JP2014116818A - 全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム - Google Patents

全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム Download PDF

Info

Publication number
JP2014116818A
JP2014116818A JP2012270127A JP2012270127A JP2014116818A JP 2014116818 A JP2014116818 A JP 2014116818A JP 2012270127 A JP2012270127 A JP 2012270127A JP 2012270127 A JP2012270127 A JP 2012270127A JP 2014116818 A JP2014116818 A JP 2014116818A
Authority
JP
Japan
Prior art keywords
projection device
image
video
projected
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012270127A
Other languages
English (en)
Inventor
Takeyoshi Sasao
剛良 笹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2012270127A priority Critical patent/JP2014116818A/ja
Publication of JP2014116818A publication Critical patent/JP2014116818A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

【課題】立体映像の歪みを補正して、精度の高い立体映像を表示することができる全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラムを提供する。
【解決手段】映像投影装置は、視認者の右眼用の映像を投影する右映像投影装置11Rと、視認者の左眼用の映像を投影する左映像投影装置11Lとを備え、両装置でスクリーン24に視差の異なる2つの映像を投影して視認者の左右の眼に提示し、全天周の立体映像を表示する。ズレ補正部12は、右映像投影装置11Rならびに左映像投影装置11Lのいずれか一方または双方の装置が投影する映像のドーム底面に対して垂直方向の偏角θの補正量を算出し、算出した補正量にしたがって映像の偏角θを補正し、スクリーン24上の映像のズレを補正する。
【選択図】図1

