JP2014129187A - Artificial lightweight fine aggregate and production method of the same - Google Patents

Artificial lightweight fine aggregate and production method of the same Download PDF

Info

Publication number
JP2014129187A
JP2014129187A JP2012286355A JP2012286355A JP2014129187A JP 2014129187 A JP2014129187 A JP 2014129187A JP 2012286355 A JP2012286355 A JP 2012286355A JP 2012286355 A JP2012286355 A JP 2012286355A JP 2014129187 A JP2014129187 A JP 2014129187A
Authority
JP
Japan
Prior art keywords
foaming
aggregate
firing
ratio
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012286355A
Other languages
Japanese (ja)
Other versions
JP6153722B2 (en
Inventor
Masaaki Noguchi
雅朗 野口
Hideki Wachi
秀樹 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2012286355A priority Critical patent/JP6153722B2/en
Publication of JP2014129187A publication Critical patent/JP2014129187A/en
Application granted granted Critical
Publication of JP6153722B2 publication Critical patent/JP6153722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an artificial lightweight fine aggregate that is an artificial light weight aggregate that is used for a structure material such as a light concrete, in which raw material blending and burning of the artificial light weight aggregate are easy without comminution and granulation of a raw material, and the obtained light-weight aggregate has high intensity, low water absorption, and a shape of a spherical type, and can be used as an aggregate of a lightweight mortar and the light concrete.SOLUTION: An artificial light weight aggregate is characterized in that an ignition loss is 0.5-1.5 wt.%, an expansibility rock powder in which a ratio of a glassy matter is at least 90 wt.% is formed by heating and foaming, a foam ratio is at least 2 times, and an intensity is possessed in which the persistence under the 3 kg pressurization is at least 80%. In addition, a production method of the same is provided.

Description

本発明は、粒子強度が大きく発泡率の高い軽量骨材とその製造方法に関する。 The present invention relates to a lightweight aggregate having a high particle strength and a high foaming rate, and a method for producing the same.

軽量コンクリートを製造する際に軽量骨材が用いられている。軽量コンクリートを構造物に使用した場合、構造物全体を軽量化できるため、柱や壁に掛かる荷重を減らすことができ、建設コストも削減できるメリットがある。また地震にも強くなる利点がある。軽量骨材には人工軽量細骨材、天然軽量骨材、副産軽量骨材などがあり、軽量コンクリートには主に人工軽量細骨材が使用されており、JIS A 5002に構造用人工軽量骨材が規定されている。 Lightweight aggregates are used in making lightweight concrete. When lightweight concrete is used for a structure, since the entire structure can be reduced in weight, there is an advantage that the load applied to the pillars and walls can be reduced and the construction cost can be reduced. It also has the advantage of becoming strong against earthquakes. Lightweight aggregates include artificial lightweight fine aggregates, natural lightweight aggregates, by-product lightweight aggregates, etc. Lightweight concrete mainly uses artificial lightweight fine aggregates, and JIS A 5002 uses structural lightweight materials. Aggregates are prescribed.

上記規格の人工軽量骨材は、膨張頁岩、膨張粘土、膨張スレート、フライアッシュを主原料とし、これを粉砕して粒度調製した後に加熱焼成して発泡させることによって製造されるものである。例えば、膨張頁岩を原料として粉砕した粉砕物を成形して焼成してなる人工軽量材が知られている(特開2009−234892号公報)。この他に、酸性火山岩類、酸性火山噴出物、凝灰岩などを主原料に使用して焼成発泡させてなる人工軽量骨材(特開平7−291685号公報)、シラスを原料に使用して焼成発泡させてなる人工軽量骨材(特開平05−201749号公報)などが知られている。 The above-mentioned artificial lightweight aggregate is manufactured by using expanded shale, expanded clay, expanded slate, and fly ash as main raw materials, pulverizing and adjusting the particle size, and then heating and firing to foam. For example, an artificial lightweight material obtained by forming and firing a pulverized product pulverized using expanded shale as a raw material is known (Japanese Patent Application Laid-Open No. 2009-234892). In addition to this, artificial light-weight aggregate obtained by firing and foaming using acidic volcanic rocks, acidic volcanic ejecta and tuff as the main raw material (Japanese Patent Laid-Open No. 7-291865), and firing foam using Shirasu as the raw material An artificial lightweight aggregate (Japanese Patent Laid-Open No. 05-201749) and the like are known.

さらに、真珠岩や黒曜石などの岩石粉を原料とし、これを焼成発泡させてなる人工軽量骨材がパーライトとして知られている(特開2010−76986号公報)。黒曜石や真珠岩は高温で加熱されると内部の結晶水が水蒸気になって膨張し、内部に気泡を有する中空粒子になる。一般に黒曜石では結晶水が2%程度なので、内部の気泡が小さいセルに囲まれた独立気泡を有する発泡粒子になり、真珠岩では結晶水が3〜5%とやや多いので気泡が爆裂してセルが崩れた連続気泡を有する発泡粒子になる。 Furthermore, an artificial lightweight aggregate made of rock powder such as pearlite or obsidian and fired and foamed is known as pearlite (Japanese Patent Laid-Open No. 2010-76986). When obsidian and nacre are heated at high temperatures, the crystal water inside expands into water vapor and expands into hollow particles with bubbles inside. In general, obsidian has a crystal water content of about 2%, so the internal bubbles are foamed particles with closed cells surrounded by small cells, and in pearlite, the crystal water is 3-5%, so the bubbles explode and the cells It becomes an expanded particle having open cells that collapsed.

