JP2014132860A - Micropump unit - Google Patents

Micropump unit Download PDF

Info

Publication number
JP2014132860A
JP2014132860A JP2013002828A JP2013002828A JP2014132860A JP 2014132860 A JP2014132860 A JP 2014132860A JP 2013002828 A JP2013002828 A JP 2013002828A JP 2013002828 A JP2013002828 A JP 2013002828A JP 2014132860 A JP2014132860 A JP 2014132860A
Authority
JP
Japan
Prior art keywords
path
cells
pump
electromagnets
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002828A
Other languages
Japanese (ja)
Other versions
JP5850436B2 (en
Inventor
Nagao Tamagawa
長雄 玉川
Takeshi Sato
剛士 佐藤
Tadao Nishimatsu
忠男 西松
Yoichi Sakurai
洋一 櫻井
Hiroaki Inoue
広昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquatech Ltd
Original Assignee
Aquatech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatech Ltd filed Critical Aquatech Ltd
Priority to JP2013002828A priority Critical patent/JP5850436B2/en
Publication of JP2014132860A publication Critical patent/JP2014132860A/en
Application granted granted Critical
Publication of JP5850436B2 publication Critical patent/JP5850436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)
  • Reciprocating Pumps (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small and inexpensive micropump unit capable of growing cells by circulating a trace amount of the cells and culture solution, and making troublesome work unnecessary for each cell culture.SOLUTION: A micropump unit 1 comprises a sheet-like member 2 in which a magnetic material is arranged, electromagnets for a pump 51-53 and electromagnets for a valve 54-59 facing the magnetic material. The electromagnets 51-59 are excited, the sheet-like member 2 is pressure-closed, a trace amount of cells and culture solution are delivered, and a circular path 23 of the sheet-like member 2 is replenished with the culture solution of a tank 27. Thus the cells and the culture solution can be circulated inside the circular path 23 to grow the cells. The micropump unit can be made small and inexpensive by grouping the electromagnets 51-59 and the sheet-like member 2 together in advance for use. Troublesome work can be made unnecessary by providing the whole micropump unit 1 in the disposable state.

Description

本発明は、生体の細胞を培養するために用いられるマイクロポンプユニットに関する。   The present invention relates to a micropump unit used for culturing living cells.

細胞培養において、細胞を生体内に近い環境下で効率的に培養するために、生体組織の形状を模倣したマイクロ流路(φ10分の1mm以下)と、このマイクロ流路内の極微量(100万分の1リットル以下)の流体を送出するためのマイクロポンプ等を備えたマイクロポンプユニットを用いることが知られている。マイクロポンプユニットは、マイクロポンプを駆動して培養液を1〜2週間脈流の少ない安定した状態でマイクロ流路内の細胞に連続して供給し、細胞を成長させる。なお、培養液と共に細胞の分泌物をいっしょに送出することにより細胞の成長をより促進させることが知られており、マイクロ流路は循環流路であることが好ましいとされている。   In cell culture, in order to efficiently cultivate cells in an environment close to the living body, a microchannel (φ 1/10 mm or less) that mimics the shape of a living tissue and a very small amount (100 It is known to use a micropump unit provided with a micropump or the like for delivering a fluid of 1 / 10,000 liter or less). The micropump unit drives the micropump to continuously supply the culture solution to the cells in the microchannel in a stable state with little pulsating flow for 1 to 2 weeks to grow the cells. In addition, it is known that cell growth is further promoted together with the culture solution to promote cell growth, and the microchannel is preferably a circulation channel.

この種のマイクロポンプユニットとして、ダイヤフラムポンプ、チューブポンプ、及びシリンジポンプ等が知られている。ダイヤフラムポンプは、ダイヤフラムの撓みを増減させ、ポンプ室の内容積が増減することで流体流入側のバルブから流体を流入させ、流体吐出側のバルブから流体を吐出する(例えば、特許文献1参照)。また、チューブポンプは、ハウジングの円孤状内壁面に沿って配置された弾力性を有するチューブを駆動機構によって駆動される回転体によって順次圧閉してチューブ内の流体を送出する(例えば、特許文献2参照)。また、シリンジポンプは、固定された注射器のピストンを駆動機構によって移動させることにより、一定流量でシリンジ内の流体を吐出する(例えば、特許文献3参照)。   As this type of micropump unit, a diaphragm pump, a tube pump, a syringe pump, and the like are known. The diaphragm pump increases or decreases the deflection of the diaphragm, and increases or decreases the internal volume of the pump chamber, thereby allowing fluid to flow in from the fluid inflow side valve and discharging fluid from the fluid discharge side valve (see, for example, Patent Document 1). . In addition, the tube pump sequentially closes the elastic tube disposed along the arcuate inner wall surface of the housing by a rotating body driven by a driving mechanism and sends out the fluid in the tube (for example, patent) Reference 2). Moreover, a syringe pump discharges the fluid in a syringe with a fixed flow volume by moving the piston of the fixed syringe by a drive mechanism (for example, refer patent document 3).

特開2003−193979号公報JP 2003-1993979 A 特開2012−087752号公報JP 2012-087752 A 特開1994−296690号公報JP-A-1994-296690

ところが、上述のようなダイヤフラムポンプやチューブポンプにおいては、極微量の細胞及び培養液を精度良く吐出することができるバルブやチューブを得ることが難しい。また、シリンジポンプにおいては、ピストンがシリンジの一端側から他端側へ移動するだけで往復運動しないので、細胞及び培養液を循環させることが難しい。また、これらのポンプは、ポンプ、バルブ、及びチューブ等の各種機材を組み合わせて使用するので、大型かつ高価となる。さらに、細胞培養においては、数多くの培養を迅速に行う必要があるので、細胞培養の度毎に各種機材を再使用するために消毒する煩雑な作業が障害となっていた。   However, in the diaphragm pump and the tube pump as described above, it is difficult to obtain a valve and a tube that can discharge a very small amount of cells and culture solution with high accuracy. Further, in the syringe pump, the piston moves only from one end side to the other end side of the syringe and does not reciprocate, so that it is difficult to circulate the cells and the culture solution. In addition, these pumps are used in combination with various equipment such as pumps, valves, and tubes, so that they are large and expensive. Furthermore, in cell culture, it is necessary to perform many cultures quickly, so that the complicated work of disinfecting various equipment every time cell culture is an obstacle.