Description

本発明は、ドーム状のスクリーンに立体撮影された全天周の映像を表示して、立体視を実現する全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラムに関する。
従来、この種の技術としては、例えば特許文献1に示す文献に記載されたものが知られている。この特許文献1で採用された技術は、魚眼レンズを装着した複数台のカメラを用いて全天周の立体映像を撮影する。各カメラで撮影された映像を、通常のカメラで撮影されるような正方領域(平面)へ投影された映像(等倍率映像)に変換する。変換によって得られた映像を平面スクリーンなどに投影し、立体映像を表示する。
また、上記同種の技術としては、例えば特許文献2に示す文献に記載されたものが知られている。この特許文献2で採用された技術は、撮影地点が異なる全方位画像データから、観察者の視線の方位に基づいて左目用の全方位画像データと右目用の全方位画像データとを選択する。選択した全方位画像データを観察者に提示する。観察者の視線の方位が変化すると、観察者に提示する全方位画像データを再選択する。
特開2001−258050号公報 特許第3600422号
上記特許文献1には、平面状のスクリーンに映像を投影することで立体視を視認者に提供する技術が記載されている。このため、曲面のスクリーンに映像を投影して立体視を実現した際の、立体映像の歪みについては考慮されていなかった。したがって、特許文献1で採用された技術を用いて、曲面のスクリーンに映像を投影した場合には、立体映像に歪みが生じるおそれがあり、正確な立体映像を表示することが困難であった。
一方、上記特許文献2では、全方位データ画像データから、観察者の視線の方位に基づいて左目用の全方位画像データと右目用の全方位画像データとを選択して、曲面のスクリーンに投影している。このように、単に左目用の全方位画像データと右目用の全方位画像データとを選択するだけでは、立体映像に歪みが生じるおそれがある。これにより、正確な立体映像を表示することが困難であった。
本発明の目的は、立体映像の歪みを補正して、精度の高い立体映像を表示する全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラムを提供することである。
本発明は、視認者の右眼用の映像を投影する右映像投影装置(11R)と、視認者の左眼用の映像を投影する左映像投影装置(11L)とを備え、前記右映像投影装置と前記左映像投影装置とによりドーム状のスクリーン(24)に視差の異なる2つの映像を投影して視認者の左右の眼に提示し、全天周の立体映像を表示する映像投影装置(11R,11L)と、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像のドーム底面に対して垂直方向の偏角(θ)の補正量を算出し、算出した補正量に応じて、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正し、前記右映像投影装置が投影する映像と前記左映像投影装置が投影する映像との前記スクリーン上におけるドーム底面に対して垂直方向のズレを補正するズレ補正部(12)とを有することを特徴とする全天周立体映像表示装置を提供する。
本発明は、ドーム状のスクリーン(24)に視認者の右眼用の映像を投影する右映像投影装置(11R)ならびに視認者の左眼用の映像を投影する左映像投影装置(11L)のいずれか一方または双方の装置が投影する映像のドーム底面に対して垂直方向の偏角(θ)の補正量を算出し、算出した補正量にしたがって、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正し、前記右映像投影装置が投影する映像と前記左映像投影装置が投影する映像との前記スクリーン上におけるドーム底面に対して垂直方向のズレを補正し、前記右映像投影装置と前記左映像投影装置とにより前記スクリーンに、前記ズレを補正した視差の異なる2つの映像を投影して視認者の左右の眼に提示し、全天周の立体映像を表示する
ことを特徴とする全天周立体映像表示方法を提供する。
本発明は、コンピュータに、右映像投影装置(11R)ならびに左映像投影装置(11L)によりドーム状のスクリーン(24)に投影される映像のうち、前記スクリーンの右四半球面側の表示エリアに投影される映像であるか、もしくは左四半球面側の表示エリアに投影される映像であるかを判別するステップと、右映像投影装置ならびに左映像投影装置により前記スクリーンに投影される映像のドーム底面に対して垂直方向の偏角(θ)を判別するステップと、映像が投影される前記表示エリアと、前記右映像投影装置と前記左映像投影装置との間の距離と、前記スクリーンの半径とに基づいて、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角の補正量を算出式により算出するステップと、算出された補正量にしたがって、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正するステップと、を実現させることを特徴とする映像データ補正プログラムを提供する。
本発明の全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラムによれば、立体映像の歪みを補正して、精度の高い立体映像を表示することができる。
本発明の第1実施形態に係る全天周立体映像表示装置の構成を示す図である。 エリアAで撮影された立体映像をエリアBのドーム状のスクリーンに立体表示する様子を示す図である。 一般的な立体撮影の方法を模式的に示す図である。 ドーム状のスクリーンに映像を表示する様子を示す図である。 ドーム状のスクリーンに表示される左右の映像のズレを模式的に示す図である。 3次元のユークリッド空間における極座標を示す図である。 2台の撮影カメラで全天周の映像を撮影する様子を模式的に示す図である。 2台の映像投影装置でドーム状のスクリーンに投影される映像の水平方向の視差を示す図である。 2台の映像投影装置でドーム状のスクリーンに投影される映像の垂直方向のズレを示す図である。 ズレ補正部の構成の一例を示す図である。 右映像投影装置と左映像投影装置とでドーム状のスクリーンの右四半球面側に投影される映像の偏角の補正量を示す図である。 ドーム状のスクリーンの表示エリアと、映像の偏角を補正する映像投影装置との関係を説明するための図である。 右映像投影装置が投影する映像の偏角だけを補正する場合の偏角の補正量を示す図である。 本発明の第1実施形態に係る全天周立体映像表示装置の動作手順を示すフローチャートである。 本発明の第1実施形態に係る全天周立体映像表示装置の他の構成を示す図である。
以下、図面を用いて本発明を実施するための実施形態を説明する。
(第1実施形態)
図1を参照して、本発明の第1実施形態に係る全天周立体映像表示装置の構成を説明する。図1において、全天周立体映像表示装置は、右映像投影装置11R、左映像投影装置11L、ズレ補正部12を備える。
右映像投影装置11Rは、ドーム状のスクリーンに視認者の右眼用の映像を投影する装置である。右映像投影装置11Rは、例えば映像を大型スクリーンなどに投影することにより表示する装置としてのプロジェクタで構成される。ドーム状のスクリーンは、半球体のドームの半球体周面で形成される。