従来のパーライトは粒子強度が小さいため、コンクリートやモルタルに使用した場合、混練時や施工時に粒子が破損して軽量性が保たれず、また、コンクリートやモルタルの強度が低下するなどの問題がある。また、市販の人工軽量骨材はほとんどがJISのM品(絶乾密度1.3〜1.8g/cm3)であり、絶乾密度が1.3未満の細骨材は少ない。また、高性能人工軽量細骨材は製造時の造粒が非常に難しく、さらに焼成時に融着が起こりやすく、歩留まりが悪いため、製造が難しい。 Conventional pearlite has low particle strength, so when used in concrete or mortar, the particles are damaged during kneading and construction, and the lightness cannot be maintained, and the strength of concrete and mortar decreases. . Most of the commercially available artificial lightweight aggregates are JIS M products (absolute dry density 1.3 to 1.8 g / cm 3 ), and few fine aggregates have an absolute dry density of less than 1.3. Further, high-performance artificial lightweight fine aggregates are very difficult to granulate at the time of manufacture, and moreover, fusion is liable to occur at the time of firing, resulting in poor yield.

特開2009−234892号公報JP 2009-234892 A 特開平7−291685号公報Japanese Patent Laid-Open No. 7-291685 特開平05−201749号公報JP 05-201749 A 特開2010−76986号公報JP 2010-76986 A

本発明は、従来の人工軽量骨材(パーライト)における上記問題を解決したものであり、粒子強度が大きいうえに嵩密度が十分に小さい人工軽量骨材とその製造方法を提供する。具体的には、本発明は、好ましくは、嵩密度が0.5g/cm3以下(発泡率2.5倍以上)であって、3kg加圧残存率が80%以上の粒子強度を有する人工軽量骨材とその製造方法を提供する。 This invention solves the said problem in the conventional artificial lightweight aggregate (pearlite), and provides the artificial lightweight aggregate with the large particle strength and sufficiently small bulk density, and its manufacturing method. Specifically, the present invention preferably has an artificial particle strength that has a bulk density of 0.5 g / cm 3 or less (a foaming ratio of 2.5 times or more) and a 3 kg pressure residual ratio of 80% or more. A lightweight aggregate and a manufacturing method thereof are provided.

本発明は、以下の構成を有する人工軽量骨材とその製造方法に関する。
〔1〕強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を加熱発泡させてなり、発泡率が2倍以上であって、3kg加圧下の残存率が80%以上の強度を有することを特徴とする人工軽量骨材。
〔2〕強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を、850℃〜1000℃で、5分以上加熱焼成して発泡させることによって、発泡率が2倍以上であって3kg加圧下の残存率が80%以上の強度を有する人工軽量骨材を製造することを特徴とする製造方法。
〔3〕平均粒径0.3〜5mmの黒曜石粉末を用いる上記[2]の製造方法。
〔4〕加熱炉として、ロータリーキルン、流動層焼成炉、箱型焼成炉を用いる上記[2]または上記[3]に記載する製造方法。
The present invention relates to an artificial lightweight aggregate having the following configuration and a method for manufacturing the same.
[1] Expandable rock powder with a loss on ignition of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more is heated and foamed. An artificial lightweight aggregate characterized in that the residual ratio under reduction has a strength of 80% or more.
[2] Expanding rock powder with an ignition loss of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more at 850 ° C to 1000 ° C for 5 minutes or more to foam. To produce an artificial lightweight aggregate having a foaming rate of 2 times or more and a residual rate under pressure of 3 kg of 80% or more.
[3] The production method of the above [2], wherein obsidian powder having an average particle size of 0.3 to 5 mm is used.
[4] The production method according to [2] or [3] above, wherein a rotary kiln, a fluidized bed firing furnace, or a box-type firing furnace is used as the heating furnace.

〔具体的な説明〕
本発明の軽量骨材は、強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を加熱発泡させてなり、発泡率が2倍以上であって、3kg加圧下の残存率が80%以上の強度を有することを特徴とする人工軽量骨材である。
[Specific description]
The lightweight aggregate of the present invention is obtained by heating and foaming an expandable rock powder having a loss on ignition of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more. The artificial lightweight aggregate is characterized in that the residual rate under 3 kg pressure has a strength of 80% or more.

本発明の軽量骨材は、強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を原料とする。強熱減量は主に結晶水などの含有水分に基づいており、強熱減量が0.5wt%未満では含有水分量が少ないため加熱焼成しても十分に発泡しない。一方、強熱減量が1.5wt%を上回ると含有水分量が多すぎて過発泡になり、気泡が爆裂して表面に開気泡を有する粒子が多くなる。表面に開気泡を有する粒子は強度が低く、またコンクリートに配合したときに粒子内部にセメント等が流入するので軽量粒子として用いることができない。強熱減量はJIS R 5202に従って測定される。 The lightweight aggregate of the present invention uses, as a raw material, expansive rock powder having a loss on ignition of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more. The loss on ignition is mainly based on the water content such as crystallization water. If the loss on ignition is less than 0.5 wt%, the water content is small, so even if it is fired, it does not foam sufficiently. On the other hand, if the loss on ignition exceeds 1.5 wt%, the water content is too much and excessive foaming occurs, and the bubbles explode and the number of particles having open bubbles on the surface increases. Particles having open cells on the surface are low in strength and cannot be used as lightweight particles because cement or the like flows into the particles when mixed with concrete. The ignition loss is measured according to JIS R 5202.

