JP2014132832A - Medicament, functional food product, stabilization method of target protein, fusion protein, nucleic acid, and recombinant - Google Patents

Medicament, functional food product, stabilization method of target protein, fusion protein, nucleic acid, and recombinant Download PDF

Info

Publication number
JP2014132832A
JP2014132832A JP2011240593A JP2011240593A JP2014132832A JP 2014132832 A JP2014132832 A JP 2014132832A JP 2011240593 A JP2011240593 A JP 2011240593A JP 2011240593 A JP2011240593 A JP 2011240593A JP 2014132832 A JP2014132832 A JP 2014132832A
Authority
JP
Japan
Prior art keywords
peptide
therapeutic
fusion protein
apolipoprotein
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011240593A
Other languages
Japanese (ja)
Inventor
Masahiro Furuya
昌弘 古谷
Naoki Nishiguchi
直樹 西口
Kazuki Yamamoto
一喜 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011240593A priority Critical patent/JP2014132832A/en
Priority to PCT/JP2012/060688 priority patent/WO2012153620A1/en
Publication of JP2014132832A publication Critical patent/JP2014132832A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a series of techniques by specifying a new protein carrier for a therapeutic peptide and using the carrier.SOLUTION: A medicament contains a fusion protein where apolipoprotein AI or a modified body thereof and a therapeutic peptide as an active ingredient are linked through a peptide bond. The medicament has a long half-life in blood and low possibility of antibody production, and allows oral administration and transmucosal administration. The modified body may be a partial fragment of apolipoprotein AI, a polypeptide comprising 1 to 6 amphiphatic sequences, an amino acid variant, a mimic peptide or the like. Examples of the therapeutic peptide include a glucagon-like peptide-1 (GLP-1). A medicament with a lipid being further bonded to the fusion protein to form a protein/lipid complex is also provided.

Description

本発明は、アポリポ蛋白質AI(ApoAI)又はその改変体と治療用ペプチドとが連結されてなる融合蛋白質を含有する医薬等に関する。また本発明は、当該融合蛋白質の用途等に関する。   The present invention relates to a medicament containing a fusion protein in which apolipoprotein AI (ApoAI) or a variant thereof and a therapeutic peptide are linked. The present invention also relates to uses of the fusion protein.

グルカゴン様ペプチド−1(GLP−1)、エリスロポエチン(Epo)、ヒト成長ホルモン(hGH)、顆粒球コロニー刺激因子(G−CSF)、インターフェロン等の生理活性ペプチドは、一般的に、天然アミノ酸配列のままでは血中での安定性は低く、その半減期は数分〜数時間以内である。また抗体工学の手法で作製できるscFv(single chain Fv)やFab断片も、その半減期は数分から数時間と、上記のような生理活性ペプチドと同様に短い。これらの血中安定化を行う目的で、アミノ酸置換、化学修飾、PEG(Polyethylene glycol)化、徐放性マイクロカプセル化、さらには遺伝子組換え技術による安定化ペプチドとの融合化、といった試みがなされてきた(非特許文献1)。   Physiologically active peptides such as glucagon-like peptide-1 (GLP-1), erythropoietin (Epo), human growth hormone (hGH), granulocyte colony stimulating factor (G-CSF), and interferon generally have a natural amino acid sequence. As it is, the stability in blood is low, and its half-life is within minutes to hours. In addition, scFv (single chain Fv) and Fab fragments that can be produced by antibody engineering techniques have a half-life of several minutes to several hours, which is as short as the physiologically active peptides described above. In order to stabilize these in blood, attempts such as amino acid substitution, chemical modification, PEG (Polyethylene glycol), sustained-release microencapsulation, and fusion with stabilized peptides by gene recombination technology have been made. (Non-Patent Document 1).

安定化ペプチドとしてこれまでに、血漿蛋白である血清アルブミン、抗体重鎖定常領域(Fc)、及びトランスフェリン(Tf)が、幾つかのペプチド医薬に利用されてきた(非特許文献2,3,4)。これらは、その血中濃度が1〜50mg/mLと血中に高濃度で存在し、また動物個体での免疫寛容が成立している(余分に投与してもこれらに対する抗体はできない)と考えられるので、安全かつ安定なキャリアとして期待されている。特に注目すべきは、遺伝子組換え血清アルブミンとグルカゴン様ペプチド−1(GLP−1)との融合蛋白質(rHSA/GLP−1)である。現在実用化されているGLP−1アナログ薬は1日あたり1〜2回の投薬が必要であるのに対し、rHSA/GLP−1は週に1回の投薬で血糖コントロールが可能とされている(非特許文献5)。   As a stabilizing peptide, plasma albumin serum albumin, antibody heavy chain constant region (Fc), and transferrin (Tf) have been used in some peptide drugs (Non-Patent Documents 2, 3, and 4). ). These are considered to exist in the blood at a high concentration of 1 to 50 mg / mL in the blood, and immune tolerance is established in the animal individual (antibodies against these cannot be produced even if administered excessively). Therefore, it is expected as a safe and stable carrier. Of particular note is a fusion protein (rHSA / GLP-1) of recombinant serum albumin and glucagon-like peptide-1 (GLP-1). GLP-1 analogs currently in practical use require one to two doses per day, whereas rHSA / GLP-1 allows blood glucose control once a week (Non-patent document 5).

さらに、FcやTfに対する取込み受容体が腸粘膜や肺に存在することが知られており、これらとペプチド医薬との融合蛋白質を、経口投与用や経粘膜投与用の医薬として利用する試みもなされて来ている(非特許文献6,7)。現在のところ、ほとんど全ての治療用ペプチドは、注射による投与経路しか実用化されておらず、治療用ペプチドの経口投与や経肺等の経粘膜投与を実現することは、患者のQOL(Quality of life)及び医療経済の面で極めて重要である。なお、血清アルブミンでは効率的な取込み受容体が粘膜に存在しないことから、経口投与や経粘膜投与への応用は困難と考えられる。   Furthermore, it is known that uptake receptors for Fc and Tf exist in the intestinal mucosa and lung, and attempts have been made to use fusion proteins of these and peptide drugs as drugs for oral administration and transmucosal administration. (Non-Patent Documents 6 and 7). At present, almost all therapeutic peptides have been put into practical use only by injection route, and the realization of oral administration of therapeutic peptides and transmucosal administration such as transpulmonary is the QOL (Quality of Quality) of patients. life) and medical economics. Since serum albumin does not have an efficient uptake receptor in the mucous membrane, application to oral administration or transmucosal administration is considered difficult.

一方、以上のような血漿蛋白と治療用ペプチドとの融合蛋白質を利用する上での安全面での重要な要素は、治療用ペプチドに対する抗体産生の問題である。すなわち、医薬として利用され得る天然由来の生理活性ペプチドは、天然では極めて微量で作用し、また半減期も短い。このことから、これらに対する動物個体の免疫寛容が成立していない可能性がある。そのため、生理活性ペプチドの完全な天然型のアミノ酸配列を利用したとしても、血中滞留時間の長い融合蛋白質がマクロファージ等の抗原提示細胞へ取り込まれた場合、生理活性ペプチド断片が抗原提示され、免疫が誘起される可能性がある。通常、ペプチド医薬は、長い年月に渡って繰り返し投薬されるため、生理活性ペプチドに対する免疫誘起の可能性は、安全性、薬効の両面における重大な負の要素である。   On the other hand, an important factor in terms of safety in using the above fusion protein of plasma protein and therapeutic peptide is a problem of antibody production against the therapeutic peptide. That is, a naturally-occurring physiologically active peptide that can be used as a medicine acts in a very small amount in nature and has a short half-life. From this, there is a possibility that the immune tolerance of the animal individual against these is not established. Therefore, even when a completely natural amino acid sequence of a physiologically active peptide is used, when a fusion protein having a long residence time in the blood is incorporated into an antigen-presenting cell such as a macrophage, the physiologically active peptide fragment is presented as an antigen and immunized. May be induced. Since peptide drugs are usually repeatedly administered over a long period of time, the possibility of immune induction against bioactive peptides is a serious negative factor in both safety and efficacy.

FcやTfに対する取込み受容体は、マクロファージ、樹状細胞といった抗原提示細胞に存在する(非特許文献8,9)。抗体医薬の分野において、ヒト型モノクローナル抗体医薬の超可変領域に対する抗体産生が問題となっている(非特許文献10,11)。実際、モノクローナル抗体医薬のみならず、Fc融合蛋白質の免疫応答においても治療ペプチド部分に対する抗体産生(Human Anti-Drug Antibodeis;HADA)の可能性が指摘されている(非特許文献12)。これらのことから、従来技術であるFc融合蛋白質やTf融合蛋白質においても、治療用ペプチド部分に対する抗体産生の可能性は無視できない。また、粘膜近傍にも抗原提示細胞は多数存在するので、経口投与用医薬や経粘膜投与用医薬においても、この問題は安全上重要な課題である。   Uptake receptors for Fc and Tf are present in antigen-presenting cells such as macrophages and dendritic cells (Non-patent Documents 8 and 9). In the field of antibody drugs, antibody production against the hypervariable region of human monoclonal antibody drugs has become a problem (Non-patent Documents 10 and 11). In fact, the possibility of antibody production against a therapeutic peptide part (Human Anti-Drug Antibodeis; HADA) has been pointed out not only in monoclonal antibody drugs but also in immune responses of Fc fusion proteins (Non-patent Document 12). From these facts, the possibility of antibody production against the therapeutic peptide portion cannot be ignored even in the conventional Fc fusion protein and Tf fusion protein. In addition, since many antigen-presenting cells are present in the vicinity of the mucous membrane, this problem is an important safety issue even in oral medicine and transmucosal medicine.

また、上記のように、ペプチド医薬は長い年月に渡って繰り返し投与されることが多いので、安価に製造できるものであることが好ましい。ここで、例えばFc融合蛋白質において、血中での安定化のためにはFc領域に糖鎖が必要である。しかし、生体に安全上問題のない糖鎖構造をFc領域に付加させるには、現在のところ、CHO細胞等の動物細胞を用いて製造する必要があり、これは高価である。
なおrHSA/GLP−1は、現在酵母で生産されており、動物細胞に比べて安価に製造が可能である。しかしながら、組換え蛋白質の生産効率には、蛋白質の分子サイズも影響する。ここで、血清アルブミンの分子量は約66000、Tfの分子量は約78000であり、いずれも分子サイズが大きく、遺伝子組換え技術による生産に有利とはいえない。
Further, as described above, since peptide drugs are often repeatedly administered over a long period of time, it is preferable that peptide drugs can be produced at low cost. Here, for example, in an Fc fusion protein, a sugar chain is required in the Fc region for stabilization in blood. However, in order to add a sugar chain structure that is not a safety problem to the living body to the Fc region, it is currently necessary to produce it using animal cells such as CHO cells, which is expensive.
RHSA / GLP-1 is currently produced in yeast and can be produced at a lower cost than animal cells. However, the molecular size of the protein also affects the production efficiency of the recombinant protein. Here, the molecular weight of serum albumin is about 66000, and the molecular weight of Tf is about 78000, both of which have a large molecular size and are not advantageous for production by genetic recombination technology.

John M. et al., Drug discovery today (2006) 3(1),87-94John M. et al., Drug discovery today (2006) 3 (1), 87-94 Rustgi VK, Curr. Med. Res. Opin. (2009) 25(4), 991-1002Rustgi VK, Curr. Med. Res. Opin. (2009) 25 (4), 991-1002 Sathyanarayana P. et al., Blood (2009) 113, 4955-4962Sathyanarayana P. et al., Blood (2009) 113, 4955-4962 Kim BJ et al., J. Pharmacol. Exp. Ther. (2010) 334(3), 682-692Kim BJ et al., J. Pharmacol. Exp. Ther. (2010) 334 (3), 682-692 Christensen M. et al., Curr. Diab. Rep. (2010) 10(2), 124-132Christensen M. et al., Curr. Diab. Rep. (2010) 10 (2), 124-132 Bitoni AJ et al., PNAS (2004) 101(26), 9763-9768Bitoni AJ et al., PNAS (2004) 101 (26), 9763-9768 Bay Y. et al., PNAS (2005) 102(20), 7292-7296Bay Y. et al., PNAS (2005) 102 (20), 7292-7296 Pasquier B. et al., J. Leukocyte Biology (2004) 76, 1134-1141Pasquier B. et al., J. Leukocyte Biology (2004) 76, 1134-1141 Nishisato T. et al., Br. J. Haematol (1982) 52(4), 631-640Nishisato T. et al., Br. J. Haematol (1982) 52 (4), 631-640 Harding FA et al., MAbs (2010) 2(3), 256-265Harding FA et al., MAbs (2010) 2 (3), 256-265 Gonzales NR et al., Tumour Biol. (2005) 26(1), 31-43Gonzales NR et al., Tumour Biol. (2005) 26 (1), 31-43 Niebecker R et al., Curr. Drug Saf. (2010) 5(4), 275-286Niebecker R et al., Curr. Drug Saf. (2010) 5 (4), 275-286

以上のように、医薬ペプチド(治療用ペプチド)の蛋白キャリアによる血中安定化、及び経口投与用医薬や経粘膜投与用医薬への応用において、
(1)免疫寛容が成立している、
(2)抗原提示細胞での取込受容体が存在しない、
(3)分子サイズが小さく大腸菌や酵母で生産可能、
さらには、
(4)粘膜上に効率的な取込み機構が存在し、経口投与や経粘膜投与に応用できる、
などの要素を満たす蛋白性キャリアの利用が期待される。しかしながら、上述した血清アルブミン、抗体Fc、トランスフェリン以外のキャリア分子の利用については、これまであまり検討されておらず、さらに優れたキャリア分子が求められている。
As described above, in the stabilization of the pharmaceutical peptide (therapeutic peptide) in the blood by the protein carrier, and the application to the pharmaceutical for oral administration and transmucosal administration
(1) immune tolerance is established,
(2) no uptake receptor in antigen presenting cells,
(3) Small molecular size that can be produced in E. coli and yeast.
Moreover,
(4) There is an efficient uptake mechanism on the mucous membrane, which can be applied to oral and transmucosal administration.
It is expected that protein carriers that satisfy these factors will be used. However, the use of carrier molecules other than the above-mentioned serum albumin, antibody Fc, and transferrin has not been studied so far, and more excellent carrier molecules are required.

上記した現状に鑑み、本発明は、治療用ペプチドに対する新規の蛋白性キャリアを特定し、当該キャリアを用いた一連の技術を提供することを目的とする。   In view of the above-described present situation, an object of the present invention is to specify a novel protein carrier for a therapeutic peptide and to provide a series of techniques using the carrier.

本発明者らは上記課題を解決するために検討を重ねた結果、アポリポ蛋白質AI(ApoAI)をキャリア蛋白質として採用し、ApoAIと治療用ペプチドとを連結した融合蛋白質を用いることにより、上記課題を解決できることを見出した。上記課題を解決するために提供される本発明は、以下のとおりである。   As a result of repeated studies to solve the above-mentioned problems, the present inventors have adopted the apolipoprotein AI (ApoAI) as a carrier protein, and have used the fusion protein in which ApoAI and a therapeutic peptide are linked. I found that it can be solved. The present invention provided to solve the above problems is as follows.

本発明の1つの様相は、アポリポ蛋白質AI又はその改変体と、有効成分となる治療用ペプチドとが、ペプチド結合を介して連結してなる融合蛋白質、を含有する医薬である。   One aspect of the present invention is a medicament comprising a fusion protein in which apolipoprotein AI or a variant thereof and a therapeutic peptide as an active ingredient are linked via a peptide bond.

ここで「治療用ペプチド」とは、医薬の有効成分として機能するペプチドを指す。したがって、治療用ペプチドには、投与後の組織指向性のみに関与するものや、有効成分の安定化のみに関与するものは含まれない。   Here, “therapeutic peptide” refers to a peptide that functions as an active ingredient of a medicine. Therefore, therapeutic peptides do not include those involved only in tissue orientation after administration and those involved only in stabilization of active ingredients.

ここでアポリポ蛋白質AIの「改変体」とは、アポリポ蛋白質AIに類似の蛋白質であり、アポリポ蛋白質AIとしての機能を保持しているものを指す。アポリポ蛋白質AIとしての機能を保持している限り、当該改変体には、少なくとも以下の蛋白質・ポリペプチドが含まれる。
・アポリポ蛋白質AIの部分断片、
・アポリポ蛋白質AIの機能ドメインを有する蛋白質・ポリペプチド、
・アポリポ蛋白質AIの1次構造において数個〜十数個程度のアミノ酸残基が欠失、置換若しくは付加された蛋白質・ポリペプチド(アミノ酸変異体)。
Here, the “modified body” of apolipoprotein AI refers to a protein that is similar to apolipoprotein AI and retains the function as apolipoprotein AI. As long as the function as the apolipoprotein AI is retained, the modified substance includes at least the following proteins and polypeptides.
A partial fragment of apolipoprotein AI,
A protein or polypeptide having a functional domain of apolipoprotein AI,
A protein / polypeptide (amino acid variant) in which several to dozens of amino acid residues are deleted, substituted or added in the primary structure of apolipoprotein AI.

好ましくは、前記改変体は、アポリポ蛋白質AIの部分断片である。   Preferably, the variant is a partial fragment of apolipoprotein AI.

好ましくは、アポリポ蛋白質AIの両親媒性配列を1〜6個含むポリペプチドである。   Preferably, it is a polypeptide containing 1 to 6 amphiphilic sequences of apolipoprotein AI.

好ましくは、前記改変体は、アポリポ蛋白質AIの全長又は部分断片のアミノ酸変異体である。   Preferably, the variant is an amino acid variant of a full-length or partial fragment of apolipoprotein AI.

好ましくは、前記改変体は、アポリポ蛋白質AIの模倣ペプチドである。   Preferably, the variant is a mimetic peptide of apolipoprotein AI.

好ましくは、前記改変体は、キュビリン結合性が低下又は欠失したものである。   Preferably, the variant has a reduced or deleted cubilin binding property.

好ましくは、前記アポリポ蛋白質AIは、ヒト由来のものである。   Preferably, the apolipoprotein AI is derived from a human.

好ましくは、前記治療用ペプチドは、細胞表層受容体に対するアゴニストである。   Preferably, the therapeutic peptide is an agonist for cell surface receptors.

好ましくは、前記治療用ペプチドは、血糖をコントロールする機能を有するものである。   Preferably, the therapeutic peptide has a function of controlling blood glucose.

好ましくは、前記治療用ペプチドは、インスリン抵抗性改善機能を有するものである。   Preferably, the therapeutic peptide has an insulin resistance improving function.

好ましくは、前記治療用ペプチドは、グルカゴン様ペプチド−1活性を有するポリペプチドである。   Preferably, the therapeutic peptide is a polypeptide having glucagon-like peptide-1 activity.

好ましくは、前記治療用ペプチドは、エリスロポエチン活性を有するポリペプチドである。   Preferably, the therapeutic peptide is a polypeptide having erythropoietin activity.

好ましくは、前記治療用ペプチドは、サイトカイン又はケモカインに対する可溶性受容体である。   Preferably, the therapeutic peptide is a soluble receptor for cytokines or chemokines.

好ましくは、前記治療用ペプチドは、免疫グロブリンのVH領域とVL領域のいずれか一方又は両方を含むポリペプチドである。   Preferably, the therapeutic peptide is a polypeptide comprising one or both of an immunoglobulin VH region and VL region.