左映像投影装置11Lは、ドーム状のスクリーンに視認者の左眼用の映像を投影する装置である。左映像投影装置11Lは、例えば映像を大型スクリーンなどに投影することにより表示する装置としてのプロジェクタで構成される。
ドーム状のスクリーンに、右映像投影装置11Rで投影される映像と左映像投影装置11Lで投影される映像とは、視差の異なる映像である。すなわち、視差の異なる2枚の映像が、2台の右映像投影装置11Rと左映像投影装置11Lとによりドーム状のスクリーンに投影される。これにより、視差の異なる2枚の映像を視認者の左右それぞれの眼に提示し、視認者に対して立体感を感じさせる全天周の立体映像を実現している。
視差の異なる2枚の映像を視認者の左右それぞれの眼に提示する方法としては、さまざまな方式が提案、実用化されている。たとえば、表示される映像に合わせて立体用メガネの左右それぞれをシャッター動作させることにより、左右それぞれの眼に入る映像を制限することで立体視を得る方法や、立体用メガネの左右それぞれの偏光を異なったものとして利用する方法、さらには、左右それぞれの映像のR、G、B波長を少しずつずらして左右それぞれのメガネのフィルタを対応したものとする方法が知られている。
このような全天周の立体映像をドーム状のスクリーンで実現する場合に、右映像投影装置11Rで投影される映像と左映像投影装置11Lで投影される映像とでズレが生ずることがある。この映像のズレが生じると、立体映像が歪み、視認者に正確な立体映像を提供することが困難となる。
ここで、映像のズレについて説明する。
例えば、エリアAで撮影された映像をエリアBに設置されたドーム状のスクリーンに投影して、立体映像を表示するといった、シーンを想定する。このようなシーンでは、図2に示すように、エリアAでは、例えば魚眼レンズを装着した2台の撮影カメラ21R,21Lは、全天周を撮影する。撮影された映像の映像データは、ネットワーク配信用の送信機22に入力され、送信機22を介してネットワーク23へ配信される。
エリアAとは異なる地点のエリアBでは、ドーム状のスクリーン24と映像投影装置として機能する2台のプロジェクタ25R,25Lを利用した立体映像表示環境を有している。エリアBでは、ネットワーク23にて配信された映像データをネットワーク用の受信機26で受信する。受信した映像データは、2台のプロジェクタ25R,25Lでスクリーン24に投影される。これにより、視差の異なる2枚の映像が視認者の左右のそれぞれの眼に提示されて、立体映像が表示される。
高精細な立体映像の撮影、ならびに表示が可能になれば、エリアBで立体映像を視認している人は、あたかもエリアAにいるようなバーチャルリアリティを感じることができる。
ここでは、エリアAで撮影した映像は、一例としてネットワーク配信を利用してエリアBに送信しているが、オフラインの再生環境であってもよい。すなわち、送信機22に代えて設けられた映像記録装置で撮影された映像の映像データを記録媒体に記録し、この記録媒体に記録された映像データを、受信機26に代えて設けられた映像再生装置で再生するようにしてもよい。
なお、以後の説明では、撮影カメラおよびプロジェクタを2台用いた場合を示すが、3台以上においても同様に考えることができる。
2台の撮影カメラを用いた立体映像撮影では、図3(a)に示すように、撮影カメラ31Rと31Lとの間に輻輳角を設けている交差法が一般的である。一方、遠方撮影などでは、図3(b)に示すように、2台の撮影カメラ31R,31Lを並行配置する並行法も用いられている。
全天周を撮影する際に多用される魚眼レンズを装着した複数台の撮影カメラで撮影する場合には、上記並行法にて撮影する必要がある。撮影カメラ間の距離に応じた視差を持った、全天周映像を撮影することにより、ドーム状のスクリーンに視差を持った映像を表示することができる。
例えば図4に示すように、上記並行法で撮影された映像は、スクリーン24に2台のプロジェクタ25R,25Lで表示される。2台のプロジェクタ25R,25Lは、ドーム底面の中心から所定の等距離だけ離れて直線上に配置されている。このような場合に、例えばドーム底面の中心にいる3D眼鏡41を装着した視認者に対して正面の表示領域Aと、右前方の表示領域Bとで、表示される立体映像にズレが生じてしまう。すなわち、表示領域Aでは、図5(a)に示すように、プロジェクタ25Rで投影された映像51Rとプロジェクタ25Lで投影された映像51Lとは、偏角の方向に対してズレは生じない。これに対して、表示領域Bでは、図5(b)に示すように、プロジェクタ25Rで投影された映像51Rとプロジェクタ25Lで投影された映像51Lとは、偏角に対してズレHが生じる。
ここで、偏角と映像のズレについて説明する。
映像が投影される、図2に示すようなスクリーン24における座標位置は、一般的に知られている極座標で表すことができる。この極座標は、図6に示すように、3次元ユークリッド空間において、1つの動径rと2つの偏角φ,θで位置を特定している。動径rは原点Oからの距離を示し、偏角φはx軸の正の方向からの角度を示し、偏角θはz軸の正の方向からの角度を示す。
スクリーン24において、このような極座標を適用すると、図6のX−Y平面がドームの底面に相当する。一方、z軸方向がドームの高さ方向となり、z軸とスクリーン24との交点がスクリーン24の最上部の天頂となる。したがって、スクリーン24に表示される立体映像を見る視認者に対して、視認者の眼の間隔方向と同方向の偏角がφとなり、視認者の眼の間隔方向と垂直方向の偏角がθとなる。
このように、スクリーン24に表示された映像に偏角の方向にズレが生じると、立体視した際に視認者の左右の眼に入る映像の上下方向がずれてしまう。これにより、視認者は、正しく立体感を得ることができないばかりか、人間の脳内でこのズレを補正しようとするため、補正作業に起因する疲労が発生してしまう。
全天周の撮影が可能な2台の撮影カメラ21R,21Lで遠景を撮影した際のカメラ間の距離Dと偏角φr,φl、θr,θlとの関係は、例えば図7に示すようになる。図7において、2台の撮影カメラ21R,21L間の距離Dに対して、被写体71と撮影カメラ21Rとの距離L1ならびに被写体71と撮影カメラ21Lの距離L2が十分に長いものとする。このような場合には、それぞれの撮影カメラ21R,21Lから見た偏角θ1とθ2とはほぼ同一値となる。同様に、それぞれの撮影カメラ21R,21Lから見た偏角φ1とφ2とはほぼ同一値となる。
このような撮影環境において、図4に示すように、スクリーン24の内部に撮影カメラ21Rに対応したプロジェクタ25Rと、撮影カメラ21Rに対応したプロジェクタ25Lを設ける。2台のプロジェクタ25R,25Lでスクリーン24に映像を全天周に投影した場合には、前述したように表示領域Bで垂直方向の偏角θにズレが生ずる。これは、図7に示すような撮影カメラ21R,21Lと被写体71との距離L1,L2に対して、プロジェクタ25R,25Lとスクリーン24との距離が近いことが要因となっている。
人間が立体を認識するのは、右眼、左眼に入る映像の視差に基づいており、左右の眼の方向の映像のズレは、視認者が立体として感じる情報となる。このため、図5に示すように垂直方向の偏角θのズレHは、正しい立体感を得る妨げとなる。