本発明の軽量骨材は、ガラス質の割合が90wt%以上のものが原料として用いられる。ガラス質の成分は主にシリカであり、アルミナなどが含まれる。ガラス質の割合が90wt%未満であると、ガラス中に含まれる結晶質部分によってガラスの均一性を損なうので発泡に悪影響を及ぼす。また、鉱物中の結晶質部分には発泡成分が含まれていないので発泡せず、発泡率が低下する。ガラス質の割合は、粉末X線回折のハローのピーク高さを測定して算出することができる。ガラスと結晶質(石英)を一定割合混合し、内標準として蛍石を使用し、測定したXRDパターンからベースラインからのガラスのハローの高さと内標準の高さを測定し、各混合割合ハローと内標準とピーク高さ比から検量線を作成する。この検量線を使用し、原料をXRDで測定してガラス質の割合が算出される。 The lightweight aggregate of the present invention is used as a raw material having a vitreous ratio of 90 wt% or more. The vitreous component is mainly silica and includes alumina and the like. If the glassy proportion is less than 90 wt%, the uniformity of the glass is impaired by the crystalline portion contained in the glass, which adversely affects foaming. Moreover, since the foaming component is not contained in the crystalline part in a mineral, it does not foam and a foaming rate falls. The glassy ratio can be calculated by measuring the peak height of the halo of powder X-ray diffraction. Glass and crystalline (quartz) are mixed in a certain ratio, fluorite is used as an internal standard, the glass halo height from the baseline and the internal standard height are measured from the measured XRD pattern, and each mixing ratio halo A calibration curve is created from the internal standard and peak height ratio. Using this calibration curve, the raw material is measured by XRD to calculate the glassy ratio.

一般にガラス質の膨張性岩石として黒曜石および真珠岩が知られている。黒曜石および真珠岩は石基全体がガラス質であり、ガラス質の割合が90wt%以上である。また、黒曜石および真珠岩は結晶水を有し、焼成すると膨張する。通常、黒曜石の含有水分量は約2wt%程度であり、真珠岩の含有水分量は約3〜5wt%程度であるので、強熱減量が0.5〜1.5wt%のものは主に黒曜石であり、真珠岩は強熱減量が1.5wt%を上回るようになるので、本発明の人工軽量骨材の原料は黒曜石が好ましい。 Obsidian and pearlite are generally known as vitreous expansive rocks. Obsidian and pearlite are vitreous as a whole, and the proportion of vitreous is 90 wt% or more. Obsidian and nacre have crystal water and expand when fired. Usually, obsidian contains about 2 wt% water, and pearlite contains about 3-5 wt%, so the ones with a loss on ignition of 0.5-1.5 wt% are mainly obsidian. In the case of pearlite, the loss on ignition exceeds 1.5 wt%. Therefore, the raw material for the artificial lightweight aggregate of the present invention is preferably obsidian.

本発明の軽量骨材は、発泡率が2倍以上であって、3kg加圧下の残存率が80%以上の強度を有する。発泡率は原料の精石(原料岩石を粉砕して粒度を揃えたもの)の嵩密度Doと発泡粒子の嵩密度Dvの体積比(Dv/Do)によって表される。
発泡率が2倍未満の粒子は発泡が不十分であり、軽量化の効果が小さい。
The lightweight aggregate of the present invention has a strength that the foaming rate is twice or more and the residual rate under 3 kg pressure is 80% or more. The foaming rate is expressed by the volume ratio (Dv / Do) of the bulk density Do of the raw stone (the raw rock is pulverized to have a uniform particle size) and the bulk density Dv of the foamed particles.
Particles having a foaming rate of less than 2 times are insufficiently foamed, and the effect of weight reduction is small.

本発明の軽量骨材は3kg加圧下の残存率が80%以上の強度を有する。3kg加圧下の残存率とは、ランダムに選別された試料粒子を金属製シリンダに入れ、シリンダ内径と同径の円柱(棒)をシリンダ上部から挿入し、棒の上から3kgの重りを載せて加圧し、加圧後に試料を取出し、破損していない粒子の数(n)を全試料粒子数(m)に対する比(n/m)で示したものである。なお、3kgの重りは棒と重りの合計重量にすればよい。残存率が高いほど粒子強度が大きい。
市販の真珠岩パーライトはこの3kg加圧下の残存率試験において全ての粒子が破損し、残存率がゼロ%であるのに対して、本発明の人工軽量骨材は発泡率が2倍以上でありながら残存率が80%以上であり、粒子強度が大きい。
The lightweight aggregate of the present invention has a strength with a residual rate under a pressure of 3 kg of 80% or more. The residual rate under 3kg pressure means that randomly selected sample particles are put into a metal cylinder, a cylinder (bar) with the same diameter as the cylinder inner diameter is inserted from the top of the cylinder, and a 3kg weight is placed on the rod. The sample is taken out after pressurization, and the number (n) of unbroken particles is shown as a ratio (n / m) to the total sample particle number (m). The 3 kg weight may be the total weight of the bar and the weight. The higher the residual rate, the greater the particle strength.
In the commercially available pearlite pearlite, all particles were damaged in the residual rate test under the 3 kg pressure, and the residual rate was zero%, whereas the artificial lightweight aggregate of the present invention had a foaming rate of more than twice. However, the residual rate is 80% or more, and the particle strength is large.