本発明は、上記課題を解決するためになされたものであり、極微量の細胞及び培養液を循環させて細胞を育成することができると共に、小型かつ安価で細胞培養の度毎の煩雑な作業を必要としないマイクロポンプユニットを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and can cultivate cells by circulating a very small amount of cells and culture solution, and is compact and inexpensive, and complicated work for each cell culture. It is an object of the present invention to provide a micro pump unit that does not need to be used.

本発明のマイクロポンプユニットは、複数枚の可撓性を有するシートを重ねることにより、細胞及び培養液を循環させるための環状路と、前記環状路に細胞及び培養液を出入りさせるための流入路及び排出路と、前記環状路に連結されて培養液を貯蔵すると共に前記環状路に補液するための容積可変のタンクと、を形成するシート状部材と、前記シート状部材の表面に前記環状路、流入路及び排出路に沿って形成されて着磁された磁極を有する磁性材料と、前記環状路に対向するように配置されて前記磁性材料に磁場を与え、前記環状路内で細胞及び培養液を送出するための複数のポンプ用電磁石と、前記環状路、流入路及び排出路に対向するように配置されて前記磁性材料に磁場を与え、前記環状路、流入路及び排出路を開閉するための複数のバルブ用電磁石と、を備え、前記バルブ用電磁石及びポンプ用電磁石を励磁することにより、前記環状路及びタンクに培養液を満たし、さらには前記環状路に細胞を入れて循環させると共に、前記タンクに貯蔵された培養液を前記環状路に補液して細胞を育成することを特徴とする。   The micropump unit of the present invention includes an annular path for circulating cells and culture medium by stacking a plurality of flexible sheets, and an inflow path for allowing cells and culture medium to enter and exit the annular path. And a discharge member, a sheet-like member connected to the annular passage to store the culture medium and to replace the volume in the annular passage, and a sheet-like member on the surface of the sheet-like member. A magnetic material having a magnetic pole formed along the inflow path and the discharge path and magnetized; and disposed so as to face the annular path to give a magnetic field to the magnetic material, and cells and culture in the annular path A plurality of electromagnets for pumps for delivering liquid, and arranged so as to face the annular path, the inflow path and the discharge path, give a magnetic field to the magnetic material, and open and close the annular path, the inflow path and the discharge path Duplicate for The valve electromagnet, and exciting the valve electromagnet and pump electromagnet so that the culture medium is filled in the annular path and the tank, and cells are further circulated in the annular path, and the tank The culture solution stored in (1) is supplemented to the annular passage to grow cells.

このマイクロポンプユニットにおいて、前記環状路は、その一部区間を複数に分岐した並列路から形成され、各々の並列路に対向するように前記複数のポンプ用電磁石が配置され、前記複数の並列路の流体吐出動作及び休止動作がこれらの並列路間で交互に行われるように前記複数のポンプ用電磁石を励磁することにより、各並列路から細胞及び培養液が順次送出され、前記複数の並列路の合流点に流れる細胞及び培養液の脈流を低減することが好ましい。   In this micropump unit, the annular path is formed by a parallel path that branches into a plurality of partial sections, and the plurality of pump electromagnets are arranged to face each parallel path, and the plurality of parallel paths By exciting the plurality of pump electromagnets so that the fluid discharge operation and the resting operation are alternately performed between the parallel paths, cells and culture solution are sequentially sent from each parallel path, and the plurality of parallel paths It is preferable to reduce the pulsating flow of the cells and the culture solution flowing at the confluence point.

本発明のマイクロポンプユニットによれば、複数のポンプ用電磁石及びバルブ用電磁石が励磁されることにより、シート状部材の磁性材料が磁力を受けてシート状部材が圧閉され、極微量の細胞及び培養液を送出し、さらにタンクに培養液を貯蔵してその培養液を補液するので、細胞及び培養液を環状路内で循環させて細胞を育成することができる。また、環状路、流入路、排出路及びタンクはシートを重ねることにより簡易に形成され、また、細胞及び培養液の循環や補液をアクチュエータ等によることなく、電磁石の励磁により行うので、マイクロポンプユニットを小型かつ安価とすることができる。また、そのようなマイクロポンプユニット全体が小型かつ安価なので、それを消毒し包装して使い捨て可能な状態で提供することができ、これにより、細胞培養の度毎に各種機材を再使用するために消毒する煩雑な作業を必要とせず、作業を迅速に行うことができる。   According to the micropump unit of the present invention, a plurality of electromagnets for pumps and electromagnets for valves are excited, so that the magnetic material of the sheet-like member receives a magnetic force and the sheet-like member is closed, and a very small amount of cells and Since the culture solution is delivered, and the culture solution is stored in a tank and supplemented with the culture solution, the cells can be grown by circulating the cells and the culture solution in an annular path. In addition, the annular path, the inflow path, the discharge path, and the tank are simply formed by stacking sheets, and the circulation and replacement of cells and culture solution are performed by excitation of an electromagnet without using an actuator, etc. Can be made small and inexpensive. In addition, since the entire micropump unit is small and inexpensive, it can be disinfected, packaged, and provided in a disposable state, so that various equipment can be reused for each cell culture. The work can be performed quickly without the need for complicated work to disinfect.

本発明の一実施形態に係るマイクロポンプユニットの全体構成を示す分解斜視図。The disassembled perspective view which shows the whole structure of the micropump unit which concerns on one Embodiment of this invention. (a)は同マイクロポンプユニットの上面図、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図、(d)は(a)のC−C線拡大断面図。(A) is a top view of the micropump unit, (b) is a cross-sectional view taken along line AA of (a), (c) is a cross-sectional view taken along line BB of (a), and (d) is a cross-sectional view taken along line (A). CC line expanded sectional view. 同マイクロポンプユニットが備えているポンプ用電磁石の磁極と磁性材料の磁極との関係を示す拡大断面図。The expanded sectional view which shows the relationship between the magnetic pole of the electromagnet for pump with which the micropump unit is equipped, and the magnetic pole of a magnetic material. (a)乃至(c)は、同マイクロポンプユニットのポンプ作用を説明するための断面図。(A) thru | or (c) is sectional drawing for demonstrating the pump action of the micropump unit. (a)乃至(c)は、同マイクロポンプユニットを用いた細胞培養の手順を説明するための上面図。(A) thru | or (c) is a top view for demonstrating the procedure of the cell culture using the micropump unit. (a)乃至(c)は、前図に続く同マイクロポンプユニットを用いた細胞培養の手順を説明するための上面図。(A) thru | or (c) is a top view for demonstrating the procedure of the cell culture using the micro pump unit following the previous figure. 同マイクロポンプユニットのポンプの変形例を示す上面図。The top view which shows the modification of the pump of the micropump unit.