図8には、人間の両眼の位置関係方向と同方向となるドームの底面(水平面)における右映像投影装置11Rならびに左映像投影装置11Lと偏角φとの関係を示している。図8において、右映像投影装置11Rと左映像投影装置11Lとは、ドーム底面の中心から所定の等距離だけ離れて直線上に配置されている。このような場合、ドームの正面となる表示領域Aでは、右映像投影装置11Rと左映像投影装置11Lとの間隔相当の視差を有している。すなわち、図8において、表示領域Aでは、右の映像Rと左の映像Lとは、撮影時の視差を有してスクリーン24に表示される。
一方、正面と左右側方との間の表示領域Bでは、正面に比べて視差量が減少し、左右側方の表示領域Cでは、視差がゼロとなる。すなわち、図8において、表示領域B,Cでは、右の映像Rと左の映像Lとは、撮影時の視差を有してスクリーン24に表示されなくなる。
これは、2台の撮影カメラで撮影し、2台の映像投影装置で映像を投影することに起因している。したがって、撮影カメラと映像投影装置を複数台とすることで、ドームの底面方向における撮影時の視差をスクリーン24に再生することは可能である。
図9には、人間の両眼の位置関係方向と直交する垂直方向、すなわちドームの底面に対して垂直方向(高さ方向)における右映像投影装置11Rならびに左映像投影装置11Lと偏角θとの関係を示している。図9において、右映像投影装置11Rと左映像投影装置11Lとの間隔は、撮影時の撮影カメラ21Rと撮影カメラ21Lとの間隔とは異なる。さらに、右映像投影装置11Rとスクリーン24との距離Lrと、左映像投影装置11Lとスクリーン24との距離Llとは異なる。これにより、図9に示すように、右の映像Rは左の映像Lとは、垂直方向(高さ方向)にHだけずれてスクリーン24に表示されてしまう。このズレHが、先の図5に示す表示領域Bにおけるズレとなる。
本発明では、映像の偏角θ方向のズレを補正するといった技術的特徴を採用している。この技術的特徴を採用することで、正確な立体感のある立体映像をスクリーン24に表示することが可能となり、より臨場感の高い立体映像を提供することができる。
図1に戻って、ズレ補正部12は、上記技術的特徴を実現するために設けられている。
ズレ補正部12は、入力された映像データに基づいて、映像が投影されるスクリーン24の表示エリア、ならびに投影される映像の偏角θを判別する。ズレ補正部12は、スクリーン24の半径Rと、右映像投影装置11Rと左映像投影装置11Lとのの水平面方向の距離に基づいて、映像の偏角θの補正量を算出する。
ズレ補正部12は、算出した補正量に基づいて、映像の偏角θを補正する。ズレ補正部12は、補正した映像データを含む投影する映像データを右映像投影装置11Rならびに左映像投影装置11Lに与える。
ズレ補正部12は、CPU、記憶装置、入出力装置などの資源を備えるマイクロコンピュータによって構成することができる。ズレ補正部12は、ズレの補正処理を実行制御する映像データ補正プログラムを記憶した記憶部を有し、映像データ補正プログラムに基づいてズレの補正処理を実行制御する。したがって、ズレ補正部12は、ソフトウェアとハードウェア資源とが協働した具体的なコンピュータによって実現することができる。
ズレ補正部12は、例えば図10に示すように構成される。図10において、ズレ補正部12は、表示エリア判別部101、偏角判別部102、補正量算出データ記憶部103、補正量算出部104、映像データ補正部105を備える。
表示エリア判別部101は、入力された映像データに基づいて、偏角φを判別する。表示エリア判別部101は、判別した偏角φに基づいて映像が表示されるスクリーン24の表示エリアを判別する。すなわち、表示エリア判別部101は、スクリーン24に投影される映像のうち、スクリーン24の右四半球面側に投影される映像であるか、もしくは左四半球面側に投影される映像であるかを判別する。表示エリア判別部101は、判別した表示エリアを示す偏角φを補正量算出部104に与える。
偏角判別部102は、入力される映像データに基づいて、右映像投影装置11Rならびに左映像投影装置11Lによりスクリーン24に投影される映像の偏角θを判別する。偏角判別部102は、判別した偏角θを補正量算出部104に与える。
補正量算出データ記憶部103は、補正量を算出する際に用いる補正量算出データを記憶する。補正量算出データは、スクリーン24の半径Rと、右映像投影装置11Rと左映像投影装置11Lとの水平方向における距離2dである。なお、右映像投影装置11Rと左映像投影装置11Lとは、それぞれドーム底面の中心(O)から水平面方向に等距離dだけ離れて直線上に配置される。補正量算出データ記憶部103は、記憶データを補正量算出部104に与える。
なお、ドーム底面の中心(O)はドームスクリーンの半球面の中心であり、ドーム底面の中心(O)のある水平面にはプロジェクタの投影レンズの光学中心が存在することが望ましい。
補正量算出部104は、右映像投影装置11Rならびに左映像投影装置11Lのいずれか一方または双方が投影する映像の偏角θの補正量を算出する。
補正量算出部104は、右映像投影装置11Rにおけるスクリーン24の第1投影点が第2投影点となるように補正量を算出する。第1の投影点は、右映像投影装置11Rがドーム底面の中心(O)から水平面方向に所定の距離dだけ離れて配置されたときの偏角θにおける投影点である。第2の投影点は、右映像投影装置11Rがドーム底面の中心(O)に配置されたときの偏角θにおける投影点である。
補正量算出部104は、左映像投影装置11Lにおけるスクリーン24の第3投影点が上記第2投影点となるように補正量を算出する。第3の投影点は、左映像投影装置11Lがドーム底面の中心(O)から水平面方向に所定の距離dだけ離れて配置されたときの偏角θにおける投影点である。
補正量算出部104は、表示エリア判別部101から与えられた偏角φに基づいて、
dφを次式(1)により算出する。dφは、図11(a)に示すように、偏角φで切り取られる垂直方向の平面における、右映像投影装置11Rと左映像投影装置11Lとの距離2dφの半分の値である。なお、右映像投影装置11Rと左映像投影装置11Lとは、図11(a)に示すように、ドーム底面の中心(O)から水平面方向に等距離dに配置される。
dφ=d×sinφ …(1)
補正量算出部104は、スクリーン24の全天周にわたって投影される映像のうち、偏角φに基づいてスクリーン24の右四半球面側に投影される映像と、左四半球面側に投影される映像とに分けて補正量を算出する。補正量算出部104は、スクリーン24の右四半球面側に投影される映像に対して、右映像投影装置11Rの補正偏角θrrを算出する。
補正偏角θrrを算出するにあたって、図11(b)に示すように、偏角φで切り取られる垂直方向の平面におけるドーム底面の中心(O)と右映像投影装置11Rとの距離は、上記(1)式で算出したdφとなる。偏角φで切り取られる垂直方向の平面において、極座標(R,φ,θ)で示されるスクリーン24の位置を座標点110とする。この座標点110からドーム底面111に下ろした垂線112とドーム底面111との交点113と、中心(O)との距離は、Rsinθとなる。ここで、Rはスクリーン24の半径である。したがって、右映像投影装置11Rと上記交点113との距離は、図11(b)に示すように、Rsinθ−dφとなる。
また、上記座標点110と上記交点113との距離は、図11(b)に示すように、Rcosθとなる。これらにより、補正量算出部104は、補正偏角θrrを次式(2)により算出する。