好ましくは、前記融合蛋白質には、前記治療用ペプチドに対する分解酵素の阻害剤がさらに連結されている。   Preferably, an inhibitor of a degrading enzyme for the therapeutic peptide is further linked to the fusion protein.

好ましくは、前記分解酵素は、ジペプチジルペプチダーゼIVである。   Preferably, the degrading enzyme is dipeptidyl peptidase IV.

好ましくは、前記融合蛋白質には、第2の治療成分がさらに連結されている。   Preferably, a second therapeutic component is further linked to the fusion protein.

好ましくは、前記治療用ペプチドが血糖をコントロールする機能を有するもの又はグルカゴン様ペプチド−1受容体アゴニストであり、前記第2の治療成分が膵臓疾患治療薬又は肝臓疾患治療薬である。   Preferably, the therapeutic peptide has a function of controlling blood glucose or a glucagon-like peptide-1 receptor agonist, and the second therapeutic component is a pancreatic disease therapeutic agent or a liver disease therapeutic agent.

好ましくは、前記第2の治療成分は、炎症抑制剤、抗癌剤、又は肝硬変治療薬である。   Preferably, the second therapeutic component is an inflammation inhibitor, an anticancer agent, or a cirrhosis therapeutic agent.

好ましくは、前記アポリポ蛋白質AI又はその改変体と治療用ペプチドとの間に、リンカーが介在している。   Preferably, a linker is interposed between the apolipoprotein AI or a variant thereof and the therapeutic peptide.

好ましくは、前記融合蛋白質に脂質がさらに結合し、蛋白質・脂質複合体を形成している。   Preferably, a lipid is further bound to the fusion protein to form a protein / lipid complex.

好ましくは、前記蛋白質・脂質複合体は、前記治療用ペプチドに対する分解酵素の阻害剤をさらに含んでいる。   Preferably, the protein / lipid complex further includes an inhibitor of a degrading enzyme for the therapeutic peptide.

好ましくは、前記蛋白質・脂質複合体は、第2の治療成分をさらに含んでいる。   Preferably, the protein / lipid complex further comprises a second therapeutic component.

好ましくは、前記治療用ペプチドが血糖をコントロールする機能を有するもの又はグルカゴン様ペプチド−1受容体アゴニストであり、前記第2の治療成分が膵臓疾患治療薬又は肝臓疾患治療薬である。   Preferably, the therapeutic peptide has a function of controlling blood glucose or a glucagon-like peptide-1 receptor agonist, and the second therapeutic component is a pancreatic disease therapeutic agent or a liver disease therapeutic agent.

好ましくは、前記第2の治療成分は、炎症抑制剤、抗癌剤、又は肝硬変治療薬である。   Preferably, the second therapeutic component is an inflammation inhibitor, an anticancer agent, or a cirrhosis therapeutic agent.

上記医薬は、経口投与用又は経粘膜投与用であることが好ましい。   The medicament is preferably for oral administration or transmucosal administration.

本発明の他の様相は、上記で定義された融合蛋白質又は上記で定義された蛋白質・脂質複合体、を含有する機能性食品である。   Another aspect of the present invention is a functional food containing the fusion protein defined above or the protein / lipid complex defined above.

本発明の他の様相は、上記で定義された融合蛋白質を発現する組換え体を有効成分として含有する医薬又は機能性食品である。   Another aspect of the present invention is a pharmaceutical or functional food containing a recombinant that expresses the fusion protein defined above as an active ingredient.

好ましくは、前記組換え体は、前記融合蛋白質を表層に提示可能な微生物又は細胞である。   Preferably, the recombinant is a microorganism or cell capable of presenting the fusion protein on the surface.

好ましくは、前記微生物は、酵母である。   Preferably, the microorganism is yeast.

本発明の他の様相は、目的蛋白質に対して、アポリポ蛋白質AI又はその改変体を連結する目的蛋白質の安定化方法である。   Another aspect of the present invention is a method for stabilizing a target protein by linking apolipoprotein AI or a variant thereof to the target protein.

好ましくは、前記改変体は、アポリポ蛋白質AIの部分断片である。   Preferably, the variant is a partial fragment of apolipoprotein AI.

好ましくは、前記改変体は、アポリポ蛋白質AIの両親媒性配列を1〜6個含むポリペプチドである。   Preferably, the variant is a polypeptide comprising 1 to 6 amphiphilic sequences of apolipoprotein AI.

好ましくは、前記改変体は、アポリポ蛋白質AIの全長又は部分断片のアミノ酸変異体である。   Preferably, the variant is an amino acid variant of a full-length or partial fragment of apolipoprotein AI.

好ましくは、前記改変体は、アポリポ蛋白質AIの模倣ペプチドである。   Preferably, the variant is a mimetic peptide of apolipoprotein AI.

本発明の他の様相は、アポリポ蛋白質AI又はその改変体と、グルカゴン様ペプチド−1活性を有するポリペプチドとが、ペプチド結合を介して連結してなる融合蛋白質である。   Another aspect of the present invention is a fusion protein in which apolipoprotein AI or a variant thereof and a polypeptide having glucagon-like peptide-1 activity are linked via a peptide bond.

本発明の他の様相は、前記融合蛋白質をコードする核酸である。   Another aspect of the present invention is a nucleic acid encoding the fusion protein.

本発明の他の様相は、前記核酸を有する組換え体である。   Another aspect of the present invention is a recombinant having the nucleic acid.

好ましくは、前記組換え体が、細菌、酵母、カビ、藻類、植物細胞、昆虫細胞、動物細胞、植物、又は動物である。   Preferably, the recombinant is a bacterium, yeast, mold, algae, plant cell, insect cell, animal cell, plant, or animal.

本発明の医薬は、体内安定性が高く、かつ粘膜透過性に優れている。さらに、治療用ペプチドに対する抗体産生の可能性が低いので、生体に対する安全性が高い。さらに、有効成分である融合蛋白質の分子サイズが小さいので、組換え技術による生産に有利である。さらに、経口投与が可能であるので、機能性食品としても利用できる。   The medicament of the present invention has high in-body stability and excellent mucosal permeability. Furthermore, since the possibility of producing antibodies against therapeutic peptides is low, safety to living bodies is high. Furthermore, since the molecular size of the fusion protein, which is an active ingredient, is small, it is advantageous for production by recombinant technology. Furthermore, since it can be administered orally, it can also be used as a functional food.

本発明の目的蛋白質の安定化方法によれば、治療用ペプチド等の体内安定性を容易に高めることができる。   According to the method for stabilizing a target protein of the present invention, the in vivo stability of a therapeutic peptide or the like can be easily increased.

本発明の融合蛋白質によれば、体内安定性が高く、投与量及び投与頻度が少ない糖尿病治療薬を提供することができる。   According to the fusion protein of the present invention, it is possible to provide a therapeutic agent for diabetes having high in-body stability and low dosage and administration frequency.

本発明の核酸と組換え体によれば、本発明の融合蛋白質を容易に製造することができる。   According to the nucleic acid and recombinant of the present invention, the fusion protein of the present invention can be easily produced.

GLP−1/ApoAI融合蛋白質の精製過程におけるSDS−PAGEの結果を表す写真である。It is a photograph showing the result of SDS-PAGE in the purification process of GLP-1 / ApoAI fusion protein. GLP−1/ApoAI融合蛋白質・脂質複合体のNative−PAGEの結果を表す写真である。It is a photograph showing the result of Native-PAGE of GLP-1 / ApoAI fusion protein / lipid complex. GLP−1/ApoAI融合蛋白質及びGLP−1/ApoAI融合蛋白質・脂質複合体の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of the GLP-1 receptor agonist activity of GLP-1 / ApoAI fusion protein and GLP-1 / ApoAI fusion protein and lipid complex. 既知のGLP−1受容体アンタゴニストを用いた、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of GLP-1 receptor agonist activity using a known GLP-1 receptor antagonist. DDPIVで処理した天然型GLP−1の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of the GLP-1 receptor agonist activity of natural type GLP-1 processed with DDPIV. DDPIVで処理したGLP−1/ApoAI融合蛋白質の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of the GLP-1 receptor agonist activity of the GLP-1 / ApoAI fusion protein processed by DDPIV. DDPIVで処理したGLP−1/ApoAI融合蛋白質・脂質複合体の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of GLP-1 receptor agonist activity of the GLP-1 / ApoAI fusion protein / lipid complex treated with DDPIV. マウスにおける血糖上昇抑制効果の試験結果を表すグラフである。It is a graph showing the test result of the blood glucose rise inhibitory effect in a mouse | mouth. GLP−1とApoAI部分断片との融合ペプチド(ACGL1)の精製過程におけるSDS−PAGEの結果を表す写真である。It is a photograph showing the result of SDS-PAGE in the purification process of the fusion peptide (ACGL1) of GLP-1 and an ApoAI partial fragment. GLP−1とApoAI部分断片との融合ペプチド(ACGL1)の精製過程におけるウエスターンブロッティングの結果を表す写真である。It is a photograph showing the result of Western blotting in the purification process of the fusion peptide (ACGL1) of GLP-1 and an ApoAI partial fragment. 脂質結合型ACGL1のNative−PAGEの結果を表す写真である。It is a photograph showing the result of Native-PAGE of lipid binding type ACGL1. 脂質非結合型ACGL1及び脂質結合型ACGL1の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of GLP-1 receptor agonist activity of lipid non-binding type ACGL1 and lipid binding type ACGL1. 既知のGLP−1受容体アンタゴニストを用いた、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of GLP-1 receptor agonist activity using a known GLP-1 receptor antagonist. DDPIVで処理した天然型GLP−1とACGL1の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of GLP-1 receptor agonist activity of natural GLP-1 and ACGL1 treated with DDPIV. DDPIVで処理した脂質結合型ACGL1の、GLP−1受容体アゴニスト活性の測定結果を表すグラフである。It is a graph showing the measurement result of GLP-1 receptor agonist activity of lipid binding type | mold ACGL1 processed by DDPIV.

本発明は「アポリポ蛋白質AI又はその改変体と、有効成分となる治療用ペプチドとが、ペプチド結合を介して連結してなる融合蛋白質」を主要な構成としている。以下、本発明の実施形態について、当該融合蛋白質の構成を中心として順次説明する。なお、本明細書においては特に断らない限り、蛋白質、ポリペプチド、及びペプチドという用語については厳密な区別をせず、同義の用語として用いる。   The main configuration of the present invention is “a fusion protein in which an apolipoprotein AI or a variant thereof and a therapeutic peptide as an active ingredient are linked via a peptide bond”. Hereinafter, embodiments of the present invention will be sequentially described focusing on the structure of the fusion protein. In the present specification, unless otherwise specified, the terms protein, polypeptide, and peptide are used as synonymous terms without making a strict distinction.

(アポリポ蛋白質AI)
アポリポ蛋白質AI(ApoAI)は、小腸及び肝臓で合成され、通常血中に1.2〜1.7mg/mLと高濃度で存在し、主に高比重リポ蛋白(High Density Lipoprotein;HDL)粒子の主要構成蛋白質として機能する。ヒト成熟型ApoAIは243アミノ酸残基(配列番号1)から成り、その分子量は約28000である。また、その脂質複合体であるHDL粒子の直径は約7〜10nmである。最もコンパクトなHDL粒子は、脂質二重層にApoAIが二分子結合したディスク状構造を有する。
(Apolipoprotein AI)
Apolipoprotein AI (ApoAI) is synthesized in the small intestine and liver, and is usually present in blood at a high concentration of 1.2 to 1.7 mg / mL, and is mainly composed of high density lipoprotein (HDL) particles. Functions as a major constituent protein. Human mature ApoAI consists of 243 amino acid residues (SEQ ID NO: 1) and has a molecular weight of about 28000. Moreover, the diameter of the HDL particle which is the lipid complex is about 7 to 10 nm. The most compact HDL particles have a disk-like structure in which two molecules of ApoAI are bound to a lipid bilayer.

血中でのHDLの主な機能は、末梢細胞の表層の受容体と結合することで、細胞内に蓄積したコレステロールを引き抜き、これを肝臓へ運び、コレステロール排出を行うことである。腎臓では、ApoAIは糸球体で濾過された後、キュビリン(Cubilin)と呼ばれる受容体との結合を介して腎臓近位曲尿細管(Renal proximal convoluted tubule)の上皮細胞へ侵入し、代謝される。ApoAIの体内半減期は約4日である。ApoAI及びHDLのキュビリンに対する親和性は極めて高い(Kozyraki R. et al., Nat. Med. (1999) 5(6), 656-661)。   The main function of HDL in the blood is to extract cholesterol accumulated in cells by binding to receptors on the surface layer of peripheral cells, and transporting it to the liver to excrete cholesterol. In the kidney, ApoAI is filtered through the glomerulus, then enters the epithelial cells of the renal proximal convoluted tubule through the binding with a receptor called Cubilin and is metabolized. ApoAI has a body half-life of about 4 days. The affinity of ApoAI and HDL for cubilin is very high (Kozyraki R. et al., Nat. Med. (1999) 5 (6), 656-661).

また、HDL粒子の細胞透過には、その受容体であるSR−B1(Scavenger receptor B1)やABCA1(ATP-binding cassette transporter A1)、及びABCG1(ATP-binding cassette transporter G1)が関与していると考えられている(Rohrer L.et al., Nat. Med. (2009) 104, 1142-1150)。   In addition, SR-B1 (Scavenger receptor B1), ABCA1 (ATP-binding cassette transporter A1), and ABCG1 (ATP-binding cassette transporter G1) are involved in cell penetration of HDL particles. (Rohrer L. et al., Nat. Med. (2009) 104, 1142-1150).

(アポリポ蛋白質AIの改変体)
本発明における融合蛋白質は、「アポリポ蛋白質AI又はその改変体」を含んでいる。ここで、上述したように、アポリポ蛋白質AIの「改変体」とは、アポリポ蛋白質AIに類似の蛋白質であり、アポリポ蛋白質AIとしての機能を保持しているものを指す。アポリポ蛋白質AIとしての機能を保持している限り、当該改変体には、少なくとも以下の蛋白質・ポリペプチドが含まれる。
・アポリポ蛋白質AIの部分断片、
・アポリポ蛋白質AIの機能ドメインを有する蛋白質・ポリペプチド、
・アポリポ蛋白質AIの1次構造において数個〜十数個程度のアミノ酸残基が欠失、置換若しくは付加された蛋白質・ポリペプチド(アミノ酸変異体)。
(Apolipoprotein AI variant)
The fusion protein in the present invention includes “apolipoprotein AI or a variant thereof”. Here, as described above, the “modified body” of apolipoprotein AI refers to a protein similar to apolipoprotein AI and having a function as apolipoprotein AI. As long as the function as the apolipoprotein AI is retained, the modified substance includes at least the following proteins and polypeptides.
A partial fragment of apolipoprotein AI,
A protein or polypeptide having a functional domain of apolipoprotein AI,
A protein / polypeptide (amino acid variant) in which several to dozens of amino acid residues are deleted, substituted or added in the primary structure of apolipoprotein AI.

アポリポ蛋白質AIの改変体は、融合蛋白質の血中安定性の向上、粘膜や脳関門の透過性の改善等、目的に応じて設計することができる。これらの例示した目的は、例えば、ApoAIやHDLにおける体内受容体との相互作用の欠損もしくは増強、融合蛋白質を含有するHDL粒子径の制御、等により達成できる。   A variant of apolipoprotein AI can be designed according to the purpose, such as improving the blood stability of the fusion protein and improving the permeability of the mucosa and brain barrier. These exemplified objects can be achieved, for example, by deficiency or enhancement of the interaction with internal receptors in ApoAI and HDL, control of the HDL particle size containing the fusion protein, and the like.

例えば、キュビリン結合性が低下又は欠損したApoAIの改変体の使用は、好ましい実施形態の1つである。すなわち、ApoAI及びHDLはキュビリンとの結合を介して腎臓より***される(Kozyraki R. et al., Nat. Med. (1999) 5(6);656-661)。したがって、キュビリン結合性が低下又は欠損したApoAIの改変体は、腎臓での濾過効率が低くなり、天然型ApoAIよりも血中半減期が長くなる。   For example, the use of a variant of ApoAI with reduced or deficient cubillin binding is one preferred embodiment. That is, ApoAI and HDL are excreted from the kidney through binding to cubilin (Kozyraki R. et al., Nat. Med. (1999) 5 (6); 656-661). Therefore, a modified ApoAI with reduced or deficient cubillin binding ability has a lower filtration efficiency in the kidney and a longer half-life in blood than natural ApoAI.

また、融合蛋白質に脂質を結合させた「蛋白質・脂質複合体」を用いる実施形態において、蛋白質・脂質複合体の粒径を大きくすることによって、腎臓での濾過効率を低化させ、その血中半減期を延ばすことが可能である。例えば、ヒト成熟型ApoAIのアミノ酸配列(配列番号1)における、173―243番目の71残基のみで構成される部分断片の脂質複合体の直径は平均12nmであり、天然型HDLのそれよりも1.5倍程度大きくなることが知られている(Sivashanmugam A et al., Methods Cell Biol. (2008) 90, 327-364)。また、173番目のアルギニンがシステインに置換したApoAIのアミノ酸変異体(Apolipoprotein A-I milano)は、システインを介してダイマー構造を形成し、その血中半減期は天然型ApoAIの約2倍に延びることが知られている(Roma P. et al., J. Clin. Invest. (1993) 91, 1445-1452; Chiesa G. et al., Circ. Res. (2002) 90, 974-980)。
このように、血中半減期を延ばすための技術は、ApoAIの改変体を設計する際に利用可能であり、本発明の医薬を注射剤として使用する場合、特に重要である。
Further, in an embodiment using a “protein / lipid complex” in which a lipid is bound to a fusion protein, by increasing the particle size of the protein / lipid complex, the filtration efficiency in the kidney is reduced, and the blood in the blood is reduced. It is possible to extend the half-life. For example, in the amino acid sequence of human mature ApoAI (SEQ ID NO: 1), the diameter of the lipid complex of the partial fragment composed only of the 71st to 243rd residues is 12 nm on average, which is larger than that of natural HDL It is known to be about 1.5 times larger (Sivashanmugam A et al., Methods Cell Biol. (2008) 90, 327-364). In addition, an amino acid variant of ApoAI (Apolipoprotein AI milano ) in which 173rd arginine is substituted with cysteine forms a dimer structure via cysteine, and its blood half-life is about twice that of natural ApoAI. (Roma P. et al., J. Clin. Invest. (1993) 91, 1445-1452; Chiesa G. et al., Circ. Res. (2002) 90, 974-980).
Thus, the technique for extending the blood half-life can be used when designing a variant of ApoAI, and is particularly important when the pharmaceutical agent of the present invention is used as an injection.

アポリポ蛋白質AIの改変体には、アポリポ蛋白質AIの両親媒性配列を有するポリペプチドも含まれる。すなわち、ヒト成熟型ApoAIは、11〜22個のアミノ酸からなる両親媒性ヘリックス構造のペプチド配列(両親媒性配列)が10回繰り返された構造を有する(Segrest JP et al., FEBS Lett. (1974) 38, 247-253)。具体的には、配列番号1において、各両親媒性配列は、それぞれ、アミノ酸番号で44〜65番目、66〜87番目、88〜98番目、99〜120番目、121〜142番目、143〜164番目、165〜186番目、187〜208番目、209〜219番目、及び220〜241番目の配列に相当する。   Variants of apolipoprotein AI also include polypeptides having an apolipoprotein AI amphipathic sequence. That is, human mature ApoAI has a structure in which a peptide sequence (amphipathic sequence) consisting of 11 to 22 amino acids is repeated 10 times (Segrest JP et al., FEBS Lett. ( 1974) 38, 247-253). Specifically, in SEQ ID NO: 1, the amphipathic sequences are amino acid numbers 44 to 65, 66 to 87, 88 to 98, 99 to 120, 121 to 142, 143 to 164, respectively. 165th to 186th, 187th to 208th, 209th to 219th, and 220th to 241st sequences.

