成とされても良い。   In this case, only the grinding wheel 1 may be cut and fed to the workpiece W by a predetermined amount in a state where the workpiece pusher 25 is stopped and disposed at a predetermined grinding position from the beginning. On the other hand, when the grinding wheel 1 is stopped at the predetermined cutting position from the beginning, only the work pusher 25 is fed in the feeding direction Y by a predetermined amount, so that the grinding wheel 1 is moved relative to the workpiece W. Thus, a configuration may be adopted in which a predetermined cutting amount is relatively cut.

ただし、後者のワークプッシャ25のみが送り込まれる構成の場合、押圧装置5の押えローラ20により押付け支持されるワークWの大径軸部Wcが、研削部位であるテーパ面t1、t2から遠く離隔した位置にあるため、このワークWの研削部位が多少回転フレを生じる傾向が強く、仕上研削された真円度に影響しやすい。そのため、前者の砥石車1のみが切込み送りされる構成の方が望ましい。   However, in the case of the configuration in which only the latter work pusher 25 is fed, the large-diameter shaft portion Wc of the workpiece W pressed and supported by the pressing roller 20 of the pressing device 5 is far away from the tapered surfaces t1 and t2 which are grinding portions. Because of the position, the grinding portion of the workpiece W tends to have some rotational flare, and it is easy to influence the roundness of the finish grinding. For this reason, the configuration in which only the former grinding wheel 1 is cut and fed is desirable.

(iii)1段目研削の完了後、ワークプッシャ25が所定量だけ送り方向Yと逆方向に後退される(図3(b)、図4の(j)ワークプッシャ後退参照)。これにより、ワークWは、自己の推力によりワークプッシャ25の後退動作に追随して送り方向Yと逆方向へ移動し、砥石車1の砥石面1aのテーパ研削部10に対する軸方向位置が変更される。 (Iii) After the completion of the first stage grinding, the work pusher 25 is retracted by a predetermined amount in the direction opposite to the feed direction Y (see FIG. 3 (b) and FIG. 4 (j) work pusher retreat). As a result, the workpiece W follows the retraction operation of the workpiece pusher 25 by its own thrust and moves in the direction opposite to the feed direction Y, and the axial position of the grinding wheel surface 1a of the grinding wheel 1 relative to the taper grinding portion 10 is changed. The

換言すれば、この動作により、砥石車1がワークWに対して軸方向先端側へ、つまり2つテーパ面t1、t2のうち大きなテーパ角度α1を有するテーパ面t1の位置する側へ所定量だけ相対的に移動することになる。   In other words, by this operation, the grinding wheel 1 moves toward the tip end in the axial direction with respect to the workpiece W, that is, toward the side where the tapered surface t1 having the large taper angle α1 of the two tapered surfaces t1 and t2 is located by a predetermined amount. It will move relatively.

この配置構成において、ワークプッシャ25が送り方向Yへの送り動作を停止待機した状態で、砥石車1がワークWに接触する直前まで切込み方向Xへ早送りされる(図4の(k)ワークプッシャ待機および(e)早送り参照)。   In this arrangement, the workpiece pusher 25 is fast-forwarded in the cutting direction X until immediately before the grinding wheel 1 contacts the workpiece W in a state where the workpiece pusher 25 stops and waits for the feeding operation in the feeding direction Y ((k) workpiece pusher in FIG. 4). Wait and see (e) Fast forward).

(iv)砥石車1がワークWに接触直前まで早送りされた後、砥石車1とワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより(図4の(f)研削粗送り→(g)研削仕上送り参照)、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、小さなテーパ角度α2を有するテーパ面t2が2段目研削され(図3(c)参照)、その後スパークアウトして2段目研削が完了する(図4の(h)スパークアウト参照)。 (Iv) After the grinding wheel 1 is rapidly fed until just before contacting the workpiece W, the grinding wheel 1 and the work pusher 25 are simultaneously (synchronously) fed by a predetermined amount in the cutting direction X and the feeding direction Y (FIG. 4). (F) rough grinding feed → (g) grinding finish feed), the grinding wheel 1 is cut relative to the workpiece W by a predetermined cut amount, and the taper surface t2 having a small taper angle α2 is 2 Stage grinding is performed (see FIG. 3C), and then spark-out is performed to complete the second stage grinding (see (h) spark-out in FIG. 4).

以上の(i)〜(iv)の工程により、2つテーパ面t1、t2の幅寸法(ワークWの軸方向寸法)が決まる。このとき、図示の実施形態においては、砥石車1の砥石面1aのテーパ研削部10のうち、1段目研削で使用していない未使用部位で2段目研削を行うように動作制御されて、テーパ角度α1、α2の精度が向上したり、2つのテーパ面t1、t2の境界エッジ部eがR形状になる等の問題が確実に解消防止される。   By the processes (i) to (iv) described above, the width dimension of the two tapered surfaces t1 and t2 (the dimension in the axial direction of the workpiece W) is determined. At this time, in the illustrated embodiment, the operation is controlled so that the second stage grinding is performed in an unused portion that is not used in the first stage grinding in the tapered grinding part 10 of the grinding wheel surface 1a of the grinding wheel 1. In addition, the accuracy of the taper angles α1 and α2 is improved, and problems such as the boundary edge portion e of the two taper surfaces t1 and t2 having an R shape are reliably eliminated.

ちなみに、1段目研削で使用した砥石車1の砥石面1aのテーパ研削部10の部位を2段目研削に使用する場合、未使用部位との境目でワークWのテーパ面t2の仕上面に段差が生じる恐れがある。   Incidentally, when the part of the taper grinding part 10 of the grinding wheel surface 1a of the grinding wheel 1 used in the first stage grinding is used for the second stage grinding, the surface finish of the tapered surface t2 of the workpiece W at the boundary with the unused part. There is a risk of steps.

(v)スパークアウト後、砥石車1とワークプッシャ25が研削前位置まで後退復帰して研削工程が完了する(図4の(i)砥石車・ワークプッシャ後退参照)。 (V) After the spark-out, the grinding wheel 1 and the work pusher 25 are moved back to the pre-grinding position to complete the grinding process (see (i) grinding wheel / work pusher backward movement in FIG. 4).

以上詳述したように、本実施形態によれば、連続する2つのテーパ面t1、t2を有するワークWにおいて、隣接する両テーパ面t1、t2の交差部である境界エッジ部eをセンタレス研削するに際して、支持回転されるワークWに対して、上記2つのテーパ面t1、t2に対応したプロフィールを有し、高速回転する砥石車1を相対的に切込み送りして、2つのテーパ面t1、t2を同時に研削加工した後、砥石車1をワークWに対して軸方向に所定量だけ相対的に移動させて、砥石車1をさらに相対的に切込み送りすることにより、上記2つのテーパ面t1、t2のうち一方テーパ面t2を研削加工するから、連続する2つのテーパ面t1、t2を有するワークWにおいて、隣接するテーパ面t1、t2の交差部である境界エッジ部eを高精度に研削加工することができる。   As described above in detail, according to the present embodiment, in the workpiece W having two continuous tapered surfaces t1 and t2, the boundary edge portion e that is the intersection of both the adjacent tapered surfaces t1 and t2 is centerless ground. At this time, the grinding wheel 1 having a profile corresponding to the two tapered surfaces t1 and t2 and rotating at a high speed is relatively cut and fed with respect to the workpiece W to be supported and rotated, thereby providing two tapered surfaces t1 and t2. Are simultaneously moved, the grinding wheel 1 is moved relative to the workpiece W by a predetermined amount in the axial direction, and the grinding wheel 1 is further cut and fed, whereby the two tapered surfaces t1, Since one taper surface t2 of t2 is ground, in the workpiece W having two continuous taper surfaces t1 and t2, a boundary edge portion e that is an intersection of adjacent taper surfaces t1 and t2 is formed. It can be machined on precision.