θrr=arctan(Rsinθ−dφ)/(Rcosθ) …(2)
補正量算出部104は、上記(2)式で算出された補正偏角θrrに基づいて、右映像投影装置11Rの補正量△θrrを、次式(3)により算出する。この補正量△θrrは、水平面の偏角φにおける垂直方向の偏角θに対する補正量となる。
△θrr=θ−θrr …(3)
上記(3)式で得られた補正量により右映像投影装置11Rの偏角θが補正される。すなわち、右映像投影装置11Rの補正前の偏角θが補正偏角θrrに補正される。これにより、スクリーン24の右四半球面側に投影される映像に対して、右映像投影装置11Rにおけるスクリーン24の座標点114で示す投影点が座標点110で示す投影点に補正される。
また、補正量算出部104は、スクリーン24の右四半球面側に投影される映像に対して、左映像投影装置11Lの補正偏角θlrを算出する。
補正偏角θlrを算出するにあたって、図11(c)に示すように、偏角φで切り取られる垂直方向の平面におけるドーム底面の中心(O)と左映像投影装置11Lとの距離は、上記式(1)で算出したdφとなる。極座標(R,φ,θ)で示されるスクリーン24の座標点110からドーム底面111に下ろした垂線112とドーム底面111との交点113と、中心(O)との距離は、Rsinθとなる。ここで、Rはスクリーンの半径である。したがって、左映像投影装置11Lと上記交点113との距離は、図11(c)に示すように、Rsinθ+dφとなる。
また、上記座標点110と上記交点113との距離は、図11(c)に示すように、Rcosθとなる。これらにより、補正量算出部104は、補正偏角θlrを次式(4)により算出する。
θlr=arctan(Rsinθ+dφ)/(Rcosθ) …(4)
補正量算出部104は、上記(4)式で算出された補正偏角θlrに基づいて、左映像投影装置11Lの補正量△θlrを、次式(5)により算出する。この補正量△θlrは、水平面の偏角φにおける垂直方向の偏角θに対する補正量となる。
△θlr=θ−θlr …(5)
上記(5)式で得られた補正量により左映像投影装置11Lの偏角θが補正される。すなわち、左映像投影装置11Lの補正前の偏角θが補正偏角θlrに補正される。これにより、スクリーン24の右四半球面側に投影される映像に対して、左映像投影装置11Lにおけるスクリーン24の座標点117で示す投影点が座標点110で示す投影点に補正される。
一方、補正量算出部104は、スクリーン24の左四半球面側に投影される映像に対して、上述した右四半球面側と同様にして、右映像投影装置11Rの補正偏角θrlと左映像投影装置11Lの補正偏角θllとを算出する。
スクリーン24の左四半球面側に投影される映像は、図11(b),(c)から分かるように、右映像投影装置11Rと左映像投影装置11Lとは逆の関係となる。すなわち、右映像投影装置11Rの補正偏角θrlは、図11(c)で示すようになり、上記(3)式と同様にして次式(6)で算出することができる。
θrl=arctan(Rsinθ+dφ)/(Rcosθ) …(6)
また、左映像投影装置11Lの補正偏角θllは、図11(b)で示すようになり、上記(2)式と同様にして次式(7)で算出することができる。
θll=arctan(Rsinθ−dφ)/(Rcosθ) …(7)
したがって、補正量算出部104は、上記(6)式で算出された補正偏角θrlに基づいて、右映像投影装置11Rの補正量△θrlを、次式(8)により算出する。この補正量△θrlは、水平面の偏角φにおける垂直方向の偏角θに対する補正量となる。
△θrl=θ−θrl …(8)
また、補正量算出部104は、上記(7)式で算出された補正偏角θllに基づいて、左映像投影装置11Lの補正量△θllを、次式(9)により算出する。この補正量△θllは、水平面の偏角φにおける垂直方向の偏角θに対する補正量となる。
△θll=θ−θll …(9)
このように、スクリーン24の全天周にわたって表示される映像の偏角θが補正され、右映像投影装置11Rと左映像投影装置11Lとスクリーン24に投影する映像間のズレが補正される。
上述したズレの補正では、右映像投影装置11Rと左映像投影装置11Lとの双方の偏角θを補正して、右映像投影装置11Rと左映像投影装置11Lとでスクリーン24に投影される映像の偏角θ方向のズレを補正している。
一方、ズレを補正する際には、右映像投影装置11Rと左映像投影装置11Lとのスクリーン24に対する投影角度に応じて、いずれか一方の映像投影装置の偏角θを補正することが有効である。
全天周の立体映像では、スクリーン24の最下部まで、すなわち屋外であれば水平線が映し出されることが望ましい。しかしながら、超広角レンズを用いて映像をスクリーン24に投影したとしても、映像投影装置における投影角度(偏角θ)には制限がある。
そこで、図12に示すように、スクリーン24の右四半球面側に投影される映像に対しては、左映像投影装置11Lの投影映像を基準として、右映像投影装置11Rの偏角θr方向のズレを補正する。一方、スクリーン24の左四半球面側に投影される映像に対しては、右映像投影装置11Rの投影映像を基準として、左映像投影装置11Lの偏角θl方向のズレを補正する。
例えばスクリーン24の右四半球面側に投影される映像に対しては、図13に示すようになる。図13に示す右映像投影装置11Rと左映像投影装置11Lとの偏角θに対応した投影点は、先の図11(b),(c)と同様である。
図13において、先ず右映像投影装置11Rにおける座標点114で示す投影点を座標点110で示す投影点に補正するには、偏角θの補正量は上記(3)式で得られる補正量△θrr(=θ−θrr)となる。さらに、右映像投影装置11Rにおける座標点110で示す投影点を座標点117で示す投影点に補正するには、偏角θの補正量は上記(5)式で得られる補正量△θlr(=θ−θlr)から
θlr−θとなる。
したがって、右映像投影装置11Rの偏角θの補正量△θrは、次式(10)で算出される。
△θr= |θ−θrr|+ |θ−θlr| …(10)
同様にして、スクリーン24の左四半球面側に投影される映像に対しては、左映像投影装置11Lの偏角θの補正量△θlは、次式(11)で算出される。
△θl= |θ−θll|+ |θ−θrl| …(11)
上記(11)式において、θ−θllは上記(9)式で算出され、θ−θrlは上記(8)式で算出される。
図10に戻って、映像データ補正部105は、補正量算出部104で算出した補正量に基づいて、右映像投影装置11Rならびに左映像投影装置11Lの双方もしくはいずれか一方の映像の偏角θを補正する。映像データ補正部105は、右映像投影装置11Rの映像データを右映像投影装置11Rに与え、左映像投影装置11Lの映像データを左映像投影装置11Lに与える。
なお、補正した映像データを記録媒体などに記録する場合には、映像データ補正部105は、右映像投影装置11Rの映像データと左映像投影装置11Lの映像データとを併せて記録媒体などに記録する。
次に、図14に示すフローチャートを参照して、映像データの補正処理の手順を説明する。
図14において、ズレ補正部12は、先ずステップS141にて、入力された左右の映像データに基づいて、映像データの偏角φを判別する。ズレ補正部12は、判別した偏角θに基づいて、スクリーン24における映像の表示エリアを判別する。
判別の結果、スクリーン24の右四半球面側の表示エリアに投影される映像に対して、ズレ補正部12は、ステップS142Rにて、入力された映像データに基づいて、映像データの偏角θを判別する。
続いて、ズレ補正部12は、ステップS143Rにて、右映像投影装置11Rの補正量を算出する。ズレ補正部12は、上記(2)式により補正偏角θrrを算出し、算出した補正偏角θrrに基づいて、上記(3)式により右映像投影装置11Rの補正量△θrrを算出する。
また、ズレ補正部12は、ステップS143Rにて、左映像投影装置11Lの補正量を算出する。ズレ補正部12は、上記(4)式により補正偏角θlrを算出し、算出した補正偏角θlrに基づいて、上記(5)式により左映像投影装置11Lの補正量△θlrを算出する。
なお、右映像投影装置11Rの偏角θだけを補正する場合には、上記(10)式に基づいて、偏角θの補正量を算出する。
次に、ズレ補正部12は、ステップS144Rにて、上記(3)式で得られた補正量にしたがって右映像投影装置11Rの偏角θを補正する。また、ズレ補正部12は、ステップS144Rにて、上記(5)式で得られた補正量にしたがって左映像投影装置11Lの偏角θを補正する。
なお、右映像投影装置11Rの偏角θだけを補正した場合には、上記(10)式で得られた補正量により右映像投影装置11Rの偏角θのみを補正する。
一方、ズレ補正部12は、先のステップS141における判別の結果、スクリーン24の左四半球面側の表示エリアに投影される映像に対して、ステップS142Lにて、入力された映像データに基づいて、映像データの偏角θを判別する。
続いて、ズレ補正部12は、ステップS143Lにて、右映像投影装置11Rの補正量を算出する。ズレ補正部12は、上記(6)式により補正偏角θrlを算出し、算出した補正偏角θrlに基づいて、上記(8)式により右映像投影装置11Rの補正量△θrlを算出する。
また、ズレ補正部12は、ステップS143Lにて、左映像投影装置11Lの補正量を算出する。ズレ補正部12は、上記(7)式により補正偏角θllを算出し、算出した補正偏角θllに基づいて、上記(9)式により左映像投影装置11Lの補正量△θllを算出する。
なお、左映像投影装置11Lの偏角θだけを補正する場合には、上記(11)式に基づいて、偏角θの補正量を算出する。
次に、ズレ補正部12は、ステップS144Lにて、上記(3)式で得られた補正量にしたがって右映像投影装置11Rの偏角θを補正する。また、ズレ補正部12は、ステップS144Lにて、上記(5)式で得られた補正量にしたがって左映像投影装置11Lの偏角θを補正する。
なお、左映像投影装置11Lの偏角θだけを補正した場合には、上記(11)式で得られた補正量により左映像投影装置11Lの偏角θのみを補正する。
最後に、ズレ補正部12は、ステップS145にて、偏角が補正された、スクリーン24の右四半球面側の表示エリアに投影される映像の映像データと左四半球面側の表示エリアに投影される映像の映像データとを併せる。これにより、スクリーン24の全天周にわたって表示される映像データが作成され、一連の映像データの補正処理は終了する。
なお、上記第1実施形態に示すように、映像を表示する装置が右用と左用とに分かれている場合には、図15に示すように、ズレ補正部12を右ズレ補正部12Rと左ズレ補正部12Lとに分けて構成してもよい。右ズレ補正部12Rは、右映像投影装置11Rに専ら対応して設けられ、右映像投影装置11Rの偏角θを補正する。左ズレ補正部12Lは、左映像投影装置11Lに専ら対応して設けられ、左映像投影装置11Lの偏角θを補正する。
上述した偏角θの補正処理により補正される映像は、映像の形態に制約されることはない。すなわち、映像の形態としては、例えばカメラなどで実際に撮影された映像や、CG(コンピュータ・グラフィックス)などのコンピュータにより人為的に作成された映像である。あるいは、実際に撮影された映像とCGなどで作成された映像との双方が混在しているような映像である。
リアルタイムで映像を表示せずに、表示する映像を予め用意しておく場合には、例えばCGなどで映像を作成する過程において、上述した補正処理を施して実際に表示する映像データを作成する。作成した映像データは、記録媒体などに記録される。また、撮影カメラなどで撮影された立体映像を編集してリアルタイムで表示しない場合には、映像を編集する過程において上述したと同様に補正処理を施してもよい。
このように、予め補正処理を施して映像データ作成することで、映像を表示する際に、補正処理を行うための構成が不要となる。
本発明の映像データ補正プログラムを記録媒体に記録して提供してもよく、インターネット等の通信回線にて映像データ補正プログラムを配信してもよい。記録媒体に記録された映像データ補正プログラムや通信回線にて配信された映像データ補正プログラムを全天周立体映像表示装置に記憶させて、上述した全天周立体映像表示方法を実行させるようにしてもよい。
以上説明したように、本発明に係るこの第1実施形態では、右映像投影装置11Rならびに左映像投影装置11Lのいずれか一方または双方の装置が投影する映像の偏角θの補正量を算出する。算出した補正量にしたがって偏角を補正し、右映像投影装置11Rならびに左映像投影装置11Lが投影する映像間のズレを補正する。これにより、全天周立体映像表示装置ならびに表示方法は、スクリーン24に表示される立体映像の歪みを補正することが可能となり、精度の高い立体映像を表示することができる。この結果、臨場感が優れた立体映像を提供することができる。
本発明に係るこの第1実施形態では、右映像投影装置11Rと左映像投影装置11Lとの間の距離2dと、スクリーン24の半径Rとに基づいて、算出式により偏角θの補正量を算出する。これにより、本装置は、容易に偏角θの補正量を算出することができる。
本発明に係るこの第1実施形態では、スクリーン24の右四半球面側に投影される映像に対しては、右映像投影装置11Rが投影する映像の偏角を補正し、左四半球面側に投影される映像に対しては、左映像投影装置11Lが投影する映像の偏角を補正する。これにより、本装置は、ドーム底面の水平面に近いスクリーン24上に投影される映像の偏角θを補正することが可能となる。この結果、ドーム底面の水平面に近いスクリーン24上に投影される映像であってもズレを補正することが可能となり、臨場感に優れた立体映像を提供することができる。
本発明に係る映像データ補正プログラムでは、コンピュータに、スクリーン24に投影される表示エリアを判別するステップと、スクリーン24に投影される映像の偏角θを判別するステップとを実現させる。また、コンピュータに、映像の偏角の補正量を算出式により算出するステップと、算出された補正量にしたがって偏角θを補正するステップとを実現させる。これにより、映像データ補正プログラムは、スクリーン24に表示される立体映像の歪みを補正することが可能となり、精度の高い立体映像を作成することができる。この結果、臨場感に優れた立体映像を提供することができる。
11L…左映像投影装置
11R…右映像投影装置
12…ズレ補正部
24…スクリーン
101…表示エリア判別部
102…偏角判別部
103…補正量算出データ記憶部
104…補正量算出部
105…映像データ補正部

Claims (6)

  1. 視認者の右眼用の映像を投影する右映像投影装置と、視認者の左眼用の映像を投影する左映像投影装置とを備え、前記右映像投影装置と前記左映像投影装置とによりドーム状のスクリーンに視差の異なる2つの映像を投影して視認者の左右の眼に提示し、全天周の立体映像を表示する映像投影装置と、
    前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像のドーム底面に対して垂直方向の偏角の補正量を算出し、算出した補正量にしたがって、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正し、前記右映像投影装置が投影する映像と前記左映像投影装置が投影する映像との前記スクリーン上におけるドーム底面に対して垂直方向のズレを補正するズレ補正部と
    を有することを特徴とする全天周立体映像表示装置。
  2. 前記ズレ補正部は、前記右映像投影装置と前記左映像投影装置との間の距離と、前記スクリーンの半径とに基づいて、算出式により偏角の補正量を算出する
    ことを特徴とする請求項1に記載の全天周立体映像表示装置。
  3. 前記右映像投影装置ならびに前記左映像投影装置のいずれか一方の装置が投影する映像の偏角を補正する場合に、前記スクリーンの右四半球面側に投影される映像は、前記右映像投影装置が投影する映像の偏角を補正し、前記スクリーンの左四半球面側に投影される映像は、前記左映像投影装置が投影する映像の偏角を補正する
    ことを特徴とする請求項1または2に記載の全天周立体映像表示装置。
  4. 前記ズレ補正部は、
    前記スクリーンに投影される映像のうち、前記スクリーンの右四半球面側の表示エリアに投影される映像であるか、もしくは左四半球面側の表示エリアに投影される映像であるかを判別する表示エリア判別部と、
    前記右映像投影装置ならびに前記左映像投影装置により前記スクリーンに投影される映像の偏角を判別する偏角判別部と、
    前記右映像投影装置と前記左映像投影装置との間の距離と、前記スクリーンの半径との補正量算出データを記憶する補正量算出データ記憶部と、
    前記表示エリア判別部で判別された表示エリアと、前記補正量算出データ記憶部に記憶された補正量算出データとに基づいて、前記右映像投影装置ならびに前記左映像投影装置
    のいずれか一方または双方の装置が投影する映像の偏角の補正量を算出式により算出する補正量算出部と、
    前記補正量算出部で算出された補正量にしたがって、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正する映像データ補正部と
    を備えることを特徴とする請求項1〜3のいずれか1項に記載の全天周立体映像表示装置。
  5. ドーム状のスクリーンに視認者の右眼用の映像を投影する右映像投影装置ならびに視認者の左眼用の映像を投影する左映像投影装置のいずれか一方または双方の装置が投影する映像のドーム底面に対して垂直方向の偏角の補正量を算出し、
    算出した補正量にしたがって、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正し、前記右映像投影装置が投影する映像と前記左映像投影装置が投影する映像との前記スクリーン上におけるドーム底面に対して垂直方向のズレを補正し、
    前記右映像投影装置と前記左映像投影装置とにより前記スクリーンに、前記ズレを補正した視差の異なる2つの映像を投影して視認者の左右の眼に提示し、全天周の立体映像を表示する
    ことを特徴とする全天周立体映像表示方法。
  6. コンピュータに、
    右映像投影装置ならびに左映像投影装置によりドーム状のスクリーンに投影される映像のうち、前記スクリーンの右四半球面側の表示エリアに投影される映像であるか、もしくは左四半球面側の表示エリアに投影される映像であるかを判別するステップと、
    右映像投影装置ならびに左映像投影装置により前記スクリーンに投影される映像のドーム底面に対して垂直方向の偏角を判別するステップと、
    映像が投影される前記表示エリアと、前記右映像投影装置と前記左映像投影装置との間の距離と、前記スクリーンの半径とに基づいて、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角の補正量を算出式により算出するステップと、
    算出された補正量にしたがって、前記右映像投影装置ならびに前記左映像投影装置のいずれか一方または双方の装置が投影する映像の偏角を補正するステップと、
    を実現させることを特徴とする映像データ補正プログラム。
JP2012270127A 2012-12-11 2012-12-11 全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム Pending JP2014116818A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270127A JP2014116818A (ja) 2012-12-11 2012-12-11 全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270127A JP2014116818A (ja) 2012-12-11 2012-12-11 全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム

Publications (1)

Publication Number Publication Date
JP2014116818A true JP2014116818A (ja) 2014-06-26

Family

ID=51172393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270127A Pending JP2014116818A (ja) 2012-12-11 2012-12-11 全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム

Country Status (1)

Country Link
JP (1) JP2014116818A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917607A (zh) * 2017-12-13 2019-06-21 讯飞幻境(北京)科技有限公司 3d投影
CN113412510A (zh) * 2019-02-15 2021-09-17 Jvc建伍株式会社 图像调整***、图像调整装置以及图像调整方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917607A (zh) * 2017-12-13 2019-06-21 讯飞幻境(北京)科技有限公司 3d投影
CN113412510A (zh) * 2019-02-15 2021-09-17 Jvc建伍株式会社 图像调整***、图像调整装置以及图像调整方法

Similar Documents

Publication Publication Date Title
US20200288113A1 (en) System and method for creating a navigable, three-dimensional virtual reality environment having ultra-wide field of view
US20050053274A1 (en) System and method for 3D photography and/or analysis of 3D images and/or display of 3D images
US9460555B2 (en) System and method for three-dimensional visualization of geographical data
US6788274B2 (en) Apparatus and method for displaying stereoscopic images
JP2017532847A (ja) 立体録画及び再生
JP4634863B2 (ja) 立体視画像生成装置及び立体視画像生成プログラム
Naimark Elements of real-space imaging: a proposed taxonomy
US9154771B2 (en) Apparatus for capturing stereoscopic image
JP2014116818A (ja) 全天周立体映像表示装置、全天周立体映像表示方法、映像データ補正プログラム
CN114513646B (zh) 一种三维虚拟场景中全景视频的生成方法及设备
JP6200316B2 (ja) 画像生成方法、画像生成装置及び画像生成プログラム
JP2001218231A (ja) 立体画像を表示する装置および方法
US9641826B1 (en) System and method for displaying distant 3-D stereo on a dome surface
JP3600422B2 (ja) ステレオ画像表示方法及び装置
KR100893381B1 (ko) 실시간 입체영상 생성방법
Bourke Omni-directional stereoscopic fisheye images for immersive hemispherical dome environments
CN112351358A (zh) 一种基于人脸检测的360度自由立体式的三维显示音箱
JP4856775B2 (ja) 立体映像呈示装置
JP5243359B2 (ja) 立体画像生成システムおよびプログラム
JP6198157B2 (ja) プログラム、記録媒体、画像処理装置及び画像処理方法
KR101883883B1 (ko) 플립영상을 차단하는 무안경 원통형 홀로그램 디스플레이 방법
JP2019216344A (ja) 全天周立体映像表示装置及びそのプログラム、全天周立体映像撮影装置、並びに、全天周立体映像システム
KR102242923B1 (ko) 스테레오 카메라의 정렬장치 및 스테레오 카메라의 정렬방법
JP2019009700A (ja) 多視点映像出力装置、および、多視点映像システム
JP6042732B2 (ja) 画像生成方法、画像生成装置及び画像生成プログラム