JP2014128865A - In-abrasive-grain grinding fluid feeder for super abrasive grain electrodeposited abrasive grain and grinding method for the same - Google Patents

In-abrasive-grain grinding fluid feeder for super abrasive grain electrodeposited abrasive grain and grinding method for the same Download PDF

Info

Publication number
JP2014128865A
JP2014128865A JP2012289513A JP2012289513A JP2014128865A JP 2014128865 A JP2014128865 A JP 2014128865A JP 2012289513 A JP2012289513 A JP 2012289513A JP 2012289513 A JP2012289513 A JP 2012289513A JP 2014128865 A JP2014128865 A JP 2014128865A
Authority
JP
Japan
Prior art keywords
grinding
grindstone
base metal
grinding fluid
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012289513A
Other languages
Japanese (ja)
Other versions
JP5787235B2 (en
Inventor
Yasuhiro Yao
泰弘 八尾
Yukio Ito
伊藤  幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012289513A priority Critical patent/JP5787235B2/en
Publication of JP2014128865A publication Critical patent/JP2014128865A/en
Application granted granted Critical
Publication of JP5787235B2 publication Critical patent/JP5787235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an in-abrasive-grain grinding fluid feeder for a super abrasive grain electrodeposited abrasive grain and its grinding method which provide a novel technique intended for reduction of the amount of a grinding fluid used and improvement of grinding performance, including suppression of the abrasive grain temperature, prevention of clogging, suppression of abrasion of abrasive grains and improvement of the precision of ground surfaces.SOLUTION: An in-abrasive-grain grinding fluid feeder 100 for a super abrasive grain electrodeposited abrasive grain 1 consists of an electrodeposited abrasive grain 1 in which a single layer of CBN or diamond abrasive grains 10 are electrodeposited on a base metal 3, a large number of slits S formed in a radial form on the base metal, a flange cover 5 guiding a grinding fluid K from both sides of the base metal to the tip of the abrasive grains in the radial direction along the side surfaces 1B of the abrasive grains, an abrasive grain arbor 6 which holds the base metal and the flange and is mounted, together with the base metal and the flange, on the main shaft 20 of a processing machine M and a spindle through 20C for feeding the grinding fluid from the main shaft into a clearance between the base metal and the flange through a through-hole 6C of the abrasive grain arbor.

Description

本発明は、研削砥石における砥石内研削液供給装置に係わり、特に、超砥粒電着砥石他の砥石内研削液供給装置とその研削方法において、研削液の少量化(省エネ、環境性能の向上)と研削性能(砥粒温度の抑制、目詰まり防止、砥石磨耗の抑制、研削面精度の向上)を図った新規技術に関する。  The present invention relates to a grinding fluid supply device in a grinding wheel, and in particular, in a grinding fluid supply device and grinding method for a superabrasive electrodeposited grinding wheel and the like, a small amount of grinding fluid (energy saving and environmental performance improvement). ) And grinding performance (reduction of abrasive temperature, prevention of clogging, suppression of grinding wheel wear, improvement of grinding surface accuracy).

近年、例えば、航空機による国際的な物流増大に対応する事と、対地球環境向上を図るための低燃費性の要求が高まり、航空機のジェットエンジンの軽量化と燃費改善が図られている。その具体的方策として、ジェットエンジンの2基化や小型化、更には、タービンブレードの薄肉化等で対応している。特に、タービンブレードの薄肉化には、高精度な研削技術が必須になっている。この従来の切削工具や研削砥石表面に冷却水を噴射して表面の水冷と切粉・塵埃除去をするとともに、加工点及びその周辺の温度状況を検知しながら加工する技術が提供されている。  In recent years, for example, there has been an increase in demand for low fuel consumption in order to cope with an increase in international logistics by aircraft and to improve the environment of the earth, and lightening of jet engines and improvement in fuel consumption have been attempted. As specific measures, two jet engines are made smaller and smaller, and further, turbine blades are made thinner. In particular, high-precision grinding technology is essential for reducing the thickness of turbine blades. There is provided a technology for performing processing while jetting cooling water onto the surface of this conventional cutting tool or grinding wheel to perform water cooling of the surface, removal of chips and dust, and detection of the processing point and the surrounding temperature conditions.

上記要望に応えるべく、本願発明者および出願人は、研削ホイールとその保持具、研削ホイールによる冷却方法、研削ホイールの冷却装置に関する特許出願を行った。その技術内容は、ワークの研削面を冷却液によるウオータールーム雰囲気を形成し、研削効率を飛躍的に向上させた研削ホイールとその冷却方法と冷却装置であり、両縁フランジを備えた環状基台と、上記環状基台の外周面に装着された環状砥石とからなる研削ホイールにして、上記環状基台と回転主軸の外周壁とに連絡孔が穿かれ、上記回転主軸の軸芯に穿かれた通路孔(通路)から高圧冷却液を、多孔質の環状砥石の内周面に供給可能とするか、又は環状砥石内を貫通させた通孔を介して外周面に供給可能に構成させたものである(例えば、特許文献1参照。)。  In order to meet the above-mentioned demand, the present inventor and the applicant filed a patent application regarding a grinding wheel and its holder, a cooling method using the grinding wheel, and a cooling device for the grinding wheel. Its technical content is a grinding wheel that forms a water room atmosphere with coolant on the grinding surface of the workpiece and dramatically improves the grinding efficiency, its cooling method and cooling device, and an annular base with both edge flanges And a grinding wheel comprising an annular grindstone mounted on the outer peripheral surface of the annular base, and a communication hole is bored in the annular base and the outer peripheral wall of the rotary spindle, and is drilled in the axis of the rotary spindle. The high-pressure coolant can be supplied from the passage hole (passage) to the inner peripheral surface of the porous annular grindstone, or can be supplied to the outer peripheral surface through a through hole penetrating the inside of the annular grindstone. (For example, refer to Patent Document 1).

上記研削ホイールとその冷却方法と冷却装置によると、研削液を外部クーラントノズルから供給する場合に比べて、少量研削液でも効果的に砥粒研削点に供給でき、研削面層の温度上昇の抑制により、ブレード形状の研削仕上げ加工が可能となり、高い面粗度が得られる。特に、研削点における研削熱の除去は、加工変質層を防止し薄板素材の加工に起因する反りが防止できるというメリットが得られる。  According to the grinding wheel, its cooling method and cooling device, a small amount of grinding liquid can be effectively supplied to the abrasive grinding point and the temperature rise of the grinding surface layer can be suppressed compared to the case where the grinding liquid is supplied from an external coolant nozzle. Therefore, the blade shape can be ground and finished, and high surface roughness can be obtained. In particular, the removal of grinding heat at the grinding point is advantageous in that it can prevent a work-affected layer and can prevent warping caused by processing of a thin plate material.

更に、多孔質の環状砥石の内周面に研削液を供給可能に構成すべく、研削砥石の強度や研磨精度を低下させることなく、被削材と研削砥石との接触部分に研削液を充分に供給できる通液型研削砥石がある。その構成は、通液型研削砥石は、研削面と取着面とこれらの間を連通する多数の開放性気孔とを有する多孔質の砥石部材と、前記取着面に固着されて砥石部材を支持する砥石支持部材とから成る。この砥石支持部材には、その表面に形成されて前記取着面に塞がれる導液溝と、その内部に形成されて回転軸の送液路から供給される研削液を導液溝に導く導液穴とから成る導液路が設けられているものである(例えば、特許文献2参照。)。  Furthermore, in order to be able to supply the grinding fluid to the inner peripheral surface of the porous annular grinding stone, the grinding fluid is sufficiently applied to the contact portion between the work material and the grinding stone without reducing the strength and polishing accuracy of the grinding stone. There are liquid grinding wheels that can be supplied to The construction of the fluid-grinding grinding wheel includes a porous grinding wheel member having a grinding surface, an attachment surface, and a large number of open pores communicating between them, and a grinding stone member fixed to the attachment surface. And a grindstone support member to be supported. In this grindstone support member, a liquid guide groove formed on the surface thereof and closed by the attachment surface, and a grinding liquid formed in the inside and supplied from the liquid feed path of the rotating shaft are guided to the liquid guide groove. A liquid introduction path including a liquid introduction hole is provided (for example, see Patent Document 2).

更に、多孔質の環状砥石の内周面に研削液を供給可能に構成すべく、砥石を支持する回転軸内の研削液の供給通路と砥石の支持面間に、前記回転軸の放射方向に延伸する通路を設けた砥石清掃構造としたものである(例えば、特許文献3参照。)。  Further, in order to be able to supply the grinding liquid to the inner peripheral surface of the porous annular grindstone, a radial direction of the rotating shaft is provided between the grinding fluid supply passage in the rotating shaft supporting the grindstone and the support surface of the grindstone. This is a grindstone cleaning structure provided with an extending passage (see, for example, Patent Document 3).

特開2010−284791号公報  JP 2010-284791 A 実開平6−83257号公報  Japanese Utility Model Publication No. 6-83257 実開昭62−85355号公報  Japanese Utility Model Publication No. 62-85355

上記特開2010−284791号公報の研削ホイールとその冷却方法と冷却装置は、高圧の研削液を多孔質の環状砥石の内周面に高圧供給するか、又は環状砥石内を貫通させた通孔を介して外周面に高圧供給する構成であるから、研削液を外部クーラントノズルから供給する場合に比べて少量でも効果的に砥粒研削点に研削液を供給できるメリットを持つ。しかし、高圧研削液を供給する為、必然的に消費量が増大して省エネや研削環境を悪化させる傾向は否めない。また、高圧研削液は、砥石の砥粒内空間を浸透通過時の初期には研削屑を砥粒内空間から積極的に排出して砥石目詰まりを防止できるものの繊維状の塵が砥粒内空間に堆積が始まると、この堆積が早期に進展し、砥石の塵埃による目詰まりを発生してしまう。更に、環状砥石内を貫通させた通孔を介して研削液を外周面に高圧供給するものでは、砥石組織内に研削液が浸透し難く、砥石の冷却効果が期待できる程発揮されない。  The grinding wheel, the cooling method and the cooling device disclosed in JP 2010-284791 are supplied with high-pressure grinding fluid to the inner peripheral surface of the porous annular grindstone, or the through-hole penetrated through the annular grindstone. Therefore, there is an advantage that the grinding fluid can be effectively supplied to the abrasive grinding point even in a small amount compared to the case where the grinding fluid is supplied from the external coolant nozzle. However, since the high-pressure grinding fluid is supplied, the amount of consumption inevitably increases, and there is a tendency that energy consumption and the grinding environment are deteriorated. In addition, the high-pressure grinding fluid can prevent grinding wheel clogging by actively discharging grinding dust from the abrasive grain space at the initial stage of passing through the abrasive grain space of the grinding wheel. When the deposition starts in the space, the deposition progresses early and clogging with dust on the grindstone occurs. Furthermore, when a high pressure is supplied to the outer peripheral surface through the through-hole penetrating the annular grindstone, the grinding liquid hardly penetrates into the grindstone structure, and the cooling effect of the grindstone is not exhibited as much as expected.