一方、ApoAI様の両親媒性ヘリックス構造を含むペプチドは経口投与が可能であり、ApoAIと同様の動脈硬化抑制作用を示すことが知られている(国際公開02/15923号; Navab M. et al.,Arterioscler. Thromb. Vasc. Biol. (2010) 30, 164-168)。このことは、ApoAI由来両親媒性ヘリックス配列は、細胞膜(脂質二重層)と親和性があり、さらに細胞膜を透過できることを示す。したがって、アポリポ蛋白質AIの両親媒性配列を有するポリペプチドと治療用ペプチドとの融合蛋白質は、経口投与が可能である。   On the other hand, peptides containing an ApoAI-like amphipathic helix structure can be administered orally and are known to exhibit arteriosclerosis inhibitory activity similar to ApoAI (WO 02/15923; Navab M. et al Arterioscler. Thromb. Vasc. Biol. (2010) 30, 164-168). This indicates that the ApoAI-derived amphipathic helix sequence has affinity for the cell membrane (lipid bilayer) and can penetrate the cell membrane. Therefore, a fusion protein of a polypeptide having an amphipathic sequence of apolipoprotein AI and a therapeutic peptide can be administered orally.

例えば、配列番号1のアミノ酸番号1〜43番目の配列は脂質結合に関与しない。したがって、この領域が削除された200アミノ酸のみから成るApoAIの部分断片は、脂質結合性を保持するため、本発明に適用可能である。また、上記10種類の両親媒性配列のいずれか1種又は2種以上、好ましくは1〜6種の配列の組み合わせも、本発明に適用可能である。さらには1種類の両親媒性配列が複数回繰り返された配列を利用してもよい。   For example, the amino acid numbers 1 to 43 of SEQ ID NO: 1 are not involved in lipid binding. Therefore, a partial fragment of ApoAI consisting of only 200 amino acids from which this region has been deleted retains lipid binding and is applicable to the present invention. In addition, any one or more of the ten types of amphipathic sequences described above, and preferably combinations of 1 to 6 sequences are also applicable to the present invention. Furthermore, a sequence in which one kind of amphiphilic sequence is repeated a plurality of times may be used.

また、上記10種類の両親媒性配列のうち、44〜65番目と220〜241番目の配列は、他の8種に比べてリン脂質により強く結合し、リン脂質を可溶化することができる(Palgunachari NN et al., Arterioscler. Thromb. Vasc. Biol. (1996) 16(2), 328-338)。したがって、これらの配列を1回以上含む配列を用いることは有用である。   In addition, among the ten types of amphipathic sequences, the 44th to 65th and 220th to 241st sequences can bind to phospholipids more strongly than other 8 types and solubilize phospholipids ( Palgunachari NN et al., Arterioscler. Thromb. Vasc. Biol. (1996) 16 (2), 328-338). Therefore, it is useful to use a sequence containing these sequences one or more times.

隣接する2種類の両親媒性配列を利用する場合は、44〜65番目と66〜87番目の配列を組み合わせた44アミノ酸の配列や、209〜219番目と220〜241番目の配列を組み合わせた33アミノ酸の配列が、特に好ましい。これらの配列は、他の隣接する2種類の配列の組み合わせより強いリン脂質結合性と可溶化能を示す(Mishra VK et al., Biochemistry (1998) 37, 10313-10323)。   When two adjacent types of amphipathic sequences are used, a sequence of 44 amino acids combining the 44th to 65th sequences and the 66th to 87th sequences, and a combination of the 209th to 219th sequences and the 220th to 241st sequences are combined. The amino acid sequence is particularly preferred. These sequences show stronger phospholipid binding and solubilization capacity than the combination of two other adjacent sequences (Mishra VK et al., Biochemistry (1998) 37, 10313-10323).

上記ヒトApoAI由来ペプチド配列以外にも、これらを模倣したクラスAの両親媒性ペプチドモチーフ(Segrest JP et al., Proteins (1990) 8, 103-117)である人工配列(模倣ペプチド)も、ヒトでの副作用が低く臨床応用が可能なものであれば使用可能である。当該模倣ペプチドの例としては、脂質結合性を有する両親媒性ペプチドであるAc−18A−NH2、及びその関連ペプチド配列(Datta G et al., J. Lioid Res. (2001) 42, 1096-1104; Navab M. et al., Curr. Opin. Invest. Drugs (2003) 4(9), 1100-1104)等が挙げられる。具体的には、配列番号10〜16に示すアミノ酸配列からなる各ペプチドが挙げられる。配列番号10は、Ac−18A−NH2のアミノ酸配列である。配列番号11〜16はAc−18A−NH2の関連ペプチドのアミノ酸配列である。配列番号11は、Ac−18A−NH2の3番目のアミノ酸をフェニルアラニン(Phe)に置換した配列に相当する。配列番号12は、Ac−18A−NH2の14番目のアミノ酸をフェニルアラニン(Phe)に置換した配列に相当する。配列番号13は、Ac−18A−NH2の3番目と14番目のアミノ酸をフェニルアラニン(Phe)に置換した配列に相当する。配列番号14は、Ac−18A−NH2の11番目、14番目、17番目のアミノ酸をフェニルアラニン(Phe)に置換した配列に相当する。配列番号15は、Ac−18A−NH2の10番目、11番目、14番目、17番目のアミノ酸をフェニルアラニン(Phe)に置換した配列に相当する。配列番号16は、Ac−18A−NH2の3番目、10番目、11番目、14番目、17番目のアミノ酸をフェニルアラニン(Phe)に置換した配列に相当する。   In addition to the above human ApoAI-derived peptide sequences, artificial sequences (mimetic peptides) that are class A amphipathic peptide motifs (Segrest JP et al., Proteins (1990) 8, 103-117) mimicking these are also human. Can be used if it has low side effects and can be clinically applied. Examples of the mimetic peptide include Ac-18A-NH2, which is an amphipathic peptide having lipid binding properties, and related peptide sequences (Datta G et al., J. Lioid Res. (2001) 42, 1096-1104). Navab M. et al., Curr. Opin. Invest. Drugs (2003) 4 (9), 1100-1104). Specifically, each peptide which consists of an amino acid sequence shown to sequence number 10-16 is mentioned. SEQ ID NO: 10 is the amino acid sequence of Ac-18A-NH2. SEQ ID NOs: 11 to 16 are amino acid sequences of related peptides of Ac-18A-NH2. SEQ ID NO: 11 corresponds to the sequence in which the third amino acid of Ac-18A-NH2 is substituted with phenylalanine (Phe). SEQ ID NO: 12 corresponds to the sequence in which the 14th amino acid of Ac-18A-NH2 is substituted with phenylalanine (Phe). SEQ ID NO: 13 corresponds to the sequence in which the 3rd and 14th amino acids of Ac-18A-NH2 are substituted with phenylalanine (Phe). SEQ ID NO: 14 corresponds to the sequence in which the 11th, 14th, and 17th amino acids of Ac-18A-NH2 were substituted with phenylalanine (Phe). SEQ ID NO: 15 corresponds to the sequence in which the 10th, 11th, 14th, and 17th amino acids of Ac-18A-NH2 were substituted with phenylalanine (Phe). SEQ ID NO: 16 corresponds to the sequence in which the third, tenth, eleventh, fourteenth, and seventeenth amino acids of Ac-18A-NH2 were substituted with phenylalanine (Phe).

(治療用ペプチド)
本発明における融合蛋白質は、治療用ペプチドを含んでいる。治療用ペプチドとしては特に限定はなく、医薬の有効成分となり得る全ての蛋白質やペプチドが対象となる。例えば、細胞表層受容体に対するアゴニスト、血糖をコントロールする機能を有する蛋白質・ペプチド、及びインスリン抵抗性改善機能を有する蛋白質・ペプチド、サイトカイン又はケモカインに対する可溶性受容体は、本発明における治療用ペプチドとして好適である。
具体例としては、グルカゴン様ペプチド-1(GLP−1)、グルカゴン、EXENDIN、エリスロポエチン、インターフェロン、可溶性サイトカイン受容体、可溶性ケモカイン受容体、卵胞刺激ホルモン(FSH)、甲状腺ホルモン、ヒト成長ホルモン(hGH)、ナトリウム利尿ペプチド、顆粒球コロニー刺激因子(G−CSF)、顆粒球マクロファージ・コロニー刺激因子(GM−CSF)、脂肪動員ホルモン阻害因子(AGIF)、成長ホルモン放出因子、神経成長因子(NGF),毛様体神経栄養因子(CNTF)、血管形成阻害因子(Angiostatin)、アポリポ蛋白B可溶性受容体、ニューロペプチドB(NPB)、ペプチドチロシンチロシン(PYY)、ケマリン(Chemerin)、レプチン、アペリン(Apelin)、ネスファチン、オキシトシン、メラノコルチン、アミリン、オレキシン、アディポネクチン、グレリン、等が挙げられる。さらに、これらの蛋白質・ペプチドと同一機能(同一活性)を有するアナログ、変異体、人工ペプチドが挙げられる。さらに、免疫グロブリンのVH領域とVL領域のいずれか一方又は両方を含むポリペプチドであって、前記した蛋白質・ペプチドと同一機能(同一活性)を有するものも、治療用ペプチドとなり得る。また、線維症治療薬の候補であるスーパーオキサイドジスムターゼ(SOD)のような酵素蛋白も、治療用ペプチドとなり得る。
(Therapeutic peptide)
The fusion protein in the present invention contains a therapeutic peptide. There are no particular limitations on the therapeutic peptide, and all proteins and peptides that can be active pharmaceutical ingredients are targeted. For example, agonists for cell surface receptors, proteins / peptides having a function of controlling blood glucose, and proteins / peptides having a function of improving insulin resistance, soluble receptors for cytokines or chemokines are suitable as therapeutic peptides in the present invention. is there.
Specific examples include glucagon-like peptide-1 (GLP-1), glucagon, EXENDIN, erythropoietin, interferon, soluble cytokine receptor, soluble chemokine receptor, follicle stimulating hormone (FSH), thyroid hormone, human growth hormone (hGH) , Natriuretic peptide, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), fat mobilizing hormone inhibitory factor (AGIF), growth hormone releasing factor, nerve growth factor (NGF), Ciliary neurotrophic factor (CNTF), angiogenesis inhibitor (Angiostatin), apolipoprotein B soluble receptor, neuropeptide B (NPB), peptide tyrosine tyrosine (PYY), chemerin, leptin, apelin , Nesfatin, Oxyto Emissions, melanocortin, amylin, orexin, adiponectin, ghrelin, and the like. Furthermore, analogs, mutants, and artificial peptides having the same function (same activity) as these proteins and peptides can be mentioned. Furthermore, a polypeptide containing either or both of the VH region and VL region of an immunoglobulin and having the same function (same activity) as the aforementioned protein / peptide can also be a therapeutic peptide. An enzyme protein such as superoxide dismutase (SOD), which is a candidate for the treatment of fibrosis, can also be a therapeutic peptide.

(他の構成要素:蛋白質分解酵素の阻害剤)
本発明で用いる融合蛋白質には、治療用ペプチドとは別に、治療用ペプチドに対する分解酵素の阻害剤がさらに連結されていてもよい。当該阻害剤を連結させることにより、治療用ペプチドの分解が抑えられ、血中半減期が長くなり、治療用ペプチドの生体内での効果をさらに高めることができる。これにより、投薬量と投薬頻度を減らすことも可能となる。例えば、ジペプチジルペプチダーゼIV(DPPIV)の阻害剤は、治療用ペプチドがGLP−1である場合に好適である。
(Other components: inhibitors of proteolytic enzymes)
In addition to the therapeutic peptide, an inhibitor of a degrading enzyme for the therapeutic peptide may be further linked to the fusion protein used in the present invention. By linking the inhibitor, degradation of the therapeutic peptide is suppressed, the blood half-life is increased, and the effect of the therapeutic peptide in vivo can be further enhanced. This also makes it possible to reduce dosage and dosing frequency. For example, an inhibitor of dipeptidyl peptidase IV (DPPIV) is suitable when the therapeutic peptide is GLP-1.

(他の構成要素:第2の治療成分)
本発明で用いる融合蛋白質には、治療用ペプチドとは別に、第2の治療成分がさらに連結されていてもよい。1つの実施形態では、治療用ペプチドが血糖をコントロールする機能を有するもの又はGLP−1アゴニストであり、第2の治療成分が膵臓疾患治療薬又は肝臓疾患治療薬である。この場合、第2の治療成分は、炎症抑制剤、抗癌剤、又は肝硬変治療剤であってもよい。
例えば、GLP−1とApoAIとの融合蛋白質の場合、膵臓にはGLP−1受容体が存在し、肝臓にはApoAI受容体が存在するので、この融合蛋白質は膵臓と肝臓に対して指向性を有する。そのため、この融合蛋白質によって膵臓や肝臓疾患に有効な治療薬を運ばせることも可能となる。一方、糖尿病患者の中には、膵炎、膵臓癌等の膵臓疾患を基礎疾患としていたり、肝硬変、肝線維症、肝臓癌、肝炎を併発するケースが多々ある。したがって、GLP−1とApoAIとの融合蛋白質の場合、GLP−1が治療用ペプチド(糖尿病治療用)となるが、上記のような膵臓、肝臓の疾患治療薬を第2の治療成分としてこの融合蛋白質に結合させることは有用である。このように、糖尿病に併発する膵臓、肝臓疾患の治療薬も組織指向性を持たせて効率的に利用することは、糖尿病の治療には重要である。
(Other components: second therapeutic component)
In addition to the therapeutic peptide, a second therapeutic component may be further linked to the fusion protein used in the present invention. In one embodiment, the therapeutic peptide has a function of controlling blood glucose or a GLP-1 agonist, and the second therapeutic component is a pancreatic disease therapeutic agent or a liver disease therapeutic agent. In this case, the second therapeutic component may be an inflammation inhibitor, an anticancer agent, or a cirrhosis therapeutic agent.
For example, in the case of a fusion protein of GLP-1 and ApoAI, since the GLP-1 receptor is present in the pancreas and the ApoAI receptor is present in the liver, this fusion protein is directed to the pancreas and liver. Have. Therefore, it is possible to carry an effective therapeutic agent for pancreas and liver diseases by this fusion protein. On the other hand, there are many cases in which diabetic patients have pancreatic diseases such as pancreatitis and pancreatic cancer as a basic disease, or cirrhosis, liver fibrosis, liver cancer and hepatitis. Therefore, in the case of a fusion protein of GLP-1 and ApoAI, GLP-1 becomes a therapeutic peptide (for the treatment of diabetes), but this fusion is used as a therapeutic agent for pancreatic and liver diseases as a second therapeutic component. It is useful to bind to proteins. As described above, it is important for the treatment of diabetes to effectively use therapeutic agents for pancreatic and liver diseases that are accompanied by diabetes with tissue orientation.

(他の構成要素:リンカー)
本発明で用いる融合蛋白質において、ApoAI又はその改変体と治療用ペプチドとの間に、リンカーを介在させてもよい。リンカーは、できるだけヒトでの免疫応答を誘発しないものが好ましい、人工配列であれば、例えば、グリシン及びセリンから成る5アミノ酸配列である(GGGGS;配列番号9)の1〜4回繰り返し配列、もしくはこれに類似する配列が使用可能である。また、ヒト血中に、好ましくは1mg/mL以上の濃度で存在する蛋白質、例えば免疫グロブリンのヒンジ配列をリンカーとして使用することができる。ヒト血中に大量に存在する蛋白質由来の配列であれば、ヒトでの免疫応答を誘発させる可能性は低い。
(Other components: linker)
In the fusion protein used in the present invention, a linker may be interposed between ApoAI or a variant thereof and the therapeutic peptide. The linker is preferably one that does not elicit an immune response in humans as much as possible, and if it is an artificial sequence, for example, a 5-amino acid sequence consisting of glycine and serine (GGGGGS; SEQ ID NO: 9) is repeated 1-4 times Similar sequences can be used. Further, a protein present in human blood, preferably at a concentration of 1 mg / mL or more, such as an immunoglobulin hinge sequence, can be used as a linker. If it is a sequence derived from a protein present in a large amount in human blood, it is unlikely to induce an immune response in humans.

(治療用ペプチドの連結様式等)
上記融合蛋白質においては、ApoAIの機能に影響を与えない限り、同種の治療用ペプチドを2回以上繰り返して連結してもよい。なお、この場合は、治療用ペプチド自身がリンカーの役割も兼ねることができる。
治療ペプチドの部分配列をリンカーとして用いてもよい。
(Therapeutic peptide linkage mode, etc.)
In the above fusion protein, as long as the function of ApoAI is not affected, the same kind of therapeutic peptide may be repeatedly linked two or more times. In this case, the therapeutic peptide itself can also serve as a linker.
A partial sequence of the therapeutic peptide may be used as a linker.

治療用ペプチドの連結位置は、ApoAI又はその改変体のN末端、C末端のいずれでもよく、両末端でもよい。   The linking position of the therapeutic peptide may be either the N-terminus or C-terminus of ApoAI or a variant thereof, or may be both ends.

(治療用ペプチドの例:グルカゴン様ペプチド−1)
グルカゴン様ペプチド−1(GLP−1)は小腸L細胞から分泌される30〜31アミノ酸から成るペプチドホルモンであり、膵臓β細胞においてグルコース依存的なインスリン分泌の亢進作用を示す。このことから、GLP−1受容体アゴニストによる血糖コントロールは、インスリンによるそれに比べて、低血糖になるリクスが極めて少ないと考えられている(Halimi S. et al., Diabetes and Metabolism (2003) 34, S91-S95)。また、GLP−1は血糖コントロールのみならず、食欲低下、膵β細胞の分化・増殖促進及びアポトーシス抑制、さらには神経保護等の作用があり、GLP−1作用を示す治療薬は、II型糖尿病や肥満等の新しい機能の治療薬として期待されている。
(Example of therapeutic peptide: glucagon-like peptide-1)
Glucagon-like peptide-1 (GLP-1) is a peptide hormone composed of 30 to 31 amino acids secreted from small intestine L cells, and exhibits a glucose-dependent insulin secretion enhancing action in pancreatic β cells. Therefore, it is considered that the glycemic control by the GLP-1 receptor agonist is extremely less rickety that becomes hypoglycemic than that by insulin (Halimi S. et al., Diabetes and Metabolism (2003) 34, S91-S95). GLP-1 has not only blood glucose control, but also an appetite decrease, pancreatic β-cell differentiation / proliferation promotion and apoptosis inhibition, and further neuroprotection, etc. The therapeutic agent exhibiting GLP-1 action is type II diabetes It is expected as a therapeutic agent for new functions such as obesity and obesity.