本発明の一実施形態に係るマイクロポンプユニットについて、図1乃至図6を参照して説明する。図1乃至図3において、マイクロポンプユニット1は、シート状部材2と、このシート状部材2を収納するための収納部3と、を備えている。シート状部材2は、複数枚(本例では2枚)の扁平状の可撓性を有するシート21を重ねて成り、シート状部材2の上下両面には細胞及び培養液を流すための流路22の形状に沿って磁性材料4が配設されている。磁性材料4が配設されていないシート状部材2は貼り合わされており、流路22は形成されていない。磁性材料4は、流路22に沿って着磁された磁極を有し、シート状部材2の上下両面においてその着磁方向は同一となっている(図3参照)。そのため、それら磁性材料4が互いに反発し合うことにより、磁性材料4が配設されたシート状部材2は撓んで2枚のシート21間には流路22に相当する空間が形成されている。   A micropump unit according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3, the micropump unit 1 includes a sheet-like member 2 and a storage portion 3 for storing the sheet-like member 2. The sheet-like member 2 is formed by stacking a plurality of (two in this example) flat flexible sheets 21, and a flow path for flowing cells and culture medium on the upper and lower surfaces of the sheet-like member 2. The magnetic material 4 is arranged along the shape of 22. The sheet-like member 2 on which the magnetic material 4 is not disposed is bonded, and the flow path 22 is not formed. The magnetic material 4 has a magnetic pole magnetized along the flow path 22, and the magnetization direction is the same on the upper and lower surfaces of the sheet-like member 2 (see FIG. 3). Therefore, when the magnetic materials 4 repel each other, the sheet-like member 2 provided with the magnetic material 4 is bent, and a space corresponding to the flow path 22 is formed between the two sheets 21.

流路22は、細胞及び培養液を循環させるための環状路23と、この環状路23に細胞及び培養液を出入りさせるための細胞流入路24、培養液流入路25及び排出路26と、を有している。細胞流入路24、培養液流入路25及び排出路26は、それらの一端をシート状部材2の一側面と一致させ、かつ他端を環状路23と接続するように互いに並列に延びるように形成されている。環状路23は、略矩形状を有しており、細胞流入路24、培養液流入路25及び排出路26と接続された一辺と対向する他辺にタンク27と連結するためのタンク連結路28を有している。タンク27は、培養液を貯蔵すると共に環状路23に補液するためのものであり、2枚のシート21の貼り合わせにより構成されればよく、大気又はタンク27への吐出圧力により収縮自在であり柔軟性を有し、容積可変となっている。   The flow path 22 includes an annular path 23 for circulating the cells and the culture solution, and a cell inflow path 24, a culture solution inflow path 25, and a discharge path 26 for allowing the cells and the culture solution to enter and exit the annular path 23. Have. The cell inflow path 24, the culture medium inflow path 25, and the discharge path 26 are formed to extend in parallel with each other so that one end thereof coincides with one side surface of the sheet-like member 2 and the other end is connected to the annular path 23. Has been. The annular path 23 has a substantially rectangular shape, and a tank connection path 28 for connecting to the tank 27 on the other side opposite to one side connected to the cell inflow path 24, the culture medium inflow path 25 and the discharge path 26. have. The tank 27 stores the culture solution and replaces it with the annular passage 23. The tank 27 may be configured by bonding two sheets 21 and can be contracted by the atmosphere or the discharge pressure to the tank 27. It has flexibility and is variable in volume.

収納部3は、シート状部材2を補強するためのものであり、透明性を有する樹脂材料から成り、シート状部材2を載置するためのベース部31と、このベース部31を覆う蓋部32と、から構成されている。ベース部31及び蓋部32の重なり合う一側面には、流路22に細胞及び培養液を出入りさせるための開口33が設けられている。図1において、蓋部32の表面に描かれた点線は、シート状部材2が収納部3に収納されたとき、磁性材料4と対向する蓋部32の部分を示している。この部分に沿って所定の位置に、環状路23内の細胞及び培養液を送出するためのポンプとして機能するポンプ用電磁石51〜53及び環状路23、細胞流入路24、培養液流入路25及び排出路26を開閉するためのバルブとして機能するバルブ用電磁石54〜59がそれぞれ配置されている。   The storage portion 3 is for reinforcing the sheet-like member 2 and is made of a resin material having transparency, and a base portion 31 for placing the sheet-like member 2 and a lid portion covering the base portion 31 32. On one side surface where the base portion 31 and the lid portion 32 are overlapped, an opening 33 for allowing cells and culture solution to enter and exit the flow path 22 is provided. In FIG. 1, a dotted line drawn on the surface of the lid portion 32 indicates a portion of the lid portion 32 that faces the magnetic material 4 when the sheet-like member 2 is accommodated in the accommodation portion 3. Pump electromagnets 51 to 53 functioning as pumps for delivering cells and culture solution in the annular passage 23 to the predetermined position along this portion, the annular passage 23, the cell inflow passage 24, the culture fluid inflow passage 25, and Valve electromagnets 54 to 59 functioning as valves for opening and closing the discharge path 26 are respectively disposed.

ポンプ用電磁石51〜53は、それぞれ細胞流入路24とタンク連結路28との間の環状路23に対向するように所定の間隔をおいて配置されている。また、バルブ用電磁石54〜56は、それぞれ細胞流入路24、培養液流入路25及び排出路26に対向するように配置されている。また、バルブ用電磁石57〜59は、それぞれタンク連結路28、タンク連結路28と排出路26との間の環状路23、及び排出路26と培養液流入路25との間の環状路23に対向するように配置されている。これらのポンプ用電磁石51〜53及びバルブ用電磁石54〜59は、対向する磁性材料4に磁場を与える。ポンプ用電磁石51〜53によりポンプP(図2(a))が構成されている。   The electromagnets 51 to 53 for the pump are arranged at a predetermined interval so as to face the annular path 23 between the cell inflow path 24 and the tank connection path 28. Further, the valve electromagnets 54 to 56 are disposed so as to face the cell inflow path 24, the culture solution inflow path 25, and the discharge path 26, respectively. The valve electromagnets 57 to 59 are respectively connected to the tank connection path 28, the annular path 23 between the tank connection path 28 and the discharge path 26, and the annular path 23 between the discharge path 26 and the culture fluid inflow path 25. It arrange | positions so that it may oppose. The pump electromagnets 51 to 53 and the valve electromagnets 54 to 59 apply a magnetic field to the opposing magnetic material 4. Pump electromagnets 51 to 53 constitute a pump P (FIG. 2A).