また、上記実開6−83257号公報の通液型研削砥石や上記実開昭62−85355号公報の砥石清掃構造においても、上記特開2010−284791号公報の研削ホイールとその冷却方法と冷却装置も同様に、砥石の砥粒内空間を浸透通過時の初期には、研削屑を砥粒内空間から積極的に排出して砥石目詰まりを防止できるものの繊維状の塵が砥粒内空間内に堆積が始まると、この堆積が早期に進展し、砥石の塵埃による目詰まりを発生してしまう。  In addition, the grinding wheel disclosed in Japanese Utility Model Publication No. 6-83257 and the grinding wheel cleaning structure disclosed in Japanese Utility Model Application Publication No. 62-85355 also include the grinding wheel disclosed in Japanese Patent Application Laid-Open No. 2010-284791, its cooling method, and cooling. In the same way, the device can also prevent clogging of the grinding wheel by actively discharging grinding dust from the abrasive grain space at the initial stage when passing through the abrasive grain space of the grinding wheel. When the deposition starts inside, the deposition progresses at an early stage, and clogging due to dust on the grindstone occurs.

更に、ダイヤモンド砥粒(CBN砥粒)を台金に電着させた砥石車としたものが知られている。しかし、図15に示すように、ダイヤモンドは熱に弱いことが各素材を対比して比較した硬さと酸化開始温度の関係性で証明している。図中から判明するように、研削工具や切削工具は、酸化開始温度で決まり、摩耗することが明らかである。  Further, a grinding wheel in which diamond abrasive grains (CBN abrasive grains) are electrodeposited on a base metal is known. However, as shown in FIG. 15, it is proved by the relationship between the hardness and the oxidation start temperature that diamond is weak against heat by comparing each material with each other. As can be seen from the figure, it is clear that the grinding tool and the cutting tool are determined by the oxidation start temperature and wear.

上記事態を踏まえ、本願発明者は、研削エネルギーと砥石内研削液供給における研削孤部分への研削液供給量は、研削弧長に比例し、砥石径が一定の時は切込みが変化しても研削液の除熱効果は不変であることを実際の測定から確認した。そこで、研削液による余熱に加えて熱伝導率が高いダイヤモンド等の超砥粒を使うことで、研削砥石への熱流入量が増加し加工物の温度上昇を抑制できること。更に、研削液で台金自体が冷却されて熱膨張による加工精度が得られることから、ダイヤモンド砥粒が600℃を超えると急激に硬度低下して酸化することが防止できることに鑑み、上記技術により砥粒と切り屑の接触界面の温度を600℃以下に保つことができ、鉄鋼材料を初めとして、チタン合金やインコネル等の難削材の加工がダイヤモンド砥粒にも適用される可能性を発見した。  Based on the above situation, the inventor of the present application is that the grinding fluid supply amount to the grinding arc in the grinding energy and the grinding fluid supply in the grinding wheel is proportional to the grinding arc length, and even if the cutting is changed when the grinding stone diameter is constant. It was confirmed from actual measurements that the heat removal effect of the grinding fluid was unchanged. Therefore, by using superabrasive grains such as diamond with high thermal conductivity in addition to the residual heat from the grinding fluid, the amount of heat flowing into the grinding wheel increases and the temperature rise of the workpiece can be suppressed. Further, since the base metal itself is cooled with the grinding liquid and processing accuracy due to thermal expansion is obtained, in view of the fact that when the diamond abrasive grains exceed 600 ° C., the hardness can be prevented from sharply decreasing and being oxidized, The temperature at the contact interface between the abrasive grains and chips can be kept below 600 ° C, and the possibility of machining difficult-to-cut materials such as titanium alloys and Inconel, including steel materials, can also be applied to diamond abrasive grains. did.

そこで、本発明となる砥石内研削液供給は、ビトリファイド砥石ではなく熱伝導率が高く耐摩耗性に優れた電着CBNホイールに特定している。その理由は、上記電着CBNホイール(電着砥石)は、ダイヤモンド砥粒やCBN砥粒が台金に電着メッキ層(砥粒層)が1層で自生作用が無く、砥粒の摩耗と脱落により短寿命となり、ビトリファイド砥石のような砥石内部まで連なる気孔が無く、今まで砥石内の各砥粒部分に研削液が供給不可能とされていた超砥粒電着砥石の砥石内研削液供給装置とその研削方法の開発を達成した。  Therefore, the grinding fluid supply in the grindstone according to the present invention is specified not for the vitrified grindstone but for the electrodeposited CBN wheel having high thermal conductivity and excellent wear resistance. The reason for this is that the electrodeposited CBN wheel (electrodeposition grindstone) has diamond abrasive grains and CBN abrasive grains as the base metal and one electrodeposited plating layer (abrasive grain layer), and has no self-generated action. Grinding fluid in the grinding wheel of superabrasive electrodeposition grinding stones that has a short life due to falling off, has no pores that continue to the inside of the grinding stone, such as a vitrified grinding stone, and so far it has been impossible to supply grinding fluid to each abrasive grain part in the grinding stone The development of the feeding device and its grinding method was achieved.

上記目的を達成すべく、請求項1の発明は、単層のCBN又はダイヤモンド砥粒を鋼製の台金に電着した電着砥石と、上記台金に放射状に多数設けたスリットと、上記台金の両側から研削液を砥石側面に沿って放射方向に砥粒先端まで導くフランジカバーと、上記台金とフランジとを保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーの通孔を介して台金とフランジの隙間に主軸から研削液を供給するスピンドルスルーと、からなることを特徴とする。  In order to achieve the above object, the invention of claim 1 includes an electrodeposition grindstone obtained by electrodepositing a single layer of CBN or diamond abrasive grains on a steel base, a plurality of slits provided radially on the base, and A flange cover that guides the grinding liquid from both sides of the base metal to the abrasive grain tip in the radial direction along the side of the grinding wheel, a grinding wheel arbor that holds the base metal and the flange and is attached to the spindle of the processing machine, and the grinding stone arbor And a spindle through for supplying the grinding fluid from the main shaft to the gap between the base metal and the flange through the through hole.

更に、請求項2記載の超砥粒電着砥石の砥石内研削液供給装置は、上記スリット幅は0.2mm前後として台金外周に120箇所前後設け、上記台金には、粒度#80前後のCBN又はダイヤモンド砥粒を電着させてなることを特徴とする。  Further, in the grinding fluid supply device for a superabrasive electrodeposition grinding wheel according to claim 2, the slit width is about 0.2 mm, and around 120 positions are provided on the outer periphery of the base metal. The base metal has a grain size of about # 80. The CBN or diamond abrasive grains are electrodeposited.

また、請求項3記載の超砥粒電着砥石の研削方法は、単層のCBN又はダイヤモンド砥粒を鋼製の台金に電着した電着砥石と、上記台金に放射状に多数設けたスリットと、上記台金の両側から研削液を砥石側面に沿って放射方向に砥粒先端まで導くフランジカバーと、上記台金とフランジとを保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーの通孔を介して台金とフランジの隙間に主軸から研削液を供給するスピンドルスルーと、からなる超砥粒電着砥石の砥石内研削液供給装置において、研削液供給量を5L/min前後とし、研削速度V=20m/sec前後とし、送り速度v=500mm/sec前後とし、切り込み量td=0.02m前後の往復送りとしたことを特徴とする。  Moreover, the grinding method of the superabrasive electrodeposition grindstone according to claim 3 is provided with an electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on a steel base and a large number of the base metal in a radial manner. A slit, a flange cover that guides the grinding liquid from both sides of the base metal to the abrasive grain tip in the radial direction along the side of the grinding stone, and a grinding wheel arbor that holds the base metal and the flange and is attached to the spindle of the processing machine In a grinding fluid supply device for a superabrasive electrodeposited grinding wheel comprising a spindle through for supplying grinding fluid from a spindle to a gap between a base metal and a flange through a through hole of the grinding wheel arbor, The speed is about 5 L / min, the grinding speed V is about 20 m / sec, the feed speed v is about 500 mm / sec, and the reciprocating feed has a cutting amount td of about 0.02 m.

更に、請求項4記載の超砥粒電着砥石の砥石内研削液供給装置は、単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石と、上記台金は一方側に小孔を開けた外周面を有し他方側に円板からなり該空間内にサンドイッチ構成に挟んだドーナツ状の気泡セラミック体と、上記左右両側の台金と気泡セラミック体とに開けた中心孔を保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーはこの通孔を介して気泡セラミック体の中心孔から該外周に配置した電着砥石に対して主軸から研削液を供給するスピンドルスルーと、からなることを特徴とする。  Furthermore, the grinding fluid supply device for a superabrasive electrodeposition grinding wheel according to claim 4 is an electrodeposition grindstone obtained by electrodepositing a single layer of CBN or diamond abrasive grains on the outer peripheral surface of a steel base metal, Gold has an outer peripheral surface with a small hole on one side and a disk on the other side and is sandwiched between the doughnut-shaped cellular ceramic bodies sandwiched in the space; A grindstone arbor that holds the central hole opened in the machine and is attached to the main spindle of the processing machine, and the grindstone arbor is connected to the electrodeposition grindstone disposed on the outer periphery from the central hole of the cellular ceramic body through the through hole. And a spindle through for supplying the grinding fluid from.