本発明の軽量骨材は、強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を、850℃〜1000℃で、5分以上加熱焼成して発泡させることによって製造することができる。焼成温度が850℃を下回ると粒子の発泡が不十分になり、未発泡粒子の割合が多くなるので、軽量骨材として使用できない。一方、焼成温度が1000℃を上回ると過剰発泡になり、粒子表面に開口する気泡が多く、粒子の強度が低下する。焼成時間は上記焼成温度域で5分以上が好ましい。5分未満では未発泡粒子の量が多くなる。 In the lightweight aggregate of the present invention, an expansive rock powder having a loss on ignition of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more is heated and fired at 850 ° C. to 1000 ° C. for 5 minutes or more. And can be produced by foaming. When the firing temperature is lower than 850 ° C., the foaming of the particles becomes insufficient and the ratio of unexpanded particles increases, so that it cannot be used as a lightweight aggregate. On the other hand, when the firing temperature exceeds 1000 ° C., excessive foaming occurs, and there are many air bubbles opening on the particle surface, so that the strength of the particles decreases. The firing time is preferably 5 minutes or more in the above firing temperature range. If it is less than 5 minutes, the amount of unexpanded particles increases.

本発明の軽量骨材は、通常の焼成温度よりも低温域でゆっくり焼成することによって、発泡率が高く、かつ粒子強度の大きい軽量骨材にしたものである。このような焼成を行うための焼成炉としては、回転炉(ロータリーキルン)、固定した箱型炉、連続焼成のトンネル炉、流動層焼成炉などが好ましい。気流焼成炉は焼成温度域での滞留時間が短いので適さない。 The lightweight aggregate of the present invention is made into a lightweight aggregate having a high foaming rate and a large particle strength by being slowly fired at a temperature lower than the normal firing temperature. As a firing furnace for performing such firing, a rotary furnace (rotary kiln), a fixed box furnace, a continuous firing tunnel furnace, a fluidized bed firing furnace, and the like are preferable. An air-flow firing furnace is not suitable because the residence time in the firing temperature range is short.

本発明の軽量骨材は、強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末(主に黒曜石粉末)を原料とし、従来の焼成温度よりはやや低温でゆっくり焼成して発泡させるので、原料粉末に発泡剤を加える必要がない。従来の人工軽量骨材では、未発泡粒子が生じないように、原料粉末に発泡剤を加えて造粒したものを焼成したものが知られているが、本発明の人工軽量骨材は発泡剤を加える必要がなく、従って造粒する必要がない。 The lightweight aggregate of the present invention is made from an expansive rock powder (mainly obsidian powder) having a loss on ignition of 0.5 to 1.5 wt% and a glassy ratio of 90 wt% or more as a raw material. Since it is fired and foamed more slowly at a slightly lower temperature, it is not necessary to add a foaming agent to the raw material powder. Conventional artificial lightweight aggregates are known in which raw foam is granulated by adding a foaming agent so that unfoamed particles are not produced, but the artificial lightweight aggregate of the present invention is a foaming agent. There is no need to add, and therefore no granulation.

本発明の軽量骨材は原料粉末を造粒する必要がないので、粒径が細骨材程度の軽量骨材を得ることができる。具体的には、粒径が0.3〜5mmの原料粉末を用いることができる。原料粉末の粒径が0.3mm未満では発泡が起こり難い、またロータリーキルンなどの焼成炉の内壁に溶けた原料が融着しやすい場合がある。一方、原料粉末の粒径が5mmより大きいと粒子内部に熱が伝わり難く、十分に発砲されない。 Since the lightweight aggregate of the present invention does not require granulation of the raw material powder, a lightweight aggregate having a particle size comparable to that of a fine aggregate can be obtained. Specifically, a raw material powder having a particle size of 0.3 to 5 mm can be used. When the particle size of the raw material powder is less than 0.3 mm, foaming hardly occurs, and the raw material melted on the inner wall of a firing furnace such as a rotary kiln may be easily fused. On the other hand, if the particle size of the raw material powder is larger than 5 mm, heat is not easily transmitted to the inside of the particle, and it is not sufficiently fired.

強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末(主に黒曜石粉末)を加熱発泡させることによって、発泡率が2倍以上、好ましくは2〜4倍であって、内部に独立気泡を有し、粒子表面に気泡が開口せず、3kg加圧下の残存率が80%以上の強度を有する人工軽量骨材を得ることができる。 By heating and foaming expansive rock powder (mainly obsidian powder) having a loss on ignition of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more, the foaming rate is more than twice, preferably An artificial lightweight aggregate having a strength of 2 to 4 times, having closed cells inside, no bubbles open on the particle surface, and a residual rate under pressure of 3 kg of 80% or more can be obtained.