ポンプ用電磁石51〜53及びバルブ用電磁石54〜59は、例えば鉄心にコイルを巻き付けて構成され、コイルに接続された励磁用電源(図示なし)によって励磁のオン、オフが交互に切り替えられる。この切り替えは、ポンプ用電磁石51〜53については、これらの順に時系列に移っていき、バルブ用電磁石54〜59については、流路22を開閉すべき各タイミングに行われる。   The pump electromagnets 51 to 53 and the valve electromagnets 54 to 59 are configured by, for example, winding a coil around an iron core, and excitation is turned on and off alternately by an excitation power source (not shown) connected to the coil. This switching is performed in time series in the order of the pump electromagnets 51 to 53, and the valve electromagnets 54 to 59 are performed at each timing at which the flow path 22 should be opened and closed.

ポンプ用電磁石51〜53の両磁極は、環状路23に沿って並ぶ。ここで、各ポンプ用電磁石51〜53について、環状路23の上流側にある磁極を上流側磁極とし、下流側にある磁極を下流側磁極とする。各ポンプ用電磁石51〜53は、その励磁がオンのとき、上流側磁極及び下流側磁極がそれぞれN極及びS極となるように設定され、環状路23上に配設された磁性材料4は、上流側及び下流側をそれぞれN極及びS極としている。すなわち、各ポンプ用電磁石51〜53の励磁がオンのとき、ポンプ用電磁石51〜53の磁極と磁性材料4の磁極とが同極となる。バルブ用電磁石54〜59についても、上記ポンプ用電磁石51〜53と同様である。   Both magnetic poles of the pump electromagnets 51 to 53 are arranged along the annular path 23. Here, for each of the electromagnets 51 to 53 for the pump, the magnetic pole on the upstream side of the annular path 23 is the upstream magnetic pole, and the magnetic pole on the downstream side is the downstream magnetic pole. Each of the electromagnets 51 to 53 for the pump is set so that the upstream magnetic pole and the downstream magnetic pole become N pole and S pole, respectively, when the excitation is on, and the magnetic material 4 disposed on the annular path 23 is The upstream side and the downstream side are the N pole and S pole, respectively. That is, when excitation of the pump electromagnets 51 to 53 is on, the magnetic poles of the pump electromagnets 51 to 53 and the magnetic material 4 have the same polarity. The valve electromagnets 54 to 59 are the same as the pump electromagnets 51 to 53.

ポンプ用電磁石51〜53は、ポンプ作用を確実に行わせるために、少なくとも3個以上並んで配置されることが好ましい。また、ポンプ用電磁石51〜53及びバルブ用電磁石54〜59は、シート状部材2の上下両面側に設けられてもよい。こうすれば、シート状部材2を両面側から圧閉することができるので、細胞及び培養液の送出を確実に行うことができる。   It is preferable that at least three pump electromagnets 51 to 53 are arranged side by side in order to ensure the pump action. Further, the pump electromagnets 51 to 53 and the valve electromagnets 54 to 59 may be provided on both upper and lower surfaces of the sheet-like member 2. By doing so, the sheet-like member 2 can be closed from both sides, so that the cells and the culture solution can be reliably delivered.

次に、上記のようなマイクロポンプユニット1のポンプ作用について、図4(a)乃至(c)を参照して説明する。マイクロポンプユニット1が、前述の図2(c)に示す初期状態にあるとき、培養液を培養液流入路25を通して環状路23に注入させる。この状態では、いずれのポンプ用電磁石51〜53の励磁もオフしており、環状路23は、シート状部材2の上下両面に配設された磁性材料4同士の反発力により全開している。次に、図4(a)に示すように、ポンプ用電磁石51の励磁をオンすると、シート状部材2の上面において、ポンプ用電磁石51とこのポンプ用電磁石51から磁場を与えられた磁性材料4が同極となって、それらが互いに反発してポンプ用電磁石51下のシート状部材2が圧閉される。それにより、環状路23の上流側に滞留していた培養液が下流側へ送出される。   Next, the pumping action of the micropump unit 1 as described above will be described with reference to FIGS. When the micropump unit 1 is in the initial state shown in FIG. 2C, the culture solution is injected into the annular passage 23 through the culture solution inflow passage 25. In this state, excitation of any of the pump electromagnets 51 to 53 is also turned off, and the annular path 23 is fully opened by the repulsive force between the magnetic materials 4 disposed on the upper and lower surfaces of the sheet-like member 2. Next, as shown in FIG. 4A, when the excitation of the pump electromagnet 51 is turned on, the pump electromagnet 51 and the magnetic material 4 to which a magnetic field is applied from the pump electromagnet 51 on the upper surface of the sheet-like member 2. Are repulsive to each other, and the sheet-like member 2 under the pump electromagnet 51 is closed. Thereby, the culture solution staying on the upstream side of the annular path 23 is sent to the downstream side.

ポンプ用電磁石51の励磁をオンしたままで、図4(b)に示すように、ポンプ用電磁石52の励磁をオンすると、上記と同様に、ポンプ用電磁石52と磁性材料4が互いに反発してポンプ用電磁石52下のシート状部材2が圧閉される。図4の(a)から(b)の状態に移行する途上では、ポンプ用電磁石51下のシート状部材2は圧閉されたままなので、環状路23の中央に滞留していた培養液は、逆流することなく下流側へ送出される。その後、ポンプ用電磁石51の励磁をオフすれば、ポンプ用電磁石51下のシート状部材2は磁性材料4の反発力により環状路23を全開した元の状態に復元する。   When the excitation of the pump electromagnet 52 is turned on as shown in FIG. 4B while the excitation of the pump electromagnet 51 is turned on, the pump electromagnet 52 and the magnetic material 4 are repelled as described above. The sheet-like member 2 under the pump electromagnet 52 is closed. Since the sheet-like member 2 under the pump electromagnet 51 is still closed in the process of shifting from the state (a) to the state (b) in FIG. 4, the culture solution staying in the center of the annular path 23 is It is sent downstream without backflow. Thereafter, when the excitation of the pump electromagnet 51 is turned off, the sheet-like member 2 under the pump electromagnet 51 is restored to the original state in which the annular path 23 is fully opened by the repulsive force of the magnetic material 4.