更に、請求項5記載の超砥粒電着砥石の研削方法は、単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石と、上記台金は一方側に小孔を開けた外周面を有し他方に円板からなり該空間内にサンドイッチ構成に挟んだドーナツ状の気泡セラミック体と、上記左右両側の台金と気泡セラミック体とに開けた中心孔を保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーはこの通孔を介して気泡セラミック体の中心孔から該外周に配置した電着砥石に対して主軸から研削液を供給するスピンドルスルーと、からなる超砥粒電着砥石の砥石内研削液供給装置において、研削液供給量を0.5L/min前後とし、研削速度V=20m/sec前後とし、送り速度v=500mm/sec前後とし、切り込み量td=0.02m前後の往復送りとしたことを特徴とする。  Furthermore, the grinding method of the superabrasive electrodeposition grindstone according to claim 5 is an electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on the outer peripheral surface of a steel base metal, and the base metal is on one side. A doughnut-shaped cellular ceramic body sandwiched in a sandwich structure in the space, and a central hole formed in the left and right base metal and the cellular ceramic body. A grinding wheel arbor that is attached to the spindle of the processing machine and the grinding wheel arbor supplies grinding fluid from the spindle to the electrodeposited grinding wheel arranged on the outer periphery from the center hole of the cellular ceramic body through this through hole. In a grinding fluid supply device for a superabrasive electrodeposition grinding wheel comprising a spindle through, the grinding fluid supply amount is set at around 0.5 L / min, the grinding speed V is around 20 m / sec, and the feed speed v is 500 mm. / Sec. And characterized in that a lump weight td = 0.02 m before and after the reciprocating feed.

本発明の超砥粒電着砥石の砥石内研削液供給装置とその研削方法によると、単層のCBN又はダイヤモンド砥粒を鋼製の台金に電着した電着砥石と、上記台金に放射状のスリットを多数設け、台金の両側から研削液を砥石側面に沿って放射方向に砥粒先端まで導くフランジカバーを設け、上記台金とフランジとを保持する砥石アーバーと、上記砥石アーバーの通孔を介して台金とフランジの隙間に主軸からのスピンドルスルーで研削液を供給するから、砥石ホイール内部から研削液を砥石先端に効率良く供給できる。これにより、研削液による台金自体の冷却効率の向上で台金の熱膨張を抑制しワークの研削寸法精度が保証できる。  According to the grinding fluid supply apparatus and grinding method for a superabrasive electrodeposition grinding wheel of the present invention, an electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on a steel base metal, and the base metal A large number of radial slits are provided, a flange cover is provided for guiding the grinding liquid from both sides of the base metal to the abrasive grain tip in the radial direction along the side surface of the grinding wheel, and a grinding wheel arbor that holds the base metal and the flange, Since the grinding fluid is supplied to the gap between the base metal and the flange through the through hole by the spindle through from the main shaft, the grinding fluid can be efficiently supplied from the inside of the grinding wheel to the tip of the grinding wheel. Thereby, the thermal expansion of the base metal is suppressed by improving the cooling efficiency of the base metal itself by the grinding liquid, and the grinding dimensional accuracy of the workpiece can be guaranteed.

また、上記砥石内研削液供給装置とその研削方法を採用すると、CBN又はダイヤモンド砥粒の電着砥石による研削は、アルミナ砥粒ビトリファイドボンド砥石よりも比研削抵抗を低い値にできる。更に、S45C材において、CBN電着砥石とビトリファイド砥石との研削面層の温度を比較すると、超砥粒の電着砥石は動力の低減に比べて著しい温度低下が得られる。これは、超砥粒(CBN)がアルミナ砥粒よりも熱伝導率が高く、研削熱が砥粒を通して砥石台金に放出され、研削液により効率的に除熱できる。  Further, when the above-mentioned grinding fluid supply apparatus and its grinding method are employed, grinding with an electrodeposition grindstone of CBN or diamond abrasive grains can have a specific grinding resistance lower than that of an alumina abrasive vitrified bond grindstone. Further, in the S45C material, when the temperatures of the grinding surface layers of the CBN electrodeposition grindstone and the vitrified grindstone are compared, the superabrasive electrodeposited grindstone has a significant temperature drop compared to the power reduction. This is because superabrasive grains (CBN) have higher thermal conductivity than alumina abrasive grains, and grinding heat is released to the wheel base metal through the abrasive grains and can be efficiently removed by the grinding fluid.

また、上記砥石内研削液供給装置とその研削方法を採用すると、単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石と、上記台金はドーナツ状の気泡セラミック体を左右両側で挟んだサンドチッチ構成で保持する砥石アーバーと、上記砥石アーバーの通孔を介して気泡セラミック体から電着砥石に対して主軸からのスピンドルスルーで研削液を供給するから、気泡セラミック体により砥石ホイール内部から砥石先端に供給される研削液は、気泡化されて研削液内の異物(切屑、スラッジ)を吸着して拡散が防止されて効率良く供給できる。更に、セラミック体は交換可能でセラミック選定で泡選別が可能な上に、泡のエローション効果で砥石の目詰まりを吹飛ばし、また、気泡セラミック体による気泡で研削液のMQLが実現でき、研削焼けしない。即ち、研削液による台金自体の冷却効率の向上で台金の熱膨張を抑制しワークの研削寸法精度が保証できる。  Further, when the above-described grinding fluid supply apparatus and grinding method are employed, an electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on the outer peripheral surface of a steel base metal, and the base metal is in a donut shape. Grinding fluid is supplied from the foam ceramic body to the electrodeposited grindstone through the spindle through the main spindle through the grinding wheel arbor that holds the cellular ceramic body sandwiched between the left and right sides and through the holes in the grinding wheel arbor. The grinding fluid supplied from the inside of the grinding wheel to the grinding wheel tip by the cellular ceramic body is made into bubbles and adsorbs foreign matters (chips, sludge) in the grinding fluid to prevent diffusion and can be efficiently supplied. Furthermore, the ceramic body can be exchanged and the foam can be selected by selecting the ceramic. In addition, the clogging of the grinding stone can be blown off by the erosion effect of the foam, and the MQL of the grinding fluid can be realized by the bubbles of the cellular ceramic body. Does not burn. That is, by improving the cooling efficiency of the base metal itself by the grinding liquid, the thermal expansion of the base metal can be suppressed and the grinding dimensional accuracy of the workpiece can be guaranteed.

本発明の第1実施の形態を示し、超砥粒電着砥石を展開した断面斜視図である。  BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional perspective view which developed 1st Embodiment of this invention and developed the superabrasive electrodeposition grindstone. 本発明の第1実施の形態を示し、超砥粒電着砥石の砥石内研削液供給装置の断面図である。  BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing of the grinding fluid supply apparatus in the grindstone of the superabrasive electrodeposition grindstone which shows 1st Embodiment of this invention. 本発明の第2実施の形態を示し、超砥粒電着砥石の断面図と展開断面図である。  The 2nd Embodiment of this invention is shown, and it is sectional drawing and an expanded sectional view of a superabrasive electrodeposition grindstone. 本発明の第2実施の形態を示し、超砥粒電着砥石の砥石内研削液供給装置の断面図である。  It is sectional drawing of the grinding fluid supply apparatus in the grindstone of the superabrasive electrodeposition grindstone which shows 2nd Embodiment of this invention. 本発明の第1実施の形態を示し、アルミニウムの比研削抵抗値を示す特性図である。  It is a characteristic view which shows 1st Embodiment of this invention and shows the specific grinding resistance value of aluminum. 本発明の第1実施の形態を示し、砥石作業面の砥粒分布状態の写真図である。  It is a photograph figure of the grain distribution state of the grindstone working surface which shows a 1st embodiment of the present invention. 本発明の第1実施の形態を示し、熱電対設置状態の断面図である。  1 is a cross-sectional view of a thermocouple installation state according to a first embodiment of the present invention. 本発明の第1実施の形態を示し、比研削抵抗値の特性図である。  FIG. 3 is a characteristic diagram of a specific grinding resistance value according to the first embodiment of this invention. 本発明の第1実施の形態を示し、研削点加工物温度の特性図である。  FIG. 3 is a characteristic diagram of a grinding point workpiece temperature, showing the first embodiment of the present invention. 本発明の第1実施の形態を示し、ドライ加工時の比研削抵抗値の特性図である。  FIG. 3 is a characteristic diagram of a specific grinding resistance value during dry processing according to the first embodiment of this invention. 本発明の第1実施の形態を示し、研削前後の超砥粒電着砥石の表面写真図である。  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a surface photograph of a superabrasive electrodeposition grindstone before and after grinding, showing a first embodiment of the present invention. 本発明の第1実施の形態を示し、被削材の研削面高さ測定特性図である。  It is a grinding surface height measurement characteristic view showing a 1st embodiment of the present invention and a work material. 本発明の第1実施の形態を示し、砥石状態の条件設定図である。  FIG. 1 is a condition setting diagram of a grinding wheel state according to a first embodiment of the present invention. 本発明の第1実施の形態を示し、研削加工条件の設定図である。  FIG. 3 is a diagram illustrating setting of grinding processing conditions according to the first embodiment of this invention. ダイヤモンド砥石による硬さと酸化開始温度の関係性を示す特性図である。  It is a characteristic view which shows the relationship between the hardness by a diamond grindstone, and an oxidation start temperature.

以下、図1乃至図14を参照して本発明の超砥粒電着砥石の砥石内研削液供給装置とその研削方法の各実施の形態を順次に説明する。  Hereinafter, embodiments of a grinding fluid supply apparatus and grinding method for a superabrasive electrodeposition grinding wheel according to the present invention will be described in order with reference to FIGS.