本発明の軽量骨材は、発泡率が好ましくは2〜4倍であって、3kg加圧下の残存率が80%以上の強度を有するので、コンクリートやモルタルに使用した場合、混練時や施工時に粒子が破損することが少なく、軽量化材料として信頼性よく使用することができる。 The lightweight aggregate of the present invention preferably has a foaming rate of 2 to 4 times and a residual rate under 3 kg pressure of 80% or more, so when used for concrete or mortar, during kneading or construction The particles are less likely to break and can be used reliably as a light weight material.

また、本発明の軽量骨材は発泡剤が不要であり、造粒する必要がないので、粒径が細骨材レベルの軽量骨材を得ることができる。具体的には、例えば、平均粒径0.3〜1mmの黒曜石粉末を原料にして焼成発泡させることによって、平均粒径0.6〜5mmの粒子が90wt%以上の人工軽量細骨材を得ることができる。 Further, since the lightweight aggregate of the present invention does not require a foaming agent and does not need to be granulated, it is possible to obtain a lightweight aggregate having a fine aggregate level. Specifically, for example, an artificial lightweight fine aggregate having an average particle diameter of 0.6 to 5 mm of 90 wt% or more is obtained by firing and foaming obsidian powder having an average particle diameter of 0.3 to 1 mm. be able to.

さらに、本発明の軽量骨材は、内部に独立気泡を有し、粒子表面に気泡が開口しない閉気孔であるため、吸水率が格段に低く、概ね吸水率は5%以下であり、浮水率は90%以上である。また、本発明の軽量骨材は、球状であるので流動性がよく、コンクリートやモルタルに混合しやすく、均一に分散しやすい。 Furthermore, since the lightweight aggregate of the present invention is a closed pore that has closed cells inside and no bubbles open on the particle surface, the water absorption rate is remarkably low, and the water absorption rate is generally 5% or less. Is 90% or more. Moreover, since the lightweight aggregate of the present invention is spherical, it has good fluidity, is easily mixed with concrete or mortar, and is easily dispersed uniformly.

本発明の実施例を以下に示す。以下の原料を使用した。
(イ)黒曜石A(SiO2含有率75.6wt%、ig.loss0.8wt%、嵩密度1.24g/cm3、融点1010℃、ガラス質99wt%、粒径0.4〜1.2mm)
(ロ)黒曜石B(SiO2含有率76.0wt%、ig.loss0.4wt%、ガラス質98wt%、粒径0.4〜1.2mm、比較試料)
(ハ)真珠岩A(SiO2含有率75.5wt%、ig.loss2.2wt%、ガラス質97wt%、粒径0.4〜1.2mm、比較試料)
(ニ)流紋岩A(SiO2含有率72wt%、ig.loss0.4wt%、ガラス質68wt%、粒径0.4〜1.2mm、比較試料)
Examples of the present invention are shown below. The following raw materials were used.
(I) Obsidian A (SiO 2 content 75.6wt%, ig.loss 0.8wt%, bulk density 1.24g / cm 3 , melting point 1010 ° C, glassy 99wt%, particle size 0.4-1.2mm)
(B) Obsidian B (SiO 2 content 76.0wt%, ig.loss 0.4wt%, glassy 98wt%, particle size 0.4-1.2mm, comparative sample)
(C) Pearlite A (SiO 2 content 75.5wt%, ig.loss 2.2wt%, glassy 97wt%, particle size 0.4-1.2mm, comparative sample)
(D) Rhyolite A (SiO 2 content 72 wt%, ig.loss 0.4 wt%, vitreous 68 wt%, particle size 0.4-1.2 mm, comparative sample)

嵩密度、発泡率を以下のように測定した。
〔嵩密度〕一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を嵩密度とした。
〔発泡率〕原料の精石(原料岩石を粉砕して粒度を揃えたもの)の嵩密度Doと発泡粒子の嵩密度Dvの体積比(Dv/Do)によって算出した。
The bulk density and the foaming rate were measured as follows.
[Bulk density] A sample of a constant volume S (cm 3 ) is filled with the sample, the portion protruding from the opening is ground, the total weight G1 is measured, and the weight G2 of the container is subtracted from this to determine the powder weight G3 (g) The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the bulk density.
[Foaming rate] It was calculated from the volume ratio (Dv / Do) of the bulk density Do of the raw stone (raw rock was pulverized to have a uniform particle size) and the bulk density Dv of the foamed particles.

粒子強度(加圧残存率)を以下のように測定した。
粒子の強度を測定する指標として、試料粒子に圧力をかけて破損せずに残存する粒子数の割合(加圧残存率)で粒子強度を判定した。ランダムに選別された試料粒子50個を内径14mmの金属製シリンダに入れ、シリンダ内径と同径の円柱(棒)をシリンダ上部から挿入し、棒の上から3kgの重りを載せて加圧した。加圧後に試料を取出し、破壊していない
粒子数(残存粒子数)をカウントし、50個当たりの残存粒子数の比を3kg加圧残存率とした。なお、市販品(太平洋パーライト社製黒曜石系パーライト4号品)はこの加圧試験で50個すべて破損し、3kg加圧残存率はゼロであった。
The particle strength (pressure retention rate) was measured as follows.
As an index for measuring the strength of the particles, the particle strength was determined by the ratio of the number of particles remaining without being damaged by applying pressure to the sample particles (pressurized residual rate). 50 randomly selected sample particles were placed in a metal cylinder having an inner diameter of 14 mm, a cylinder (rod) having the same diameter as the cylinder inner diameter was inserted from the upper part of the cylinder, and a 3 kg weight was placed on the rod and pressurized. A sample was taken out after pressurization, the number of unbroken particles (the number of remaining particles) was counted, and the ratio of the number of remaining particles per 50 particles was defined as a 3 kg pressure remaining rate. In addition, all 50 commercially available products (Oceanite perlite No. 4 manufactured by Taiheiyo Pearlite Co., Ltd.) were damaged in this pressurization test, and the 3 kg pressurization residual rate was zero.

〔実施例1〕
表1に示す焼成条件下で原料粉末を焼成して人工軽量細骨材を製造した。この人工軽量細骨材について、嵩密度、発泡率、3kg加圧残存率を測定し、この結果を表1に示した。
表1に示すように、回転炉、流動層焼成炉、箱型炉で焼成した骨材は発泡率が高く、本発明の発泡率に達している(試料No.A1,A2,A3)。一方、気流炉で焼成した試料B1は、焼成時間が瞬間のため発泡倍率が小さく、殆ど発泡していない。
また、強熱減量(ig.loss)が0.4%の黒曜石Bを用いた試料B2は、発泡率が格段に小さく、未発泡粒子が多い。
さらに、真珠岩Aを回転炉で焼成した試料B3は発泡が起こりにくい。真珠岩Aは強熱減量(ig.loss)が2.2wt%と多く、そのため黒曜石とはガラスの構造が異なり、ガラス内部に微細なひびが無数に存在しており、加熱時にひびから発泡成分が気化し外部へ逃げていく。その結果、発泡成分が少なくなり、発泡が起こりにくくなる。
真珠岩Aを気流炉で焼成した試料B4は、発泡率が13.9倍と高いが、過剰発泡のために粒子強度が小さく、従って3kg加圧残存率はゼロである。
また、ガラス質の割合が少ない流紋岩Aを用いた試料B5は、結晶質部分には発泡成分が含まれていないので、結晶質部分は発泡せず、発泡成分が含まれているガラス質部分のみの発泡になるので発泡し難い。
[Example 1]
The raw material powder was fired under the firing conditions shown in Table 1 to produce an artificial lightweight fine aggregate. With respect to this artificial lightweight fine aggregate, the bulk density, the foaming rate, and the 3 kg pressure remaining rate were measured, and the results are shown in Table 1.
As shown in Table 1, aggregates fired in a rotary furnace, a fluidized bed firing furnace, and a box furnace have a high foaming rate and reach the foaming rate of the present invention (Sample Nos. A1, A2, A3). On the other hand, the sample B1 fired in the airflow furnace has a small foaming ratio and hardly foams because the firing time is instantaneous.
Sample B2, which uses obsidian B with an ignition loss (ig.loss) of 0.4%, has a remarkably small expansion rate and a large number of unexpanded particles.
Further, the sample B3 obtained by firing the pearlite A in a rotary furnace is less likely to foam. Pearlite A has a high loss on ignition (ig.loss) of 2.2 wt%, so the structure of glass is different from obsidian, and there are countless fine cracks inside the glass. Vaporizes and escapes to the outside. As a result, the foaming component is reduced and foaming is less likely to occur.
Sample B4 obtained by firing Pearlite A in an airflow furnace has a foaming rate as high as 13.9 times, but the particle strength is small due to excessive foaming, and therefore the 3 kg pressure residual rate is zero.
Sample B5 using rhyolite A with a small percentage of vitreous contains no foaming component in the crystalline part, and therefore the crystalline part does not foam and the glassy part contains the foaming component. It is hard to foam because it becomes only part foaming.