ポンプ用電磁石52の励磁をオンしたままで、図4(c)に示すように、ポンプ用電磁石53の励磁をオンすると、ポンプ用電磁石53と磁性材料4が互いに反発して、ポンプ用電磁石53下のシート状部材2が圧閉される。図4の(b)から(c)の状態に移行する途上では、環状路23の下流側に滞留していた流体は、上記と同様に、逆流することなくさらに下流側へ送出される。その後、ポンプ用電磁石52,53の励磁を順次オフする。上記のような動作が繰り返されて、マイクロポンプユニット1のポンプ作用が行われる。   If the excitation of the pump electromagnet 53 is turned on as shown in FIG. 4C while the excitation of the pump electromagnet 52 is turned on, the pump electromagnet 53 and the magnetic material 4 repel each other, and the pump electromagnet 53 is repelled. The lower sheet-like member 2 is closed. In the course of shifting from the state (b) to the state (c) in FIG. 4, the fluid staying on the downstream side of the annular path 23 is sent further downstream without backflowing, as described above. Thereafter, the excitation of the pump electromagnets 52 and 53 is sequentially turned off. The above operation is repeated, and the pump action of the micro pump unit 1 is performed.

次に、マイクロポンプユニット1を用いた細胞培養の手順について、図5及び図6を参照して説明する。初期状態においては、いずれのポンプ用電磁石51〜53及びバルブ用電磁石54〜59の励磁もオフしており、流路22は全開している。図5(a)に示すように、バルブ用電磁石54,57,59の励磁をオンして、細胞流入路24、タンク連結路28及び培養液流入路25と排出路26との間の環状路23をそれぞれ閉じる。また、バルブ用電磁石55,56,58の励磁はオフのままとし、流路を開状態としておく。その状態で、培養液流入路25を通して環状路23へ矢印のごとく培養液を注入し、ポンプ用電磁石51〜53を時系列に順次励磁することによりポンプ作用を行わせて、培養液を環状路23全体に行き渡らせる。   Next, the procedure of cell culture using the micropump unit 1 will be described with reference to FIGS. In the initial state, the excitation of any of the pump electromagnets 51 to 53 and the valve electromagnets 54 to 59 is off, and the flow path 22 is fully open. As shown in FIG. 5A, excitation of the valve electromagnets 54, 57, 59 is turned on, and the cell inflow path 24, the tank connection path 28, and the annular path between the culture medium inflow path 25 and the discharge path 26. 23 is closed. Further, the excitation of the valve electromagnets 55, 56, and 58 remains off, and the flow path is left open. In this state, the culture fluid is injected as shown by the arrow through the culture fluid inflow passage 25 into the annular passage 23, and the pump electromagnets 51 to 53 are sequentially excited in time series so that the pump action is performed. 23.

バルブ用電磁石54,59をオンしたまま、図5(b)に示すように、バルブ用電磁石57の励磁をオフしてタンク連結路28を開くと共に、バルブ用電磁石58の励磁をオンしてタンク連結路28よりも下流側の環状路23を閉じる。その状態で、上記と同様にポンプ作用を行うと、培養液はタンク連結路28よりも下流側の環状路23には流れることなく、タンク連結路28を通してタンク27に送り込まれて貯蔵される。   As shown in FIG. 5B, the valve electromagnet 57 is turned off to open the tank connection path 28 while the valve electromagnet 58 is turned on, while the valve electromagnets 54 and 59 are turned on. The annular path 23 on the downstream side of the connecting path 28 is closed. In this state, when the pump action is performed in the same manner as described above, the culture solution does not flow to the annular passage 23 on the downstream side of the tank connection passage 28 but is sent to the tank 27 through the tank connection passage 28 and stored.

バルブ用電磁石59をオンしたまま、図5(c)に示すように、バルブ用電磁石54,58をオフして細胞流入路24及びタンク連結路28よりも下流側の環状路23を開き、バルブ用電磁石57をオンしてタンク連結路28を閉じる。その状態で、細胞流入路24を通して環状路23へ細胞を注入し、ポンプ作用によって細胞を環状路23全体に行き渡らせる。   With the valve electromagnet 59 turned on, as shown in FIG. 5C, the valve electromagnets 54 and 58 are turned off to open the annular path 23 on the downstream side of the cell inflow path 24 and the tank connection path 28, The electromagnet 57 is turned on and the tank connection path 28 is closed. In this state, the cells are injected into the annular passage 23 through the cell inflow passage 24, and the cells are spread throughout the annular passage 23 by a pump action.

バルブ用電磁石57をオンしたまま、図6(a)に示すように、バルブ用電磁石54,55,56をオンして細胞流入路24、培養液流入路25及び排出路26を閉じ、バルブ用電磁石59をオフして培養液流入路25と排出路26との間の環状路23を開く。その状態で、ポンプ作用によって環状路23内で脈流が少ない安定した状態において細胞及び培養液を循環させる。このとき、細胞は、培養液から養分を得て成長していく。また、培養液と共に細胞の分泌物をいっしょに循環させることにより、細胞の成長をより促進させることができる。   With the valve electromagnet 57 turned on, as shown in FIG. 6 (a), the valve electromagnets 54, 55, and 56 are turned on to close the cell inflow path 24, the culture medium inflow path 25, and the discharge path 26. The electromagnet 59 is turned off to open the annular path 23 between the culture solution inflow path 25 and the discharge path 26. In this state, the cells and the culture solution are circulated in a stable state with little pulsating flow in the annular path 23 by the pump action. At this time, the cells grow by obtaining nutrients from the culture solution. In addition, cell growth can be further promoted by circulating the cell secretion together with the culture solution.