本発明の第1実施の形態となる超砥粒電着砥石の砥石内研削液供給装置100は、図1と図2に超砥粒電着砥石1の全体構成を示す。先ず、上記超砥粒電着砥石1は、単層のCBN又はダイヤモンド砥粒10を鋼製の台金3の外周面3Bに電着して構成されている。因みに、上記台金には、粒度#80前後のCBN又はダイヤモンド砥粒を電着させたものである。また、上記台金3の側面3Aと外周面3Bには、放射状のスリットSを多数設けている。上記スリット幅は0.2mm前後の溝として120箇所前後設けている。これにより、研削液Kが超砥粒電着砥石1の外周面(砥石研削面)10Aに向けて均等供給される構成としている。更に、台金の両側にはフランジカバー5,5が挟持されており、研削液Kは台金3とフランジ5との流路(隙間)5Eに沿って放射方向に吐出されて砥粒先端となる外周面(砥石研削面)10Aまで導く構成としている。勿論、上記研削液Kは、CBN又はダイヤモンド砥粒内の結合空間を浸透通過して外周面(砥石研削面)10Aまで導かれる。  An in-grind grinding fluid supply apparatus 100 for a superabrasive electrodeposition grindstone according to a first embodiment of the present invention shows the entire configuration of the superabrasive electrodeposition grindstone 1 in FIGS. 1 and 2. First, the superabrasive electrodeposition grindstone 1 is configured by electrodepositing a single layer of CBN or diamond abrasive grains 10 on an outer peripheral surface 3B of a steel base 3. Incidentally, the base metal is electrodeposited with CBN or diamond abrasive grains having a particle size of around # 80. Further, a large number of radial slits S are provided on the side surface 3A and the outer peripheral surface 3B of the base metal 3. About 120 slit widths are provided as grooves of about 0.2 mm. Thereby, it is set as the structure by which the grinding fluid K is uniformly supplied toward 10 A of outer peripheral surfaces (grinding-grind surface) of the superabrasive electrodeposition grindstone 1. Further, flange covers 5 and 5 are sandwiched on both sides of the base metal, and the grinding liquid K is discharged in the radial direction along the flow path (gap) 5E between the base metal 3 and the flange 5 and the tip of the abrasive grains. It is set as the structure guided to 10A of outer peripheral surfaces (grinding wheel grinding surface) which become. Of course, the grinding liquid K penetrates through the bonding space in the CBN or diamond abrasive grains and is guided to the outer peripheral surface (grinding wheel grinding surface) 10A.

上記超砥粒電着砥石1における砥石内研削液供給装置100は、図1と図2に示すように、上記超砥粒電着砥石1の台金3の中心孔3Cを受環5Bで受け止める左右のフランジカバー5の中心孔5Cを砥石アーバー6の先端軸部6Aで保持する。即ち、砥石アーバー6の先端軸部6Aには、螺子6Bが設けられ、座金7を介してナット7Aで着脱可能に上記超砥粒電着砥石1が保持される。上記砥石アーバー6は、工具ホルダHの取付穴H1に保持部6Dを挿入して取り付けられ、マシニングセンタの工作機械や研削盤等の加工機Mの主軸20の先端テーパー穴20Aに装着される。そして、主軸20に開けたスピンドルスルー20Cから砥石アーバー6の通孔6Cを介して左右のフランジカバー5の中心孔5C付近の隙間に生ずる空隙Aに向けて噴出口6Eから研削液Kを供給する構成としている。  As shown in FIG. 1 and FIG. 2, the grinding fluid supply apparatus 100 in the superabrasive electrodeposition grindstone 1 receives the center hole 3C of the base 3 of the superabrasive electrodeposition grindstone 1 with a receiving ring 5B. The center hole 5C of the left and right flange covers 5 is held by the tip shaft portion 6A of the grindstone arbor 6. In other words, the tip 6A of the grindstone arbor 6 is provided with a screw 6B, and the superabrasive electrodeposition grindstone 1 is held by the nut 7A via the washer 7 so as to be detachable. The grindstone arbor 6 is attached by inserting the holding portion 6D into the attachment hole H1 of the tool holder H, and is attached to the tip tapered hole 20A of the spindle 20 of the processing machine M such as a machine tool of a machining center or a grinding machine. Then, the grinding fluid K is supplied from the jet outlet 6E from the spindle through 20C opened in the main shaft 20 through the through hole 6C of the grindstone arbor 6 to the gap A formed in the gap near the center hole 5C of the left and right flange covers 5. It is configured.

上記第1実施の形態となる超砥粒電着砥石の砥石内研削液供給装置100は、以上のように構成されており、下記のように作用する。
第1の研削方法は、単層のCBN又はダイヤモンド砥粒を鋼製の台金に電着した電着砥石と、上記台金に放射状に多数設けたスリットSと、上記台金3の両側の流路(隙間)5Eから研削液Kを砥石側面に沿って放射方向に砥粒先端まで導くフランジカバー5と、上記台金とフランジとを保持すると共に加工機Mの主軸20に装着される砥石アーバー6と、上記砥石アーバーの通孔6Cを介して台金とフランジに対して主軸から研削液を供給するスピンドルスルー20Cと、からなる超砥粒電着砥石1の砥石内研削液供給装置において、研削液供給量を5L/min前後とし、研削速度V=20m/sec前後とし、送り速度v=500mm/sec前後とし、切り込み量td=0.02m前後の往復送りとした。
The in-grind grinding fluid supply apparatus 100 for the superabrasive electrodeposition grinding wheel according to the first embodiment is configured as described above and operates as follows.
The first grinding method includes an electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on a steel base, slits S provided radially in the base, and both sides of the base 3. A flange cover 5 that guides the grinding liquid K from the flow path (gap) 5E to the abrasive grain tip in the radial direction along the side of the grindstone, and the grindstone that holds the base metal and the flange and is attached to the spindle 20 of the processing machine M In an in-grind grinding fluid supply device for a superabrasive electrodeposition grinding stone 1 comprising an arbor 6 and a spindle through 20C for supplying a grinding fluid from a main shaft to a base metal and a flange via a through hole 6C of the grinding wheel arbor. The grinding fluid supply amount was around 5 L / min, the grinding speed V was around 20 m / sec, the feed speed v was around 500 mm / sec, and the reciprocating feed was made with a cutting amount td = 0.02 m.

アルミニウム合金研削の実施例(比研削抵抗)について。
本発明の金属台金に一層の砥粒を配置した電着砥石で砥石内研削液供給装置100が機能するかを,アルミニウム合金A7075を対象として検証した。アルミニウム合金を加工物とした理由は、延性が大きく切り屑の溶着や目詰まりが生じ易いため,研削液供給の効果が顕著に表れると推測した。
また,単層の電着砥粒が脱落したり、溶着により切削能力を喪失時に発生する危険性を最少化することに配慮した。
Example of aluminum alloy grinding (specific grinding resistance).
It was verified for the aluminum alloy A7075 whether or not the in-grind grinding fluid supply apparatus 100 functions with an electrodeposition grindstone in which one layer of abrasive grains is arranged on the metal base metal of the present invention. The reason why the aluminum alloy was used as the workpiece was that the ductility was large and chip welding and clogging were likely to occur.
In addition, consideration was given to minimizing the risk of single-layer electrodeposited abrasive grains falling off or loss of cutting ability due to welding.

次式、k=FxV/tdbvにより、比研削抵抗に換算した結果を、図5に示す。尚、Fxは研削抵抗の研削方向成分,bは研削幅である。研削液供給量を5L/min、研削速度V=20m/sec、送り速度v=500mm/sec、切り込み量td=0.02mmの往復送りとした。上記から、砥石の往復送りに対応して奇数パスがアップカット、偶数パスがダウンカット。アップカットの場合が比研削抵抗が高めに推移するため研削抵抗はパス毎に高低を繰り返すが、被削材が砥石作業面に凝着することによる急激な研削抵抗の上昇は見られず,安定した状態を維持していて正常な研削が行われている。加工後の砥石表面には目詰まりはなく,砥石表面上の変化は見られない。以上より,金属台金に多数のスリットを設けた砥石内研削液供給装置により,延性の大きなアルミニウム合金においても安定的に研削加工が可能であることが確認できた。  FIG. 5 shows the result of conversion into specific grinding resistance by the following equation, k = FxV / tdbv. Note that Fx is a grinding direction component of grinding resistance, and b is a grinding width. The grinding fluid supply amount was 5 L / min, the grinding speed V = 20 m / sec, the feed speed v = 500 mm / sec, and the reciprocating feed amount td = 0.02 mm. From the above, the odd-numbered path is up-cut and the even-numbered path is down-cut corresponding to the reciprocating feed of the grindstone. In the case of up-cutting, the specific grinding resistance changes to a high level, so the grinding resistance repeatedly increases and decreases with each pass. However, there is no sharp increase in grinding resistance due to the work material adhering to the grinding wheel work surface. Normal grinding is performed while maintaining the above condition. There is no clogging on the surface of the grindstone after processing, and no change on the surface of the grindstone is observed. From the above, it was confirmed that the grinding fluid supply device with a large number of slits in the metal base metal can stably grind even a highly ductile aluminum alloy.

続いて、砥石内研削液供給装置100によるCBN又はダイヤモンド砥粒電着砥石とWAビトリファイド砥石との比較試験を行った。
(1)研削条件は、一般構造用鋼S45Cを対象とし,開発した台金により砥石内から研削液供給するCBN又はダイヤモンド砥粒電着砥石と,ビトリファイド砥石の気孔を通して砥石内より研削液供給する場合との比較により,CBN又はダイヤモンド砥粒電着砥石の優位性確認する。砥石条件を図13に、研削条件を図14に示す。更に、CBN電着砥石およびビトリファイド砥石の砥石作業面の写真を図6に示す。
Subsequently, a comparison test was performed between the CBN or diamond abrasive electrodeposition grindstone and the WA vitrified grindstone using the grinding fluid supply apparatus 100 in the grindstone.
(1) Grinding conditions are for general structural steel S45C. The developed base metal feeds the grinding fluid from the grinding stone through the pores of the CBN or diamond abrasive electrodeposition grinding stone and vitrified grinding stone that feed the grinding fluid from the grinding stone. By comparing with the case, the superiority of the CBN or diamond abrasive electrodeposition wheel is confirmed. The grinding wheel conditions are shown in FIG. 13, and the grinding conditions are shown in FIG. Furthermore, the photograph of the grindstone working surface of a CBN electrodeposition grindstone and a vitrified grindstone is shown in FIG.

(2)研削抵抗と加工点温度の測定
上記砥石内研削液供給装置100について、CBN電着砥石に適用し炭素鋼S45Cを研削加工した際の研削抵抗及び加工点温度の測定を行なう。研削抵抗は圧電型3成分動力計で測定した。そして、温度測定方法の概略は、図7に示す。その構成は、加工物側の研削方向3箇所に,切込み方向t1,t2<0.02mm以内の差で熱電対を埋め込み、砥石がこれを切断するまでの温度を測定する。また、熱電対を設置した穴先端部には高熱伝導率を有するシルバーグリス(熱伝導率=9.0W/m・K)を充填し熱伝導のロスを低減するとともに,測温部の熱容量が極度に小さくなることを防止する対策を講じている。
(2) Measurement of grinding resistance and processing point temperature The grinding resistance and processing point temperature at the time of grinding the carbon steel S45C applied to the CBN electrodeposited grinding wheel is measured for the above-mentioned grinding fluid supply apparatus 100 in the grinding wheel. The grinding resistance was measured with a piezoelectric three-component dynamometer. An outline of the temperature measuring method is shown in FIG. In the configuration, thermocouples are embedded at three positions on the workpiece side in the grinding direction with a difference within the cutting directions t1, t2 <0.02 mm, and the temperature until the grindstone cuts it is measured. The tip of the hole where the thermocouple is installed is filled with silver grease with high thermal conductivity (thermal conductivity = 9.0 W / m · K) to reduce the loss of thermal conductivity and the heat capacity of the temperature measuring unit Measures are taken to prevent it from becoming extremely small.