すなわち、図8に示す鍔付き棒状のワークWのように、鍔部Wbの角部Tに2つの連続するテーパ面t1、t2が形成される場合に、これら2つのテーパ面t1、t2に対応したプロフィールを有する砥石車1を用いて、最初にこれら2つのテーパ面t1、t2を同時に研削する。次に、上記砥石車1の位置をワークWに対して軸方向に所定量だけ相対的にずらせて、砥石車1をさらに相対的に切込み送りして、一方のテーパ面t2を研削加工する。これにより、1台のセンタレス研削装置で連続する2つのテーパ面t1、t2を所定のテーパ角度や寸法精度に仕上げることができるとともに、隣接するテーパ面t1、t2の交差部である境界エッジ部eについても、上記テーパ面t1、t2を2回に分けて研削することで、エッジ部eがいわゆるR形状になることを防止して、角立った形状に高精度に仕上げることができる。   That is, when two continuous tapered surfaces t1 and t2 are formed at the corner portion T of the flange portion Wb as in the rod-shaped workpiece W with a flange shown in FIG. 8, these two tapered surfaces t1 and t2 correspond to the two tapered surfaces t1 and t2. First, the two tapered surfaces t1 and t2 are ground simultaneously using the grinding wheel 1 having the profile described above. Next, the position of the grinding wheel 1 is shifted relative to the workpiece W by a predetermined amount in the axial direction, and the grinding wheel 1 is further cut and fed to grind one tapered surface t2. As a result, the two taper surfaces t1 and t2 that are continuous with one centerless grinding apparatus can be finished to a predetermined taper angle and dimensional accuracy, and the boundary edge portion e that is the intersection of the adjacent taper surfaces t1 and t2 Also, by grinding the tapered surfaces t1 and t2 in two steps, the edge portion e can be prevented from becoming a so-called R shape, and can be finished into a square shape with high accuracy.

このような構成の研削方法によれば、ワークの2つのテーパ面t1、t2の境界エッジ部eに対応する砥石車1の砥石面1aのテーパ研削部10の角立つべき隅部がR形状になっていても、上記境界エッジ部eを正確に角立ったエッジに形成することができる。   According to the grinding method having such a configuration, the corners of the tapered grinding portion 10 of the grinding wheel surface 1a of the grinding wheel 1 corresponding to the boundary edge portion e of the two tapered surfaces t1 and t2 of the workpiece have an R shape. Even if it becomes, the said boundary edge part e can be formed in the edge which was correctly squared.

さらに、上述のごとく1台のセンタレス研削装置での研削加工が可能となり、設備コストを低く抑えることができ、大幅なコストの低減化を図ることができる。   Furthermore, as described above, grinding can be performed with one centerless grinding apparatus, equipment cost can be kept low, and cost can be significantly reduced.

実施形態2
本実施形態は図5に示されており、図8(a)に示す鍔付き棒状のワ−クWにおいて、鍔部Wbの角部Tを図8(c)に示すような角立った2つの境界エッジ部e1、e2を有する3つの連続するテーパ面、より具体的には図示のごとく外径側へ膨出状に連続する3つのt1、t2、t3(テーパ角度:α1>α2>α3)にセンタレス研削する構成とされたものである。
Embodiment 2
This embodiment is shown in FIG. 5, and in the rod-like work W with a hook shown in FIG. 8 (a), the corner portion T of the hook portion Wb is formed with a corner 2 as shown in FIG. 8 (c). Three continuous tapered surfaces having two boundary edge portions e1 and e2, more specifically, three t1, t2, and t3 that continue to bulge to the outer diameter side as shown (taper angle: α1>α2> α3 ) And centerless grinding.

なお、ワークWの上記鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面が、前工程において予め仕上げ加工されており、この軸部本体Waの大径軸部Wcを加工基準として研削対象であるテーパ面(図示の場合は3つの連続するテーパ面t1、t2、t3)を研削加工する構成とされている点は実施形態1と同様である。   In addition, the cylindrical outer peripheral surface of the flange portion Wb of the workpiece W and the large-diameter shaft portion Wc of the shaft portion main body Wa is previously finished in the previous step, and the large-diameter shaft portion Wc of the shaft portion main body Wa is processed as a processing standard. As in the first embodiment, the tapered surface to be ground (three continuous tapered surfaces t1, t2, t3 in the illustrated example) is ground.

また、本実施形態のセンタレス研削装置の構成は、砥石車1を除いて、実施形態1のものと同様の構成とされている。   Further, the configuration of the centerless grinding apparatus of the present embodiment is the same as that of the first embodiment except for the grinding wheel 1.

砥石車1の砥石面1aは、ワークWの鍔部Wbの角部Tの外周面に対応したプロフィールを備え、特に砥石面1aにおけるテーパ研削部10は、図示されるように、ワークWの3つのテーパ面t1、t2、t3の最終仕上げ形状に対応したプロフィールを備える形状寸法とされている。   The grinding wheel surface 1a of the grinding wheel 1 is provided with a profile corresponding to the outer peripheral surface of the corner portion T of the flange portion Wb of the workpiece W. In particular, the tapered grinding portion 10 on the grinding wheel surface 1a is 3 of the workpiece W as shown in the figure. The shape dimension is provided with a profile corresponding to the final finished shape of the two tapered surfaces t1, t2, and t3.

しかして、以上のように構成されたセンタレス研削装置において、ワークWの連続する複数(図示の場合は3つ)のテーパ面t1、t2、t3を、その交差部である境界エッジ部e1、e2を含めてセンタレス研削するには、支持回転されるワークWに対して、高速回転する砥石車1を相対的に切込み送りして、その砥石面1aにおけるテーパ研削部10により上記3つのテーパ面t1、t2、t3のすべてが同時に研削加工された後、砥石車1をワークWに対して軸方向に所定量だけ相対的に移動させて、砥石車1をさらに相対的に切込み送りする動作を2回順次繰り返すことにより、上記3つのテーパ面t1、t2、t3のうち第2番目以降の順次小さくなるテーパ角度α2、α3を有するテーパ面t2、t3を順次研削加工する。   Thus, in the centerless grinding apparatus configured as described above, a plurality of (three in the illustrated case) tapered surfaces t1, t2, and t3 of the workpiece W are connected to boundary edge portions e1 and e2 that are intersections thereof. Centerless grinding, the grinding wheel 1 that rotates at a high speed is relatively cut and fed to the workpiece W that is supported and rotated, and the three tapered surfaces t1 are formed by the taper grinding portion 10 on the grinding wheel surface 1a. , T2, and t3 are simultaneously ground, and then the grinding wheel 1 is moved relative to the workpiece W by a predetermined amount in the axial direction to further cut and feed the grinding wheel 1 relatively 2 By repeating in turn, the taper surfaces t2 and t3 having the taper angles α2 and α3 that sequentially become smaller after the second of the three taper surfaces t1, t2, and t3 are sequentially ground.

上記研削加工工程の具体的構成を、図5(a)〜(e)を参照して以下に説明する。   A specific configuration of the grinding process will be described below with reference to FIGS.

(i)ワークWがブレード4と第1および第2の調整車2、3により支持されるとともに、砥石車1がワークWの2つのテーパ面t1、t2、t3の初期研削(1段目研削)の切込み位置に配置された状態で、砥石車1および調整車2、3がそれぞれ所定の回転速度をもって所定の方向へ回転駆動されるとともに、送り装置6のワークプッシャ25の送り方向Yへの前進により、棒状のワークWがブレード4の傾斜支持面4a(図2参照)上に沿って所定の研削位置まで移動して位置決めされる。この位置決め状態で、押圧装置5の押えローラ20がワークWの大径軸部Wcを所定の弾発付勢力をもって第1の調整車2に対して押し付ける結果、ワークWは、第1の調整車2の回転力により強制回転される。 (I) The workpiece W is supported by the blade 4 and the first and second adjusting wheels 2 and 3, and the grinding wheel 1 is initially ground on the two tapered surfaces t1, t2, and t3 of the workpiece W (first-stage grinding). ), The grinding wheel 1 and the adjustment wheels 2 and 3 are respectively rotated in a predetermined direction at a predetermined rotational speed, and the work pusher 25 of the feeding device 6 is moved in the feeding direction Y. By moving forward, the rod-shaped workpiece W is moved and positioned along the inclined support surface 4a (see FIG. 2) of the blade 4 to a predetermined grinding position. In this positioning state, as a result of the pressing roller 20 of the pressing device 5 pressing the large-diameter shaft portion Wc of the workpiece W against the first adjustment wheel 2 with a predetermined elastic urging force, the workpiece W becomes the first adjustment wheel. It is forcibly rotated by the rotational force of 2.