バルブ用電磁石54,55をオンしたまま、図6(b)に示すように、バルブ用電磁石56,57をオフして排出路26及びタンク連結路28を開く。それにより、排出路26から排液され、タンク27への吐出圧力が下がり、タンク27が収縮して貯蔵されていた培養液が環状路23に送出されて補液される。この補液により、細胞は培養液を補うことができる。なお、補液が終わると、バルブ用電磁石56をオンして排出路26を閉じて、前述の図6(a)のようにポンプ作用によって再び環状路23内で細胞及び培養液を循環させる。   With the valve electromagnets 54 and 55 turned on, the valve electromagnets 56 and 57 are turned off to open the discharge path 26 and the tank connection path 28 as shown in FIG. 6B. As a result, the liquid is discharged from the discharge path 26, the discharge pressure to the tank 27 is lowered, and the culture solution stored by contracting the tank 27 is sent to the annular path 23 to be supplemented. With this replacement fluid, the cells can supplement the culture fluid. When the replacement fluid is finished, the valve electromagnet 56 is turned on to close the discharge passage 26, and the cells and the culture medium are circulated again in the annular passage 23 by the pump action as shown in FIG. 6 (a).

図6(c)に示すように、バルブ用電磁石56の励磁をオフして排出路26を開き、バルブ用電磁石59の励磁をオンして培養液流入路25と排出路26との間の環状路23を閉じる。その状態で、ポンプ作用によって排出路26を通して排液して細胞を取り出す。以下に上記細胞培養の手順におけるバルブ用電磁石54〜59の開閉操作の一覧を示す。   As shown in FIG. 6 (c), the excitation of the valve electromagnet 56 is turned off to open the discharge path 26, and the excitation of the valve electromagnet 59 is turned on to establish an annular shape between the culture medium inflow path 25 and the discharge path 26. Close the path 23. In this state, the cells are discharged by draining through the discharge path 26 by a pump action. A list of opening / closing operations of the valve electromagnets 54 to 59 in the cell culture procedure will be shown below.

本実施形態のマイクロポンプユニット1によれば、ポンプ用電磁石51〜53及びバルブ用電磁石54〜59が励磁されることにより、磁性材料4が磁力を受けてシート状部材2が圧閉されて細胞及び培養液を送出し、さらにタンク27に貯蔵された培養液を環状路23に補液するので、細胞及び培養液を環状路23内で循環させて細胞を育成することができる。また、環状路23、細胞流入路24、培養液流入路25、排出路26及びタンク27はシート21を重ねることにより簡易に形成され、また、細胞及び培養液の循環や補液を高価なアクチュエータ等によることなく、安価なポンプ用電磁石51〜53及びバルブ用電磁石54〜59の励磁により行うので、マイクロポンプユニット1を小型かつ安価とすることができる。また、そのようなマイクロポンプユニット1全体が小型かつ安価なので、それを消毒し包装して使い捨て可能な状態で提供することができ、これにより、細胞培養の度毎に各種機材を再使用するために消毒する煩雑な作業を必要とせず、作業を迅速に行うことができる。   According to the micropump unit 1 of the present embodiment, when the pump electromagnets 51 to 53 and the valve electromagnets 54 to 59 are excited, the magnetic material 4 receives a magnetic force and the sheet-like member 2 is closed and the cells are closed. In addition, since the culture solution is sent out and the culture solution stored in the tank 27 is supplemented into the annular passage 23, the cells can be circulated in the annular passage 23 to grow the cells. Further, the annular path 23, the cell inflow path 24, the culture medium inflow path 25, the discharge path 26, and the tank 27 are simply formed by stacking the sheets 21, and the circulation and replacement of the cells and the culture liquid are expensive actuators or the like. Therefore, the micro pump unit 1 can be made small and inexpensive because the pump electromagnets 51 to 53 and the valve electromagnets 54 to 59 are excited. In addition, since the entire micropump unit 1 is small and inexpensive, it can be disinfected, packaged, and provided in a disposable state, so that various equipment can be reused for each cell culture. Therefore, it is possible to perform work quickly without requiring complicated work for disinfection.

次に、マイクロポンプユニット1のポンプPの変形例について、図7を参照して説明する。このポンプPは、環状路23の一部区間を2つに分岐して互いに対向する並列路6,7と、これらの並列路6,7の合流点よりも下流側の環状路23に配置された脈流を調整するための脈流調整タンク8と、を備えている。各々の並列路6,7に対向するように、複数のポンプ用電磁石91〜96が配置されている。並列路6側に配置されているポンプ用電磁石91〜93と並列路7側に配置されているポンプ用電磁石94〜96とは、並列路6,7間で互いに対向し合わないように互い違いに配置されている。   Next, a modification of the pump P of the micro pump unit 1 will be described with reference to FIG. The pump P is arranged in a parallel path 6, 7 that branches a partial section of the annular path 23 into two and faces each other, and in the annular path 23 on the downstream side of the junction of the parallel paths 6, 7. And a pulsating flow adjusting tank 8 for adjusting the pulsating flow. A plurality of pump electromagnets 91 to 96 are arranged so as to face the parallel paths 6 and 7. The pump electromagnets 91 to 93 disposed on the parallel path 6 side and the pump electromagnets 94 to 96 disposed on the parallel path 7 side are staggered so as not to face each other between the parallel paths 6 and 7. Has been placed.

このポンプPにおいて、ポンプ用電磁石91〜96の励磁は、ポンプ用電磁石91,94,92,95,93,96の順に行われて、ポンプ用電磁石91〜93によるポンプ作用とポンプ用電磁石94〜96によるポンプ作用とが交互に行われる。そのため、並列路6,7の流体吐出動作及び休止動作がこれらの並列路6,7間で交互に行われる。上記のようにポンプ位置が互い違いとなっていない場合にも、ポンプ作用が交互に行われるようにポンプ用電磁石91〜96を励磁すれば、上記と同等の作用が得られる。   In this pump P, the pump electromagnets 91 to 96 are excited in the order of the pump electromagnets 91, 94, 92, 95, 93 and 96, and the pump action by the pump electromagnets 91 to 93 and the pump electromagnets 94 to 94 are performed. The pumping action by 96 is performed alternately. Therefore, the fluid discharge operation and the pause operation of the parallel paths 6 and 7 are alternately performed between the parallel paths 6 and 7. Even when the pump positions are not staggered as described above, if the pump electromagnets 91 to 96 are excited so that the pumping action is performed alternately, the same action as described above can be obtained.

脈流調整タンク8は、矩形状のシート状磁石をシート状部材2の上下両面にそれぞれ印刷又は貼り合わせたものであって、その上面側及び下面側において環状路23に沿って互いに逆方向に着磁している。そのため、脈流調整タンク8は、これらシート状磁石同士の引力によって密閉状態となっている。脈流調整タンク8と環状路23との上流側接続部分に細胞及び培養液による吐出圧力が加えられると、その接続部分が徐々に開放されて脈流調整タンク8内に細胞及び培養液が流れ込んで貯蔵される。脈流調整タンク8内に所定量の細胞及び培養液が貯まって所定圧力になると、脈流調整タンク8と環状路23との下流側接続部分が徐々に開放されて一定量の細胞及び培養液が送出される。   The pulsating flow adjustment tank 8 is obtained by printing or bonding rectangular sheet-like magnets on both the upper and lower surfaces of the sheet-like member 2, and in opposite directions along the annular path 23 on the upper surface side and the lower surface side thereof. Magnetized. Therefore, the pulsating flow adjustment tank 8 is in a sealed state by the attractive force between these sheet magnets. When the discharge pressure by the cells and the culture solution is applied to the upstream connection portion between the pulsating flow adjustment tank 8 and the annular passage 23, the connection portion is gradually opened and the cells and the culture solution flow into the pulsating flow adjustment tank 8. Stored in. When a predetermined amount of cells and culture solution are stored in the pulsating flow adjustment tank 8 and become a predetermined pressure, the downstream connection portion between the pulsating flow adjustment tank 8 and the annular passage 23 is gradually opened, and a fixed amount of cells and culture solution are obtained. Is sent out.

上記のようなポンプPによれば、ポンプ用電磁石91〜93及びポンプ用電磁石94〜96のポンプ作用が交互に行われるようにそれらを励磁することにより、並列路6,7の流体吐出動作及び休止動作がこれらの並列路6,7間で交互に行われる。これにより、各並列路6,7から細胞及び培養液が順次送出され、並列路6,7の合流点に流れる細胞及び培養液の脈流を低減することができる。また、そのように脈流が低減された状態において、脈流調整タンク8内に細胞及び培養液が貯蔵され、脈流調整タンク8内が所定圧力となったら一定量の細胞及び培養液が下流側へ送出されるので、脈流をさらに低減することができる。その結果、環状路23内を安定した状態にして細胞の育成をより促進させることができる。   According to the pump P as described above, by exciting the pump electromagnets 91 to 93 and the pump electromagnets 94 to 96 so as to be alternately performed, the fluid discharge operation of the parallel paths 6 and 7 and The pause operation is alternately performed between the parallel paths 6 and 7. Thereby, a cell and culture solution are sent out sequentially from each parallel path 6 and 7, and the pulsating flow of the cell and culture medium which flow to the confluence of parallel paths 6 and 7 can be reduced. Further, in such a state where the pulsating flow is reduced, the cells and the culture solution are stored in the pulsating flow adjustment tank 8, and when the pulsating flow adjustment tank 8 reaches a predetermined pressure, a certain amount of cells and the culture solution are downstream. Since it is sent to the side, the pulsating flow can be further reduced. As a result, the growth of the cells can be further promoted by making the inside of the annular path 23 stable.

本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変更が可能である。例えば、流路22の形状は上記に限られず、磁性材料4の形状によって種々の形状とすることができる。また、ポンプ用電磁石及びバルブ用電磁石の数も流路22の形状によって適宜決定すればよい。また、変形例に示したポンプPの並列路の数は、2つに限られず、3つ以上であってもよい。   The present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the shape of the flow path 22 is not limited to the above, and can be various shapes depending on the shape of the magnetic material 4. Further, the number of pump electromagnets and valve electromagnets may be appropriately determined according to the shape of the flow path 22. Further, the number of parallel paths of the pumps P shown in the modification is not limited to two, and may be three or more.

1 マイクロポンプユニット
2 シート状部材
23 環状路
24 細胞流入路(流入路)
25 培養液流入路(流入路)
26 排出路
27 タンク
4 磁性材料
51〜53,91〜96 ポンプ用電磁石
54〜59 バルブ用電磁石
6,7 並列路
1 Micropump unit 2 Sheet-like member 23 Annular path 24 Cell inflow path (inflow path)
25 Culture fluid inflow path (inflow path)
26 Discharge path 27 Tank 4 Magnetic material 51-53, 91-96 Electromagnet for pump 54-59 Electromagnet for valve 6,7 Parallel path

Claims (2)

複数枚の可撓性を有するシートを重ねることにより、細胞及び培養液を循環させるための環状路と、前記環状路に細胞及び培養液を出入りさせるための流入路及び排出路と、前記環状路に連結されて培養液を貯蔵すると共に前記環状路に補液するための容積可変のタンクと、を形成するシート状部材と、
前記シート状部材の表面に前記環状路、流入路及び排出路に沿って形成されて着磁された磁極を有する磁性材料と、
前記環状路に対向するように配置されて前記磁性材料に磁場を与え、前記環状路内で細胞及び培養液を送出するための複数のポンプ用電磁石と、
前記環状路、流入路及び排出路に対向するように配置されて前記磁性材料に磁場を与え、前記環状路、流入路及び排出路を開閉するための複数のバルブ用電磁石と、を備え、
前記バルブ用電磁石及びポンプ用電磁石を励磁することにより、前記環状路及びタンクに培養液を満たし、さらには前記環状路に細胞を入れて循環させると共に、前記タンクに貯蔵された培養液を前記環状路に補液して細胞を育成することを特徴とするマイクロポンプユニット。
An annular path for circulating cells and culture medium by stacking a plurality of flexible sheets, an inflow path and an outlet path for allowing cells and culture medium to enter and exit the annular path, and the annular path A sheet-shaped member that forms a variable volume tank for storing the culture medium and replenishing the annular path,
A magnetic material having a magnetic pole formed and magnetized along the annular path, the inflow path and the discharge path on the surface of the sheet-like member;
A plurality of electromagnets for pumps disposed so as to face the annular path, applying a magnetic field to the magnetic material, and delivering cells and culture solution in the annular path;
A plurality of valve electromagnets arranged to face the annular path, the inflow path and the discharge path to give a magnetic field to the magnetic material, and open and close the annular path, the inflow path and the discharge path,
By exciting the valve electromagnet and the pump electromagnet, the annular path and the tank are filled with a culture solution, and cells are further circulated in the annular path, and the culture solution stored in the tank is circulated in the annular path. A micropump unit characterized in that the fluid is replenished in the path to grow cells.
前記環状路は、その一部区間を複数に分岐した並列路から形成され、各々の並列路に対向するように前記複数のポンプ用電磁石が配置され、
前記複数の並列路の流体吐出動作及び休止動作がこれらの並列路間で交互に行われるように前記複数のポンプ用電磁石を励磁することにより、各並列路から細胞及び培養液が順次送出され、前記複数の並列路の合流点に流れる細胞及び培養液の脈流を低減することを特徴とする請求項1に記載のマイクロポンプユニット。
The annular path is formed from a parallel path that branches into a plurality of partial sections, and the plurality of pump electromagnets are arranged to face each parallel path,
By exciting the plurality of pump electromagnets so that the fluid discharge operation and the pause operation of the plurality of parallel paths are alternately performed between these parallel paths, cells and culture solution are sequentially sent from each parallel path, 2. The micropump unit according to claim 1, wherein a pulsating flow of cells and culture solution flowing at a confluence of the plurality of parallel paths is reduced.
JP2013002828A 2013-01-10 2013-01-10 Micro pump unit Active JP5850436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002828A JP5850436B2 (en) 2013-01-10 2013-01-10 Micro pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002828A JP5850436B2 (en) 2013-01-10 2013-01-10 Micro pump unit