続いて、図8により測定した比研削抵抗を示す。CBN又はダイヤモンド砥粒電着砥石はWAビトリファイド砥石よりも、比研削抵抗は20%程度低い値となっている。また,研削抵抗の振動成分も小さい。同図(a)の電着砥石の場合には,比研削抵抗の1パスごとの波形は右さがりの挙動を示している。これは、少なくとも1パス加工中に被削材もしくは、砥石の熱膨張により切込み量が増大して削り量が増大していないことを確認できる波形である。
火花の出るようなドライ加工データは、図10に示すように、右上がりの波形を示すことを確認した。これで、安定した研削状態が維持されているものと推察できる。また,1パスごと交互に比研削抵抗値が上下する挙動が見られる。これは、往復加工を行うレシプロ研削によるアップカット、ダウンカットの違いであり研削液を外から掛ける通常研削でも観察できるだけでなく、ビトリファイド砥石の砥石内研削液供給機構でも見られる現象である。
Subsequently, the specific grinding resistance measured by FIG. 8 is shown. The specific grinding resistance of the CBN or diamond abrasive electrodeposition grindstone is about 20% lower than that of the WA vitrified grindstone. Also, the vibration component of grinding resistance is small. In the case of the electrodeposition grindstone shown in FIG. 5A, the waveform of the specific grinding resistance for each pass shows a right-handed behavior. This is a waveform that can confirm that the cutting amount has not increased due to the thermal expansion of the work material or the grindstone during at least one pass machining, and the cutting amount has not increased.
As shown in FIG. 10, it was confirmed that the dry processing data with sparks showed a waveform rising to the right. Thus, it can be inferred that a stable grinding state is maintained. In addition, the specific grinding resistance value rises and falls alternately every pass. This is a difference between up-cut and down-cut by reciprocating grinding that performs reciprocating machining, and is a phenomenon that can be observed not only in normal grinding by applying a grinding fluid from the outside, but also in a grinding fluid supply mechanism of a vitrified grinding stone.

更に、図9は被削材に埋めこんだ熱電対により測定された温度の変化を示している。本グラフの測定範囲は熱電対が最も砥石に接近していると考えられる最高温度を示した前後の66パスから76パス目の5往復10パスのデータを抽出したものである。この温度測定値にも1パスごとの研削点温度の違いが観察される。これも研削抵抗と同様にアップカットとダウンカットの違いによるものであると考えられる。温度上昇する直前及び直後の波形はアップカット、ダウンカットで異なり,研削点に対し砥石回転の周速方向への研削熱の熱伝導が多いと考えられる。図9(b)は、ビトリファイド砥石の砥石内研削液供給機構の研削でも同様の挙動が観察される。図9(a)と(b)とを比較すると,砥石内研削液供給機構を用いたビトリファイド砥石の場合,温度上昇は60%程度である。図8に示した同研削条件で加工した比研削抵抗値の比較20%程度の上昇からみて3倍の差となっている。研削で発生する熱量は比研削抵抗に比例する点から考えると、CBN電着砥石の場合には,発生した熱量のうち,被削材に流入する量が,WAビトリファイド砥石の場合よりも減少していることになる。これは,超砥粒の熱伝導率が高いことで研削により発生した熱量が砥粒を介して金属台金側に移動し、フィン状のスリットになっている研削液流路で研削液に放出された結果であると考える。ダイヤモンド砥粒には劣るが、CBNの熱伝導率は常温で1300W/m・Kであり、被削材S45Cの51.6W/m・KやWAビトリファイド砥石を構成するアルミナ砥粒の熱伝導率30W/m・K前後よりもかなり高い値である。  Further, FIG. 9 shows a change in temperature measured by a thermocouple embedded in the work material. The measurement range of this graph is obtained by extracting data of 5 reciprocations and 10 passes of the 76th pass from the 66 passes before and after the highest temperature at which the thermocouple is considered to be closest to the grindstone. A difference in the grinding point temperature for each pass is also observed in this temperature measurement value. This is thought to be due to the difference between up-cut and down-cut as well as grinding resistance. The waveforms immediately before and after the temperature rise differ between up-cut and down-cut, and it is thought that there is much heat conduction of grinding heat in the circumferential speed direction of the wheel rotation with respect to the grinding point. In FIG. 9B, the same behavior is observed in the grinding of the in-grind grinding fluid supply mechanism of the vitrified grindstone. Comparing FIGS. 9 (a) and 9 (b), in the case of a vitrified grindstone using the grinding fluid supply mechanism in the grindstone, the temperature rise is about 60%. Compared to the specific grinding resistance value processed under the same grinding conditions shown in FIG. Considering that the amount of heat generated by grinding is proportional to the specific grinding resistance, in the case of CBN electrodeposited grinding wheels, the amount of heat generated that flows into the work material is smaller than in the case of WA vitrified wheels. Will be. This is because the heat generated by grinding moves due to the high thermal conductivity of the superabrasive grains to the metal base via the abrasive grains, and is released to the grinding fluid through the grinding fluid passages that are fin-shaped slits. I think that was the result. Although it is inferior to diamond abrasive grains, the thermal conductivity of CBN is 1300 W / m · K at room temperature, and the thermal conductivity of alumina abrasive grains constituting 51.6 W / m · K of work material S45C and WA vitrified grinding stone The value is much higher than around 30 W / m · K.

以上の結果による効果は,炭素鋼S45Cを被削材とした場合であるが,チタン合金やニッケル基超合金などより熱伝導率が低い被削材に対して,本研削方法において、上記のような砥石および台金へ熱を移動し,研削液へ除熱する機能は有効に作用するものと考えられる。このことは、高温に弱いとされる超砥粒のダイヤモンド砥粒での研削への可能性がある。また、研削弧長の変化に関係なく冷却効果を維持できる技術であるから、深穴研削加工に適した技術としても期待できる。また,研削液には潤滑効果が備わっており、ビトリファイド砥石の場合でも,砥石内研削液供給により研削点に確実に研削液が供給されることから,通常の外部ノズルからの供給に比べて良好な潤滑状態となっていることが予想される。そして、CBN電着砥石では、更に比研削抵抗が小さいことは、砥粒の形状の違いと砥粒の動摩擦係数の違いによる要因が大きいと考えられる。  The effect of the above results is the case where carbon steel S45C is used as the work material. However, in the present grinding method, as described above, the work material with lower thermal conductivity than titanium alloy or nickel-base superalloy is used. It is considered that the function of transferring heat to a grindstone and base metal and removing heat to the grinding fluid works effectively. This has the potential for grinding with superabrasive diamond grains, which are considered to be vulnerable to high temperatures. Moreover, since the cooling effect can be maintained regardless of the change in the grinding arc length, it can also be expected as a technique suitable for deep hole grinding. Also, the grinding fluid has a lubricating effect, and even in the case of vitrified grinding stones, the grinding fluid is reliably supplied to the grinding point by supplying the grinding fluid in the grinding stone, which is better than the supply from a normal external nozzle It is expected that the lubrication state is correct. In the CBN electrodeposited grindstone, the smaller specific grinding resistance is considered to be largely due to the difference in the shape of the abrasive grains and the difference in the dynamic friction coefficient of the abrasive grains.

更に、砥石表面について。
図11において、100パス加工後と加工前の砥石作業面の同一部分を撮影したものである。td=0.02mmと大きめの切込みを設定しているが,砥石の目詰まりや目こぼれ、摩耗は見当たらない.また、目視による観察で加工面に研削焼けは見られない。研削方向に垂直に測定した表面粗さは3.2〜3.6μmRaであり,同じ粒度のビトリファイド砥石加工で得られている0.6μmRa前後よりかなり大きな値となった。これは、CBN電着ホイールでは砥粒切れ刃高さを揃えるためのツルーイングを行っていない事が要因として最も大きいと考える。
更に、研削後の被削材の寸法測定を行った。0.02mmの切込みで連続して100パス加工した後,全体が室温になじんでからの測定値である。温度上昇と弾性変形がほとんど生じないようスパークアウトを繰り返せば,被削材の厚さは位置に依らず一定となる。また、切込みが大きく除熱が十分でない場合には,1パスの加工中に被削材もしくは研削ホイールの温度が上昇して熱膨張し,設定よりも切込みが増す。結果として、研削入口側よりも出口側の被削材厚さが小さくなる。
Furthermore, about the grindstone surface.
In FIG. 11, the same part of the grindstone working surface after 100 pass machining and before machining is photographed. A large depth of cut of td = 0.02 mm is set, but there is no clogging, spillage or wear of the grindstone. In addition, grinding burn is not seen on the processed surface by visual observation. The surface roughness measured perpendicularly to the grinding direction was 3.2 to 3.6 μmRa, which was considerably larger than about 0.6 μmRa obtained by processing a vitrified grindstone with the same particle size. This is probably because the CBN electrodeposition wheel does not perform truing to align the abrasive cutting edge height.
Furthermore, the dimension of the work material after grinding was measured. This is a measured value after the whole has been adjusted to room temperature after 100 passes are processed continuously with a 0.02 mm cut. If the spark-out is repeated so that the temperature rise and elastic deformation hardly occur, the thickness of the work material becomes constant regardless of the position. In addition, when the depth of cut is large and the heat removal is not sufficient, the temperature of the work material or the grinding wheel rises during one pass of machining, resulting in thermal expansion, and the depth of cut increases beyond the setting. As a result, the work piece thickness on the outlet side is smaller than the grinding inlet side.