(ii)砥石車1がワークWに接触する直前まで切込み方向Xへ早送りされた後、砥石車1と送り装置6のワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、ワークWの3つのテーパ面t1、t2、t3のすべてが境界エッジ部e1、e2を含めて同時に研削され(図5(a)参照)、その後スパークアウトして1段目研削が完了する。 (Ii) After the grinding wheel 1 is rapidly fed in the cutting direction X until just before the grinding wheel 1 comes into contact with the workpiece W, the grinding wheel 1 and the work pusher 25 of the feeding device 6 are placed in the cutting direction X and the feeding direction Y simultaneously (synchronously). By feeding only a fixed amount, the grinding wheel 1 is cut relative to the workpiece W by a predetermined cutting amount, and all of the three tapered surfaces t1, t2, t3 of the workpiece W are boundary edge portions e1, e2. (See FIG. 5A), and then sparks out to complete the first stage grinding.

この1段目研削により、3つのテーパ面t1、t2、t3が同時に研削されるとともに、テーパ面t1、t2、t3のテーパ角度α1、α2,α3と、大きなテーパ角度α1を有するテーパ面t1が仕上げられる。   By this first-stage grinding, the three tapered surfaces t1, t2, and t3 are ground simultaneously, and the tapered surfaces t1, t2, and t3 of the tapered surfaces t1, t2, and t3 and the tapered surface t1 having a large taper angle α1 are formed. Finished.

(iii)1段目研削の完了後、ワークプッシャ25が所定量だけ送り方向Yと逆方向に後退される(図5(b)参照)。これにより、ワークWは、自己の推力によりワークプッシャ25の後退動作に追随して送り方向Yと逆方向へ移動し、砥石車1の砥石面1aのテーパ研削部10に対する軸方向位置が変更される。 (Iii) After completion of the first stage grinding, the work pusher 25 is retracted by a predetermined amount in the direction opposite to the feed direction Y (see FIG. 5B). As a result, the workpiece W follows the retraction operation of the workpiece pusher 25 by its own thrust and moves in the direction opposite to the feed direction Y, and the axial position of the grinding wheel surface 1a of the grinding wheel 1 relative to the taper grinding portion 10 is changed. The

この配置構成において、ワークプッシャ25が送り方向Yへの送り動作を停止待機した状態で、砥石車1がワークWに接触する直前まで切込み方向Xへ早送りされる。   In this arrangement configuration, the workpiece pusher 25 is fast-forwarded in the cutting direction X until the grinding wheel 1 comes into contact with the workpiece W in a state where the workpiece pusher 25 stops and waits for the feeding operation in the feeding direction Y.

(iv)砥石車1がワークWに接触直前まで早送りされた後、砥石車1とワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、ワークWの小さなテーパ角度α2、α3を有する2つのテーパ面t2、t3が境界エッジ部e2を含めて同時に研削され(図5(c)参照)、その後スパークアウトして2段目研削が完了する。 (Iv) After the grinding wheel 1 is rapidly fed until just before contacting the workpiece W, the grinding wheel 1 and the work pusher 25 are simultaneously (synchronously) fed by a predetermined amount in the cutting direction X and the feeding direction Y. 1 is cut relative to the workpiece W by a predetermined cutting amount, and two tapered surfaces t2 and t3 having small taper angles α2 and α3 of the workpiece W are ground at the same time including the boundary edge portion e2 ( After that, the second stage grinding is completed by sparking out.

この2段目研削により、2つのテーパ面t2、t3が同時に研削されるとともに、テーパ面t2、t3のテーパ角度α2,α3と、大きい方のテーパ角度α2を有するテーパ面t2が仕上げられる。   By this second stage grinding, the two tapered surfaces t2, t3 are ground simultaneously, and the tapered surfaces t2, t3 of the tapered surfaces t2, t3 and the tapered surface t2 having the larger taper angle α2 are finished.

(v)2段目研削の完了後、ワークプッシャ25が所定量だけ送り方向Yと逆方向に後退される(図5(d)参照)。これにより、ワークWは、自己の推力によりワークプッシャ25の後退動作に追随して送り方向Yと逆方向へ移動し、砥石車1の砥石面1aのテーパ研削部10に対する軸方向位置がさらに変更される。 (V) After completion of the second stage grinding, the work pusher 25 is retracted by a predetermined amount in the direction opposite to the feed direction Y (see FIG. 5D). As a result, the workpiece W follows the retraction operation of the workpiece pusher 25 by its own thrust and moves in the direction opposite to the feed direction Y, and the axial position of the grinding wheel surface 1a of the grinding wheel 1 relative to the taper grinding portion 10 is further changed. Is done.

換言すれば、この動作により、砥石車1がワークWに対してさらに軸方向先端側へ、つまり2つのテーパ面t2、t3のうち、大きなテーパ角度α2を有するテーパ面t2の位置する側へ所定量だけ相対的に移動することになる。   In other words, by this operation, the grinding wheel 1 further moves toward the tip end side in the axial direction with respect to the workpiece W, that is, to the side where the taper surface t2 having the large taper angle α2 is located between the two taper surfaces t2 and t3. It moves relative to the fixed amount.

この配置構成において、ワークプッシャ25が送り方向Yへの送り動作を停止待機した状態で、砥石車1がワークWに接触する直前まで切込み方向Xへ早送りされる。   In this arrangement configuration, the workpiece pusher 25 is fast-forwarded in the cutting direction X until the grinding wheel 1 comes into contact with the workpiece W in a state where the workpiece pusher 25 stops and waits for the feeding operation in the feeding direction Y.

(vi)砥石車1がワークWに接触直前まで早送りされた後、砥石車1とワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、一番小さなテーパ角度α3を有するテーパ面t3が3段目研削され(図5(e)参照)、その後スパークアウトして3段目研削が完了する。 (Vi) After the grinding wheel 1 has been fast-forwarded until just before contact with the workpiece W, the grinding wheel 1 and the work pusher 25 are simultaneously (synchronously) fed by a predetermined amount in the cutting direction X and the feeding direction Y. 1 is cut relative to the workpiece W by a predetermined cutting amount, and the taper surface t3 having the smallest taper angle α3 is ground at the third stage (see FIG. 5E), and then sparked out. This completes the third stage grinding.

以上の(i)〜(vi)の工程により、3つテーパ面t1、t2、t3の幅寸法(ワークWの軸方向寸法)が決まる。   Through the above steps (i) to (vi), the width dimension (the axial dimension of the workpiece W) of the three tapered surfaces t1, t2, and t3 is determined.

(vii)スパークアウト後、砥石車1とワークプッシャ25が研削前位置まで後退復帰して研削工程が完了する。 (Vii) After the spark-out, the grinding wheel 1 and the work pusher 25 are moved back to the pre-grinding position to complete the grinding process.

なお、3つの連続するテーパ面t1、t2、t3の研削順序は、図示の実施形態のようにテーパ角度の最も大きなテーパ面t1から小さなテーパ面t3に向けて順次仕上げるようにしているが、これと逆に、テーパ角度の最も小さなテーパ面t3から大きなテーパ面t1に向けて順次仕上げるようにしても良い。
その他の構成および作用は実施形態1と同様である。
Note that the grinding sequence of the three continuous tapered surfaces t1, t2, and t3 is sequentially finished from the tapered surface t1 having the largest taper angle toward the smaller tapered surface t3 as in the illustrated embodiment. On the contrary, the taper surface t3 having the smallest taper angle may be sequentially finished from the taper surface t1 toward the large taper surface t1.
Other configurations and operations are the same as those of the first embodiment.

実施形態3
本実施形態は図6に示されており、図8(a)に示す鍔付き棒状のワ−クWにおいて、鍔部Wbの角部Tを、実施形態2と同様、図8(c)に示すような角立った2つの境界エッジ部e1、e2を有する3つの連続するテーパ面、より具体的には図示のごとく外径側へ膨出状に連続する3つのt1、t2、t3(テーパ角度:α1>α2>α3)にセンタレス研削する構成とされたものである。
Embodiment 3
This embodiment is shown in FIG. 6. In the rod-like work W with a hook shown in FIG. 8A, the corner T of the hook Wb is shown in FIG. Three continuous tapered surfaces having two boundary edge portions e1 and e2 that are angular as shown, more specifically, three t1, t2, and t3 (tapered) that continue to bulge outward as shown in the figure. The angle is α1>α2> α3) and the centerless grinding is performed.

なお、ワークWの上記鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面が、前工程において予め仕上げ加工されており、この軸部本体Waの大径軸部Wcを加工基準として3つの連続するテーパ面t1、t2、t3を研削加工する構成とされている点は実施形態2と同様である。   In addition, the cylindrical outer peripheral surface of the flange portion Wb of the workpiece W and the large-diameter shaft portion Wc of the shaft portion main body Wa is previously finished in the previous step, and the large-diameter shaft portion Wc of the shaft portion main body Wa is processed as a processing standard. As in the second embodiment, the configuration is such that three continuous tapered surfaces t1, t2, and t3 are ground.

また、本実施形態のセンタレス研削装置の構成は、砥石車1を除いて、実施形態1のものと同様の構成とされている。   Further, the configuration of the centerless grinding apparatus of the present embodiment is the same as that of the first embodiment except for the grinding wheel 1.

砥石車1の砥石面1aは、ワークWの鍔部Wbの角部Tの外周面に対応したプロフィールを備え、特に砥石面1aにおけるテーパ研削部10は、図示されるように、ワークWの3つのテーパ面t1、t2、t3の最終仕上げ形状に対応したプロフィールを備える形状寸法とされるとともに、このテーパ研削部10に隣接して、テーパ仕上研削部11が形成され、このテーパ仕上研削部11は、上記3つのテーパ面t1、t2、t3のうちの中間部位に位置するテーパ面t2の最終仕上げ形状に対応したプロフィールを備える形状寸法とされている。   The grinding wheel surface 1a of the grinding wheel 1 is provided with a profile corresponding to the outer peripheral surface of the corner portion T of the flange portion Wb of the workpiece W. In particular, the tapered grinding portion 10 on the grinding wheel surface 1a is 3 of the workpiece W as shown in the figure. The taper finish grinding portion 11 is formed adjacent to the taper grinding portion 10 and has a profile having a profile corresponding to the final finished shape of the two taper surfaces t1, t2, and t3. Is a shape dimension including a profile corresponding to the final finished shape of the tapered surface t2 located at the intermediate portion of the three tapered surfaces t1, t2, and t3.

しかして、以上のように構成されたセンタレス研削装置において、ワークWの連続する複数(図示の場合は3つ)のテーパ面t1、t2、t3を、その交差部である境界エッジ部e1、e2を含めてセンタレス研削するには、支持回転されるワークWに対して、高速回転する砥石車1を相対的に切込み送りして、その砥石面1aにおけるテーパ研削部10により上記3つのテーパ面t1、t2、t3のすべてが同時に研削加工された後、砥石車1をワークWに対して軸方向に所定量だけ相対的に移動させて、砥石車1をさらに相対的に切込み送りして、未使用の砥石面であるテーパ仕上研削部11で上記3つのテーパ面t1、t2、t3のうちの中間部位に位置するテーパ面t2を研削加工する。   Thus, in the centerless grinding apparatus configured as described above, a plurality of (three in the illustrated case) tapered surfaces t1, t2, and t3 of the workpiece W are connected to boundary edge portions e1 and e2 that are intersections thereof. Centerless grinding, the grinding wheel 1 that rotates at a high speed is relatively cut and fed to the workpiece W that is supported and rotated, and the three tapered surfaces t1 are formed by the taper grinding portion 10 on the grinding wheel surface 1a. , T2, and t3 are simultaneously ground, and then the grinding wheel 1 is moved relative to the workpiece W in the axial direction by a predetermined amount, and the grinding wheel 1 is further cut and fed. The taper finish grinding part 11 which is a used grindstone surface grinds the taper surface t2 located at the intermediate portion of the three taper surfaces t1, t2, and t3.

上記研削加工工程の具体的構成を、図6(a)〜(d)を参照して以下に説明する。   A specific configuration of the grinding process will be described below with reference to FIGS.

(i)ワークWがブレード4と第1および第2の調整車2、3により支持されるとともに、砥石車1がワークWの2つのテーパ面t1、t2、t3の初期研削(1段目研削)の切込み位置に配置された状態で、砥石車1および調整車2、3がそれぞれ所定の回転速度をもって所定の方向へ回転駆動されるとともに、送り装置6のワークプッシャ25の送り方向Yへの前進により、棒状のワークWがブレード4の傾斜支持面4a(図2参照)上に沿って所定の研削位置まで移動して位置決めされる。この位置決め状態で、押圧装置5の押えローラ20がワークWの大径軸部Wcを所定の弾発付勢力をもって第1の調整車2に対して押し付ける結果、ワークWは、第1の調整車2の回転力により強制回転される。 (I) The workpiece W is supported by the blade 4 and the first and second adjusting wheels 2 and 3, and the grinding wheel 1 is initially ground on the two tapered surfaces t1, t2, and t3 of the workpiece W (first-stage grinding). ), The grinding wheel 1 and the adjustment wheels 2 and 3 are respectively rotated in a predetermined direction at a predetermined rotational speed, and the work pusher 25 of the feeding device 6 is moved in the feeding direction Y. By moving forward, the rod-shaped workpiece W is moved and positioned along the inclined support surface 4a (see FIG. 2) of the blade 4 to a predetermined grinding position. In this positioning state, as a result of the pressing roller 20 of the pressing device 5 pressing the large-diameter shaft portion Wc of the workpiece W against the first adjustment wheel 2 with a predetermined elastic urging force, the workpiece W becomes the first adjustment wheel. It is forcibly rotated by the rotational force of 2.

(ii)砥石車1がワークWに接触する直前まで切込み方向Xへ早送りされた後、砥石車1と送り装置6のワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、実施形態2と同様に、砥石車1の砥石面1aにおけるテーパ研削部10によりワークWの3つのテーパ面t1、t2、t3のすべてが境界エッジ部e1、e2を含めて同時に研削され(図6(b)参照)、その後スパークアウトして1段目研削が完了する。 (Ii) After the grinding wheel 1 is rapidly fed in the cutting direction X until just before the grinding wheel 1 comes into contact with the workpiece W, the grinding wheel 1 and the work pusher 25 of the feeding device 6 are placed in the cutting direction X and the feeding direction Y simultaneously (synchronously). By feeding only a fixed amount, the grinding wheel 1 is cut relative to the workpiece W by a predetermined cutting amount, and the workpiece is made by the taper grinding portion 10 on the grinding wheel surface 1a of the grinding wheel 1 as in the second embodiment. All of the three tapered surfaces t1, t2, and t3 of W are ground at the same time including the boundary edge portions e1 and e2 (see FIG. 6B), and then sparked out to complete the first stage grinding.

この1段目研削により、3つのテーパ面t1、t2、t3のすべてが同時に研削されるとともに、テーパ面t1、t2、t3のテーパ角度α1、α2,α3と、最大のテーパ角度α1を有するテーパ面t1と最小のテーパ角度α3を有するテーパ面t3が同時に仕上げられる。   By this first stage grinding, all of the three taper surfaces t1, t2, t3 are ground simultaneously, and the taper angles α1, α2, α3 of the taper surfaces t1, t2, t3 and the taper having the maximum taper angle α1. The surface t1 and the tapered surface t3 having the minimum taper angle α3 are finished at the same time.

(iii)1段目研削の完了後、ワークプッシャ25が所定量だけ送り方向Yと逆方向に後退される。これにより、ワークWは、自己の推力によりワークプッシャ25の後退動作に追随して送り方向Yと逆方向へ移動し、砥石車1の砥石面1aに対する軸方向位置が変更される。また、このワークWの軸方向への移動と同時に、砥石車1も切込み方向Xと逆方向へ移動(後退)する。 (Iii) After completion of the first stage grinding, the work pusher 25 is retracted in the direction opposite to the feed direction Y by a predetermined amount. As a result, the workpiece W moves in the direction opposite to the feed direction Y following the backward movement of the workpiece pusher 25 by its own thrust, and the axial position of the grinding wheel 1 relative to the grinding wheel surface 1a is changed. Simultaneously with the movement of the workpiece W in the axial direction, the grinding wheel 1 also moves (retreats) in the direction opposite to the cutting direction X.

具体的には、これらワークWの送り方向Yと逆方向への移動および砥石車1の切込み方向Xと逆方向へ移動により、ワークWの3つのテーパ面t1、t2、t3のうちの中間部位に位置するテーパ面t2が砥石車1の砥石面1aにおける未使用の砥石面であるテーパ仕上研削部11に対向配置され(図6(c)参照)、これにより、上記砥石車1のテーパ仕上研削部11によるワークWのテーパ面t2の研削位置が決定される。   Specifically, an intermediate portion of the three tapered surfaces t1, t2, and t3 of the workpiece W by moving the workpiece W in the direction opposite to the feed direction Y and moving in the direction opposite to the cutting direction X of the grinding wheel 1. The taper surface t2 located at the position is opposed to the taper finish grinding portion 11 which is an unused grindstone surface on the grindstone surface 1a of the grinding wheel 1 (see FIG. 6 (c)). The grinding position of the taper surface t2 of the workpiece W by the grinding part 11 is determined.

(iv)砥石車1がワークWに接触直前まで早送りされた後、砥石車1とワークプッシャ25が同時に(同期して)切込み方向Xおよび送り方向Yへ所定量だけ送り込まれることにより、砥石車1がワークWに対して所定の切込み量だけ相対的に切込まれて、中間部位に位置するテーパ面t2が2段目研削され(図6(d)参照)、その後スパークアウトして2段目研削が完了する。 (Iv) After the grinding wheel 1 is rapidly fed until just before contacting the workpiece W, the grinding wheel 1 and the work pusher 25 are simultaneously (synchronously) fed by a predetermined amount in the cutting direction X and the feeding direction Y. 1 is cut relative to the workpiece W by a predetermined cutting amount, and the taper surface t2 located at the intermediate portion is ground in the second stage (see FIG. 6 (d)), and then sparked out to the second stage. Eye grinding is completed.

以上の(i)〜(iv)の工程により、3つテーパ面t1、t2の幅寸法(ワークWの軸方向寸法)が決まる。このとき、図示の実施形態においては、砥石車1の砥石面1aにおける未使用の砥石面であるテーパ仕上研削部11で上記2段目研削を行うように動作制御されて、テーパ角度α1、α2、α3の精度が向上したり、3つのテーパ面t1、t2、t3の境界エッジ部e1、e2がR形状になる等の問題が確実に解消防止される。   Through the above steps (i) to (iv), the width dimension of the three tapered surfaces t1 and t2 (the axial dimension of the workpiece W) is determined. At this time, in the illustrated embodiment, the operation is controlled such that the taper finish grinding portion 11 which is an unused grindstone surface on the grindstone surface 1a of the grinding wheel 1 performs the second stage grinding, and the taper angles α1, α2 are controlled. , Α3 accuracy is improved, and problems such as the boundary edges e1 and e2 of the three tapered surfaces t1, t2, and t3 having an R shape are surely solved and prevented.

また、本実施形態によれば、2回の砥石車1の切込みにより3つのテーパ面t1、t2、t3が仕上げられる。
その他の構成および作用は実施形態1と同様である。
Moreover, according to this embodiment, the three taper surfaces t1, t2, and t3 are finished by the cutting of the grinding wheel 1 twice.
Other configurations and operations are the same as those of the first embodiment.

実施形態4
本実施形態は図7に示されており、実施形態1のセンタレス研削装置の構成に加えて、図8(a)に示す鍔付き棒状のワ−クWについて、前工程において予め仕上げ加工されていた鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面を仕上研削加工する構成も兼備してなるものである。
Embodiment 4
This embodiment is shown in FIG. 7, and in addition to the configuration of the centerless grinding apparatus of the first embodiment, the rod-shaped workpiece W with a hook shown in FIG. In addition, the cylindrical outer peripheral surface of the flange portion Wb and the large-diameter shaft portion Wc of the shaft portion main body Wa is also combined.

すなわち、本実施形態のセンタレス研削装置は、実施形態1の研削装置の構成部つまりワークWのテーパ面t1、t2をセンタレス研削するテーパ面研削領域A(砥石車1、第1の調整車2、第2の調整車3、ブレード4、押圧装置(押圧手段)5、送り装置(送り手段)6を備える。)に隣接して、ワークWの鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面をセンタレス研削する円筒面研削領域Bを備えてなる。   That is, the centerless grinding apparatus of the present embodiment is a tapered surface grinding area A (grinding wheel 1, first adjustment wheel 2, first centering grinding of the taper surfaces t1, t2 of the workpiece W, that is, the components of the grinding apparatus of the first embodiment. Adjacent to the second adjustment wheel 3, the blade 4, the pressing device (pressing means) 5, and the feeding device (feeding means) 6)), the flange portion Wb of the workpiece W and the large-diameter shaft portion of the shaft body Wa. A cylindrical surface grinding region B for centerless grinding of the cylindrical outer peripheral surface of Wc is provided.

この円筒面研削領域Bは、砥石車50、調整車51、ブレード52、前後ストッパ53、54を主要部として備えてなり、テーパ面研削領域Aと同様に、制御装置7により駆動制御される構成とされている。   The cylindrical surface grinding region B includes a grinding wheel 50, an adjustment wheel 51, a blade 52, and front and rear stoppers 53 and 54 as main parts, and is configured to be driven and controlled by the control device 7 in the same manner as the tapered surface grinding region A. It is said that.

砥石車50は、ワークWにおける軸部本体Waの大径軸部Wcと鍔部Wbの外周面を研削加工するもので、その外周の砥石面50aがワークWの大径軸部Wcと鍔部Wbの外周面に対応したプロフィールを備えるとともに、その駆動系は前述したテーパ面研削領域Aの砥石車1の駆動系と同様、従来公知の一般的基本構造を備えている。   The grinding wheel 50 grinds the outer peripheral surface of the large-diameter shaft portion Wc and the flange portion Wb of the shaft main body Wa in the workpiece W, and the outer peripheral grinding wheel surface 50a is the large-diameter shaft portion Wc and the flange portion of the workpiece W. A profile corresponding to the outer peripheral surface of Wb is provided, and the drive system thereof has a conventionally known general basic structure, like the drive system of the grinding wheel 1 in the tapered surface grinding region A described above.

調整車51は、ワークWの研削対象である軸部本体Waの大径軸部Wcと鍔部Wbの外周面を支持回転するもので、これらの外周面に対応した円筒面からなる回転支持面51a、51bを備えるとともに、その駆動系は前述したテーパ面研削領域Aの調整車2、3の駆動系と同様、従来公知の一般的基本構造を備えている。   The adjustment wheel 51 supports and rotates the outer peripheral surfaces of the large-diameter shaft portion Wc and the flange portion Wb of the shaft portion main body Wa that is the object to be ground of the workpiece W, and is a rotation support surface composed of a cylindrical surface corresponding to these outer peripheral surfaces. 51a and 51b, and its drive system has a conventionally known general basic structure, like the drive system of the adjusting wheels 2 and 3 in the tapered surface grinding region A described above.

また、調整車51の配置構成は、ワークWの回転支持により、このワークWに生じる推力が、図7(a)の矢符方向(送り装置6によるワークWの送り方向Yに対して逆方向)となるように設定されている。   Further, the arrangement configuration of the adjusting wheel 51 is such that the thrust generated on the workpiece W is supported by the rotation support of the workpiece W in the direction indicated by the arrow in FIG. ).

ブレード52は、調整車51と共にワークWの軸部本体Waの大径軸部Wcと鍔部Wbを支持するもので、これらを下方から支持する傾斜支持面(図示省略)を備えている。   The blade 52 supports the large-diameter shaft portion Wc and the flange portion Wb of the shaft portion main body Wa of the work W together with the adjustment wheel 51, and includes an inclined support surface (not shown) for supporting these from below.

前後ストッパ53、54は、ワークWを軸方向位置を規制するもので、研削加工時には、ワークWは自己の推力により後ストッパ54に当接して、その軸方向位置を規制される。   The front and rear stoppers 53 and 54 regulate the position of the workpiece W in the axial direction. During grinding, the workpiece W comes into contact with the rear stopper 54 by its own thrust, and its axial position is regulated.

そして、ワークWの軸部本体Waの大径軸部Wcと鍔部Wbの外周面がブレード4と回転駆動される調整車51により強制支持回転された状態において、高速回転する砥石車50がワークWに対して所定量だけ切込み送りされて、ワークWの軸部本体Waの大径軸部Wcと鍔部Wbの外周面を研削加工する。   Then, in the state where the outer peripheral surfaces of the large-diameter shaft portion Wc and the flange portion Wb of the shaft portion main body Wa of the workpiece W are forcibly supported and rotated by the adjusting wheel 51 that is driven to rotate by the blade 4, the grinding wheel 50 that rotates at high speed is A predetermined amount is cut and fed with respect to W, and the outer peripheral surfaces of the large-diameter shaft portion Wc and the flange portion Wb of the shaft portion main body Wa of the workpiece W are ground.

しかして、以上のように構成されたセンタレス研削装置においては、テーパ面研削領域Aにより、実施形態1で説明したワークWの連続した2つのテーパ面t1、t2を、図8(b)に示すような角立った境界エッジ部eを有するテーパ面t1、t2にセンタレス研削するとともに、円筒面研削領域Bにより、上記テーパ面t1、t2の研削加工基準となるワークWの鍔部Wbおよび軸部本体Waの大径軸部Wc、Wdの円筒外周面を研削することができ、一台の研削装置でワークWの外径部(鍔部Wbおよび軸部本体Waの大径軸部Wcの円筒外周面)とテーパ面t1、t2を研削することができる。   Thus, in the centerless grinding apparatus configured as described above, two continuous tapered surfaces t1 and t2 of the workpiece W described in the first embodiment are shown in FIG. Centerless grinding is performed on the tapered surfaces t1 and t2 having such a sharp boundary edge portion e, and the flange portion Wb and the shaft portion of the workpiece W serving as a grinding processing reference for the tapered surfaces t1 and t2 by the cylindrical surface grinding region B. The cylindrical outer peripheral surfaces of the large-diameter shaft portions Wc and Wd of the main body Wa can be ground, and the outer diameter portion of the workpiece W (the cylindrical portion of the flange portion Wb and the large-diameter shaft portion Wc of the shaft portion main body Wa can be obtained with a single grinding apparatus. The outer peripheral surface) and the tapered surfaces t1, t2 can be ground.

具体的には、図7を参照して、図7(a)がテーパ面t1、t2の研削加工、図7(b)がワークWの上記外径部Wb、Wcの研削加工、および図7(c)がワークWの外径部Wb、Wcとテーパ面t1、t2の並行する研削加工をそれぞれ示しており、図示のようにワークWを2個並べて、制御装置7により、図7(a)〜(c)の順序で研削工程を実行することで、ワークWの外径部Wb、Wcとテーパ面t1、t2を1台の研削装置で研削することができ、実施形態1に比較してさらなる研削装置の使用台数の削減ができる。
その他の構成および作用は実施形態1と同様である。
Specifically, referring to FIG. 7, FIG. 7 (a) is a grinding process for tapered surfaces t1 and t2, FIG. 7 (b) is a grinding process for the outer diameter portions Wb and Wc of the workpiece W, and FIG. (C) shows the parallel grinding of the outer diameter portions Wb and Wc of the workpiece W and the tapered surfaces t1 and t2, respectively. Two workpieces W are arranged side by side as shown in FIG. ) To (c), the outer diameter portions Wb and Wc of the workpiece W and the tapered surfaces t1 and t2 can be ground by a single grinding apparatus, compared with the first embodiment. The number of grinding machines used can be further reduced.
Other configurations and operations are the same as those of the first embodiment.

なお、上述した実施形態1〜4はあくまでも本発明の好適な実施態様を示すものであって、本発明はこれに限定されることなく、その範囲において種々の設計変更が可能である。 In addition, Embodiment 1-4 mentioned above shows the suitable embodiment of this invention to the last, This invention is not limited to this, A various design change is possible in the range.

例えば、実施形態1〜4においては、図8(a)に示す鍔付き棒状のワ−クWにおいて、鍔部Wbの角部Tを図8(b)および図8(c)に示すような角立った2つまたは3つの連続するテーパ面t1、t2またはt1、t2、t3にセンタレス研削する場合について説明したが、本発明のセンタレス研削技術は、このような鍔部Wbの内側部位のテーパ面の他、軸本体Waや鍔部Wbの外側部位、軸部本体Waの大径軸部Wcの端部など、他の部位における連続するテーパ面についても適用可能である。   For example, in the first to fourth embodiments, in the rod-like work W with the hook shown in FIG. 8A, the corner portion T of the hook Wb is as shown in FIGS. 8B and 8C. Although the centerless grinding has been described on two or three continuous tapered surfaces t1, t2 or t1, t2, t3, the centerless grinding technique of the present invention has such a taper at the inner portion of the flange Wb. In addition to the surface, the present invention can also be applied to continuous tapered surfaces in other parts such as the outer part of the shaft main body Wa and the flange part Wb and the end of the large-diameter shaft part Wc of the shaft main part Wa.

また、本発明は、実施形態1、4の連続する2つのテーパ面t1、t2の研削、あるいは実施形態2、3の連続する3つのテーパ面t1、t2、t3の研削の他、4つ以上の連続するテーパ面についても、これらテーパ面に対応するプロフィールを有する砥石車を用いて、実施形態1〜4と同様の考え方で研削可能である。   In addition to the grinding of the two continuous tapered surfaces t1 and t2 of the first and fourth embodiments or the grinding of the three consecutive tapered surfaces t1, t2 and t3 of the second and third embodiments, the present invention is applicable to four or more. The continuous tapered surfaces can be ground in the same way as in the first to fourth embodiments using a grinding wheel having a profile corresponding to these tapered surfaces.

つまり、具体的に図示しないが、連続する複数(4つ以上)のテーパ面を有するワークにおいて、隣接するテーパ面の交差部である境界エッジ部をセンタレス研削するに際しては、支持回転されるワークに対して、このワークの複数のテーパ面に対応したプロフィールを有し、高速回転する砥石車1を相対的に切込み送りして、上記複数のテーパ面のすべてを同時に研削加工した後、上記記砥石車1を上記ワークに対して軸方向に所定量だけ相対的に移動させて、上記砥石車1をさらに相対的に切込み送りする動作を順次繰り返すことにより、上記複数のテーパ面のうち第2番目以降のテーパ面を順次研削加工することで、4つ以上の連続するテーパ面を研削することができる。   That is, although not specifically illustrated, when a center edge grinding is performed on a boundary edge portion that is an intersection of adjacent tapered surfaces in a workpiece having a plurality of continuous (four or more) tapered surfaces, the workpiece is supported and rotated. On the other hand, after the grinding wheel 1 having a profile corresponding to a plurality of tapered surfaces of the workpiece and rotating at a high speed is relatively cut and fed, and all the plurality of tapered surfaces are simultaneously ground, By sequentially moving the wheel 1 relative to the workpiece by a predetermined amount in the axial direction and further sequentially cutting and feeding the grinding wheel 1, a second one of the plurality of tapered surfaces is obtained. By sequentially grinding the subsequent tapered surfaces, four or more continuous tapered surfaces can be ground.

W ワ−ク(工作物)
Wa ワ−クの軸部本体
Wb ワークの鍔部
Wc 軸部本体の大径軸部
T 角部
t1、t2 テーパ面
e 境界エッジ部
Y 送り方向
X 切込み方向
A テーパ面研削領域
B 円筒面研削領域
1 砥石車
1a 砥石面
2 第1の調整車
3 第2の調整車
4 ブレード
5 押圧装置(押圧手段)
6 送り装置(送り手段)
7 制御装置(制御手段)
10 砥石面のテーパ研削部
11 砥石面のテーパ仕上研削部
20 押えローラ
25 ワークプッシャ
50 砥石車
51 調整車
52 ブレード
53、54 ストッパ
W work (work)
Wa Work shaft body Wb Workpiece flange Wc Shaft body large-diameter shaft T Corners t1, t2 Tapered surface e Boundary edge Y Feed direction X Cutting direction A Tapered surface grinding region B Cylindrical surface grinding region DESCRIPTION OF SYMBOLS 1 Grinding wheel 1a Grinding wheel surface 2 1st adjustment wheel 3 2nd adjustment wheel 4 Blade 5 Pressing device (pressing means)
6 Feeding device (feeding means)
7 Control device (control means)
DESCRIPTION OF SYMBOLS 10 Grinding surface taper grinding part 11 Grinding surface taper finishing grinding part 20 Presser roller 25 Work pusher 50 Grinding wheel 51 Adjustment wheel 52 Blade 53, 54 Stopper

Claims (9)

連続する複数のテーパ面を有する工作物において、隣接するテーパ面の交差部である境界エッジ部をセンタレス研削する方法であって、
支持回転される工作物に対して、前記工作物の複数のテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、前記複数のテーパ面のすべてを同時に研削加工した後、前記砥石車を工作物に対して軸方向に所定量だけ相対的に移動させて、前記砥石車をさらに相対的に切込み送りする動作を順次繰り返すことにより、前記複数のテーパ面のうち第2番目以降のテーパ面を研削加工する
ことを特徴とするテーパ面エッジ部のセンタレス研削方法。
In a workpiece having a plurality of continuous tapered surfaces, a method of centerless grinding a boundary edge portion that is an intersection of adjacent tapered surfaces,
A workpiece having a profile corresponding to a plurality of tapered surfaces of the workpiece is relatively cut and fed to the workpiece to be supported and rotated, so that all of the plurality of tapered surfaces are ground simultaneously. After the machining, the grinding wheel is moved relative to the workpiece by a predetermined amount in the axial direction, and the operation of sequentially cutting and feeding the grinding wheel is further sequentially repeated. The centerless grinding method of the taper surface edge part characterized by grinding the 2nd taper surface after that.
連続する2つのテーパ面を有する工作物において、両テーパ面の交差部である境界エッジ部をセンタレス研削する方法であって、
支持回転される工作物に対して、前記工作物の2つのテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、前記2つのテーパ面を同時に研削加工した後、前記砥石車を工作物に対して軸方向に所定量だけ相対的に移動させて、前記砥石車をさらに相対的に切込み送りして、未使用の砥石面で一方のテーパ面を研削加工する
ことを特徴とする請求項1に記載のテーパ面エッジ部のセンタレス研削方法。
In a workpiece having two continuous tapered surfaces, a method of centerless grinding a boundary edge portion that is an intersection of both tapered surfaces,
A grinding wheel that has a profile corresponding to two tapered surfaces of the workpiece and that rotates at a high speed is relatively cut and fed to the workpiece to be supported and rotated, and the two tapered surfaces are simultaneously ground. Then, the grinding wheel is moved relative to the workpiece by a predetermined amount in the axial direction, and the grinding wheel is further cut and fed relatively to grind one taper surface with an unused grinding wheel surface. The centerless grinding method of the taper surface edge part of Claim 1 characterized by the above-mentioned.
連続する3つのテーパ面を有する工作物において、隣接するテーパ面の交差部である2つの境界エッジ部をセンタレス研削する方法であって、
支持回転される工作物に対して、前記工作物の3つのテーパ面に対応したプロフィールを有し、高速回転する砥石車を相対的に切込み送りして、前記3つテーパ面のすべてを同時に研削加工した後、前記砥石車を工作物に対して軸方向に所定量だけ相対的に移動させて、前記砥石車をさらに相対的に切込み送りして、未使用の砥石面で前記3つのテーパ面のうちの中間部位に位置するテーパ面を研削加工する
ことを特徴とする請求項1に記載のテーパ面エッジ部のセンタレス研削方法。
In a workpiece having three consecutive tapered surfaces, a method of centerless grinding two boundary edge portions that are intersections of adjacent tapered surfaces,
A workpiece having a profile corresponding to the three tapered surfaces of the workpiece is rotated relative to the workpiece to be rotated, and a grinding wheel rotating at a high speed is relatively cut and fed to grind all three tapered surfaces simultaneously. After the machining, the grinding wheel is moved relative to the workpiece by a predetermined amount in the axial direction, and the grinding wheel is further cut and fed relatively, and the three tapered surfaces are used by an unused grinding wheel surface. The centerless grinding method of the taper surface edge part of Claim 1 which grinds the taper surface located in the intermediate | middle part of these.
前記工作物は、軸部本体の一端部に大径の鍔部が同軸状に設けられてなる鍔付き棒状の工作物の形態とされ、
前記鍔部の角部が、前記連続する複数のテーパ面により形成されている
ことを特徴とする請求項1から3のいずれか一つに記載のテーパ面エッジ部のセンタレス研削方法。
The workpiece is in the form of a rod-shaped workpiece with a hook in which a large-diameter flange is provided coaxially at one end of the shaft body.
The centerless grinding method of the taper surface edge part as described in any one of Claim 1 to 3 with which the corner | angular part of the said collar part is formed of the said some continuous taper surface.
前記工作物の支持回転は、予め仕上研削した前記工作物の軸部本体をブレードと調整車で支持するとともに、押圧手段により前記軸部本体を押し付け支持することにより行う
ことを特徴とする請求項4に記載のテーパ面エッジ部のセンタレス研削方法。
The support rotation of the workpiece is performed by supporting a shaft main body of the workpiece, which has been previously ground, by a blade and an adjustment wheel, and pressing and supporting the shaft main body by pressing means. 4. A centerless grinding method for an edge portion of the tapered surface according to 4.
前記工作物の軸方向制御は、前記調整車と押圧手段による支持回転により工作物に生じる推力に抗して、工作物を軸方向へ送り込む送り手段の送り動作により行う
ことを特徴とする請求項4に記載のテーパ面エッジ部のセンタレス研削方法。
The axial direction control of the workpiece is performed by a feeding operation of a feeding unit that feeds the workpiece in an axial direction against a thrust generated in the workpiece by a support rotation by the adjusting wheel and the pressing unit. 4. A centerless grinding method for an edge portion of the tapered surface according to 4.
連続する複数のテーパ面を有する工作物において、隣接するテーパ面の交差部である境界エッジ部をセンタレス研削するセンタレス研削装置であって、
工作物の軸部本体を支持するブレードと、
回転駆動されて、工作物の軸部本体を支持回転する第1の調整車と、
回転駆動されて、工作物のテーパ面隣接位置を支持回転する第2の調整車と、
前記ブレードおよび第1の調整車に対して工作物を押し付け支持する押圧手段と、
回転駆動されて、前記調整車により支持回転される工作物のテーパ面を研削する砥石車と、
前記調整車およびブレードにより回転支持される工作物を、前記砥石車に対して軸方向へ相対的に送る送り手段と、
前記調整車、押圧手段、砥石車および送り手段を相互に連動して制御する制御手段とを備えてなり、
前記制御手段により、前記調整車、押圧手段、砥石車および送り手段が相互に連動して制御されて、請求項1から6のいずれか一つに記載のセンタレス研削方法が実行される構成とされている
ことを特徴とするテーパ面エッジ部のセンタレス研削装置。
In a workpiece having a plurality of continuous tapered surfaces, a centerless grinding apparatus for centerless grinding a boundary edge portion which is an intersection of adjacent tapered surfaces,
A blade that supports the shaft body of the workpiece;
A first adjustment wheel that is driven to rotate and supports and rotates the shaft body of the workpiece;
A second adjustment wheel that is driven to rotate and supports and rotates the position adjacent to the tapered surface of the workpiece;
Pressing means for pressing and supporting the workpiece against the blade and the first adjustment wheel;
A grinding wheel that is driven to rotate and grinds a tapered surface of a workpiece supported and rotated by the adjusting wheel;
A feeding means for feeding the workpiece rotatably supported by the adjusting wheel and the blade relative to the grinding wheel in the axial direction;
A control means for controlling the adjusting wheel, the pressing means, the grinding wheel and the feeding means in conjunction with each other;
The centerless grinding method according to any one of claims 1 to 6 is configured such that the adjusting means, the pressing means, the grinding wheel, and the feeding means are controlled in conjunction with each other by the control means. A centerless grinding apparatus for taper edge portions.
前記押圧手段は、工作物の軸部本体の外周面に転接可能な押えローラと、この押えローラを工作物の軸部本体の外周面に対して所定の押圧力をもって押圧する加圧手段とを備えてなる
ことを特徴とする請求項7に記載のテーパ面エッジ部のセンタレス研削装置。
The pressing means includes a pressing roller capable of rolling contact with the outer peripheral surface of the workpiece shaft main body, and a pressing means for pressing the pressing roller against the outer peripheral surface of the workpiece shaft main body with a predetermined pressing force. The centerless grinding apparatus of the taper surface edge part of Claim 7 characterized by the above-mentioned.
前記送り手段は、工作物の後端面に当接可能なワークプッシャと、このワークプッシャを工作物の軸方向へ移動させる移動手段とを備えてなる
ことを特徴とする請求項7または8に記載のテーパ面エッジ部のセンタレス研削装置。
The said feeding means is provided with the work pusher which can be contact | abutted to the rear end surface of a workpiece, and the moving means which moves this work pusher to the axial direction of a workpiece, The Claim 7 or 8 characterized by the above-mentioned. Centerless grinding device for taper surface edge.
JP2013004117A 2013-01-11 2013-01-11 Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface Active JP6005529B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013004117A JP6005529B2 (en) 2013-01-11 2013-01-11 Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface
CN201410011502.4A CN103921182B (en) 2013-01-11 2014-01-10 Method and apparatus for centerless grinding conical surface edge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004117A JP6005529B2 (en) 2013-01-11 2013-01-11 Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface

Publications (3)

Publication Number Publication Date
JP2014133296A true JP2014133296A (en) 2014-07-24
JP2014133296A5 JP2014133296A5 (en) 2015-10-01
JP6005529B2 JP6005529B2 (en) 2016-10-12

Family

ID=51139702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004117A Active JP6005529B2 (en) 2013-01-11 2013-01-11 Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface

Country Status (2)

Country Link
JP (1) JP6005529B2 (en)
CN (1) CN103921182B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153813B (en) * 2018-02-10 2021-04-23 宁波祥福机械科技有限公司 Centerless grinding machine and grinding process applying same
US20200269379A1 (en) * 2019-02-22 2020-08-27 Borgwarner Inc. Centerless grinding through the application of a helical twist to axial grooves
CN115365928A (en) * 2022-08-23 2022-11-22 北京航空航天大学宁波创新研究院 Grinding method and grinding machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253819A (en) * 1992-03-05 1993-10-05 Micron Seimitsu Kk Centerless grinding method of work with step
JP2001105287A (en) * 1999-08-27 2001-04-17 Schaudt Mikrosa Bwf Gmbh Method and device for grinding core-less angular plunge
JP2002137153A (en) * 2000-10-27 2002-05-14 Koyo Mach Ind Co Ltd Centerless grinding method and centerless grinding device for rod-form work
JP2003025194A (en) * 2001-07-17 2003-01-29 Koyo Mach Ind Co Ltd Centerless grinding method and centerless grinding device for rod work
JP2004202655A (en) * 2002-12-26 2004-07-22 Shigiya Machinery Works Ltd Work grinding method with centerless grinding machine, centerless grinding machine and upper side blade used therefor
JP2007190617A (en) * 2006-01-17 2007-08-02 Micron Seimitsu Kk Liquid cooling type in-process/centerless grinding method and apparatus therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0548957A1 (en) * 1991-12-26 1993-06-30 Micron Machinery Co., Ltd. Method of centerless grinding, and centerless grinding machine for stepped work
DE10139894B4 (en) * 2001-08-14 2009-09-10 Erwin Junker Maschinenfabrik Gmbh Method and device for centerless cylindrical grinding
JP2004050328A (en) * 2002-07-18 2004-02-19 Shigiya Machinery Works Ltd Process for grinding tubular work through grinder and centerless core grinder
JP4718298B2 (en) * 2005-10-24 2011-07-06 光洋機械工業株式会社 Centerless grinding method and centerless grinding apparatus for bar workpiece
JP2008137094A (en) * 2006-11-30 2008-06-19 Shigiya Machinery Works Ltd Grinding method for workpiece such as material for long drill
CN102773776A (en) * 2012-08-21 2012-11-14 宝钢发展有限公司 Bar centerless grinding technology and special knife board adjusting device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253819A (en) * 1992-03-05 1993-10-05 Micron Seimitsu Kk Centerless grinding method of work with step
JP2001105287A (en) * 1999-08-27 2001-04-17 Schaudt Mikrosa Bwf Gmbh Method and device for grinding core-less angular plunge
JP2002137153A (en) * 2000-10-27 2002-05-14 Koyo Mach Ind Co Ltd Centerless grinding method and centerless grinding device for rod-form work
JP2003025194A (en) * 2001-07-17 2003-01-29 Koyo Mach Ind Co Ltd Centerless grinding method and centerless grinding device for rod work
JP2004202655A (en) * 2002-12-26 2004-07-22 Shigiya Machinery Works Ltd Work grinding method with centerless grinding machine, centerless grinding machine and upper side blade used therefor
JP2007190617A (en) * 2006-01-17 2007-08-02 Micron Seimitsu Kk Liquid cooling type in-process/centerless grinding method and apparatus therefor

Also Published As

Publication number Publication date
JP6005529B2 (en) 2016-10-12
CN103921182A (en) 2014-07-16
CN103921182B (en) 2017-10-31

Similar Documents

Publication Publication Date Title
US9399279B2 (en) Double-side dresser
US5551908A (en) Centerless grinder and wheel truing device therefor
EP1839809B2 (en) Grinding method and grinding machine
JP6005529B2 (en) Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface
JP3984804B2 (en) Centerless grinding method and centerless grinding apparatus for bar workpiece
JP2006035387A (en) Method and apparatus for grinding cam with re-entrant surface
JP5383556B2 (en) Truing method for grinding wheel for gear grinding and gear grinding machine
US3534502A (en) Apparatus and method for grinding an external surface of revolution
US20160059381A1 (en) Grinding wheel truing method and grinding machine for carrying out truing method
US7021990B2 (en) Method and apparatus for circular grinding
JP2000263393A (en) Grinding device
JP2003103460A (en) Method and device for grinding workpiece surface into superfinished surface having oil retaining part
CN114161238A (en) Cylindrical grinding device and flat grinding device
JP5010421B2 (en) Centerless grinding method and centerless grinding apparatus for workpiece outer diameter surface and flat surface
JPH07266228A (en) Grinding wheel correcting device
JP2008149389A (en) Centerless grinding method and device
RU2570135C1 (en) Method of dressing of grinding wheel of centreless grinder
JP6135287B2 (en) Grinder
JPS62282852A (en) Grinding method
JP2000176834A (en) Correction method of grinding wheel, correction device and grinder furnished with it
US20220023994A1 (en) Dressing device and method for dressing a grinding tool
JP6135288B2 (en) Grinder
JP2015150670A (en) Grinder and grinding method
JP5262437B2 (en) Truing method and grinding method for grinding wheel
JPH03294163A (en) Curved surface working device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250