しかしながら、GLP−1は、生体内でジペプチジルペプチダーゼIV(DPPIV)によって速やかに分解されてしまうため、その半減期は1〜2分であり(Kieffer TJ et al., Endocrinology (1995) 136(8), 3585-3596)、そのまま治療薬として利用することは困難である。そのためDPPIV阻害剤、及び、血中半減期が増大したGLP−1アナログの両方向の開発が進められてきた(Halimi S. et al., Diabetes and Metabolism (2003) 34, S91-S95)。GLP−1アナログとして、現在、Exenatide及びLiraglutideが実用化されている。ExenatideはGLP−1とのアミノ酸配列の相同性が53%と低い。一方、Liraglutideは、天然型GLP−1に対して1アミノ酸の置換による変異、及び1アミノ酸の脂肪酸修飾が施されている。しかしながら、これらの体内安定性はまだ低く、1日に1〜2回の注射が必要である。   However, since GLP-1 is rapidly degraded in vivo by dipeptidyl peptidase IV (DPPIV), its half-life is 1-2 minutes (Kieffer TJ et al., Endocrinology (1995) 136 (8). ), 3585-3596), it is difficult to use as it is as a therapeutic agent. Therefore, development of both directions of DPPIV inhibitors and GLP-1 analogs with increased blood half-life has been promoted (Halimi S. et al., Diabetes and Metabolism (2003) 34, S91-S95). Exenatide and Liraglutide are currently in practical use as GLP-1 analogs. Exenatide has a low amino acid sequence homology of 53% with GLP-1. On the other hand, Liraglutide is subjected to mutation by substitution of 1 amino acid and modification of fatty acid of 1 amino acid to natural GLP-1. However, their internal stability is still low, requiring 1-2 injections per day.

また、Exenatideの抗体産生率は40〜45%、Liraglutideの抗体産生率は9〜13%であったと報告されている(De Block CE et al., Lancet (2009) 374, 4-6; Klonoff DC et al., Curr. Med. Res. Opin. (2008) 24, 275-286)。これらのGLP−1アナログ薬に対する抗体産生は、その薬効を低減させるのみならず、重篤な免疫疾患を誘発する可能性がある。   Moreover, it was reported that the antibody production rate of Exenatide was 40 to 45%, and the antibody production rate of Liraglutide was 9 to 13% (De Block CE et al., Lancet (2009) 374, 4-6; Klonoff DC et al., Curr. Med. Res. Opin. (2008) 24, 275-286). Antibody production against these GLP-1 analog drugs not only reduces their efficacy but may induce serious immune diseases.

本発明では、治療用ペプチドとして、GLP−1、並びに、GLP−1と同一機能(同一活性)を有するアナログ、変異体、人工ペプチド、及び免疫グロブリンのVH領域とVL領域のいずれか一方又は両方を含むポリペプチド、等(これらを総称して、「GLP−1活性を有するポリペプチド」と称する)の全てが利用可能である。好ましくは、GLP−1に対するアミノ酸配列の相同性が93%以上で、かつGLP−1活性を有するポリペプチドを利用する。GLP−1としては、配列番号2に示す31アミノ酸からなる配列のポリペプチド(天然型GLP−1のアミノ酸番号7〜37に相当)の他、配列番号2のアミノ酸番号1〜30、1〜29、又は1〜28に相当するポリペプチドを利用することができる。具体的には、例えば、GLP−1とアミノ酸相同性が100%の配列、配列番号2のアミノ酸番号2(天然型GLP−1の8番目)のアミノ酸であるアラニンがグリシン又はセリンに変換された配列、或いは、これらのN末端にメチオニン又はリジンが1残基付加された配列、等を有する治療ペプチドを使用する。
DPPIVは、GLP−1アミノ酸配列の8番目のアラニンと9番目のグルタミン酸の間を切断する作用があり、また7番目のヒスチジン及び9番目のグルタミン酸はGLP−1機能に重要である。このことから、疎水性アミノ酸である8番目のアラニンをセリン等の親水性アミノ酸もしくは、最も分子サイズの小さいアミノ酸であるグリシンに変換することで、GLP−1機能を極端に低下させることなく、DPPIVに対する感受性をある程度低下させることが可能である。
In the present invention, as therapeutic peptides, GLP-1 and analogs, mutants, artificial peptides having the same function (same activity) as GLP-1, and either or both of VH region and VL region of immunoglobulin And the like (collectively referred to as “polypeptides having GLP-1 activity”) are available. Preferably, a polypeptide having an amino acid sequence homology of 93% or more to GLP-1 and having GLP-1 activity is used. Examples of GLP-1 include a polypeptide having a sequence of 31 amino acids shown in SEQ ID NO: 2 (corresponding to amino acids No. 7 to 37 of natural GLP-1), and amino acid Nos. 1 to 30 and 1-29 of SEQ ID NO: 2. Alternatively, polypeptides corresponding to 1 to 28 can be used. Specifically, for example, a sequence having 100% amino acid homology with GLP-1 and alanine which is amino acid No. 2 of SEQ ID NO: 2 (8th of natural GLP-1) were converted to glycine or serine. A therapeutic peptide having a sequence or a sequence in which one residue of methionine or lysine is added to the N-terminus thereof is used.
DPPIV acts to cleave between the 8th alanine and 9th glutamic acid in the GLP-1 amino acid sequence, and the 7th histidine and 9th glutamic acid are important for GLP-1 function. From this, the 8th alanine which is a hydrophobic amino acid is converted to a hydrophilic amino acid such as serine or glycine which is an amino acid having the smallest molecular size, thereby reducing the GLP-1 function without drastically reducing the function of DPPIV. It is possible to reduce the sensitivity to.

治療用ペプチドがGLP−1活性を有するポリペプチドである場合も、上記融合蛋白質において、ApoAI又はその改変体とGLP−1活性を有するポリペプチドとの間にリンカーを介在させてもよい。また、ApoAIの機能に影響を与えない限り、GLP−1活性を有するポリペプチドを2回以上繰り返して連結させてもよい。この場合は、GLP−1活性を有するポリペプチド自身が、リンカーの役割も兼ねることができる。   Even when the therapeutic peptide is a polypeptide having GLP-1 activity, a linker may be interposed between ApoAI or a variant thereof and the polypeptide having GLP-1 activity in the fusion protein. Moreover, as long as the function of ApoAI is not affected, a polypeptide having GLP-1 activity may be linked two or more times. In this case, the polypeptide having GLP-1 activity itself can also serve as a linker.

配列番号7,8に、ApoAIとGLP−1活性を有するポリペプチドとの融合蛋白質の一例を示す。この融合蛋白質は、N末端から順に、GLP−1(アミノ酸番号2〜31;30アミノ酸)、リンカー(アミノ酸番号32〜46;15アミノ酸)、及びApoAI(アミノ酸番号47〜289;243アミノ酸)が連結された基本構造を有している。ApoAIの部分(243アミノ酸)のアミノ酸配列は、配列番号1に示したものと同じである。   SEQ ID NOs: 7 and 8 show examples of fusion proteins of ApoAI and a polypeptide having GLP-1 activity. In this fusion protein, GLP-1 (amino acid numbers 2 to 31; 30 amino acids), a linker (amino acids numbers 32 to 46; 15 amino acids), and ApoAI (amino acid numbers 47 to 289; 243 amino acids) are linked in order from the N-terminus. Has a basic structure. The amino acid sequence of the ApoAI part (243 amino acids) is the same as that shown in SEQ ID NO: 1.

(治療用ペプチドの例:エリスロポエチン)
エリスロポエチン(Epo)は、成熟赤血球細胞の生産に必要な天然に生じる造血成長因子である。成熟型Epoは、165アミノ酸から成る18.4kDのポリペプチドに糖鎖が付加された、約35kDの糖蛋白質である。Epoは、初期および後期の赤血球特異的前駆細胞の増殖ならびに前赤芽球のヘモグロビン化および成熟赤血球へのそれらの分化を刺激する(Roberts D. et al., J. Mol. J. Endocrinology (1994) 12(2), 131-148)。Epo受容体は脳にも存在し、Epoは脳の機能、発達にも重要であることが知られている(Lappin T., The Oncologist (2003) 8 (suppl. 1), 15-18)。
(Example of therapeutic peptide: erythropoietin)
Erythropoietin (Epo) is a naturally occurring hematopoietic growth factor necessary for the production of mature red blood cells. Mature Epo is a glycoprotein of about 35 kD in which a sugar chain is added to a 18.4 kD polypeptide consisting of 165 amino acids. Epo stimulates the proliferation of early and late erythroid-specific progenitors and their differentiation into pro-erythroblasts hemoglobin and mature erythrocytes (Roberts D. et al., J. Mol. J. Endocrinology (1994). ) 12 (2), 131-148). Epo receptors are also present in the brain, and Epo is known to be important for brain function and development (Lappin T., The Oncologist (2003) 8 (suppl. 1), 15-18).

現在では、組換えヒトEpo(rEpo)は、腎不全患者の腎性貧血の治療に用いられており、確立された市場を有している。しかしながら、rEpoの血中半減期は6〜8時間と短く、週に2〜3回の注射が必要である(Macdougall IC, Clin. J. Am. Soc. Nephrol. (2008) 3, 200-207)。腎不全患者は年々増加しており、腎性貧血を治療・予防するためのrEpo注射の頻度をより低減することや、Epo製剤の経口投与化や経粘膜投与化によって通院頻度を低減することは、患者のQOL及び医療経済の面から重要な課題である。   Currently, recombinant human Epo (rEpo) is used to treat renal anemia in patients with renal failure and has an established market. However, rEpo has a short blood half-life of 6-8 hours and requires 2-3 injections per week (Macdougall IC, Clin. J. Am. Soc. Nephrol. (2008) 3, 200-207. ). The number of patients with renal insufficiency is increasing year by year. Reducing the frequency of rEpo injection to treat / prevent renal anemia, or reducing the frequency of outpatients by oral administration or transmucosal administration of Epo preparations This is an important issue in terms of patient QOL and medical economy.

一般に、免疫グロブリンは血中半減期が約20日と非常に安定している。そのため、rEpoの代替としてのEPO受容体アゴニスト抗体の開発も行われて来た(国際公開00/61637号;国際公開2007/120766号)。しかしながら、rEpoに匹敵するアゴニスト活性を有する抗体はまだ得られていない。
一方、近年、Epo受容体アゴニストである人工ペプチド「Hematide」が開発されている。これはファージディスプレイペプチドライブラリーから、Epo受容体アゴニストとして選抜された人工ペプチドが、PEG化によって安定化されたものである。この薬剤は、4週に1回の注射で貧血を抑制できる(Macdougall IC et al., N. Engl.J. Med. (2009) 361, 1848-1855)。しかしながら、腎性貧血患者にとっては、EPO受容体アゴニスト療法は、生涯必要とされる。長年に渡るPEG等の化学物質投与の安全性は、現時点で保証されているわけではない。また、「Hematide」は完全な人工アミノ酸配列を有するため、これに対する抗体産生も起こり得る。
In general, immunoglobulins have a very stable blood half-life of about 20 days. Therefore, development of an EPO receptor agonist antibody as an alternative to rEpo has also been carried out (International Publication No. 00/61637; International Publication No. 2007/120766). However, an antibody having agonist activity comparable to rEpo has not been obtained yet.
On the other hand, in recent years, an artificial peptide “Hemate” which is an Epo receptor agonist has been developed. This is an artificial peptide selected as an Epo receptor agonist from a phage display peptide library and stabilized by PEGylation. This drug can suppress anemia once every four weeks (Macdougall IC et al., N. Engl. J. Med. (2009) 361, 1848-1855). However, for patients with renal anemia, EPO receptor agonist therapy is needed throughout life. The safety of administration of chemical substances such as PEG for many years is not guaranteed at present. In addition, since “Hematetide” has a complete artificial amino acid sequence, antibody production against this can occur.

そこで、Epoの新規キャリアとしてApoAI又はその改変体を使用すれば、上記課題を解決することができる。すなわち、上記融合蛋白質において、治療用ペプチドとしてEpo活性を有するポリペプチドを採用することで、安全かつ有効な治療薬を提供することができる。Epo活性を有するポリペプチドとしては、天然型Epo、並びに、Epoと同一機能(同一活性)を有するアナログ、変異体、人工ペプチド、及び「免疫グロブリンのVH領域とVL領域のいずれか一方又は両方を含むポリペプチド」、等が挙げられる。   Then, if ApoAI or its modification is used as a new carrier of Epo, the said subject can be solved. That is, in the above fusion protein, a safe and effective therapeutic agent can be provided by employing a polypeptide having Epo activity as a therapeutic peptide. Polypeptides having Epo activity include natural Epo and analogs, mutants, artificial peptides having the same function (same activity) as Epo, and “one or both of the VH and VL regions of immunoglobulins. A polypeptide comprising ", and the like.

(治療用ペプチドの例:ヒト成長ホルモン)
ヒト成長ホルモン(hGH)は脳下垂体前葉の成長ホルモン分泌細胞(Somatotroph)から分泌される、191アミノ酸からなる22kDaのペプチドである。hGHは小児におけるhHG分泌不全症、ターナー症候群、及びプラダーウィリー症候群等の治療に用いられている。さらに近年では、成人における重症hGH分泌不全症に適用されている他、抗老化、美容医学における応用も期待されている。
本発明において、上記融合蛋白質の治療用ペプチドとして、hGH活性を有するポリペプチドを採用することができる。hGH活性を有するポリペプチドとしては、天然型hGH、並びに、hGHと同一機能(同一活性)を有するアナログ、変異体、人工ペプチド、及び「免疫グロブリンのVH領域とVL領域のいずれか一方又は両方を含むポリペプチド」、等が挙げられる。
(Example of therapeutic peptide: human growth hormone)
Human growth hormone (hGH) is a 22 kDa peptide consisting of 191 amino acids secreted from growth hormone secreting cells (Somatotroph) in the anterior pituitary gland. hGH is used for the treatment of hHG secretion deficiency, Turner syndrome, Prader-Willi syndrome and the like in children. Furthermore, in recent years, in addition to being applied to severe hGH secretion deficiency in adults, application in anti-aging and aesthetic medicine is also expected.
In the present invention, a polypeptide having hGH activity can be employed as the therapeutic peptide for the fusion protein. Polypeptides having hGH activity include natural hGH and analogs, mutants, artificial peptides having the same function (same activity) as hGH, and “one or both of immunoglobulin VH region and VL region. A polypeptide comprising ", and the like.

(蛋白質・脂質複合体)
上記融合蛋白質は、脂質との複合体を形成させることなく、そのまま医薬等として使用することができる。すなわち、上記融合蛋白質をそのまま「脂質非結合型」として生体内に投与した場合、この融合蛋白質は、血流を循環する間に、細胞膜を形成するリン脂質やコレステロール(CO)と結合し、HDL様粒子を形成する。さらに、血中に存在するLCAT(Lecithin cholesterol acyltransferase)の作用によってCOはコレステロールエステル(CE)に変換され、融合蛋白質を含むHDL粒子の内部にCEは蓄積する。COやCEを保持した上記融合蛋白質を含有するHDL様粒子は、肝臓で受容体を介して、CO及びCEを***するが、この際、融合蛋白質は天然のApoAI同様、HDL粒子として再利用されるか、もしくはエンドサイトーシスによって取り込まれ、分解を受ける。このような体内動態の過程で、上記融合蛋白質は、自身が有する治療用ペプチドの作用を標的組織で発揮する。
(Protein / lipid complex)
The fusion protein can be used as it is as a medicine without forming a complex with lipid. That is, when the above fusion protein is directly administered to a living body as a “non-lipid-binding type”, this fusion protein binds to phospholipids and cholesterol (CO) that form a cell membrane while circulating in the bloodstream, and HDL. To form like particles. Furthermore, CO is converted into cholesterol ester (CE) by the action of LCAT (Lecithin cholesterol acyltransferase) present in the blood, and CE accumulates inside the HDL particles containing the fusion protein. HDL-like particles containing the above fusion protein retaining CO or CE excrete CO and CE via receptors in the liver. At this time, the fusion protein is reused as HDL particles, like natural ApoAI. Or is taken up by endocytosis and undergoes degradation. In the course of such pharmacokinetics, the fusion protein exerts the action of its own therapeutic peptide in the target tissue.

一方、上記融合蛋白質は、脂質と結合させた「脂質結合型」として使用することもできる。すなわち本発明は、上記融合蛋白質に脂質がさらに結合し、蛋白質・脂質複合体を形成している態様、換言すれば、上記融合蛋白質に脂質が結合してなる蛋白質・脂質複合体を含有する医薬、も包含する。
この蛋白質・脂質複合体は、脂質二重層の安定構造をとる。二重層を形成する脂質としては、一般的にはリン脂質であるが、その他にスフィンゴ脂質、糖脂質、アルキルホスホリピド、エーテル脂質、及びプラズマローゲン等がある。これらの内の1種類を使用するか、もしくは2種類以上を混合して使用する。適当なリン脂質としては、例えば、DMPC(dimyristoyl phosphatidylcholine)、DMPG(dimyristoyl phosphatidylglycerol)、POPC(palmitoyloleoyl phosphatidylcholine)、DPPC(dipalmitoyl phosphatidylcholine)、DPPS(dipalmitoyl phosphatidylserine)、カルジオリピン、DPPG(dipalmitoyl phosphatidylglycerol)、DSPG(distearoyl phosphatidylglycerol)、DSPC(distearoyl phosphatidylcholine)、卵黄ホスファチジルコリン、大豆ホスファチジルコリン、ホスファチジルイノシトール、ホスファチジン酸、スフィンゴミエリンおよびカチオン性リン脂質、等が使用可能である。これらのリン脂質用いて、例えば、「Reconstitution of High-Density Lipoproteins; Jonas A., Methods in Enzymology (1986) 128, 553-582」に記載の方法に従って、上記融合蛋白質とリン脂質との複合体(蛋白質・脂質複合体)を調製することができる。上記融合蛋白質は単独で、二重層を形成しない脂質と会合させてもよく、また融合蛋白質と上記のような二重層を形成するリン脂質との複合体に、さらに、二重層を形成しない脂質を含ませてもよい。このような二重層を形成しない脂質として、例えば、コレステロール、トリグリセリド、カルジオリピン、ホスファチジルエタノールアミン、オキシステロール、植物ステロール、エルゴステロール、シトステロール、カチオン系脂質、セレブロシド、スフィンゴシン、セラミド、ジアシルグリセロール、モノアシルグリセロール、オリアシルグリセロール、ガングリオシド、エーテル脂質、アルキルリン脂質、プラズマローゲン、プロスタグランジン、リゾリン脂質、等がある。
On the other hand, the above fusion protein can also be used as a “lipid-bound type” bound to lipid. That is, the present invention provides an embodiment in which a lipid is further bound to the fusion protein to form a protein / lipid complex, in other words, a pharmaceutical containing a protein / lipid complex formed by binding a lipid to the fusion protein. Is also included.
This protein / lipid complex has a stable structure of a lipid bilayer. The lipid forming the bilayer is generally a phospholipid, but there are other sphingolipids, glycolipids, alkylphospholipids, ether lipids, plasmalogens, and the like. Use one of these or use a mixture of two or more. Suitable phospholipids include, for example, DMPC (dimyristoyl phosphatidylcholine), DMPG (dimyristoyl phosphatidylglycerol), POPC (palmitoyloleoyl phosphatidylcholine), DPPC (dipalmitoyl phosphatidylcholine), DPPS (dipalmitoyl phosphatidylcholine) For example, phosphatidylglycerol), DSPC (distearoyl phosphatidylcholine), egg yolk phosphatidylcholine, soybean phosphatidylcholine, phosphatidylinositol, phosphatidic acid, sphingomyelin, and cationic phospholipid can be used. Using these phospholipids, for example, according to the method described in “Reconstitution of High-Density Lipoproteins; Jonas A., Methods in Enzymology (1986) 128, 553-582”, the complex of the above fusion protein and phospholipid ( Protein / lipid complex) can be prepared. The above fusion protein alone may be associated with a lipid that does not form a bilayer, and a lipid that does not form a bilayer is further added to the complex of the fusion protein and the phospholipid that forms the bilayer as described above. It may be included. Examples of lipids that do not form such a bilayer include cholesterol, triglyceride, cardiolipin, phosphatidylethanolamine, oxysterol, plant sterol, ergosterol, sitosterol, cationic lipid, cerebroside, sphingosine, ceramide, diacylglycerol, monoacylglycerol Oryl acylglycerol, ganglioside, ether lipid, alkyl phospholipid, plasmalogen, prostaglandin, lysophospholipid, and the like.

上記蛋白質・脂質複合体において、治療用ペプチドに対する分解酵素の阻害剤をさらに含ませてもよい。具体的には、脂質二重層の内部に当該阻害剤を封入することができる。なお、DPPIVのような蛋白質分解酵素に対する阻害剤は脂溶性のものが多く、この場合には、上記蛋白質・脂質複合体は当該阻害剤の好適な溶解剤となり得る。   The protein / lipid complex may further contain an inhibitor of a degrading enzyme for the therapeutic peptide. Specifically, the inhibitor can be encapsulated inside the lipid bilayer. Many inhibitors of proteolytic enzymes such as DPPIV are fat-soluble, and in this case, the protein / lipid complex can be a suitable solubilizer for the inhibitor.

同様に、上記蛋白質・脂質複合体において、第2の治療成分をさらに含ませてもよい。具体的には、脂質二重層の内部に当該第2の治療成分を封入することができる。   Similarly, the protein / lipid complex may further contain a second therapeutic component. Specifically, the second therapeutic component can be encapsulated inside the lipid bilayer.

(投与方法、製剤化)
本発明の医薬の投与方法としては特に限定はなく、経口投与と非経口投与の両方が適用できる。非経口投与としては、静脈内、皮下、筋肉、局所、腹腔内、経皮、経鼻、経肺、等の各投与方法が挙げられる。好ましくは、経口投与と経粘膜投与(経肺投与等)が採用される。
(Administration method, formulation)
The administration method of the medicament of the present invention is not particularly limited, and both oral administration and parenteral administration can be applied. Examples of parenteral administration include administration methods such as intravenous, subcutaneous, muscle, topical, intraperitoneal, transdermal, nasal, and transpulmonary. Preferably, oral administration and transmucosal administration (eg, pulmonary administration) are employed.

ApoAI(HDL)受容体は、腸管上皮細胞、肺胞上皮細胞や血液脳関門にも存在することが知られている(Kolleck K. et al., Am. J. Respir. Cell Mol. Biol. (2002) 27, 57-63; Kozyraki R et al., J. Mol. Med. (2001) 79, 161-167; Goti D. et al., Eur. J. Neurochem. (2001) 76, 498-508)。また、腸管上皮細胞のモデル細胞であるCaco−2培養細胞においてクラスリン依存型エンドサイトーシスでHDLが細胞内へ侵入することが報告されている(Klinger A. et al., Biochim. Biophys. Acta. (1997) 1345, 65-70)。したがって、経口投与された上記融合蛋白質又は上記蛋白質・脂質複合体は、受容体を介して腸管上皮細胞へ侵入することが可能である。   ApoAI (HDL) receptor is also known to be present in intestinal epithelial cells, alveolar epithelial cells and blood brain barrier (Kolleck K. et al., Am. J. Respir. Cell Mol. Biol. ( 2002) 27, 57-63; Kozyraki R et al., J. Mol. Med. (2001) 79, 161-167; Goti D. et al., Eur. J. Neurochem. (2001) 76, 498-508 ). In addition, it has been reported that HDL invades into cells by clathrin-dependent endocytosis in Caco-2 cultured cells that are model cells of intestinal epithelial cells (Klinger A. et al., Biochim. Biophys. Acta). (1997) 1345, 65-70). Therefore, the fusion protein or the protein / lipid complex administered orally can enter the intestinal epithelial cells via the receptor.

細胞内に侵入した上記融合蛋白質又は上記蛋白質・脂質複合体は、中性脂質、他のアポリポ蛋白質とともにカイロミクロン(Chylomicron)様粒子、あるいは単独もしくは内在性ApoAIとともにHDL様粒子を形成する。上記融合蛋白質を含む、これらのカイロミクロン様もしくはHDL様粒子は、基底膜側へ分泌され、リンパ管に移行し、その後、胸管リンパ、鎖骨下静脈を経て血液大循環に入る。血中では、上記融合蛋白質は酵素反応によってカイロミクロン様粒子から遊離し、HDL様粒子として循環する。以上のように、上記融合蛋白質又は上記蛋白質・脂質複合体は、注射薬のみならず経口薬としても使用可能である。   The fusion protein or protein / lipid complex that has entered the cell forms a HDL-like particle together with neutral lipids and other apolipoproteins, or a single or endogenous ApoAI. These chylomicron-like or HDL-like particles containing the fusion protein are secreted to the basement membrane side, migrate to the lymphatic vessels, and then enter the general circulation through the thoracic duct lymph and the subclavian vein. In the blood, the fusion protein is released from chylomicron-like particles by an enzymatic reaction and circulates as HDL-like particles. As described above, the fusion protein or the protein / lipid complex can be used not only as an injection drug but also as an oral drug.

肺胞上皮細胞も、キュビリン依存的にHDL粒子を取込むことが示唆されている(Kolleck I. et al., Am. J. Respir. Cell Mol. Biol. (2002) 27, 57-63)。このことは、上記融合蛋白質又は上記蛋白質・脂質複合体が、経肺投与をもできる可能性を示す。   It has been suggested that alveolar epithelial cells also take up HDL particles in a cubilin-dependent manner (Kolleck I. et al., Am. J. Respir. Cell Mol. Biol. (2002) 27, 57-63). This indicates the possibility that the fusion protein or the protein / lipid complex can also be administered by pulmonary administration.

さらには、天然型HDLは受容体SR−BIを介して血液脳関門を透過することが知られている(Balazs Z. et al., J. Neurochemistry (2004) 89, 939-950)。このことから、上記融合蛋白質又は上記蛋白質・脂質複合体は脳内においても作用可能であることを示す。   Furthermore, natural HDL is known to permeate the blood brain barrier through the receptor SR-BI (Balazs Z. et al., J. Neurochemistry (2004) 89, 939-950). This indicates that the fusion protein or the protein / lipid complex can also act in the brain.

本発明の医薬の投与量は、有効成分となる治療用ペプチドの種類、投与経路、疾病の進行度や重篤度、投与対象者の年齢や体重、等により適宜設定することができる。   The dosage of the medicament of the present invention can be appropriately set depending on the type of therapeutic peptide serving as an active ingredient, the administration route, the degree and severity of disease, the age and weight of the administration subject, and the like.

本発明の医薬は、薬学的に許容される担体と組み合わせたものであり得る。当該担体としては、賦形剤、結合剤、崩壊剤、安定化剤、滑剤、懸濁剤、分散剤、希釈剤、等が挙げられる。これらの担体は、公知のものがそのまま適用できる。   The medicament of the present invention may be combined with a pharmaceutically acceptable carrier. Examples of the carrier include excipients, binders, disintegrants, stabilizers, lubricants, suspending agents, dispersing agents, diluents, and the like. As these carriers, known ones can be applied as they are.

例えば、本発明の医薬を経口投与した場合、その大部分が胃内で容易にペプシンにより消化分解される可能性が高い。そのため、融合蛋白質の効果を十分に発揮させるには、胃での消化分解を免れるような製剤的な工夫、いわゆる腸溶化製剤により、融合蛋白質が腸まで届いて働くようにすることが好ましい。ApoAI融合蛋白質を腸溶性にする製剤的な工夫としては、いくつかの方法が考えられる。例えば、錠剤、カプセル剤、マイクロカプセル或いは顆粒を腸溶性にするために被覆するコーティング剤としては、pH4以下の酸性条件では溶けにくく、pH5以上で溶解しやすいヒドロキシプロピルメチルセルローズフタレート、カルボキシメチルエチルセルローズ、酢酸フタール酸セルローズ、メタクリル酸コポリマーや、トウモロコシ由来の蛋白質であるツェイン(ゼイン)、や天然油脂由来のシェラックなどが適宜用いられる。或いは、単純に胃内のpHを高くしてペプシンが作用しなくなるようにしても実質的に有効である。   For example, when the medicament of the present invention is orally administered, it is highly likely that most of the medicament is easily digested and decomposed by pepsin in the stomach. Therefore, in order to fully exert the effect of the fusion protein, it is preferable to make the fusion protein reach the intestine and work by a formulation-like device that avoids digestion and decomposition in the stomach, so-called enteric preparation. Several methods are conceivable as a formulation for making the ApoAI fusion protein enteric. For example, as a coating agent for making tablets, capsules, microcapsules or granules enteric, hydroxypropylmethylcellulose phthalate, carboxymethylethylcellulose, which is difficult to dissolve under acidic conditions of pH 4 or less and easily soluble at pH 5 or more Cellulose acetate phthalate, methacrylic acid copolymer, corn-derived protein zein, shellac derived from natural fats and oils, and the like are used as appropriate. Alternatively, it is substantially effective to simply increase the pH in the stomach so that pepsin does not act.

(抗体産生)
動脈硬化の誘発、悪化の原因として、低密度リポ蛋白質(Low density lipoprotein;LDL)を取り込んでコレステロールを蓄積し、泡沫化したマクロファージが、血管内皮細胞に集積することが考えられている。HDLは泡沫化マクロファージ(Macrophage foam cells)からコレステロールを引き抜く作用があり、組換えApoAI、もしくはこれと同等機能を有する薬物を投与することで、動脈硬化を予防、治療できると考えられてきた(Scanu AM et al., FASEB J. (2008) 22, 4044-4054)。そのため、従来より、マクロファージとApoAIの相互作用が詳細に研究されてきた。上記融合蛋白質がマクロファージ内のエンドソームで分解されると、主要組織適合遺伝子複合体(MHC)に抗原提示される可能性があるが、ApoAIやHDLがマクロファージに取り込まれてエンドソームで分解されるという事実はない。
ApoAIは主として、その受容体であるABCA1、SR−B1等を介して泡沫化マクロファージから蓄積したコレステロールを引き抜き、最終的に成熟HDL粒子として肝臓へ運搬するコレステロール逆輸送(Reverse cholesterol transport)を担っている(Rothblat GH et al., Curr. Opin. Lipidol. (2010) 21(3), 229-238)。
以上のように、上記融合蛋白質がマクロファージで抗原提示される可能性はないので、上記融合蛋白質又は上記蛋白質・脂質複合体を投与した際に、治療用ペプチドに対する抗体が産生する可能性はない。このことから、本発明が提供する上記融合蛋白質又は上記蛋白質・脂質複合体は、安全に医薬品等として使用することが可能である。
(Antibody production)
As a cause of induction and deterioration of arteriosclerosis, it has been considered that cholesterol is accumulated by taking low density lipoprotein (LDL) and foamed macrophages accumulate in vascular endothelial cells. HDL has an action of extracting cholesterol from macrophage foam cells, and it has been considered that arteriosclerosis can be prevented and treated by administering recombinant ApoAI or a drug having the equivalent function (Scanu). AM et al., FASEB J. (2008) 22, 4044-4054). Therefore, conventionally, the interaction between macrophages and ApoAI has been studied in detail. When the fusion protein is degraded by endosomes in macrophages, it may be presented as an antigen to the major histocompatibility complex (MHC), but the fact that ApoAI and HDL are taken up by macrophages and degraded by endosomes There is no.
ApoAI is mainly responsible for reverse cholesterol transport that extracts cholesterol accumulated from foamed macrophages via its receptors ABCA1, SR-B1, etc., and finally transports them to the liver as mature HDL particles. (Rothblat GH et al., Curr. Opin. Lipidol. (2010) 21 (3), 229-238).
As described above, since there is no possibility that the fusion protein is presented as an antigen in macrophages, there is no possibility that an antibody against the therapeutic peptide will be produced when the fusion protein or the protein / lipid complex is administered. Therefore, the fusion protein or the protein / lipid complex provided by the present invention can be safely used as a pharmaceutical product or the like.

(機能性食品)
経口投与可能な実施形態に係る本発明の医薬は、そのまま機能性食品として利用することができる。すなわち本発明は、上記した融合蛋白質又は蛋白質・脂質複合体を含有する機能性食品も包含する。
(Functional food)
The medicament of the present invention according to an embodiment that can be administered orally can be used as a functional food as it is. That is, the present invention also includes a functional food containing the above-described fusion protein or protein / lipid complex.

(融合蛋白質の組換え生産)
上記融合蛋白質は、ApoAI又はその改変体をコードする遺伝子(核酸)と治療用ペプチドをコードする遺伝子(核酸)とが連結された融合遺伝子を発現させることにより、生産することができる。
ApoAIは肝臓及び小腸で産生されるため、ヒトApoAI遺伝子は、ヒト肝臓や小腸由来のRNAやcDNAライブラリーより調製することができる。治療用ペプチドの遺伝子も、当該ペプチドが発現している組織由来のRNAもしくはcDNAライブラリーより調製できる。治療用ペプチドが40アミノ酸程度である場合は、化学合成によっても、治療用ペプチドの遺伝子を調製することができる。
遺伝子同士の連結は、制限酵素、DNAリガーゼ、PCR等を使用した一般的な遺伝子操作法によって行うことができる。
融合蛋白質の遺伝子のコドンとして、それを発現させようとする宿主に適したものを使用すれば、宿主での大量発現が可能となる。融合遺伝子を宿主内で発現させる際には、例えば、融合遺伝子を宿主に適したプラスミド等の発現ベクターに挿入する。そして、発現ベクターを宿主内に導入する。宿主内において、融合遺伝子はプラスミド等のベクター上に存在しても良く、相同組み換え等によって染色体に組み込まれてもよい。
(Recombinant production of fusion protein)
The fusion protein can be produced by expressing a fusion gene in which a gene (nucleic acid) encoding ApoAI or a variant thereof and a gene (nucleic acid) encoding a therapeutic peptide are linked.
Since ApoAI is produced in the liver and small intestine, the human ApoAI gene can be prepared from RNA or cDNA libraries derived from human liver or small intestine. A gene for a therapeutic peptide can also be prepared from an RNA or cDNA library derived from a tissue in which the peptide is expressed. When the therapeutic peptide is about 40 amino acids, the gene for the therapeutic peptide can also be prepared by chemical synthesis.
The gene can be linked by a general gene manipulation method using a restriction enzyme, DNA ligase, PCR or the like.
If a codon for the gene of the fusion protein suitable for the host in which it is to be expressed is used, large-scale expression in the host is possible. When the fusion gene is expressed in the host, for example, the fusion gene is inserted into an expression vector such as a plasmid suitable for the host. Then, the expression vector is introduced into the host. In the host, the fusion gene may exist on a vector such as a plasmid, or may be integrated into the chromosome by homologous recombination or the like.

一方、組換え蛋白質を生産する際に宿主プロテアーゼによって分解を受ける場合がしばしばある。このような場合は、分子シャペロンとの融合発現や共発現の手法を用いてもよい。特に、上記したApoAIの部分断片や模倣ペプチドは分子量が小さく、プロテアーゼによる分解を受けやすいので、分子シャペロンとの融合発現や共発現は有効である。分子シャペロンの例としては、ペプチジル・プロリル・シス−トランス・イソメラーゼ(Peptidyl prolyl cis-trans isomerase;PPIase)(Maruyama t. et al., Front. Biosci. (2004) 9, 1680-1720)や、GroEL(バクテリアのI型シャペロニン)等の各種ヒートショックプロテイン(heat shock protein;HSP)(Houry WA., Curr. Protein Pept. Sci. (2001) 2-3, 227-244)が挙げられる。   On the other hand, when a recombinant protein is produced, it is often degraded by a host protease. In such a case, a fusion expression or co-expression technique with a molecular chaperone may be used. In particular, since the partial fragments and mimetic peptides of ApoAI described above have a small molecular weight and are susceptible to degradation by proteases, fusion expression and co-expression with molecular chaperones are effective. Examples of molecular chaperones include peptidyl prolyl cis-trans isomerase (PPIase) (Maruyama t. Et al., Front. Biosci. (2004) 9, 1680-1720), GroEL Examples include various heat shock proteins (HSP) (Houry WA., Curr. Protein Pept. Sci. (2001) 2-3, 227-244) such as (type I chaperonin of bacteria).

ApoAIは糖鎖付加等の翻訳後修飾がない蛋白質である。そのため、治療用ペプチドが翻訳後修飾を必要としないものである場合は、細菌や酵母を宿主として用いることができる。細菌で発現させた組換え蛋白質のN末端にはメチオニンが付加されるが、これが融合蛋白質の機能を阻害するのであれば、酵母等の真核細胞を用いることが好ましい。真核生物で融合蛋白質を発現させる場合には、融合蛋白質配列の上流に適当なシグナル配列を設置して、融合蛋白質を分泌発現させることが好ましい。
治療用ペプチドの機能発現に糖鎖修飾等の天然に近い翻訳後修飾が必要な場合は、宿主として動物細胞を用いることが好ましい。
宿主の具体例としては、大腸菌、枯草菌、乳酸菌等の細菌;Saccharomyces属、Schizosaccharomyces属、Phichia属等の酵母;Dorosophila S2、Spodoptera Sf9等の昆虫細胞;CHO、COS、NOS、HEK293、Bowes melanoma等の動物細胞が、それぞれ挙げられる。上記の他に、トウモロコシ、大豆等の組換え植物や、カイコ、ニワトリ、羊、牛等の組換え動物を宿主として使用してもよい。
ApoAI is a protein without post-translational modifications such as glycosylation. Therefore, if the therapeutic peptide does not require post-translational modification, bacteria or yeast can be used as the host. Although methionine is added to the N-terminus of the recombinant protein expressed in bacteria, it is preferable to use eukaryotic cells such as yeast if this inhibits the function of the fusion protein. When the fusion protein is expressed in eukaryotes, it is preferable to secrete and express the fusion protein by installing an appropriate signal sequence upstream of the fusion protein sequence.
When near-natural post-translational modifications such as sugar chain modification are required for functional expression of therapeutic peptides, it is preferable to use animal cells as the host.
Specific examples of the host include bacteria such as Escherichia coli, Bacillus subtilis, and lactic acid bacteria; yeasts such as Saccharomyces, Schizosaccharomyces, and Phichia; insect cells such as Dorosophila S2, Spodoptera Sf9; CHO, COS, NOS, HEK293, Bowes melanoma, and the like And animal cells, respectively. In addition to the above, recombinant plants such as corn and soybeans and recombinant animals such as silkworms, chickens, sheep and cows may be used as hosts.

(融合蛋白質の精製)
融合蛋白質の単離と精製は、融合蛋白質を発現させた細胞や生物組織を破砕し、その上清又は沈殿物から行うことができる。上清に発現した場合は、イオン交換クロマト、疎水クロマト、逆相クロマト、ゲル濾過等の一般的な担体を用いるクロマトグラフィーによって分離精製が可能である。なお、脂質非結合型のApoAIは、硫安等の塩が存在しなくとも、フェニル基固定化担体に強く結合する(McGuire KA et al., J. Lipid Res. (1996) 37, 1519-1528)。したがって、この工程を精製過程に組み込むことで、融合蛋白質を効率良く精製することができる。
(Purification of fusion protein)
Isolation and purification of the fusion protein can be performed by crushing cells or biological tissues in which the fusion protein is expressed, and using the supernatant or precipitate. When expressed in the supernatant, it can be separated and purified by chromatography using a common carrier such as ion exchange chromatography, hydrophobic chromatography, reverse phase chromatography, gel filtration and the like. In addition, non-lipid-bound ApoAI binds strongly to a phenyl group-immobilized carrier even in the absence of a salt such as ammonium sulfate (McGuire KA et al., J. Lipid Res. (1996) 37, 1519-1528). . Therefore, by incorporating this process into the purification process, the fusion protein can be purified efficiently.

融合蛋白質の末端にヒスチジンタグ等のアフィニティタグを付加して、アフィニティクロマトグラフィーによって精製してもよい。必要に応じて、アフィニティタグ配列の近隣に限定分解型プロテアーゼの切断配列を設置することで、アフィニティタグは、限定分解型のプロテアーゼによって切断できる。また、適当な2個程度のアミノ酸配列をアフィニティタグの近隣に付加することで、蟻酸等による化学的な分解によっても切断可能である。例えば、C末端方向にアスパラギン酸(D)、プロリン(P)が続く場合、これらのアミノ酸の間を蟻酸で効率良く切断することも可能である(Ryan RO et al., Protein Exp. Purif. (2003) 27, 98-103)。   An affinity tag such as a histidine tag may be added to the end of the fusion protein and purified by affinity chromatography. If necessary, the affinity tag can be cleaved by the limited degradation protease by placing a cleavage sequence of the limited degradation protease in the vicinity of the affinity tag sequence. Moreover, by adding about 2 suitable amino acid sequences in the vicinity of the affinity tag, it can be cleaved by chemical decomposition with formic acid or the like. For example, when aspartic acid (D) and proline (P) continue in the C-terminal direction, these amino acids can be efficiently cleaved with formic acid (Ryan RO et al., Protein Exp. Purif. ( 2003) 27, 98-103).

融合蛋白質が沈殿画分に生産された場合、適当な濃度のグアニジン塩酸や尿素等の蛋白変性剤に溶解した後、これらの変性剤の存在下で、イオン交換クロマト、ゲル濾過等によって精製することができる。またヒスチジンタグが付与されている場合は、変性剤の存在下で金属キレートクロマトグラフィーを行うことが可能である。変性剤存在下である程度精製できた時点で適当な溶媒条件で、透析、希釈等の方法によってリフォールディングを行う。この時、100〜500mM程度のアルギニン塩酸塩を添加しておくと、効率良くリフォールディングが進行する。リフォールディング終了後、適当な緩衝液に透析した後、イオン交換クロマトグラフィー、疎水クロマトグラフィー、逆相クロマトグラフィー及びゲル濾過等の手法によって、融合蛋白質を精製することができる。   When the fusion protein is produced in the precipitate fraction, it must be dissolved in a protein denaturant such as guanidine hydrochloride or urea at an appropriate concentration and then purified by ion exchange chromatography, gel filtration, etc. in the presence of these denaturants. Can do. When a histidine tag is added, metal chelate chromatography can be performed in the presence of a denaturing agent. When purification is possible to some extent in the presence of a denaturant, refolding is performed by a method such as dialysis or dilution under an appropriate solvent condition. At this time, if arginine hydrochloride of about 100 to 500 mM is added, refolding proceeds efficiently. After refolding, the fusion protein can be purified by techniques such as ion exchange chromatography, hydrophobic chromatography, reverse phase chromatography and gel filtration after dialysis against an appropriate buffer.

精製された融合蛋白質は、透析等によって保存に適した緩衝液に溶解し、冷蔵保存又は冷凍保存できる。好ましくは、凍結乾燥後、冷蔵もしくは冷凍で保存する。   The purified fusion protein is dissolved in a buffer suitable for storage by dialysis or the like, and can be stored refrigerated or frozen. Preferably, after lyophilization, it is stored refrigerated or frozen.

本発明は、目的蛋白質に対してアポリポ蛋白質AI又はその改変体を連結する目的蛋白質の安定化方法、も包含する。目的蛋白質としては特に限定はなく、例えば、上述した治療用ペプチドがそのまま採用され得る。アポリポ蛋白質AIの改変体についても同様である。   The present invention also includes a method for stabilizing a target protein in which apolipoprotein AI or a variant thereof is linked to the target protein. The target protein is not particularly limited, and for example, the therapeutic peptide described above can be employed as it is. The same applies to a variant of apolipoprotein AI.

本発明は、上記融合蛋白質を発現する組換え体を有効成分として含有する医薬又は機能性食品を包含する。すなわち、「融合蛋白質の組換え生産」の項で説明したように、本発明における融合蛋白質を発現する組換え体を作製することができる。この組換え体を、そのまま医薬や機能性食品の有効成分として利用することができる。好ましい実施形態において、前記組換え体は、前記融合蛋白質を表層に提示可能な微生物又は細胞であり、さらに好ましくは酵母である。   The present invention includes a pharmaceutical or functional food containing a recombinant expressing the fusion protein as an active ingredient. That is, as described in the section “Recombinant production of fusion protein”, a recombinant that expresses the fusion protein of the present invention can be produced. This recombinant can be used as it is as an active ingredient in medicines and functional foods. In a preferred embodiment, the recombinant is a microorganism or cell capable of presenting the fusion protein on the surface, more preferably yeast.

発現した目的蛋白質を細胞表層に提示させる方法は、例えば、Molecular display technology using yeast-arming technology; Shibasaki S. et al., Anal. Sci. (2009) 25-1, 41-49 に記載されている。すなわち、αアグルチニン(Agglutinin)等の細胞間接着因子のC末端領域(Agg−C)にはGPI(glycosyl phosphatidyl inositol)アンカー付着シグナルが存在する。上記融合蛋白質のC末端に、腸管プロテアーゼ切断配列、次いでAgg−Cを付加し、N末端に分泌シグナル配列を付加した組換え蛋白質を酵母に産生させると、トランスアミダーゼによるGPIアンカー付着シグナル配列の切断反応を経て、目的蛋白質は酵母の細胞膜上にGPIアンカーとの結合を介して蓄積する。その後、酵母の表層に存在するPI-PLC(Phosphatidyl inositol-specific-phospholipase C)によりGPIアンカーとの結合は切断され、目的蛋白質は細胞壁の最外層に提示される。
このようにして作製された上記融合蛋白質を表層提示する酵母は、未破砕の状態で服用しても、腸管プロテアーゼの作用によって融合蛋白質が酵母の表層から遊離し、腸管上皮細胞から吸収され得る。
酵母以外の微生物・細胞としては、乳酸菌、枯草菌等の食品に使用されているものが好適に使用される。
A method for displaying the expressed target protein on the cell surface is described, for example, in Molecular display technology using yeast-arming technology; Shibasaki S. et al., Anal. Sci. (2009) 25-1, 41-49 . That is, a GPI (glycosyl phosphatidyl inositol) anchor adhesion signal exists in the C-terminal region (Agg-C) of an intercellular adhesion factor such as α-agglutinin. When a recombinant protein in which an intestinal protease cleavage sequence and then Agg-C is added to the C-terminus of the fusion protein and a secretory signal sequence is added to the N-terminus is produced in yeast, cleavage of the GPI anchor attachment signal sequence by transamidase Through the reaction, the target protein accumulates on the yeast cell membrane via binding to the GPI anchor. Thereafter, the PI-PLC (Phosphatidyl inositol-specific-phospholipase C) existing on the surface of yeast is cleaved from the GPI anchor, and the target protein is presented on the outermost layer of the cell wall.
Even if the yeast that displays the fusion protein prepared as described above on the surface layer is taken in an unbroken state, the fusion protein can be released from the surface layer of the yeast by the action of intestinal protease and absorbed from the intestinal epithelial cells.
As microorganisms / cells other than yeast, those used in foods such as lactic acid bacteria and Bacillus subtilis are preferably used.

本発明の医薬又は機能性食品は、ヒト用に限定されず、ヒト以外の動物にも適用できる。   The pharmaceutical or functional food of the present invention is not limited to human use and can be applied to animals other than humans.

以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited only to these Examples.

(1)GLP−1/ApoAI融合蛋白質(AGL1)の発現と精製
ヒト肝臓RNA(クロンテック社)、オリゴdTプライマー、及び配列番号3と配列番号4に示す各プライマーを用いたRT−PCRにより、成熟型ApoAI遺伝子を含むDNA断片を取得した。得られたDNA断片をBamHIとHindIIIで切断し、ApoAI遺伝子を含むDNA断片を回収した。このDNA断片を、pET24a(Novagen社)のBamHI/HindIII切断部位に導入した。配列番号5と配列番号6で示す各合成DNAから得られる二本鎖DNAを、上記ベクターのNdeI/BamHI切断部位に導入した。以上の工程によって、ApoAIとGLP−1との融合蛋白質(配列番号7,8)をコードする遺伝子(配列番号7)を有するプラスミドベクターpT24AGL1を構築した。
(1) Expression and purification of GLP-1 / ApoAI fusion protein (AGL1) Maturation by RT-PCR using human liver RNA (Clontech), oligo dT primer, and each primer shown in SEQ ID NO: 3 and SEQ ID NO: 4 A DNA fragment containing the type ApoAI gene was obtained. The obtained DNA fragment was cleaved with BamHI and HindIII, and the DNA fragment containing the ApoAI gene was recovered. This DNA fragment was introduced into the BamHI / HindIII cleavage site of pET24a (Novagen). Double-stranded DNA obtained from each synthetic DNA shown in SEQ ID NO: 5 and SEQ ID NO: 6 was introduced into the NdeI / BamHI cleavage site of the vector. Through the above steps, a plasmid vector pT24AGL1 having a gene (SEQ ID NO: 7) encoding a fusion protein (SEQ ID NO: 7, 8) of ApoAI and GLP-1 was constructed.

上記pT24AGL1を大腸菌BL21(DE3)(Invitrogen社)に導入し、組換え体を作製した。この組換え体をLB培地にて培養し、OD600が0.6の時点で1mMIPTGを添加し、C末端にヒスチジンタグが付加されたAGL1の発現を誘導し、さらに37℃で5時間培養し、菌体を回収した。   The above pT24AGL1 was introduced into E. coli BL21 (DE3) (Invitrogen) to prepare a recombinant. This recombinant is cultured in LB medium, and when OD600 is 0.6, 1 mM IPTG is added to induce the expression of AGL1 with a histidine tag added to the C terminus, and further cultured at 37 ° C. for 5 hours. The cells were collected.

回収した菌体を6M GdmHCl/50mM Tris−HCl(pH7.5)/0.5M NaCl/25mM イミダゾール(以下、「緩衝液A」と称する。)に懸濁し、超音波破砕によって細胞を破砕した。細胞破砕後、4℃で一昼夜インキュベートした。得られた細胞破砕液に対して40000gで1時間超遠心分離を行い、上清を得た。この上清を、予め緩衝液Aで平衡化されたNi−Sepharose HP(GE社)と混合し、4℃で一昼夜インキュベートした。本混合液を2000rpmで5分間遠心分離を行い、Ni−Sepharoseビーズを回収した。回収したビーズを、8M 尿素/50mM Tris−HCl(pH7.5)/0.5M NaCl/25mM イミダゾール(以下、「緩衝液B」と称する。)で2回洗浄した後、8M 尿素/50mM Tris−HCl(pH7.5)/0.5M NaCl/1M イミダゾール(以下、「緩衝液C」と称する。)でAGL1を溶出した。溶出したAGL1画分を、0.45M アルギニン塩酸塩/100mM Tris(以下、「緩衝液D」と称する。)に対して4℃で一昼夜透析を行った。さらに50mM Tris−HCl(pH8.0)/0.15M NaCl(以下、「緩衝液E」と称する。)、次いで10mM 重炭酸アンモニウム溶液(pH7.4)に対して透析を行い、アルギニンを除去した。透析内液を凍結乾燥し、融合蛋白質AGL1の粉末を得た。   The collected cells were suspended in 6M GdmHCl / 50 mM Tris-HCl (pH 7.5) /0.5 M NaCl / 25 mM imidazole (hereinafter referred to as “buffer A”), and the cells were disrupted by ultrasonic disruption. After cell disruption, the cells were incubated overnight at 4 ° C. The obtained cell lysate was subjected to ultracentrifugation at 40,000 g for 1 hour to obtain a supernatant. The supernatant was mixed with Ni-Sepharose HP (GE) previously equilibrated with buffer A, and incubated at 4 ° C. overnight. This mixed solution was centrifuged at 2000 rpm for 5 minutes to recover Ni-Sepharose beads. The collected beads were washed twice with 8 M urea / 50 mM Tris-HCl (pH 7.5) /0.5 M NaCl / 25 mM imidazole (hereinafter referred to as “buffer B”), and then 8 M urea / 50 mM Tris- AGL1 was eluted with HCl (pH 7.5) /0.5 M NaCl / 1 M imidazole (hereinafter referred to as “Buffer C”). The eluted AGL1 fraction was dialyzed against 0.45 M arginine hydrochloride / 100 mM Tris (hereinafter referred to as “buffer D”) at 4 ° C. overnight. Further, dialysis was performed by dialysis against 50 mM Tris-HCl (pH 8.0) /0.15 M NaCl (hereinafter referred to as “buffer E”) and then 10 mM ammonium bicarbonate solution (pH 7.4). . The dialyzed internal solution was lyophilized to obtain a fusion protein AGL1 powder.

得られたAGL1粉末とクロロホルム/メタノール(2/1)を30分間、4℃で混合した後、7倍量のメタノールを添加し、8000gで30分間遠心分離を行い、上清を除去した後、真空乾燥を行った。乾燥物を3M Gdm−HClで溶解した後、緩衝液D、次いで緩衝液Eで透析を行った。透析内液に1mM EDTAを添加した後、予め50mM Tris−HCl(pH8.0)/1mM EDTA/0.15M NaCl(以下、「緩衝液F」と称する。)で平衡化されたPhenyl Sepharose FF(GE社)と混合し、AGL1をビーズへ吸着させた。ビーズを緩衝液Fで洗浄後、さらに20% エチレングリコール/1mM EDTA/0.1M NaCl/50mM Tris−HCl(pH8.0)で洗浄した。洗浄したビーズに75% プロピレングリコール/1mM EDTA/0.1M NaCl/50mM Tris−HCl(pH8.0)を加え、AGL1を溶出した。溶出されたAGL1溶液をPBS(pH7.4)に対して透析し、精製AGL1標品を得た。以上の精製過程のSDS−PAGEを図1に示す。   After mixing the obtained AGL1 powder and chloroform / methanol (2/1) for 30 minutes at 4 ° C., 7 times the amount of methanol was added, centrifuged at 8000 g for 30 minutes, and the supernatant was removed. Vacuum drying was performed. The dried product was dissolved in 3M Gdm-HCl, and dialyzed against buffer D and then buffer E. After adding 1 mM EDTA to the dialysis internal solution, Phenyl Sepharose FF (hereinafter referred to as “Buffer F”) previously equilibrated with 50 mM Tris-HCl (pH 8.0) / 1 mM EDTA / 0.15 M NaCl (hereinafter referred to as “buffer F”). GE) and adsorbed AGL1 to the beads. The beads were washed with buffer F and then further washed with 20% ethylene glycol / 1 mM EDTA / 0.1 M NaCl / 50 mM Tris-HCl (pH 8.0). 75% propylene glycol / 1 mM EDTA / 0.1 M NaCl / 50 mM Tris-HCl (pH 8.0) was added to the washed beads to elute AGL1. The eluted AGL1 solution was dialyzed against PBS (pH 7.4) to obtain a purified AGL1 sample. SDS-PAGE of the above purification process is shown in FIG.

(2)脂質結合型AGL1の調製と分散性の検定
クロロホルムに溶解させた10mg/mLの1,2−Dimyristoyl−sn−glycero−3−phosphocholine(DMPC;日本油脂社 COATSOME MC−4040)溶液500μLを、ガラス管内で窒素ガスにより乾燥させた。その後、2mLのPBS(pH7.4)を添加し、超音波によってDMPCを分散させ、白色懸濁液を得た。本DMPC懸濁液に、上記(1)で得られた1mg/mLの精製AGL1溶液2mLを加えて混合し、室温で3時間以上放置し、清澄なDMPC結合型AGL1(脂質結合型AGL1;蛋白質・脂質複合体)の溶液を得た。
(2) Preparation of lipid-binding AGL1 and assay for dispersibility 500 μL of 10 mg / mL 1,2-Dimyristol-sn-glycero-3-phosphocholine (DMPC; NOF COATSOME MC-4040) solution dissolved in chloroform was used. Then, it was dried with nitrogen gas in a glass tube. Thereafter, 2 mL of PBS (pH 7.4) was added, and DMPC was dispersed by ultrasonic waves to obtain a white suspension. To this DMPC suspension, 2 mL of the purified AGL1 solution of 1 mg / mL obtained in (1) above was added and mixed, and allowed to stand at room temperature for 3 hours or longer. A clear DMPC-bound AGL1 (lipid-bound AGL1; protein) A solution of (lipid complex) was obtained.

得られたDMPC結合型AGL1の分散性を、Native−PAGEによって調べた(図2)。図2に示すように、DMPC結合型AGL1(レーン4)は天然型HDL(Biomedical Technologies社 #BT−914)(レーン2)と同様の均一粒子であることがわかった。また移動度の相違から、DMPC結合型AGL1は、天然型HDLの1.5倍程度の粒径であると推測できた。また(1)で得られた脂質非結合型のAGL1(レーン3)も均一に分散しており、天然型ヒトApoAI(Biomedical Technologies社 #BT−927)(レーン1)とNative−PAGEにおいて同一の挙動を示すことも確認された。
図2中の数字は、分子量マーカー(中央のレーン)の各分子量(kDa)である。
The dispersibility of the obtained DMPC-bound AGL1 was examined by Native-PAGE (FIG. 2). As shown in FIG. 2, DMPC-bound AGL1 (lane 4) was found to be uniform particles similar to natural HDL (Biomedical Technologies # BT-914) (lane 2). From the difference in mobility, it was estimated that DMPC-bound AGL1 had a particle size about 1.5 times that of natural HDL. In addition, the non-lipid-bound AGL1 obtained in (1) (lane 3) is also uniformly dispersed, and is identical in natural human ApoAI (Biomedical Technologies # BT-927) (lane 1) and Native-PAGE. It was also confirmed to show behavior.
The numbers in FIG. 2 are the molecular weights (kDa) of the molecular weight markers (center lane).

(3)AGL1のGLP−1受容体(GLP−1R)アゴニスト活性
グルカゴン様ペプチド−1受容体(GLP−1R)遺伝子(Genbank No. NM002062)を、哺乳動物用発現ベクターpIRESneo3(クロンテック社)のNheI/EcoRIサイトに導入し、発現ベクターpIGLRを構築した。発現ベクターpIGLRをG418の存在下でLipofectamine 2000(Invitrogen社)を用いてCHO−K1株に導入した。受容体GLP−1Rの安定発現株は、600μg/mLのG418が含有された10%FBS/Ham’s F−12培地で単離し、GLP−1R安定発現株GLP−1R/CHOを樹立した。
(3) GLP-1 receptor (GLP-1R) agonist activity of AGL1 The glucagon-like peptide-1 receptor (GLP-1R) gene (Genbank No. NM002062) was transformed into NheI of mammalian expression vector pIRESneo3 (Clontech). / EcoRI site to construct an expression vector pIGLR. The expression vector pIGLR was introduced into the CHO-K1 strain using Lipofectamine 2000 (Invitrogen) in the presence of G418. A stable expression strain of the receptor GLP-1R was isolated in 10% FBS / Ham's F-12 medium containing 600 μg / mL of G418, and a GLP-1R stable expression strain GLP-1R / CHO was established.

上記GLP−1R/CHO及び「CatchPoint Cyclic-AMP Fluorescent Assay Kit」(Molecular Devices社:R8088)を用い、(1)で作製した脂質非結合型AGL1(融合蛋白質)と、(2)で作製した脂質結合型AGL1(蛋白質・脂質複合体)について、受容体アゴニスト活性を測定した(図3、図4)。実験操作は、Molecular Devices社のマニュアルに従って行った。コントロール試験として、天然型GLP−1(ペプチド研究所社;4344−v)をリガンドとする実験も行った。また、作用特異性の検定のために、GLP−1RアンタゴニストであるExcendin (5-39)(ペプチド研究所:4345−v)による阻害実験も行った(図4)。   Using the above GLP-1R / CHO and “CatchPoint Cyclic-AMP Fluorescent Assay Kit” (Molecular Devices, Inc .: R8088), lipid-free AGL1 (fusion protein) prepared in (1) and lipid prepared in (2) Receptor agonist activity was measured for bound AGL1 (protein / lipid complex) (FIGS. 3 and 4). The experimental operation was performed according to the manual of Molecular Devices. As a control test, an experiment using natural GLP-1 (Peptide Institute, Inc .; 4344-v) as a ligand was also conducted. In addition, an inhibition experiment with Excendin (5-39) (Peptide Institute: 4345-v), which is a GLP-1R antagonist, was also carried out to test the action specificity (FIG. 4).

図3に示すように、脂質結合型AGL1(■;+DMPC)のEC50値は6.1nM、脂質非結合型AGL1(○;−DMPC)のEC50値は4.5nMであった。シングルナノモルオーダーの濃度で機能することから、脂質結合型AGL1と脂質非結合型AGL1は、いずれも医薬として使用可能であることがわかった。
また、図4に示すように、AGL1のGLP−1Rアゴニスト活性は、GLP−1RアンタゴニストであるExcendin (5-39)によってほぼ完全に阻害されることがわかった。このことから上記アゴニスト活性は、天然型GLP−1と同様の、AGL1の特異的作用によることが証明された。
As shown in FIG. 3, the EC50 value of lipid-bound AGL1 (■; + DMPC) was 6.1 nM, and the EC50 value of non-lipid-bound AGL1 (◯; -DMPC) was 4.5 nM. Since it functions at a single nanomolar order concentration, it was found that both lipid-bound AGL1 and non-lipid-bound AGL1 can be used as pharmaceuticals.
Moreover, as shown in FIG. 4, it turned out that the GLP-1R agonist activity of AGL1 is almost completely inhibited by Excendin (5-39) which is a GLP-1R antagonist. From this, it was proved that the agonist activity was due to the specific action of AGL1 as in the case of natural GLP-1.

(4)AGL1のプロテアーゼ耐性
50μLのPBS溶液中で、天然型GLP−1(ペプチド研究所社;4344−v)又は(1)で作製した脂質非結合型AGL1に、3mU(10-6M濃度)のヒトジペプチジルペプチダーゼIV(DPPIV)を37℃で3時間反応させた。その後、(3)と同様の方法で、受容体アゴニスト活性を測定した(図5、図6)。
図5に示すように、天然型GLP−1は、DPPIV処理によってEC50値が2.6×10-11M(●;−DPPIV)から9.7×10-10M(○;+DPPIV)に明らかに上昇した。一方、図6に示すように、AGL1は、EC50値がDPPIV未処理(▲;−DPPIV)では2.2×10-9M(2.2nM)、DPPIV処理後(△;+DPPIV)では1.7×10-9M(1.7nM)であり、殆ど変化しなかった。このことは、天然型GLP−1はDPPIV感受性が極めて高いのに対し、AGL1はDPPIV感受性が殆どないことを示していた。以上より、GLP−1にApoAIを融合させることによって、GLP−1にプロテアーゼ耐性を付与できることが示された。
(4) Protease resistance of AGL1 In a 50 μL PBS solution, 3 gU (10 −6 M concentration) was added to non-lipid-binding AGL1 produced in natural GLP-1 (Peptide Laboratories; 4344-v) or (1). ) Human dipeptidyl peptidase IV (DPPIV) at 37 ° C. for 3 hours. Thereafter, receptor agonist activity was measured by the same method as in (3) (FIGS. 5 and 6).
As shown in FIG. 5, the natural GLP-1 has an EC50 value of 2.6 × 10 −11 M (●; −DPPIV) to 9.7 × 10 −10 M (◯; + DPPIV) by DPPIV treatment. Rose to. On the other hand, as shown in FIG. 6, AGL1 has an EC50 value of 2.2 × 10 −9 M (2.2 nM) when DPPIV is untreated (▲; −DPPIV), and 1.50 after DPPIV treatment (Δ; + DPPIV). It was 7 × 10 −9 M (1.7 nM) and hardly changed. This indicates that natural GLP-1 is extremely sensitive to DPPIV, whereas AGL1 has little DPPIV sensitivity. From the above, it was shown that protease resistance can be imparted to GLP-1 by fusing ApoAI to GLP-1.

(2)で調製したDMPC結合型AGL1(脂質結合型AGL1)についても、同様にしてプロテアーゼ耐性を評価した(図7)。図7に示すように、EC50値がDPPIV未処理(▲;−DPPIV)では2.3×10-9M(2.3nM)、DPPIV処理後(△;+DPPIV)では3.9×10-9M(3.9nM)であり、DMPC結合型の場合でもEC50値は殆ど変化しなかった。これにより、脂質結合型AGL1も、脂質非結合型AGL1と同様に、プロテアーゼ耐性を獲得したことが判明した。 Protease resistance was similarly evaluated for DMPC-bound AGL1 (lipid-bound AGL1) prepared in (2) (FIG. 7). As shown in FIG. 7, EC50 values were 2.3 × 10 −9 M (2.3 nM) when DPPIV was not treated (▲; −DPPIV), and 3.9 × 10 −9 after DPPIV treatment (Δ; + DPPIV). M (3.9 nM), and the EC50 value hardly changed even in the case of DMPC binding type. Thereby, it became clear that lipid binding type AGL1 also acquired protease resistance like lipid non-binding type AGL1.

以上より、GLP−1とApoAIとの融合蛋白質であるAGL1が、in vivoにおいて作用が長期間に渡って持続するGLP−1R作動薬として使用可能であることが示された。   From the above, it was shown that AGL1, which is a fusion protein of GLP-1 and ApoAI, can be used as a GLP-1R agonist whose action lasts for a long period of time in vivo.

(5)AGL1のマウスでの血糖上昇抑制効果の検証
7週齢のマウス(雄:C57BL/6J)を、被験物質投与前日より16時間以上絶食させた。被験物質を尾静脈から投与後(1mg/kg)して30分後に、20%グルコース溶液(大塚製薬)を経口投与(10mL/kg)した。経口投与後10、30、60および120分の時点で尾静脈から約50μL採血した。グルコースCII−テストワコー(和光純薬)を用いて血漿中グルコース濃度を測定した。被験物質としては、
A:1×PBS(インビトロジェン社)
B:天然型ヒトApoAI(Biomedical Technologies社;#BT−927)
C:天然型ヒトHDL(Biomedical Technologies社;#BT−914)
D:DMPC非結合型AGL1
E:DMPC結合型AGL1
の5種類を用いた。被験物質B〜Eは、全て1×PBS(インビトロジェン社)に対して透析したものを使用した。各試験群につきマウス8匹を用い、A投与群とその他の群との間で、それぞれstudentのt−検定により平均値の差の検定を行った。有意差の検定は,有意水準を両側5%として行った。統計学的検定はEXSUS(Version 7.7.1,SAS Institute Japan Inc.)を用いて行った。結果を図8に示す。
(5) Verification of blood glucose elevation inhibitory effect in mice of AGL1 Seven-week-old mice (male: C57BL / 6J) were fasted for 16 hours or more from the day before administration of the test substance. 30 minutes after administration of the test substance from the tail vein (1 mg / kg), a 20% glucose solution (Otsuka Pharmaceutical) was orally administered (10 mL / kg). Approximately 50 μL of blood was collected from the tail vein at 10, 30, 60 and 120 minutes after oral administration. Plasma glucose concentration was measured using Glucose CII-Test Wako (Wako Pure Chemical Industries). As a test substance,
A: 1 × PBS (Invitrogen)
B: Natural human ApoAI (Biomedical Technologies, Inc .; # BT-927)
C: Natural human HDL (Biomedical Technologies; # BT-914)
D: DMPC non-binding AGL1
E: DMPC binding type AGL1
These five types were used. Test substances B to E were all dialyzed against 1 × PBS (Invitrogen). Eight mice were used for each test group, and the difference in mean value was tested between the A-administered group and the other groups by student's t-test. The significance test was performed with a significance level of 5% on both sides. Statistical tests were performed using EXSUS (Version 7.7.1, SAS Institute Japan Inc.). The results are shown in FIG.

図8に示すように、天然型ヒトApoAI投与群(○)と天然型ヒトHDL投与群(●)では全く血糖上昇抑制効果は見られなかったが、DMPC結合型AGL1投与群(▲)とDMPC非結合型AGL1投与群(△)の双方で、糖負荷30分以後に有意な血糖上昇抑制効果が見出された(P<0.01)。   As shown in FIG. 8, the effect of suppressing blood glucose elevation was not observed at all in the natural human ApoAI administration group (◯) and the natural human HDL administration group (●), but the DMPC-conjugated AGL1 administration group (▲) and DMPC In both unbound AGL1 administration groups (Δ), a significant blood glucose increase inhibitory effect was found after 30 minutes of glucose load (P <0.01).

以上より、GLP−1とApoAIとの融合蛋白質であるAGL1が、in vivoで血糖上昇抑制効果を有し、糖尿病治療薬として使用可能であることが示された。   From the above, it was shown that AGL1, which is a fusion protein of GLP-1 and ApoAI, has an inhibitory effect on blood glucose elevation in vivo and can be used as a therapeutic agent for diabetes.

(6)GLP−1とApoAI部分断片の融合ペプチド(ACGL1)の発現と精製
(1)で作製したpT24AGL1を鋳型として、配列番号17と配列番号18に示す各プライマーを用いてPCRを行い、ApoAIのC末端領域(配列番号1のアミノ酸番号209〜241の部分)に相当する遺伝子を含むDNA断片を増幅させた。得られたDNA断片をpT7Blue-T vector(タカラバイオ社)にクローニングした後、BamHI及びHindIIIによって切り出した。切り出したDNA断片を、pT24AGL1のBamHI及びHindIII切断部位に挿入し、GLP−1とApoAIのC末端部分との融合ペプチド(ACGL1)をコードする発現ベクターpT24ACGL1を作製した。
(6) Expression and purification of fusion peptide (ACGL1) of GLP-1 and ApoAI partial fragment Using pT24AGL1 prepared in (1) as a template, PCR was performed using the primers shown in SEQ ID NO: 17 and SEQ ID NO: 18, and ApoAI A DNA fragment containing the gene corresponding to the C-terminal region (amino acid numbers 209 to 241 of SEQ ID NO: 1) was amplified. The obtained DNA fragment was cloned into pT7Blue-T vector (Takara Bio Inc.) and then cut out with BamHI and HindIII. The excised DNA fragment was inserted into the BamHI and HindIII cleavage sites of pT24AGL1 to prepare an expression vector pT24ACGL1 encoding a fusion peptide (ACGL1) of GLP-1 and the C-terminal part of ApoAI.

一方、配列番号19に示したThermococcus sp KS-1株由来FKBP型PPIase(TcFK)遺伝子(GenBank No. AB012209)に相当する合成DNAを鋳型とし、配列番号20及び配列番号21に示す各プライマーを用いてPCRを行い、pT7Blue-T vectorへクローニングした。TcFK遺伝子をNdeI及びSacIで切り出し、pET24a(ノバジェン社)のNdeI−SacI部位へ挿入し、pT24TcFKを構築した。   On the other hand, a synthetic DNA corresponding to the FKBP type PPIase (TcFK) gene (GenBank No. AB012209) derived from Thermococcus sp KS-1 strain shown in SEQ ID NO: 19 was used as a template, and each primer shown in SEQ ID NO: 20 and SEQ ID NO: 21 was used. PCR was performed and cloned into pT7Blue-T vector. The TcFK gene was excised with NdeI and SacI and inserted into the NdeI-SacI site of pET24a (Novagen) to construct pT24TcFK.

pT24ACGL1を鋳型とし、配列番号22及び配列番号23に示す各プライマーを用いてPCRを行ってACGL1遺伝子を増幅し、pT7Blue-T vectorに導入後、SacI及びHindIIIで切り出した。切り出したACGL1遺伝子を含むDNA断片を、pT24TcFKのSacI−HindIII部位に挿入し、TcFKとACGL1との融合蛋白質(FKACGL1)をコードするpT24FKACGL1を構築した。FKACGL1(27kDa)の遺伝子の塩基配列及び対応するアミノ酸配列を配列番号24に、アミノ酸配列のみを配列番号25に示す。なお配列番号24,25に示すように、FKACGL1のC末端には6残基からなるヒスチジンタグが付加されている。   PCR was performed using pT24ACGL1 as a template and the primers shown in SEQ ID NO: 22 and SEQ ID NO: 23 to amplify the ACGL1 gene, introduced into the pT7Blue-T vector, and then excised with SacI and HindIII. The excised DNA fragment containing the ACGL1 gene was inserted into the SacI-HindIII site of pT24TcFK to construct pT24FKACGL1 encoding a fusion protein (FKACGL1) of TcFK and ACGL1. The nucleotide sequence of the gene for FKACGL1 (27 kDa) and the corresponding amino acid sequence are shown in SEQ ID NO: 24, and only the amino acid sequence is shown in SEQ ID NO: 25. As shown in SEQ ID NOs: 24 and 25, a histidine tag consisting of 6 residues is added to the C-terminus of FKACGL1.

上記pT24FKACGL1を大腸菌BL21(DE3)(Invitrogen社)に導入し、組換え体を作製した。この組換え体を2XY.T培地にて26℃で40時間培養した。回収した菌体を「緩衝液A」に懸濁し、超音波破砕によって細胞を破砕した。細胞破砕後、4℃で一昼夜インキュベートした。得られた細胞破砕液に対して40000gで1時間超遠心分離を行い、上清を得た。この上清を、予め緩衝液Aで平衡化されたNi−Sepharose HP(GE社)と混合し、4℃で一昼夜インキュベートした。本混合液を2000rpmで5分間遠心分離を行い、Ni−Sepharoseビーズを回収した。回収したビーズを「緩衝液B」で2回洗浄した後、「緩衝液C」でFKACGL1を溶出した。溶出したFKACGL1画分を、「緩衝液D」に対して4℃で一昼夜透析を行った。さらに「緩衝液E」、脱イオン水で透析を行った。   The pT24FKACGL1 was introduced into E. coli BL21 (DE3) (Invitrogen) to prepare a recombinant. This recombinant was transformed into 2XY. The cells were cultured in T medium at 26 ° C. for 40 hours. The collected cells were suspended in “Buffer A” and the cells were disrupted by ultrasonic disruption. After cell disruption, the cells were incubated overnight at 4 ° C. The obtained cell lysate was subjected to ultracentrifugation at 40,000 g for 1 hour to obtain a supernatant. The supernatant was mixed with Ni-Sepharose HP (GE) previously equilibrated with buffer A, and incubated at 4 ° C. overnight. This mixed solution was centrifuged at 2000 rpm for 5 minutes to recover Ni-Sepharose beads. The recovered beads were washed twice with “Buffer B” and then FKAGL1 was eluted with “Buffer C”. The eluted FKACGL1 fraction was dialyzed against “buffer D” at 4 ° C. overnight. Further, dialysis was performed with “Buffer E” and deionized water.

6mLの透析内液に、臭化シアン100mgを溶解させた蟻酸を14mL添加し、窒素雰囲気下で室温・暗所で16時間インキュベートした。臭化シアンによる断片化処理したFKACGL1溶液を水酸化ナトリウムでpH2.8に調整した後、2Mトリス塩酸溶液に対して2回透析を行った。透析内液へ終濃度8Mになるように尿素を溶解させ、pH7.8に調整した。本溶液を「緩衝液A」で平衡化されたNi−Sepharose HP(GE社)と混合し、4℃で一昼夜インキュベートした。本混合液を2000rpmで5分間遠心分離を行い、Ni−Sepharoseビーズを回収した。回収したビーズを、「緩衝液B」で2回洗浄した後、「緩衝液C」でTcFKから遊離したACGL1を溶出した。ACGL1溶液を「緩衝液D」に対して、一昼夜4℃で透析した後、さらにPBSに対して5回透析を行った。
各精製工程における、SDS−PAGE及び抗GLP−1抗体(フナコシ社:ABB-2506-69)を用いたウエスターンブロッティングの結果を、それぞれ図9と図10に示す。
14 mL of formic acid in which 100 mg of cyanogen bromide was dissolved was added to 6 mL of dialysis internal solution, and the mixture was incubated for 16 hours at room temperature in the dark under a nitrogen atmosphere. The FKACGL1 solution fragmented with cyanogen bromide was adjusted to pH 2.8 with sodium hydroxide and dialyzed twice against a 2M Tris-HCl solution. Urea was dissolved in the dialyzed solution to a final concentration of 8M and adjusted to pH 7.8. This solution was mixed with Ni-Sepharose HP (GE) equilibrated with “Buffer A” and incubated at 4 ° C. overnight. This mixed solution was centrifuged at 2000 rpm for 5 minutes to recover Ni-Sepharose beads. The recovered beads were washed twice with “Buffer B”, and then ACGL1 released from TcFK was eluted with “Buffer C”. The ACGL1 solution was dialyzed against “buffer D” at 4 ° C. overnight, and further dialyzed 5 times against PBS.
The results of Western blotting using SDS-PAGE and anti-GLP-1 antibody (Funakoshi: ABB-2506-69) in each purification step are shown in FIGS. 9 and 10, respectively.

(7)脂質結合型ACGL1の調製と分散性の検定
(6)で得られたACGL1と、その1倍、2.5倍、又は10倍重量のDMPCを混合し、ACGL1及びDMPCの複合体形成を調べた。具体的には、クロロホルムに溶解させた2mg/mL、5mg/mL、又は20mg/mLのDMPC溶液250μLを、ガラス管内で窒素ガスにより乾燥させた。その後、1mLのPBS(pH7.4)を添加し、超音波によってDMPCを分散させ、白色懸濁液を得た。本DMPC懸濁液に、上記(6)で得られた0.5mg/mLの精製ACGL1溶液1mLを加えて混合し、室温で3時間以上放置した。これにより、DMPC結合型ACGL1(脂質結合型ACGL1)が得られた。得られたDMPC結合型ACGL1の分散性を、Native−PAGEによって調べた(図11)。図11のレーン3に示されるように、2.5倍重量のDMPCと混合させたACGL1は、DMPC結合型AGL1(図2のレーン4参照)と同様の分子量250kDa程度の均一粒子を形成していることがわかった。
(7) Preparation of lipid-bound ACGL1 and dispersibility test ACGL1 obtained in (6) and DMPC of 1-fold, 2.5-fold or 10-fold weight thereof are mixed to form a complex of ACGL1 and DMPC. I investigated. Specifically, 250 μL of 2 mg / mL, 5 mg / mL, or 20 mg / mL DMPC solution dissolved in chloroform was dried with nitrogen gas in a glass tube. Thereafter, 1 mL of PBS (pH 7.4) was added, and DMPC was dispersed by ultrasonic waves to obtain a white suspension. To this DMPC suspension, 1 mL of the 0.5 mg / mL purified ACGL1 solution obtained in (6) above was added and mixed, and allowed to stand at room temperature for 3 hours or more. As a result, DMPC-bound ACGL1 (lipid-bound ACGL1) was obtained. The dispersibility of the obtained DMPC-conjugated ACGL1 was examined by Native-PAGE (FIG. 11). As shown in lane 3 of FIG. 11, ACGL1 mixed with 2.5 times the weight of DMPC forms uniform particles having a molecular weight of about 250 kDa, similar to DMPC-bound AGL1 (see lane 4 of FIG. 2). I found out.

(8)ACGL1のGLP−1受容体(GLP−1R)アゴニスト活性
(6)で調製されたACGL1(脂質非結合型ACGL1)と(7)で調製された脂質結合型ACGL1について、(3)と同様の方法で、GLP−1Rアゴニスト活性を測定した(図12)。またExendin (5-39)を用いた阻害実験も同様にして行った(図13)。
図12に示すように、天然型GLP−1(●)のEC50値が2.7×10-11Mであったのに対し、脂質結合型ACGL1(◆;+DMPC)のEC50値は1.4×10-9M(1.4nM)、脂質非結合型ACGL1(○;−DMPC)EC50値は2.7×10-9M(2.7nM)であった。いずれもシングルナノモルオーダーの濃度で機能することから、脂質結合型ACGL1と脂質非結合型ACGL1は、いずれも医薬として使用可能であることがわかった。
(8) GLP-1 receptor (GLP-1R) agonist activity of ACGL1 ACGL1 (non-lipid-bound ACGL1) prepared in (6) and lipid-bound ACGL1 prepared in (7) The GLP-1R agonist activity was measured by the same method (FIG. 12). In addition, inhibition experiments using Exendin (5-39) were performed in the same manner (FIG. 13).
As shown in FIG. 12, the EC50 value of natural GLP-1 (●) was 2.7 × 10 −11 M, whereas the EC50 value of lipid-bound ACGL1 (♦; + DMPC) was 1.4. The EC50 value of × 10 -9 M (1.4 nM) and non-lipid-bound ACGL1 (◯; -DMPC) was 2.7 × 10 -9 M (2.7 nM). Since both function at a single nanomolar order concentration, it was found that both lipid-bound ACGL1 and non-lipid-bound ACGL1 can be used as pharmaceuticals.

また図13に示すように、脂質非結合型ACGL1(●)のGLP−1Rアゴニスト活性(EC50=1.1nM)は、GLP−1RアンタゴニストであるExendin (5-39)によって著しく抑制された(○)。このことから、上記アゴニスト活性は、天然型GLP−1と同様の、ACGL1の特異的作用によることが証明された。   Further, as shown in FIG. 13, the GLP-1R agonist activity (EC50 = 1.1 nM) of non-lipid-bound ACGL1 (●) was remarkably suppressed by Exendin (5-39), a GLP-1R antagonist (◯ ). From this, it was proved that the agonist activity was due to the specific action of ACGL1 as in the case of natural GLP-1.

(9)ACGL1のプロテアーゼ耐性
(6)で調製されたACGL1(脂質非結合型ACGL1)と(7)で調製された脂質結合型ACGL1について、(4)と同様の方法で、DPPIV耐性を調べた(図14、図15)。図14に示すように、天然型GLP−1は、DPPIV処理によってEC50値は2.2×10-11M(●:−DPPIV)から1.1×10-9M(○:+DPPIV)に明らかに上昇した。一方、ACGL1は、EC50値がDPPIV未処理(▲;−DPPIV)では3.1×10-9M(3.1nM)、DPPIV処理後(△;+DPPIV)では2.3×10-9M(2.3nM)であり、殆ど変化しなかった。このことは、ApoAIの部分断片配列と融合させたGLP−1も、AGL1と同様に、DPPIV耐性を獲得したことを示していた。以上より、GLP−1にApoAI部分断片を融合させることによって、GLP−1にプロテアーゼ耐性を付与できることが示された。
(9) Protease resistance of ACGL1 With respect to ACGL1 (non-lipid-bound ACGL1) prepared in (6) and lipid-bound ACGL1 prepared in (7), DPPIV resistance was examined in the same manner as in (4). (FIGS. 14 and 15). As shown in FIG. 14, the natural GLP-1 has an EC50 value of 2.2 × 10 −11 M (●: −DPPIV) to 1.1 × 10 −9 M (◯: + DPPIV) after DPPIV treatment. Rose to. On the other hand, ACGL1 has an EC50 value of 3.1 × 10 −9 M (3.1 nM) when DPPIV is untreated (▲; −DPPIV), and 2.3 × 10 −9 M after DPPIV treatment (Δ; + DPPIV). 2.3 nM) and hardly changed. This indicated that GLP-1 fused with the partial fragment sequence of ApoAI also acquired DPPIV resistance, similar to AGL1. From the above, it was shown that protease resistance can be imparted to GLP-1 by fusing the ApoAI partial fragment to GLP-1.

また図15に示すように、DMPC結合型ACGL1についても、EC50値がDPPIV未処理(▲;−DPPIV)では2.8×10-9M(2.8nM)、DPPIV処理後(△;+DPPIV)では2.2×10-9M(2.2nM)であり、DMPC結合型の場合でもEC50値は殆ど変化しなかった。このことは、DMPC結合型ACGL1も、DMPC非結合型ACGL1と同様にDPPIV耐性を獲得したことを示していた。 Further, as shown in FIG. 15, also for DMPC-coupled ACGL1, EC50 value is 2.8 × 10 −9 M (2.8 nM) when DPPIV is not treated (▲; −DPPIV), and after DPPIV treatment (Δ; + DPPIV) Then, it was 2.2 × 10 −9 M (2.2 nM), and the EC50 value hardly changed even in the case of DMPC binding type. This indicated that DMPC-conjugated ACGL1 also acquired DPPIV resistance in the same manner as DMPC non-conjugated ACGL1.

以上より、GLP−1とApoAI部分断片との融合ペプチドであるACGL1が、in vivoにおいて作用が長期間に渡って持続するGLP−1R作動薬として使用可能であることが示された。   From the above, it was shown that ACGL1, which is a fusion peptide of GLP-1 and ApoAI partial fragment, can be used as a GLP-1R agonist whose action lasts for a long time in vivo.

Claims (40)

アポリポ蛋白質AI又はその改変体と、有効成分となる治療用ペプチドとが、ペプチド結合を介して連結してなる融合蛋白質、を含有する医薬。   A pharmaceutical comprising a fusion protein comprising apolipoprotein AI or a variant thereof and a therapeutic peptide as an active ingredient linked through a peptide bond. 前記改変体は、アポリポ蛋白質AIの部分断片である請求項1に記載の医薬。   The medicament according to claim 1, wherein the variant is a partial fragment of apolipoprotein AI. 前記改変体は、アポリポ蛋白質AIの両親媒性配列を1〜6個含むポリペプチドである請求項1に記載の医薬。   The medicament according to claim 1, wherein the variant is a polypeptide containing 1 to 6 amphipathic sequences of apolipoprotein AI. 前記改変体は、アポリポ蛋白質AIの全長又は部分断片のアミノ酸変異体である請求項1に記載の医薬。   The medicament according to claim 1, wherein the variant is an amino acid variant of a full-length or partial fragment of apolipoprotein AI. 前記改変体は、アポリポ蛋白質AIの模倣ペプチドである請求項1に記載の医薬。   The medicament according to claim 1, wherein the variant is a mimetic peptide of apolipoprotein AI. 前記改変体は、キュビリン結合性が低下又は欠失したものである請求項1〜5のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 5, wherein the modified form has a reduced or deleted cubilin-binding property. 前記アポリポ蛋白質AIは、ヒト由来のものである請求項1〜6のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 6, wherein the apolipoprotein AI is derived from a human. 前記治療用ペプチドは、細胞表層受容体に対するアゴニストである請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide is an agonist for a cell surface receptor. 前記治療用ペプチドは、血糖をコントロールする機能を有するものである請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide has a function of controlling blood glucose. 前記治療用ペプチドは、インスリン抵抗性改善機能を有するものである請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide has an insulin resistance improving function. 前記治療用ペプチドは、グルカゴン様ペプチド−1活性を有するポリペプチドである請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide is a polypeptide having glucagon-like peptide-1 activity. 前記治療用ペプチドは、エリスロポエチン活性を有するポリペプチドである請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide is a polypeptide having erythropoietin activity. 前記治療用ペプチドは、サイトカイン又はケモカインに対する可溶性受容体である請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide is a soluble receptor for cytokines or chemokines. 前記治療用ペプチドは、免疫グロブリンのVH領域とVL領域のいずれか一方又は両方を含むポリペプチドである請求項1〜7のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 7, wherein the therapeutic peptide is a polypeptide containing one or both of a VH region and a VL region of an immunoglobulin. 前記融合蛋白質には、前記治療用ペプチドに対する分解酵素の阻害剤がさらに連結されている請求項1〜14のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 14, wherein an inhibitor of a degrading enzyme for the therapeutic peptide is further linked to the fusion protein. 前記分解酵素は、ジペプチジルペプチダーゼIVである請求項15に記載の医薬。   The medicine according to claim 15, wherein the degrading enzyme is dipeptidyl peptidase IV. 前記融合蛋白質には、第2の治療成分がさらに連結されている請求項1〜16のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 16, wherein a second therapeutic component is further linked to the fusion protein. 前記治療用ペプチドが血糖をコントロールする機能を有するもの又はグルカゴン様ペプチド−1受容体アゴニストであり、前記第2の治療成分が膵臓疾患治療薬又は肝臓疾患治療薬である請求項17に記載の医薬。   The medicament according to claim 17, wherein the therapeutic peptide has a function of controlling blood glucose or is a glucagon-like peptide-1 receptor agonist, and the second therapeutic component is a pancreatic disease therapeutic agent or a liver disease therapeutic agent. . 前記第2の治療成分は、炎症抑制剤、抗癌剤、又は肝硬変治療薬である請求項18に記載の医薬。   The medicament according to claim 18, wherein the second therapeutic component is an inflammation inhibitor, an anticancer agent, or a cirrhosis therapeutic agent. 前記アポリポ蛋白質AI又はその改変体と治療用ペプチドとの間に、リンカーが介在している請求項1〜19のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 19, wherein a linker is interposed between the apolipoprotein AI or a variant thereof and the therapeutic peptide. 前記融合蛋白質に脂質がさらに結合し、蛋白質・脂質複合体を形成している請求項1〜20のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 20, wherein a lipid is further bound to the fusion protein to form a protein / lipid complex. 前記蛋白質・脂質複合体は、前記治療用ペプチドに対する分解酵素の阻害剤をさらに含んでいる請求項21に記載の医薬。   The medicament according to claim 21, wherein the protein / lipid complex further contains an inhibitor of a degrading enzyme for the therapeutic peptide. 前記蛋白質・脂質複合体は、第2の治療成分をさらに含んでいる請求項21又は22に記載の医薬。   The medicament according to claim 21 or 22, wherein the protein / lipid complex further contains a second therapeutic component. 前記治療用ペプチドが血糖をコントロールする機能を有するもの又はグルカゴン様ペプチド−1受容体アゴニストであり、前記第2の治療成分が膵臓疾患治療薬又は肝臓疾患治療薬である請求項23に記載の医薬。   The medicament according to claim 23, wherein the therapeutic peptide has a function of controlling blood glucose or is a glucagon-like peptide-1 receptor agonist, and the second therapeutic component is a therapeutic drug for pancreatic disease or a therapeutic drug for liver disease. . 前記第2の治療成分は、炎症抑制剤、抗癌剤、又は肝硬変治療薬である請求項24に記載の医薬。   The medicament according to claim 24, wherein the second therapeutic component is an inflammation inhibitor, an anticancer agent, or a cirrhosis therapeutic agent. 経口投与用又は経粘膜投与用である請求項1〜25のいずれかに記載の医薬。   The medicament according to any one of claims 1 to 25, wherein the medicament is for oral administration or transmucosal administration. 請求項1〜20のいずれかで定義された融合蛋白質又は請求項21〜25のいずれかで定義された蛋白質・脂質複合体、を含有する機能性食品。   A functional food containing the fusion protein defined in any one of claims 1 to 20 or the protein / lipid complex defined in any one of claims 21 to 25. 請求項1〜20のいずれかで定義された融合蛋白質を発現する組換え体を有効成分として含有する医薬又は機能性食品。   A pharmaceutical or functional food containing a recombinant expressing the fusion protein defined in any one of claims 1 to 20 as an active ingredient. 前記組換え体は、前記融合蛋白質を表層に提示可能な微生物又は細胞である請求項28に記載の医薬又は機能性食品。   29. The pharmaceutical or functional food according to claim 28, wherein the recombinant is a microorganism or cell capable of presenting the fusion protein on the surface layer. 前記微生物は、酵母である請求項29に記載の医薬又は機能性食品。   30. The pharmaceutical or functional food according to claim 29, wherein the microorganism is yeast. 目的蛋白質に対して、アポリポ蛋白質AI又はその改変体を連結することを特徴とする目的蛋白質の安定化方法。   A method for stabilizing a target protein, comprising ligating apolipoprotein AI or a variant thereof to the target protein. 前記改変体は、アポリポ蛋白質AIの部分断片である請求項31に記載の目的蛋白質の安定化方法。   32. The method for stabilizing a target protein according to claim 31, wherein the variant is a partial fragment of apolipoprotein AI. 前記改変体は、アポリポ蛋白質AIの両親媒性配列を1〜6個含むポリペプチドである請求項31に記載の目的蛋白質の安定化方法。   32. The method for stabilizing a target protein according to claim 31, wherein the variant is a polypeptide comprising 1 to 6 amphipathic sequences of apolipoprotein AI. 前記改変体は、アポリポ蛋白質AIの全長又は部分断片のアミノ酸変異体である請求項31に記載の目的蛋白質の安定化方法。   32. The method for stabilizing a target protein according to claim 31, wherein the variant is an amino acid variant of a full-length or partial fragment of apolipoprotein AI. 前記改変体は、アポリポ蛋白質AIの模倣ペプチドである請求項31に記載の目的蛋白質の安定化方法。   32. The method for stabilizing a target protein according to claim 31, wherein the variant is a mimetic peptide of apolipoprotein AI. アポリポ蛋白質AI又はその改変体と、グルカゴン様ペプチド−1活性を有するポリペプチドとが、ペプチド結合を介して連結してなる融合蛋白質。   A fusion protein comprising an apolipoprotein AI or a variant thereof and a polypeptide having glucagon-like peptide-1 activity linked via a peptide bond. 請求項36に記載の融合蛋白質をコードする核酸。   A nucleic acid encoding the fusion protein of claim 36. 請求項37に記載の核酸を有する組換え体。   38. A recombinant comprising the nucleic acid of claim 37. 細菌、酵母、カビ、藻類、植物細胞、昆虫細胞、動物細胞、植物、又は動物である請求項38に記載の組換え体。   The recombinant according to claim 38, which is a bacterium, yeast, mold, algae, plant cell, insect cell, animal cell, plant, or animal. 組換え体が酵母であり、前記融合蛋白質を表層に提示可能である請求項39に記載の組換え体。   40. The recombinant according to claim 39, wherein the recombinant is yeast and the fusion protein can be displayed on the surface layer.
JP2011240593A 2011-05-10 2011-11-01 Medicament, functional food product, stabilization method of target protein, fusion protein, nucleic acid, and recombinant Pending JP2014132832A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011240593A JP2014132832A (en) 2011-05-10 2011-11-01 Medicament, functional food product, stabilization method of target protein, fusion protein, nucleic acid, and recombinant
PCT/JP2012/060688 WO2012153620A1 (en) 2011-05-10 2012-04-20 Drug, functional food, method for stabilizing target protein, fused protein, nucleic acid, and recombinant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011105093 2011-05-10
JP2011105093 2011-05-10
JP2011240593A JP2014132832A (en) 2011-05-10 2011-11-01 Medicament, functional food product, stabilization method of target protein, fusion protein, nucleic acid, and recombinant

Publications (1)

Publication Number Publication Date
JP2014132832A true JP2014132832A (en) 2014-07-24

Family

ID=47139106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240593A Pending JP2014132832A (en) 2011-05-10 2011-11-01 Medicament, functional food product, stabilization method of target protein, fusion protein, nucleic acid, and recombinant

Country Status (2)

Country Link
JP (1) JP2014132832A (en)
WO (1) WO2012153620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528257A (en) * 2015-07-10 2018-09-27 ペプティノボ・バイオファーマ・リミテッド・ライアビリティ・カンパニーPeptinovo Biopharma, LLC Formulations for improving the efficacy of hydrophobic drugs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193378A1 (en) * 2014-06-18 2015-12-23 Novo Nordisk A/S Novel glp-1 receptor agonists with cholesterol efflux activity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030191056A1 (en) * 2002-04-04 2003-10-09 Kenneth Walker Use of transthyretin peptide/protein fusions to increase the serum half-life of pharmacologically active peptides/proteins
WO2006096515A2 (en) * 2005-03-04 2006-09-14 Biorexis Pharmaceutical Corporation Modified transferrin fusion proteins
JP5685529B2 (en) * 2008-06-13 2015-03-18 プロイェクト、デ、ビオメディシナ、シーマ、ソシエダッド、リミターダProyecto De Biomedicina Cima, S.L. Complexes for the administration of compounds having biological activity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528257A (en) * 2015-07-10 2018-09-27 ペプティノボ・バイオファーマ・リミテッド・ライアビリティ・カンパニーPeptinovo Biopharma, LLC Formulations for improving the efficacy of hydrophobic drugs
JP2021191767A (en) * 2015-07-10 2021-12-16 ペプティノボ・バイオファーマ・インコーポレイテッドPeptinovo Biopharma Inc. Formulations for improving efficacy of hydrophobic drugs
JP7378446B2 (en) 2015-07-10 2023-11-13 ペプティノボ・バイオファーマ・インコーポレイテッド Formulations to improve the efficacy of hydrophobic drugs

Also Published As

Publication number Publication date
WO2012153620A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
US11969456B2 (en) Lipoprotein complexes and manufacturing and uses thereof
US20240067695A1 (en) Glucagon-like peptide-2 compositions and methods of making and using same
JP5749155B2 (en) Protease stabilized acylated insulin analogue
JP4936884B2 (en) Stabilized pharmaceutical peptide composition
JP6254146B2 (en) Compositions and methods for treating metabolic disorders
JP5248113B2 (en) Peptide stable formulation
AU2004273573B2 (en) Albumin-binding derivatives of therapeutic peptides
JP2007524592A (en) Stabilized pharmaceutical peptide composition
WO2012153620A1 (en) Drug, functional food, method for stabilizing target protein, fused protein, nucleic acid, and recombinant
AU2015271986B2 (en) Lipoprotein complexes and manufacturing and uses thereof
WO2023237935A2 (en) Methods for treating acute conditions using lipid binding protein-based complexes
WO2023237927A2 (en) Methods for treating hyperinflammatory conditions using lipid binding protein -based complexes
NZ613524B2 (en) Lipoprotein complexes and manufacturing and uses thereof
NZ622174B2 (en) Glucagon-like peptide-2 compositions and methods of making and using same