図12は、測定した被削材両端と中央の厚さの寸法差を示す。最終加工パスの入口側上段を0として各点の被削材厚差を上段,中段,下段の3ライン上で測定した.ツルーイングしていない為,各ライン間で最大10μm程度の差が生じているが,入口側と出口側を比較すると,出口側で加工物厚さが小さくなる顕著な傾向は見られない。これは加工物と電着ホイール軸の間に熱変形がほとんど起こらなかった事を示しており,切込みは0.02mmと仕上加工としては小さく,研削熱が研削液と切りくずを通じて放出されたことを示している。  FIG. 12 shows the measured dimensional difference between the thickness of both ends and the center of the work material. The material thickness difference at each point was measured on the upper, middle, and lower three lines, with the upper stage on the entrance side of the final machining pass as 0. Since there is no truing, there is a maximum difference of about 10 μm between each line. However, when the inlet side and the outlet side are compared, there is no noticeable tendency that the workpiece thickness decreases on the outlet side. This indicates that almost no thermal deformation occurred between the workpiece and the electrodeposited wheel shaft, and the incision was 0.02 mm, which was small for finishing, and the grinding heat was released through the grinding fluid and chips. Is shown.

上記第1実施の形態となる超砥粒電着砥石の砥石内研削液供給装置100とその研削方法によると、下記の効果が発揮される。
本発明の超砥粒電着砥石の砥石内研削液供給装置とその研削方法によると、電着砥石の砥石台金に多数のスリット(スリット幅0.2mm、台金外周120箇所)を設け、台金の両側から研削液を砥石側面に沿って放射方向に砥粒先端まで導くフランジカバーを設けたから、砥石ホイール内部から研削液を砥石先端に効率良く供給できる。
これにより、研削液による台金自体の冷却効率の向上で台金の熱膨張を抑制しワークの研削寸法精度が保証できる。また、研削液の消費量も少量となる。具体的には、およそ5L/min前後の広い範囲内での実施が可能となる。
According to the in-grind grinding fluid supply apparatus 100 and the grinding method for the superabrasive electrodeposition grinding wheel according to the first embodiment, the following effects are exhibited.
According to the grinding fluid supply apparatus and grinding method for a superabrasive electrodeposition grinding wheel of the present invention, a number of slits (slit width 0.2 mm, base metal outer periphery 120 locations) are provided in the grinding stone base metal of the electrodeposition grinding wheel, Since the flange cover for guiding the grinding liquid from both sides of the base metal to the abrasive grain tip in the radial direction along the side surface of the grinding wheel is provided, the grinding fluid can be efficiently supplied from the inside of the grinding wheel to the grinding wheel tip.
Thereby, the thermal expansion of the base metal is suppressed by improving the cooling efficiency of the base metal itself by the grinding liquid, and the grinding dimensional accuracy of the workpiece can be guaranteed. Also, the consumption of the grinding fluid is small. Specifically, it is possible to carry out within a wide range of about 5 L / min.

また、上記砥石内研削液供給装置とその研削方法を採用すると、CBN又はダイヤモンド砥粒の電着砥石による研削は、アルミナ砥粒ビトリファイドボンド砥石よりも比研削抵抗を低い値にできる。更に、S45C材において、CBN電着砥石とビトリファイド砥石との研削面層の温度を比較すると、超砥粒の電着砥石は動力の低減に比べて著しい温度低下が得られる。これは、超砥粒(CBN)がアルミナ砥粒よりも熱伝導率が高く、研削熱が砥粒を通して砥石台金に放出され、研削液により効率的に除熱できる。  Further, when the above-mentioned grinding fluid supply apparatus and its grinding method are employed, grinding with an electrodeposition grindstone of CBN or diamond abrasive grains can have a specific grinding resistance lower than that of an alumina abrasive vitrified bond grindstone. Further, in the S45C material, when the temperatures of the grinding surface layers of the CBN electrodeposition grindstone and the vitrified grindstone are compared, the superabrasive electrodeposited grindstone has a significant temperature drop compared to the power reduction. This is because superabrasive grains (CBN) have higher thermal conductivity than alumina abrasive grains, and grinding heat is released to the wheel base metal through the abrasive grains and can be efficiently removed by the grinding fluid.

続いて、本考案の第2実施の形態となる超砥粒電着砥石の砥石内研削液供給装置200を説明する。図3と図4に超砥粒電着砥石11の全体構成を示す。上記超砥粒電着砥石11は、単層のCBN又はダイヤモンド砥粒12を鋼製の台金33,34の一方側の外周面33Cに電着して構成されている。上記台金には粒度#80前後のCBN又はダイヤモンド砥粒を電着させたものである。上記台金33,34は一方側33に小孔hを多数開けた外周面33Cを有し、他方34は円板34Aからなり、該空間X内にサンドイッチ構成にドーナツ状の気泡セラミック体40が挟まれている。上記左右両側の台金33,34と気泡セラミック体40とに開けた中心孔h1,h2は、砥石アーバー6の先端軸6Aで保持されている。上記砥石アーバーは、加工機Mの主軸20に装着されこの通孔6Cの壁面に開けた噴射口6Eを介して気泡セラミック体の中心孔h2内に圧入され、該外周に配置した電着砥石11に対して外周面33Cに開けた多数の小孔hから研削液Kを供給するスピンドルスルー20Cの構成となっている。即ち、上記研削液Kは気泡セラミック体40内の結合空間S2を浸透通過し、台金33の外周面33Cに開けられた小孔hを介してCBN又はダイヤモンド砥粒12内の結合空間S3を浸透通過して超砥粒電着砥石11の外周面(砥石研削面)11Aまで導かれる。  Then, the grinding fluid supply apparatus 200 in the grindstone of the superabrasive electrodeposition grindstone which becomes 2nd Embodiment of this invention is demonstrated. 3 and 4 show the overall configuration of the superabrasive electrodeposition grindstone 11. The superabrasive electrodeposition grindstone 11 is formed by electrodepositing a single layer of CBN or diamond abrasive grains 12 on one outer peripheral surface 33C of a steel base metal 33,34. The base metal is electrodeposited with CBN or diamond abrasive grains having a grain size of around # 80. The base metal 33, 34 has an outer peripheral surface 33C having a large number of small holes h on one side 33, the other 34 is made of a disk 34A, and a donut-shaped cellular ceramic body 40 is sandwiched in the space X in a sandwich configuration. It is sandwiched. Center holes h1 and h2 opened in the left and right base metals 33 and 34 and the cellular ceramic body 40 are held by the tip shaft 6A of the grindstone arbor 6. The grindstone arbor is press-fitted into the center hole h2 of the cellular ceramic body through an injection port 6E attached to the spindle 20 of the processing machine M and opened in the wall surface of the through hole 6C, and is disposed on the outer periphery of the electrodeposition grindstone 11 On the other hand, the spindle through 20C is configured to supply the grinding fluid K from a large number of small holes h formed in the outer peripheral surface 33C. That is, the grinding liquid K permeates and passes through the bonding space S2 in the cellular ceramic body 40, and passes through the bonding space S3 in the CBN or diamond abrasive grains 12 through the small holes h opened in the outer peripheral surface 33C of the base metal 33. It penetrates and is guided to the outer peripheral surface (grinding wheel grinding surface) 11A of the superabrasive electrodeposition grinding wheel 11.

上記超砥粒電着砥石11における砥石内研削液供給装置200は、図4に示すように、上記超砥粒電着砥石11の台金33,34及び気泡セラミック体40は、中心孔h1,h2が砥石アーバー6の先端軸部6Aに保持されている。この砥石アーバー6は、工具ホルダHの取付穴H1に取り付けられ、マシニングセンタの工作機械や研削盤等の加工機Mの主軸20の先端テーパー穴20Aに装着される。  In the superabrasive electrodeposition grindstone 11, the grinding fluid supply device 200 in the grindstone includes the base holes 33 and 34 and the cellular ceramic body 40 of the superabrasive electrodeposition grindstone 11, as shown in FIG. h <b> 2 is held by the tip shaft portion 6 </ b> A of the grindstone arbor 6. The grindstone arbor 6 is attached to the attachment hole H1 of the tool holder H, and is attached to the tip tapered hole 20A of the spindle 20 of the processing machine M such as a machine tool of a machining center or a grinding machine.

上記第2実施の形態となる超砥粒電着砥石の砥石内研削液供給装置200は、以上のように構成されており、下記のように作用する。
第2の研削方法も、上記第1の研削方法と同様に実施される。上記超砥粒電着砥石の砥石内研削液供給装置200において、研削液供給量を0.5L/min前後とし、研削速度V=20m/sec前後とし、送り速度v=500mm/sec前後とし、切り込み量td=0.02mm前後の往復送りとして実施した。これにより、(1)アルミニウム合金研削の実施例(比研削抵抗)。(2)CBN又はダイヤモンド砥粒電着砥石とWAビトリファイド砥石との比較試験。(3)研削抵抗と加工点温度の測定。(4)砥石表面について。(5)測定した被削材両端と中央の厚さの寸法差。について、上記第1の研削方法と同様の作用と効果が得られた。
The in-grind grinding fluid supply apparatus 200 for the superabrasive electrodeposition grinding wheel according to the second embodiment is configured as described above and operates as follows.
The second grinding method is also performed in the same manner as the first grinding method. In the in-grind grinding fluid supply apparatus 200 for the superabrasive electrodeposition grinding wheel, the grinding fluid supply amount is about 0.5 L / min, the grinding speed V is about 20 m / sec, the feed speed v is about 500 mm / sec, The reciprocating feed was performed with a cutting amount td = 0.02 mm. Thereby, (1) Example of aluminum alloy grinding (specific grinding resistance). (2) Comparison test between CBN or diamond abrasive electrodeposition wheel and WA vitrified wheel. (3) Measurement of grinding resistance and processing point temperature. (4) About the grinding wheel surface. (5) Dimensional difference between the measured thickness of both ends and the center of the work material. The same action and effect as in the first grinding method were obtained.