Publications (2)

Publication Number Publication Date
JP2014132860A true JP2014132860A (en) 2014-07-24
JP5850436B2 JP5850436B2 (en) 2016-02-03

Family

ID=51411682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002828A Active JP5850436B2 (en) 2013-01-10 2013-01-10 Micro pump unit

Country Status (1)

Country Link
JP (1) JP5850436B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153000A1 (en) * 2015-03-24 2016-09-29 国立大学法人東京大学 Fluid device, system and method
WO2019049204A1 (en) * 2017-09-05 2019-03-14 株式会社ニコン Fluid device and use thereof
JP2019065845A (en) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 Fluid system
JP2019065847A (en) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 Fluid system
CN114542436A (en) * 2022-02-23 2022-05-27 南通大学 Fish scale-like structure valveless piezoelectric pump
CN114621872A (en) * 2022-02-24 2022-06-14 河南茵特赛尔生物技术有限公司 Automatic liquid supplementing device for immune cell culture solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287571A (en) * 1996-04-18 1997-11-04 Fuji Electric Co Ltd Micropump
JP2002340911A (en) * 2001-05-15 2002-11-27 Hitachi Ltd Sheet-type microreactor and mobile type chemical analyzer
JP2003139662A (en) * 2001-11-02 2003-05-14 Kawamura Inst Of Chem Res Microfluid device
JP2008301746A (en) * 2007-06-06 2008-12-18 Canon Inc Culture apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287571A (en) * 1996-04-18 1997-11-04 Fuji Electric Co Ltd Micropump
JP2002340911A (en) * 2001-05-15 2002-11-27 Hitachi Ltd Sheet-type microreactor and mobile type chemical analyzer
JP2003139662A (en) * 2001-11-02 2003-05-14 Kawamura Inst Of Chem Res Microfluid device
JP2008301746A (en) * 2007-06-06 2008-12-18 Canon Inc Culture apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153000A1 (en) * 2015-03-24 2016-09-29 国立大学法人東京大学 Fluid device, system and method
WO2019049204A1 (en) * 2017-09-05 2019-03-14 株式会社ニコン Fluid device and use thereof
JPWO2019049204A1 (en) * 2017-09-05 2020-10-15 株式会社ニコン Fluid devices and their use
JP7020488B2 (en) 2017-09-05 2022-02-16 株式会社ニコン Fluid devices and their use
JP2019065845A (en) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 Fluid system
JP2019065847A (en) * 2017-09-29 2019-04-25 研能科技股▲ふん▼有限公司 Fluid system
JP7112285B2 (en) 2017-09-29 2022-08-03 研能科技股▲ふん▼有限公司 fluid system
JP7177632B2 (en) 2017-09-29 2022-11-24 研能科技股▲ふん▼有限公司 fluid system
CN114542436A (en) * 2022-02-23 2022-05-27 南通大学 Fish scale-like structure valveless piezoelectric pump
CN114542436B (en) * 2022-02-23 2024-01-09 南通大学 Valveless piezoelectric pump with fish scale imitating structure
CN114621872A (en) * 2022-02-24 2022-06-14 河南茵特赛尔生物技术有限公司 Automatic liquid supplementing device for immune cell culture solution
CN114621872B (en) * 2022-02-24 2022-09-16 河南茵特赛尔生物技术有限公司 Automatic liquid supplementing device for immune cell culture solution

Also Published As

Publication number Publication date
JP5850436B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5850436B2 (en) Micro pump unit
US10508647B2 (en) Electronically controlled diaphragm pump
AU2013243203B2 (en) Suction pump unit
Nisar et al. MEMS-based micropumps in drug delivery and biomedical applications
US7682820B2 (en) Device for pressurized perfusion especially for culturing and/or treating cells
Woias Micropumps: summarizing the first two decades
ES2409951T3 (en) Single use element, system for pumping, as well as procedure for pumping a liquid
Al-Halhouli et al. Development of a novel electromagnetic pump for biomedical applications
JP2018515260A (en) Negative pressure closure therapy device and method
WO1988005867A1 (en) Pumping apparatus with an electromagnetic assembly affixed to a flexible septum
JP2015530110A (en) Tangential flow perfusion system
US20140107589A1 (en) Electromagnetically actuated valve and related methods of use
US9062688B2 (en) Diaphragm pump
US20200025188A1 (en) Electromagnetic pump
US20200024563A1 (en) Method and system for a cell culture system with recirculating culture medium
JP2014114772A (en) Micropump
US20230349373A1 (en) Microfluidic Devices and Methods Including Flexible Membranes
JP5963265B2 (en) Micro pump
CN216851711U (en) Reciprocating type magnetic drive structure, pump set and simulated heart
JP2005535293A (en) Equipment that can be used in medicine
CN114404799B (en) Reciprocating type magnetic pump body, pump set and simulated heart
CN219101616U (en) Pump, humidifier and fish tank
US20210379592A1 (en) Multiwell plate with integrated stirring mechanism
Murakami et al. Development of pulsating artificial heart with magnetic flux convergent arrangement
Ashouri et al. A ferrofluidic piston micropump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5850436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250