Figure 2014129187
Figure 2014129187

〔実施例2〕
回転焼成炉を用い、焼成条件を変えて黒曜石Aを焼成し、軽量細骨材を製造した。このパーライトについて、嵩密度、発泡率、3kg加圧残存率を測定し、表2に示した。
表2に示すように、焼成温度850℃で発泡が開始される。焼成温度が高くなると嵩密度は小さくなり、軽量になるが、3kg加圧残存率は徐々に低下し、粒子強度が次第に弱くなる(試料C1〜C4)。
焼成温度が825℃では殆ど発泡しない(試料C5)。焼成温度が875℃では焼成時間が1分では殆ど発泡せず(試料C6)、焼成時間が3分でも発泡率が小さく,軽量化できない(試料C7)。
一方、焼成温度が1000℃では発泡率は高くなるが、粒子強度が著しく低下する(試料C8)。また、原料の融点を超える1050℃で焼成すると、焼成時間が5分では回転焼成炉内に原料が融着して焼成できず(試料C9)、焼成時間を1分に短くすると発泡するが過剰発泡になり、粒子強度は非常に小さくなる(試料C10)。
[Example 2]
Obsidian A was fired using a rotary firing furnace under different firing conditions to produce a lightweight fine aggregate. With respect to this pearlite, the bulk density, the foaming rate, and the 3 kg pressure remaining rate were measured and shown in Table 2.
As shown in Table 2, foaming starts at a firing temperature of 850 ° C. When the firing temperature is increased, the bulk density is decreased and the weight is reduced, but the 3 kg pressure residual ratio is gradually decreased, and the particle strength is gradually decreased (samples C1 to C4).
Almost no foaming occurs at a firing temperature of 825 ° C. (Sample C5). When the firing temperature is 875 ° C., the foaming rate is hardly foamed when the firing time is 1 minute (sample C6), and even when the firing time is 3 minutes, the foaming rate is small and the weight cannot be reduced (sample C7).
On the other hand, when the firing temperature is 1000 ° C., the foaming ratio is increased, but the particle strength is remarkably reduced (sample C8). When firing at 1050 ° C., which exceeds the melting point of the raw material, the raw material cannot be fused and fired in the rotary firing furnace when the firing time is 5 minutes (sample C9), and foaming occurs when the firing time is shortened to 1 minute, but excessively. Foaming occurs and the particle strength becomes very small (Sample C10).

Figure 2014129187
Figure 2014129187

Claims (4)

強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を加熱発泡させてなり、発泡率が2倍以上であって、3kg加圧下の残存率が80%以上の強度を有することを特徴とする人工軽量骨材。
Expandable rock powder with a loss on ignition of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more is heated and foamed, and the foaming rate is more than twice that remaining under pressure of 3 kg. An artificial lightweight aggregate characterized by having a strength of 80% or more.
強熱減量が0.5〜1.5wt%であってガラス質の割合が90wt%以上の膨張性岩石粉末を、850℃〜1000℃で、5分以上加熱焼成して発泡させることによって、発泡率が2倍以上であって3kg加圧下の残存率が80%以上の強度を有する人工軽量骨材を製造することを特徴とする製造方法。
Foaming is performed by heating and firing an expandable rock powder having an ignition loss of 0.5 to 1.5 wt% and a vitreous ratio of 90 wt% or more at 850 ° C to 1000 ° C for 5 minutes or more. A method for producing an artificial lightweight aggregate having a strength of at least twice and a residual rate under 3 kg pressure of 80% or more.
平均粒径0.3〜5mmの黒曜石粉末を用いる請求項2の製造方法。
The production method according to claim 2, wherein obsidian powder having an average particle size of 0.3 to 5 mm is used.
加熱炉として、ロータリーキルン、流動層焼成炉、箱型焼成炉を用いる請求項2または請求項3に記載する製造方法。 The manufacturing method according to claim 2 or 3, wherein a rotary kiln, a fluidized bed firing furnace, or a box-type firing furnace is used as the heating furnace.
JP2012286355A 2012-12-27 2012-12-27 Artificial lightweight aggregate and manufacturing method thereof Active JP6153722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286355A JP6153722B2 (en) 2012-12-27 2012-12-27 Artificial lightweight aggregate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286355A JP6153722B2 (en) 2012-12-27 2012-12-27 Artificial lightweight aggregate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014129187A true JP2014129187A (en) 2014-07-10
JP6153722B2 JP6153722B2 (en) 2017-06-28

Family

ID=51407976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286355A Active JP6153722B2 (en) 2012-12-27 2012-12-27 Artificial lightweight aggregate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6153722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510642A (en) * 2016-04-08 2019-04-18 ヒュッテネス−アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of Foamed Perlite, Free-pored Microspheres as Filler for Making Foundry Molds

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022010A (en) * 1973-06-26 1975-03-08
JPS5899128A (en) * 1981-12-10 1983-06-13 Asahi Chem Ind Co Ltd Production of foamed particle of natural glass
US4931211A (en) * 1986-06-24 1990-06-05 Pyrofoam, Inc. Process of expanding obsidian
US5002696A (en) * 1988-08-01 1991-03-26 Grefco, Inc. Expanded mineral particles and apparatus and method of production
JPH08283082A (en) * 1995-04-14 1996-10-29 Nippon Concrete Ind Co Ltd Porous ceramic and sound absorbing body using the same
JP2007320805A (en) * 2006-05-31 2007-12-13 Taiheiyo Material Kk Hard foamed pearlite and its manufacturing method
JP2008050185A (en) * 2006-08-23 2008-03-06 Ube Ind Ltd Perlite for building materials and perlite mortar composition for building materials
JP2010053029A (en) * 2008-07-30 2010-03-11 Taiheiyo Materials Corp Inorganic hollow fine particle
JP2010076986A (en) * 2008-09-26 2010-04-08 Kubota Matsushitadenko Exterior Works Ltd Method for producing pearlite
JP2011126762A (en) * 2009-12-21 2011-06-30 Taiheiyo Materials Corp Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
JP2011219353A (en) * 2010-03-26 2011-11-04 Taiheiyo Materials Corp Impact-resistant perlite, and method for producing the same
JP2012091978A (en) * 2010-10-28 2012-05-17 Taiheiyo Materials Corp Method for manufacturing perlite
JP2012116690A (en) * 2010-11-30 2012-06-21 Taiheiyo Materials Corp High durability perlite and method for manufacturing the same
JP2012131648A (en) * 2010-12-20 2012-07-12 Taiheiyo Materials Corp Method for producing pearlite, method for producing inorganic foam material, and device for producing the foam material
JP2013112578A (en) * 2011-11-30 2013-06-10 Taiheiyo Materials Corp Lightweight perlite and method for manufacturing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022010A (en) * 1973-06-26 1975-03-08
JPS5899128A (en) * 1981-12-10 1983-06-13 Asahi Chem Ind Co Ltd Production of foamed particle of natural glass
US4931211A (en) * 1986-06-24 1990-06-05 Pyrofoam, Inc. Process of expanding obsidian
US5002696A (en) * 1988-08-01 1991-03-26 Grefco, Inc. Expanded mineral particles and apparatus and method of production
JPH08283082A (en) * 1995-04-14 1996-10-29 Nippon Concrete Ind Co Ltd Porous ceramic and sound absorbing body using the same
JP2007320805A (en) * 2006-05-31 2007-12-13 Taiheiyo Material Kk Hard foamed pearlite and its manufacturing method
JP2008050185A (en) * 2006-08-23 2008-03-06 Ube Ind Ltd Perlite for building materials and perlite mortar composition for building materials
JP2010053029A (en) * 2008-07-30 2010-03-11 Taiheiyo Materials Corp Inorganic hollow fine particle
JP2010076986A (en) * 2008-09-26 2010-04-08 Kubota Matsushitadenko Exterior Works Ltd Method for producing pearlite
JP2011126762A (en) * 2009-12-21 2011-06-30 Taiheiyo Materials Corp Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
JP2011219353A (en) * 2010-03-26 2011-11-04 Taiheiyo Materials Corp Impact-resistant perlite, and method for producing the same
JP2012091978A (en) * 2010-10-28 2012-05-17 Taiheiyo Materials Corp Method for manufacturing perlite
JP2012116690A (en) * 2010-11-30 2012-06-21 Taiheiyo Materials Corp High durability perlite and method for manufacturing the same
JP2012131648A (en) * 2010-12-20 2012-07-12 Taiheiyo Materials Corp Method for producing pearlite, method for producing inorganic foam material, and device for producing the foam material
JP2013112578A (en) * 2011-11-30 2013-06-10 Taiheiyo Materials Corp Lightweight perlite and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510642A (en) * 2016-04-08 2019-04-18 ヒュッテネス−アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of Foamed Perlite, Free-pored Microspheres as Filler for Making Foundry Molds
JP2022082563A (en) * 2016-04-08 2022-06-02 ヒュッテネス-アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of closed-pore microspheres of expanded pearlite as filler for production of moldings for foundry industry
US11717879B2 (en) 2016-04-08 2023-08-08 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Use of closed-pore microspheres of expanded pearlite as a filler for the production of mouldings for the foundry industry
JP7361819B2 (en) 2016-04-08 2023-10-16 ヒュッテネス-アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of expanded perlite closed-cell microspheres as filler for producing molded articles for the foundry industry

Also Published As

Publication number Publication date
JP6153722B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
US8171751B1 (en) Foamed glass composite material and a method of producing same
EA000616B1 (en) Thermally insulating building material
US20140294501A1 (en) Foamed glass composite material and a method for using the same
CN106278176B (en) A kind of high-strength ceramic granule and preparation method thereof
WO2010140919A1 (en) Method for producing a granulated heat-insulating material
JP6153722B2 (en) Artificial lightweight aggregate and manufacturing method thereof
US20200385144A1 (en) Foamed glass composite material and a method for using the same
Apkaryan et al. Foam glass ceramics as composite granulated heat-insulating material
JP2012091978A (en) Method for manufacturing perlite
CN106146024A (en) A kind of preparation method of basalt porous insulation material
JP2000281401A (en) Lightweight fine aggregate for concrete and its production
RU100073U1 (en) TECHNOLOGICAL LINE FOR PRODUCING GRANULATED FOAM-CERAMIC MATERIAL
JP6614537B2 (en) Method for manufacturing closed foam tile and closed foam tile
NO144603B (en) Material consisting of cellular aggregates distributed in a binder.
JP5636143B2 (en) Manufacturing method of high-strength pearlite
US8663386B2 (en) Dry cement mix for forming light concretes with low thermal conductivity, and concretes thus obtained
RU2671582C1 (en) Method of producing heat-insulating material - foam glass and mixture for production thereof
RU2318772C1 (en) Method of manufacture of wall ceramic articles, raw charge for manufacture of wall ceramic articles and filler for wall ceramic articles
JPH1121161A (en) Production of formed lightweight tile having freezing damage resistance
Kutugin et al. Perspective technologies for production of thermal insulating materials with hard cellular structure
RU2318771C1 (en) Method of manufacture of wall ceramic articles with the use of ground crystallized glass, charge for manufacture of wall ceramic articles and filler for wall ceramic articles
RU2231505C1 (en) Ceramic mass for making wall and facing articles
JP5467669B2 (en) PERLITE AND MANUFACTURING METHOD THEREOF
JP2518737B2 (en) Fine-grained ceramic balloon manufacturing method
JP3746802B2 (en) Method for producing hollow fired body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6153722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250