上記第2実施の形態となる超砥粒電着砥石の砥石内研削液供給装置200の特別の作用を列記する。その特別な機能は、気泡セラミック体40による研削液Kの泡生成を研削作用時に発揮する。上記超砥粒電着砥石の砥石内研削液供給装置200は、加工機Mの主軸20の先端テーパー穴20Aに装着される。そして、主軸20に開けたスピンドルスルー20Cから砥石アーバー6の通孔6Cを介して気泡セラミック体40の中心孔h2に向けて研削液Kが供給される。この時、研削液Kは気泡セラミック体40内を中心から外周方向に放射状に浸透して拡がり、台金33の外周面33Cに多数開けた小孔hからCBN又はダイヤモンド砥粒内12の結合空間S3を浸透噴出して超砥粒電着砥石11の外周面(砥石研削面)11Aまで導かれる。この時、気泡セラミック体40は、研削液Kの流れに対して泡発生機能により切粉,研削スラッジ等の不純物を濾過するとともに、泡状とした研削液Kを、CBN又はダイヤモンド砥粒12の結合空間S3を浸透噴出させて目詰まりを起こすことが無くなり、超砥粒電着砥石11の外周面(砥石研削面)11Aに噴出して、ワークとなる研削面を少量の研削液でも完璧に研削する。  Special actions of the in-grind grinding fluid supply apparatus 200 for the superabrasive electrodeposition grinding wheel according to the second embodiment will be listed. The special function exhibits the foam generation of the grinding liquid K by the cellular ceramic body 40 during the grinding operation. The in-grind grinding fluid supply device 200 for the superabrasive electrodeposition grindstone is mounted in the tip tapered hole 20A of the spindle 20 of the processing machine M. Then, the grinding fluid K is supplied from the spindle through 20 </ b> C opened in the main shaft 20 through the through hole 6 </ b> C of the grindstone arbor 6 toward the central hole h <b> 2 of the cellular ceramic body 40. At this time, the grinding liquid K penetrates and expands radially from the center toward the outer periphery of the cellular ceramic body 40, and the bonding space in the CBN or the diamond abrasive grains 12 from the small holes h formed in the outer peripheral surface 33 </ b> C of the base metal 33. S3 is permeated and ejected to the outer peripheral surface (grindstone grinding surface) 11A of the superabrasive electrodeposition grinding wheel 11. At this time, the cellular ceramic body 40 filters impurities such as chips and grinding sludge by the foam generation function with respect to the flow of the grinding liquid K, and also converts the foamed grinding liquid K into the CBN or diamond abrasive grains 12. The bonding space S3 is prevented from penetrating and clogging is prevented, and it is ejected onto the outer peripheral surface (grinding wheel grinding surface) 11A of the superabrasive electrodeposition grinding wheel 11 so that the grinding surface as a workpiece can be perfectly applied with a small amount of grinding fluid. Grind.

上記気泡セラミック体40は、二つの台金33,34内に収めた構成で交換可能であるから、汚れの限界に達したら交換される。そして、気泡状態は、セラミックの材質変更により数ミリからマイクロバブルまで選択される。
ここで、気泡の効用を列記すれば、
(1)気泡セラミック体40は、交換可能でランニングコストが低い。
(2)セラミックの選定で気泡の状況が自由に変えられる。
(3)セラミックにより、研削液内の異物(切粉,研削スラッジ)を除去する。
(4)セラックにより、研削液を気泡化でき、この気泡で切粉,研削スラッジを吸着して空気中への拡散が抑えられる。
(5)気泡のエロージョン効果で砥石目詰まりを吹き飛ばせる。
(6)気泡でMQLが可能となり、研削液の消費量を5L/min前後から0.5L/min前後に減少でき省エネ、対環境性に良い結果が得られる。
(7)研削砥石の温度抑制や研削面の研削焼けを防止させられる。
The cellular ceramic body 40 can be replaced with a configuration accommodated in the two base metals 33 and 34, and therefore is replaced when the limit of dirt is reached. The bubble state is selected from several millimeters to microbubbles by changing the ceramic material.
Here, if you list the effects of bubbles,
(1) The cellular ceramic body 40 is replaceable and has a low running cost.
(2) Bubbles can be freely changed by selecting ceramic.
(3) Remove foreign matters (chips, grinding sludge) in the grinding fluid with ceramics.
(4) With the shellac, the grinding liquid can be bubbled, and chips and grinding sludge are adsorbed by the bubbles to suppress diffusion into the air.
(5) The clogging of the grindstone can be blown away by the erosion effect of the bubbles.
(6) MQL is possible with air bubbles, and the consumption of the grinding fluid can be reduced from around 5 L / min to around 0.5 L / min, resulting in good energy saving and environmental friendliness.
(7) Temperature control of the grinding wheel and grinding burn of the grinding surface can be prevented.

上記第2実施の形態となる超砥粒電着砥石の砥石内研削液供給装置200とその研削方法によると、下記の効果を発揮する。
単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石において、上記台金はドーナツ状の気泡セラミック体を左右両側で挟んだサンドチッチ構成で保持する砥石アーバーと、上記砥石アーバーの通孔を介して気泡セラミック体から電着砥石に対して主軸からのスピンドルスルーで研削液を供給したから、気泡セラミック体により砥石ホイール内部から砥石先端に供給される研削液は、気泡化されて研削液内の異物(切屑、スラッジ)を吸着して拡散が防止されて効率良く供給できる。更に、セラミック体は交換可能でセラミック選定で泡選別が可能な上に、泡のエローション効果で砥石の目詰まりを吹飛ばし、また、気泡で研削液のMQLが実現でき、研削焼けしない。即ち、研削液による台金自体の冷却効率の向上で台金の熱膨張を抑制しワークの研削寸法精度が保証できる。
According to the grinding fluid supply device 200 and the grinding method for the superabrasive electrodeposition grinding wheel according to the second embodiment, the following effects are exhibited.
In an electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on the outer peripheral surface of a steel base metal, the base metal is a grindstone arbor that holds a donut-shaped cellular ceramic body sandwiched between the left and right sides. And the grinding fluid supplied from the foam ceramic body to the electrodeposition grindstone through the through hole of the grindstone arbor by spindle through from the main shaft, so that the grinding fluid supplied from the inside of the grinding wheel to the grinding wheel tip by the foam ceramic body Can be supplied efficiently by adsorbing foreign matters (chips, sludge) in the grinding liquid and preventing diffusion. Further, the ceramic body can be exchanged and the foam can be selected by selecting the ceramic. In addition, the clogging of the grindstone can be blown off by the erosion effect of the foam, and MQL of the grinding fluid can be realized by the bubbles, and the grinding does not burn. That is, by improving the cooling efficiency of the base metal itself by the grinding liquid, the thermal expansion of the base metal can be suppressed and the grinding dimensional accuracy of the workpiece can be guaranteed.

本初発明は、その対象物を単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石と、この砥石内研削液供給装置とその研削方法の実施例で説明したものであるが、様々な研削砥石(単層に限らず多層CBN又はダイヤモンド砥粒)を対象とした砥石内研削液供給装置とその研削方法の実施にも適用が可能である。  This first invention is an embodiment of an electrodeposition grindstone in which the object is electrodeposited with a single layer of CBN or diamond abrasive grains on the outer peripheral surface of a steel base metal, and a grinding fluid supply device in the grindstone and its grinding method. Although described, the present invention can also be applied to implementation of a grinding fluid supply device in a grinding wheel and a grinding method thereof for various grinding wheels (not limited to a single layer but a multilayer CBN or diamond abrasive grains).

1,11 超砥粒電着砥石
1B 砥石側面
3 台金
3A 側面
3B 外周面
3C,5C 中心孔
5 フランジカバー
5B 受環
5E 流路
6 砥石アーバー
6A 先端軸部
6B 螺子
6C 通孔
6D 保持部
6E 噴出口
7 座金
7A ナット
10,12 単層のCBN又はダイヤモンド砥粒
10A 外周面(砥石研削面)
11A 外周面(砥石研削面)
20 主軸
20A 先端テーパー穴
20C スピンドルスルー
33,34 台金
33C 外周面
34A 円板
40 気泡セラミック体
100 砥石内研削液供給装置
200 砥石内研削液供給装置
A 空隙
S スリット
S2 結合空間
S3 結合空間
K 研削液
H 工具ホルダ
H1 取付穴
M 加工機
h 小孔
h1,h2 中心孔
X 空間
1,11 Superabrasive electrodeposition grinding wheel 1B Grinding wheel side surface 3 Base metal 3A Side surface 3B Outer peripheral surface 3C, 5C Center hole 5 Flange cover 5B Ring 5E Flow path 6 Grinding wheel arbor 6A Tip shaft portion 6B Screw 6C Through hole 6D Holding portion 6E Spout 7 Washer 7A Nut 10, 12 Single layer CBN or diamond abrasive 10A Outer peripheral surface (grinding surface)
11A outer peripheral surface (grinding wheel grinding surface)
20 Spindle 20A Tip tapered hole 20C Spindle through 33, 34 Base metal 33C Peripheral surface 34A Disc 40 Cellular ceramic body 100 Grinding fluid supply device in grinding wheel 200 Grinding fluid supply device in grinding wheel A Gap S Slit S2 Bonding space S3 Bonding space K Grinding Liquid H Tool holder H1 Mounting hole M Machine h Small hole h1, h2 Center hole X Space

Claims (5)

単層のCBN又はダイヤモンド砥粒を鋼製の台金に電着した電着砥石と、上記台金に放射状に多数設けたスリットと、上記台金の両側から研削液を砥石側面に沿って放射方向に砥粒先端まで導くフランジカバーと、上記台金とフランジとを保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーの通孔を介して台金とフランジの隙間に主軸から研削液を供給するスピンドルスルーと、からなることを特徴とする超砥粒電着砥石の砥石内研削液供給装置。  A single-layer CBN or diamond abrasive electrodeposited on a steel base, an electrodeposition grindstone, a large number of radial slits on the base, and grinding fluid radiated from both sides of the base along the side of the wheel A flange cover that guides to the tip of the abrasive grain in the direction, a grindstone arbor that holds the base metal and the flange and is attached to the main shaft of the processing machine, and a main shaft in the gap between the base metal and the flange through the through hole of the grindstone arbor A spindle-through for supplying a grinding fluid from, and an in-grind grinding fluid supply device for a superabrasive electrodeposition grindstone. 上記スリット幅は0.2mm前後として台金側面から外周面に渡って120箇所前後設け、上記台金の外周面には、粒度#80前後のCBN又はダイヤモンドを電着させてなることを特徴とする請求項1記載の超砥粒電着砥石の砥石内研削液供給装置。  The slit width is about 0.2 mm, and around 120 points are provided from the base metal side surface to the outer peripheral surface. CBN or diamond having a grain size of about # 80 is electrodeposited on the outer peripheral surface of the base metal. The apparatus for supplying grinding fluid in a grindstone of a superabrasive electrodeposition grindstone according to claim 1. 単層のCBN又はダイヤモンド砥粒を鋼製の台金に電着した電着砥石と、上記台金に放射状に多数設けたスリットと、上記台金の両側から研削液を砥石側面に沿って放射方向に砥粒先端まで導くフランジカバーと、上記台金とフランジとを保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーの通孔を介して台金とフランジの隙間に主軸から研削液を供給するスピンドルスルーと、からなる超砥粒電着砥石の砥石内研削液供給装置において、研削液供給量を5L/min前後とし、研削速度V=20m/sec前後とし、送り速度v=500mm/sec前後とし、切り込み量td=0.02m前後の往復送りとしたことを特徴とする超砥粒電着砥石の研削方法。  A single-layer CBN or diamond abrasive electrodeposited on a steel base, an electrodeposition grindstone, a large number of radial slits on the base, and grinding fluid radiated from both sides of the base along the side of the wheel A flange cover that guides to the tip of the abrasive grain in the direction, a grindstone arbor that holds the base metal and the flange and is attached to the main shaft of the processing machine, and a main shaft in the gap between the base metal and the flange through the through hole of the grindstone arbor In a grinding fluid supply apparatus for a superabrasive electrodeposited grinding wheel, the grinding fluid supply amount is about 5 L / min, the grinding speed V is about 20 m / sec, and the feed speed A grinding method for a superabrasive electrodeposition grindstone, characterized in that v = 500 mm / sec, and reciprocating feed with a cutting amount td = 0.02 m. 単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石と、上記台金は一方側に小孔を開けた外周面を有し他方側に円板からなり該空間内にサンドイッチ構成に挟んだドーナツ状の気泡セラミック体と、上記左右両側の台金と気泡セラミック体とに開けた中心孔を保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーはこの通孔を介して気泡セラミック体の中心孔から該外周に配置した電着砥石に対して主軸から研削液を供給するスピンドルスルーと、からなることを特徴とする超砥粒電着砥石の砥石内研削液供給装置。  An electrodeposition grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on the outer peripheral surface of a steel base metal, and the base metal has an outer peripheral surface with a small hole on one side and a disk on the other side. A doughnut-shaped cellular ceramic body sandwiched in a sandwich configuration in the space, a grindstone arbor that holds a central hole opened in the base metal and the cellular ceramic body on both the left and right sides, and is attached to the spindle of the processing machine, Superabrasive electrodeposition characterized in that the grindstone arbor comprises a spindle through for supplying grinding fluid from the main shaft to the electrodeposited grindstone disposed on the outer periphery from the central hole of the cellular ceramic body through this through hole. Grinding fluid supply device for grinding wheels. 単層のCBN又はダイヤモンド砥粒を鋼製の台金の外周面に電着した電着砥石と、上記台金は一方側に小孔を開けた外周面を有し他方に円板からなり該空間内にサンドイッチ構成に挟んだドーナツ状の気泡セラミック体と、上記左右両側の台金と気泡セラミック体とに開けた中心孔を保持すると共に加工機の主軸に装着される砥石アーバーと、上記砥石アーバーはこの通孔を介して気泡セラミック体の中心孔から該外周に配置した電着砥石に対して主軸から研削液を供給するスピンドルスルーと、からなる超砥粒電着砥石の砥石内研削液供給装置において、研削液供給量を0.5L/min前後とし、研削速度V=20m/sec前後とし、送り速度v=500mm/sec前後とし、切り込み量td=0.02m前後の往復送りとしたことを特徴とする超砥粒電着砥石の研削方法。  An electrodeposited grindstone in which a single layer of CBN or diamond abrasive grains is electrodeposited on the outer peripheral surface of a steel base metal, and the base metal has an outer peripheral surface with a small hole on one side and a disk on the other side. A doughnut-shaped foam ceramic body sandwiched between sandwich structures in the space, a grindstone arbor that holds a center hole opened in the base metal and the foam ceramic body on both the left and right sides, and is mounted on the spindle of the processing machine, and the grindstone The arbor has a spindle-through for supplying a grinding fluid from the main shaft to the electrodeposition grindstone disposed on the outer periphery from the center hole of the cellular ceramic body through the through-hole, and a grinding fluid in the grindstone of the superabrasive electrodeposition grindstone In the supply device, the grinding fluid supply amount is set to about 0.5 L / min, the grinding speed V is set to about 20 m / sec, the feed speed v is set to about 500 mm / sec, and the cutting amount td is set to about 0.02 m. about Grinding method superabrasive electrodeposited grindstone, characterized.
JP2012289513A 2012-12-31 2012-12-31 Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel Expired - Fee Related JP5787235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289513A JP5787235B2 (en) 2012-12-31 2012-12-31 Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289513A JP5787235B2 (en) 2012-12-31 2012-12-31 Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel

Publications (2)

Publication Number Publication Date
JP2014128865A true JP2014128865A (en) 2014-07-10
JP5787235B2 JP5787235B2 (en) 2015-09-30

Family

ID=51407744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289513A Expired - Fee Related JP5787235B2 (en) 2012-12-31 2012-12-31 Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel

Country Status (1)

Country Link
JP (1) JP5787235B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577505B (en) * 2015-10-22 2017-04-11 China Grinding Wheel Corp A wheel with internal supply of fluid structure
CN109366374A (en) * 2018-11-21 2019-02-22 重庆大学 Device for cooling and its inner-cooling method in a kind of electroplating CBN grinding wheel based on 3D printing technique
JP2020203332A (en) * 2019-06-14 2020-12-24 株式会社橋本テクニカル工業 Grinding liquid supply device, grinding processing system, grinding processing method and cavitation processing module used therein
CN114536231A (en) * 2022-02-24 2022-05-27 丹阳市励高研磨材料有限公司 Novel polishing wheel and processing method thereof
CN115771083A (en) * 2022-12-27 2023-03-10 广东福临门世家智能家居有限公司 Glass edging device of even wearing and tearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707628C (en) * 1937-02-05 1941-06-27 Ver Deutscher Werkzeugmaschine Device for supplying cooling, lubricating and flushing fluids to machine tools with rotating tools
US2745229A (en) * 1955-01-24 1956-05-15 Gear Grinding Mach Co Liquid cooled grinder wheel
JPH03109765U (en) * 1990-02-27 1991-11-11
JPH06344265A (en) * 1993-06-08 1994-12-20 Hitachi Metals Ltd Diamond wheel
JP3160335U (en) * 2010-01-29 2010-06-24 伊藤 幸男 Grinding wheel and its cooling device
JP2012115971A (en) * 2010-12-03 2012-06-21 Hitachi Ltd Machine tool, and tool holder thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707628C (en) * 1937-02-05 1941-06-27 Ver Deutscher Werkzeugmaschine Device for supplying cooling, lubricating and flushing fluids to machine tools with rotating tools
US2745229A (en) * 1955-01-24 1956-05-15 Gear Grinding Mach Co Liquid cooled grinder wheel
JPH03109765U (en) * 1990-02-27 1991-11-11
JPH06344265A (en) * 1993-06-08 1994-12-20 Hitachi Metals Ltd Diamond wheel
JP3160335U (en) * 2010-01-29 2010-06-24 伊藤 幸男 Grinding wheel and its cooling device
JP2012115971A (en) * 2010-12-03 2012-06-21 Hitachi Ltd Machine tool, and tool holder thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577505B (en) * 2015-10-22 2017-04-11 China Grinding Wheel Corp A wheel with internal supply of fluid structure
CN109366374A (en) * 2018-11-21 2019-02-22 重庆大学 Device for cooling and its inner-cooling method in a kind of electroplating CBN grinding wheel based on 3D printing technique
CN109366374B (en) * 2018-11-21 2020-11-06 重庆大学 Electroplating CBN grinding wheel inner cooling device based on 3D printing technology and inner cooling method thereof
JP2020203332A (en) * 2019-06-14 2020-12-24 株式会社橋本テクニカル工業 Grinding liquid supply device, grinding processing system, grinding processing method and cavitation processing module used therein
CN114536231A (en) * 2022-02-24 2022-05-27 丹阳市励高研磨材料有限公司 Novel polishing wheel and processing method thereof
CN115771083A (en) * 2022-12-27 2023-03-10 广东福临门世家智能家居有限公司 Glass edging device of even wearing and tearing
CN115771083B (en) * 2022-12-27 2023-06-30 广东福临门世家智能家居有限公司 Glass edging device of even wearing and tearing

Also Published As

Publication number Publication date
JP5787235B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
Klocke et al. Abrasive machining of advanced aerospace alloys and composites
JP5787235B2 (en) Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel
Pal et al. Development and performance evaluation of monolayer brazed cBN grinding wheel on bearing steel
JP5520795B2 (en) Tool holder
US20150099428A1 (en) Dicing Device and Dicing Method
JP5143008B2 (en) Tools for machining composite parts
CN104736300B (en) Grinding tool and the grinding-polishing device for having used the grinding tool
Chen et al. Development of a grinding–drilling technique for holing optical grade glass
JP2006247835A (en) Super-abrasive grain working tool and its method of use
WO2018073905A1 (en) Grindstone
Khoo et al. A review on the rotary ultrasonic machining of advanced ceramics
Tawakoli et al. Dressing of grinding wheels
JP6302889B2 (en) Whetstone
JP4352929B2 (en) Dry processing tool and dry drill manufacturing method
Azarhoushang et al. Effects of grinding process parameters on the surface topography of PCBN cutting inserts
Ohnishi et al. Grinding
JP4141438B2 (en) Grinding wheel
RU2261790C1 (en) Method of supplying lubricant-coolant in surface grinding
Okuyama et al. Grinding Performance of a Grain-Arranged Diamond Wheel Against Aluminum Alloys and Ti6Al4V
JP2009255185A (en) Grinding wheel
RU2261791C1 (en) Method of supplying lubricant-coolant in surface grinding
Salmon Using Metalworking Fluids in Grinding Processes
Ding et al. Grinding performance of titanium alloy Ti-6Al-4V with monolayer brazed CBN slotted wheels
Kim et al. Development of twin wheel creep-feed grinding machine using continuous dressing for machining of aircraft rotary wing
Shi et al. Assessment of an experimental setup for high speed grinding using vitrified CBN wheels

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150716

R150 Certificate of patent or registration of utility model

Ref document number: 5787235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees