JP2014114194A - Negative-ionically charged inorganic fine powder, addition-curable silicone composition, and light-emitting semiconductor device - Google Patents

Negative-ionically charged inorganic fine powder, addition-curable silicone composition, and light-emitting semiconductor device Download PDF

Info

Publication number
JP2014114194A
JP2014114194A JP2012271133A JP2012271133A JP2014114194A JP 2014114194 A JP2014114194 A JP 2014114194A JP 2012271133 A JP2012271133 A JP 2012271133A JP 2012271133 A JP2012271133 A JP 2012271133A JP 2014114194 A JP2014114194 A JP 2014114194A
Authority
JP
Japan
Prior art keywords
fine powder
inorganic fine
group
negative ion
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012271133A
Other languages
Japanese (ja)
Other versions
JP6016107B2 (en
Inventor
Norio Tsubokawa
紀夫 坪川
Takeshi Fukuda
健 福田
Toshio Shiobara
利夫 塩原
Tsutomu Kashiwagi
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Niigata University NUC
Original Assignee
Shin Etsu Chemical Co Ltd
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Niigata University NUC filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012271133A priority Critical patent/JP6016107B2/en
Publication of JP2014114194A publication Critical patent/JP2014114194A/en
Application granted granted Critical
Publication of JP6016107B2 publication Critical patent/JP6016107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a negative-ionically charged fine powder comprising a perfluoroalkyl group-containing organic silicon compound treatment inorganic fine powder; an addition-curable silicone composition including the negative-ionically charged fine powder, and being excellent in transparence; and a light-emitting semiconductor device sealed with the cured silicone composition.SOLUTION: A negative-ionically charged inorganic fine powder is characterized in that 1-60 pts.mass of a perfluoroalkyl group-containing organic silicon compound represented by following general formula (1) is subjected to an addition treatment on a surface of a particle of the inorganic fine powder based on 100 pts.mass of the inorganic fine powder to be grafted, so that the inorganic fine powder is dispersed by repulsion effect among the negative-ionically charged powder particles. In the formula (1), Ris a 1-4C monovalent hydrocarbon group, Ris a 1-4C alkoxy group or an acyloxy group, Q is a 2-10C bivalent organic group, "a" is 0 or 1, and p is an integer of 1-20.

Description

本発明は、分散性に優れ、高屈折率特性を有する無機微粉末及びそれを含有する付加硬化型シリコーン組成物並びに透明に優れたシリコーン組成物の硬化物で封止した発光半導体装置に関する。   The present invention relates to an inorganic fine powder having excellent dispersibility and high refractive index characteristics, an addition-curable silicone composition containing the same, and a light-emitting semiconductor device sealed with a cured product of a silicone composition excellent in transparency.

シリコーン組成物の硬化物は、優れた耐熱性、機械的強度、電気絶縁性などの電気特性、高透明性、耐薬品性、耐水性を有する。特に、近年シリコーン樹脂が耐熱性、耐紫外線性などに優れることから青色、白色の高輝度LEDなどの発光半導体装置の封止材として幅広く応用されるようになってきた。   The cured product of the silicone composition has excellent heat resistance, mechanical strength, electrical properties such as electrical insulation, high transparency, chemical resistance, and water resistance. In particular, in recent years, silicone resins have been widely applied as sealing materials for light-emitting semiconductor devices such as blue and white high-intensity LEDs because of their excellent heat resistance and ultraviolet resistance.

しかし、シリコーン樹脂はガス透過性が良い、透過しやすいという性質がある。また、LEDなど光学用途として応用する場合、更なる高屈折率特性が要求される。従って、これら欠点を解消したシリコーン樹脂の開発が求められてきた。   However, the silicone resin has a property of good gas permeability and easy permeation. Moreover, when applying as optical uses, such as LED, the further high refractive index characteristic is requested | required. Accordingly, there has been a demand for development of a silicone resin that eliminates these drawbacks.

本発明に関連する先行技術としては下記のものが挙げられる。
特開2009−120437号公報(特許文献1)には、シリカの表面を特定のシロキサンで表面処理したシリカを高充填することで高透明性を有し、膨張係数や腐食係数や腐食性ガスの透過性が小さい硬化物が形成できるとの記載がある。
特開平3−93605号公報(特許文献2)は、金属酸化物微粉末の流動法の改善に関するもので、シリカやアルミナ、チタニアなどの金属酸化物をパーフルオロ基含有有機ケイ素化合物で処理するとの記載がある。
特開平6−23262号公報(特許文献3)には、特定のパーフルオロ基含有シロキサンで処理した無機粉体からなる疎水性粉体及び化粧料の記載がある。
特表2005−524737号公報(特許文献4)には、「無機蛍光体とチキソトロープ剤からなる反応性樹脂材料」の組み合わせが例示され、チキソトロープ剤として二酸化チタン、酸化ジルコニウム、SiO2などが、反応性樹脂としてシリコーン樹脂の記載がある。
Examples of prior art related to the present invention include the following.
Japanese Patent Application Laid-Open No. 2009-120437 (Patent Document 1) has high transparency by highly filling silica whose surface is treated with a specific siloxane, and has an expansion coefficient, corrosion coefficient, and corrosive gas. There is a description that a cured product having low permeability can be formed.
Japanese Patent Laid-Open No. 3-93605 (Patent Document 2) relates to improvement of the flow method of metal oxide fine powder, and treats metal oxides such as silica, alumina, and titania with perfluoro group-containing organosilicon compounds. There is a description.
Japanese Patent Application Laid-Open No. 6-23262 (Patent Document 3) describes a hydrophobic powder made of an inorganic powder treated with a specific perfluoro group-containing siloxane and a cosmetic.
JP 2005-524737 A (Patent Document 4) exemplifies a combination of “reactive resin material comprising an inorganic phosphor and a thixotropic agent”, and titanium dioxide, zirconium oxide, SiO 2 and the like react as thixotropic agents. There is a description of silicone resin as a functional resin.

しかし、上記先行技術には「無機微粉末にパーフロロアルキル基含有有機ケイ素化合物で処理してマイナスイオン帯電微粉末を製作し、マイナスイオン反発により分散性を向上」との記載はない。   However, there is no description in the above-mentioned prior art that “an inorganic fine powder is treated with a perfluoroalkyl group-containing organosilicon compound to produce a negative ion charged fine powder to improve dispersibility by negative ion repulsion”.

特開2009−120437号公報JP 2009-120437 A 特開平3−93605号公報Japanese Patent Laid-Open No. 3-93605 特開平6−23262号公報JP-A-6-23262 特表2005−524737号公報JP 2005-524737 A

本発明は、上記パーフロロアルキル基含有有機ケイ素化合物処理無機微粉末からなるマイナスイオン帯電微粉末、及びマイナスイオン帯電微粉末を含有する透明に優れた付加硬化型シリコーン組成物、並びにその硬化物で封止した発光半導体装置を提供することを目的とする。   The present invention provides a negative ion-charged fine powder comprising the perfluoroalkyl group-containing organic silicon compound-treated inorganic fine powder, a transparent addition-curable silicone composition containing the negative ion-charged fine powder, and a cured product thereof. It is an object to provide a sealed light emitting semiconductor device.

本発明者らは上記目的を達成すべく鋭意検討した結果、無機微粉末の表面をパーフロロアルキル基含有有機ケイ素化合物でグラフト化処理することで、無機微粉末がマイナス帯電し、このマイナスイオン同士の反発により高分散することを知見した。   As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention made the inorganic fine powder negatively charged by grafting the surface of the inorganic fine powder with a perfluoroalkyl group-containing organosilicon compound. It was found that it was highly dispersed by the repulsion of.

表面を下記一般式(1)で示されるパーフロロアルキル基含有有機ケイ素化合物でグラフト化処理した無機微粉末を、付加硬化型シリコーン組成物中のシラン及びシロキサン成分の合計(即ち、後述する(i)成分のアルケニル基含有オルガノポリシロキサンと(ii)成分のオルガノハイドロジェンポリシロキサンとの合計)100質量部に対し、5〜400質量部、特に10〜200質量部、更に好ましくは20〜100質量部添加することにより、高透明性を有し、膨張係数や腐食性ガスの透過が小さい硬化物が形成でき、この硬化物で封止することで耐衝撃性、耐温度サイクル性に優れ、例えば腐食性ガスの透過による光反射板の銀表面の腐食が防止された高信頼性のLED等の発光半導体装置が得られることを知見した。   The inorganic fine powder whose surface was grafted with a perfluoroalkyl group-containing organosilicon compound represented by the following general formula (1) was added to the total of silane and siloxane components in the addition-curable silicone composition (that is, (i) ) Component alkenyl group-containing organopolysiloxane and component (ii) organohydrogenpolysiloxane)) to 100 parts by mass, 5 to 400 parts by mass, particularly 10 to 200 parts by mass, more preferably 20 to 100 parts by mass. By adding a part, it is possible to form a cured product having high transparency and a small expansion coefficient and corrosive gas permeation, and sealing with this cured product is excellent in impact resistance and temperature cycle resistance. It has been found that a highly reliable light-emitting semiconductor device such as an LED in which corrosion of the silver surface of the light reflecting plate due to the transmission of corrosive gas is prevented can be obtained.

すなわち、本発明によれば、マイナスイオン帯電無機微粉末を多量に充填することにより、透明性を維持しながら高屈折率特性の付与、酸素などのガス透過特性の低下などの機能が付与された硬化物が形成されることから、高屈折率無機微粉末の高分散化と高充填化による高屈折率・高透明シリコーン組成物は、ガス透過性が改良され、ガス透過性の小さな硬化物を与え、そしてこの硬化物で封止することにより、耐衝撃性、耐温度サイクル性に優れ、かつ腐食性ガス透過により封止保護されたLEDチップなどの被封止部品の腐食が防止され、信頼性に優れたLEDなどの発光半導体装置を提供することができる。   That is, according to the present invention, by filling a large amount of negative ion charged inorganic fine powder, functions such as imparting high refractive index characteristics and reducing gas permeation characteristics such as oxygen are provided while maintaining transparency. Since a cured product is formed, the high refractive index and highly transparent silicone composition by high dispersion and high filling of high refractive index inorganic fine powder has improved gas permeability and a cured product with low gas permeability. And sealing with this cured product prevents corrosion of sealed parts such as LED chips that are excellent in impact resistance and temperature cycle resistance and sealed and protected by corrosive gas permeation. A light-emitting semiconductor device such as an LED having excellent properties can be provided.

従って、本発明は、下記パーフロロアルキル基含有有機ケイ素化合物処理無機微粉末からなるマイナスイオン帯電微粉末、マイナスイオン帯電微粉末を含有する透明付加硬化型シリコーン組成物、その硬化物で封止した発光半導体装置を提供する。   Therefore, the present invention is sealed with a negative ion charged fine powder composed of the following perfluoroalkyl group-containing organic silicon compound-treated inorganic fine powder, a transparent addition-curable silicone composition containing the negative ion charged fine powder, and a cured product thereof. A light emitting semiconductor device is provided.

〔1〕表面に下記一般式(1)で示されるパーフロロアルキル基含有有機ケイ素化合物を無機微粉末100質量部に対して1〜60質量部添加処理してグラフト化し、マイナスイオン反発の効果で分散させてなることを特徴とするマイナスイオン帯電無機微粉末。

Figure 2014114194
(式中、R1は炭素原子数1〜4の一価炭化水素基、R2は炭素原子数1〜4のアルコキシ基又はアシロキシ基、Qは炭素原子数2〜10の二価の有機基であり、aは0又は1、pは1〜20の整数である。)
〔2〕パーフロロアルキル基含有有機ケイ素化合物が、下記一般式(1’)で示され、その添加量が無機微粉体100質量部に対して3〜50質量部であることを特徴とする〔1〕記載のマイナスイオン帯電無機微粉末。
Figure 2014114194
(式中、R1は炭素原子数1〜4の一価炭化水素基、R2は炭素原子数1〜4のアルコキシ基又はアシロキシ基、Q’は炭素原子数2〜4の二価の有機基であり、aは0又は1、p’は5〜12の整数である。)
〔3〕無機微粉末が、酸化ジルコニウム、二酸化チタン及び酸化アルミニウムから選択される無機微粉末である〔1〕又は〔2〕記載のマイナスイオン帯電無機微粉末。
〔4〕無機微粉末が、酸化ジルコニウムである〔3〕記載のマイナスイオン帯電無機微粉末。
〔5〕マイナスイオン帯電無機微粉末は、ゼータ電位で−60mV〜−150mVの値を示す帯電無機微粉末であることを特徴とする〔1〕〜〔4〕のいずれかに記載のマイナスイオン帯電無機微粉末。
〔6〕マイナスイオン帯電無機微粉末は、鉄粉との摩擦帯電量で−30μC/g〜−200μC/gの値を示す帯電無機微粉末であることを特徴とする〔1〕〜〔5〕のいずれかに記載のマイナスイオン帯電無機微粉末。
〔7〕付加硬化型シリコーン組成物中のシラン及びシロキサン成分の合計100質量部に対して、〔1〕〜〔6〕のいずれかに記載のマイナスイオン帯電無機微粉体を5〜400質量部含有することを特徴とする付加硬化型シリコーン組成物。
〔8〕付加硬化型シリコーン組成物が、
(i)アルケニル基含有オルガノポリシロキサン、
(ii)オルガノハイドロジェンポリシロキサン、
(iii)白金族金属系触媒
を含有することを特徴とする〔7〕記載の付加硬化型シリコーン組成物。
〔9〕更に蛍光体を含有することを特徴とする〔7〕又は〔8〕記載の付加硬化型シリコーン組成物。
〔10〕〔7〕〜〔9〕のいずれかに記載の付加硬化型シリコーン組成物の硬化物で封止したことを特徴とする発光半導体装置。 [1] On the surface, the perfluoroalkyl group-containing organosilicon compound represented by the following general formula (1) is added to 1 to 60 parts by mass with respect to 100 parts by mass of the inorganic fine powder to be grafted, thereby reducing the negative ion repulsion. A negative ion charged inorganic fine powder, characterized by being dispersed.
Figure 2014114194
Wherein R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R 2 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group, and Q is a divalent organic group having 2 to 10 carbon atoms. A is 0 or 1, and p is an integer of 1 to 20.)
[2] The perfluoroalkyl group-containing organosilicon compound is represented by the following general formula (1 ′), and the addition amount is 3 to 50 parts by mass with respect to 100 parts by mass of the inorganic fine powder. [1] The negative ion charged inorganic fine powder according to [1].
Figure 2014114194
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R 2 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and Q ′ is a divalent organic group having 2 to 4 carbon atoms. A is 0 or 1, and p ′ is an integer of 5 to 12.)
[3] The negative ion charged inorganic fine powder according to [1] or [2], wherein the inorganic fine powder is an inorganic fine powder selected from zirconium oxide, titanium dioxide, and aluminum oxide.
[4] The negative ion charged inorganic fine powder according to [3], wherein the inorganic fine powder is zirconium oxide.
[5] The negative ion charged inorganic fine powder is a charged inorganic fine powder exhibiting a value of −60 mV to −150 mV at a zeta potential, The negative ion charged according to any one of [1] to [4] Inorganic fine powder.
[6] The negative ion charged inorganic fine powder is a charged inorganic fine powder showing a value of −30 μC / g to −200 μC / g in terms of triboelectric charge with iron powder [1] to [5] The negative ion charged inorganic fine powder according to any one of the above.
[7] 5 to 400 parts by mass of the negative ion charged inorganic fine powder according to any one of [1] to [6] with respect to 100 parts by mass in total of the silane and siloxane components in the addition curable silicone composition An addition-curable silicone composition characterized by comprising:
[8] An addition-curable silicone composition is
(I) an alkenyl group-containing organopolysiloxane,
(Ii) organohydrogenpolysiloxane,
(Iii) The addition-curable silicone composition according to [7], which contains a platinum group metal catalyst.
[9] The addition-curable silicone composition according to [7] or [8], further containing a phosphor.
[10] A light emitting semiconductor device sealed with a cured product of the addition-curable silicone composition according to any one of [7] to [9].

本発明の付加硬化型シリコーン組成物は、パーフロロアルキル基含有有機ケイ素化合物処理無機微粉末からなるマイナスイオン帯電微粉末を含有することで、シリコーンゴム本来の優れた耐熱性、電気絶縁性、機械的強度、光学的特性などの諸特性を保持しながら、シリコーンゴムの欠点である気体透過性を改良し、高屈折率性の付与など優れた特性を有する。
更に高透明性を有し、膨張係数や腐食性ガスの透過が小さい硬化物が形成でき、この硬化物で封止することで耐衝撃性、耐温度サイクル性に優れ、例えば腐食性ガスの透過による光反射板の銀表面の腐食が防止された高信頼性のLED等の発光半導体装置が得られる。
また、その作業性や成型加工性は、従来の付加硬化型シリコーン組成物同様の加工性を有し、成型装置など従来の加工機械がそのまま転用できる。
本発明の付加硬化型シリコーン組成物から得られる用途としては、その光学的特性を生かし、レンズや透明封止材料など発光半導体装置などの用途に使用される。
The addition-curable silicone composition of the present invention contains negative ion-charged fine powders composed of inorganic fine powders treated with perfluoroalkyl group-containing organosilicon compounds, so that the silicone rubber inherently has excellent heat resistance, electrical insulation, mechanical properties While maintaining various properties such as mechanical strength and optical properties, it improves gas permeability, which is a drawback of silicone rubber, and has excellent properties such as imparting high refractive index.
Furthermore, a cured product having high transparency and a small expansion coefficient and low permeability of corrosive gas can be formed. Sealing with this cured product provides excellent impact resistance and temperature cycle resistance, for example, permeation of corrosive gas. Thus, a highly reliable light emitting semiconductor device such as an LED in which corrosion of the silver surface of the light reflecting plate is prevented can be obtained.
In addition, the workability and molding processability are similar to those of conventional addition-curable silicone compositions, and conventional processing machines such as molding devices can be used as they are.
The application obtained from the addition-curable silicone composition of the present invention is used for applications such as light-emitting semiconductor devices such as lenses and transparent sealing materials, taking advantage of its optical characteristics.

以下、本発明について、詳細に説明する。
本発明は、マイナスイオン反発により分散するマイナスイオン帯電無機微粉末及び透明に優れた付加硬化型シリコーン組成物並びに該組成物で封止した発光半導体装置に関する。
本発明に係るマイナスイオン帯電無機微粉末は、無機微粉末をパーフロロアルキル基含有有機ケイ素化合物にて表面処理したものである。従って、パーフロロアルキル基含有有機化合物は、無機微粉末の表面に処理してグラフト化し、マイナスイオン反発の効果で無機微粉末を分散させる本発明のキーマテリアルであり、下記一般式(1)で示され、1分子中にフロロアルキル基とアルコキシ基又はアシロキシ基を有するパーフロロアルキル基含有有機ケイ素化合物である。

Figure 2014114194
(式中、R1は炭素原子数1〜4の一価炭化水素基、R2は炭素原子数1〜4のアルコキシ基又はアシロキシ基、Qは炭素原子数2〜10の二価の有機基であり、aは0又は1、pは1〜20の整数である。) Hereinafter, the present invention will be described in detail.
The present invention relates to a negative ion charged inorganic fine powder dispersed by negative ion repulsion, an addition-curable silicone composition excellent in transparency, and a light-emitting semiconductor device sealed with the composition.
The negative ion charged inorganic fine powder according to the present invention is obtained by subjecting an inorganic fine powder to a surface treatment with a perfluoroalkyl group-containing organosilicon compound. Accordingly, the perfluoroalkyl group-containing organic compound is a key material of the present invention in which the inorganic fine powder is dispersed by treatment on the surface of the inorganic fine powder, and the inorganic fine powder is dispersed by the effect of negative ion repulsion. And a perfluoroalkyl group-containing organosilicon compound having a fluoroalkyl group and an alkoxy group or an acyloxy group in one molecule.
Figure 2014114194
Wherein R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R 2 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group, and Q is a divalent organic group having 2 to 10 carbon atoms. A is 0 or 1, and p is an integer of 1 to 20.)

より好ましくは、パーフロロアルキル基含有有機ケイ素化合物は、下記一般式(1’)で示される。

Figure 2014114194
(式中、R1は炭素原子数1〜4の一価炭化水素基、R2は炭素原子数1〜4のアルコキシ基又はアシロキシ基、Q’は炭素原子数2〜4の二価の有機基であり、aは0又は1、p’は5〜12の整数である。) More preferably, the perfluoroalkyl group-containing organosilicon compound is represented by the following general formula (1 ′).
Figure 2014114194
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R 2 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and Q ′ is a divalent organic group having 2 to 4 carbon atoms. A is 0 or 1, and p ′ is an integer of 5 to 12.)

ここで、R1としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等のアルキル基が挙げられ、R2としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、イソプロペノキシ基、n−ブトキシ基、アセトキシ基等が挙げられ、メトキシ基、エトキシ基が好ましい。 Here, as R 1 is a methyl group, an ethyl group, a propyl group, an isopropyl group, n- butyl group, an isobutyl group, include alkyl groups such as tert- butyl group, the R 2, a methoxy group, an ethoxy group N-propoxy group, isopropoxy group, isopropenoxy group, n-butoxy group, acetoxy group and the like, and methoxy group and ethoxy group are preferable.

また、Q、Q’はパーフロロアルキル基とケイ素原子を結合する基であり、Qは炭素原子数2〜10、Q’は炭素原子数2〜4の二価の有機基で、二価炭化水素基又は分子中に酸素原子、窒素原子又は硫黄原子を含む二価炭化水素基が挙げられ、具体的には、−CH2CH2−、−CH2OCH2CH2CH2−、−CONHCH2CH2CH2−、−CONHCH2CH2NHCH2CH2CH2−、−SO2NHCH2CH2CH2−、−CH2CH2OCONHCH2CH2CH2−等の基が例示される。 Q and Q ′ are groups that bond a perfluoroalkyl group to a silicon atom, Q is a divalent organic group having 2 to 10 carbon atoms, and Q ′ is a divalent organic group having 2 to 4 carbon atoms. Examples include a hydrogen group or a divalent hydrocarbon group containing an oxygen atom, a nitrogen atom or a sulfur atom in the molecule, specifically, —CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 —, —CONHCH. Examples include 2 CH 2 CH 2 —, —CONHCH 2 CH 2 NHCH 2 CH 2 CH 2 —, —SO 2 NHCH 2 CH 2 CH 2 —, —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 — and the like. .

更に、pはパーフロロアルキル基の炭素原子数を示すもので1〜20、好ましくは5〜12である。pが20を超えると有機溶媒への溶解性が悪くなり、またパーフロロアルキル基含有有機ケイ素化合物も高価となる。
aは0又は1であり、0が好ましい。
Further, p represents the number of carbon atoms of the perfluoroalkyl group and is 1 to 20, preferably 5 to 12. When p exceeds 20, the solubility in an organic solvent is deteriorated, and the perfluoroalkyl group-containing organosilicon compound is also expensive.
a is 0 or 1, and 0 is preferable.

上記式(1)、(1’)のパーフロロアルキル基含有有機ケイ素化合物として具体的には、下記化合物を例示でき、これら化合物の1種類を単独で又は2種類以上を混合して使用することができる。
CF3CH2CH2Si(OCH33,C49CH2CH2Si(OCH33
613CH2CH2Si(OCH33,C49CH2CH2SiCH3(OCH32
817CH2CH2Si(OCH33,C817CH2CH2Si(OC253
817CH2CH2Si(OCOH33
(CF32CF(CF28CH2CH2Si(OCH33
715CONHCH2CH2CH2Si(OC253
817SO2NHCH2CH2CH2Si(OC253
715CONHCH2CH2CH2Si(OC253
817CH2CH2OCONHCH2CH2CH2Si(OCH33
Specific examples of the perfluoroalkyl group-containing organosilicon compounds of the above formulas (1) and (1 ′) include the following compounds, and one of these compounds may be used alone or in combination of two or more. Can do.
CF 3 CH 2 CH 2 Si (OCH 3 ) 3 , C 4 F 9 CH 2 CH 2 Si (OCH 3 ) 3 ,
C 6 F 13 CH 2 CH 2 Si (OCH 3) 3, C 4 F 9 CH 2 CH 2 SiCH 3 (OCH 3) 2,
C 8 F 17 CH 2 CH 2 Si (OCH 3) 3, C 8 F 17 CH 2 CH 2 Si (OC 2 H 5) 3,
C 8 F 17 CH 2 CH 2 Si (OCOH 3) 3,
(CF 3 ) 2 CF (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 ,
C 7 F 15 CONHCH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3 ,
C 8 F 17 SO 2 NHCH 2 CH 2 CH 2 Si (OC 2 H 5) 3,
C 7 F 15 CONHCH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3 ,
C 8 F 17 CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (OCH 3 ) 3

パーフロロアルキル基含有有機ケイ素化合物の添加量は、無機微粉末100質量部に対して、1〜60質量部である。1質量部未満ではグラフト化処理の効率が低く、パーフロロアルキル基含有有機ケイ素化合物によるマイナスイオン反発性の効果が得られない。一方、60質量部を超えて添加しても有機溶媒との溶解性が低下して反応性が低下し、グラフト化効率が低下する。またコスト高となる。好ましくは3〜50質量部である。   The addition amount of the perfluoroalkyl group-containing organosilicon compound is 1 to 60 parts by mass with respect to 100 parts by mass of the inorganic fine powder. If it is less than 1 part by mass, the efficiency of the grafting treatment is low, and the effect of negative ion repulsion by the perfluoroalkyl group-containing organosilicon compound cannot be obtained. On the other hand, even if added in excess of 60 parts by mass, the solubility with the organic solvent is lowered, the reactivity is lowered, and the grafting efficiency is lowered. In addition, the cost increases. Preferably it is 3-50 mass parts.

また、その時のグラフト化率は3質量%以上、特に5質量%以上が好ましい。その上限は特に制限されないが、通常30質量%以下である。
上記パーフロロアルキル基含有有機ケイ素化合物と無機微粉末とのグラフト化反応は、一般的に溶剤中で50〜200℃の温度で1〜50時間環流させることにより行うことができる。
Further, the grafting rate at that time is preferably 3% by mass or more, particularly preferably 5% by mass or more. The upper limit is not particularly limited, but is usually 30% by mass or less.
The grafting reaction between the perfluoroalkyl group-containing organosilicon compound and the inorganic fine powder can be generally carried out by refluxing in a solvent at a temperature of 50 to 200 ° C. for 1 to 50 hours.

この場合、無機微粉末としては、具体的には酸化ジルコニウム、二酸化チタン、酸化アルミニウムから選択される無機微粉末が好ましく、本発明の付加硬化型シリコーン組成物に高充填することでシリコーンゴムの欠点である気体透過性を改良し、高屈折率性の付与など優れた特性を付与することができる。無機微粉末としてはより好ましくは酸化ジルコニウムである。   In this case, as the inorganic fine powder, specifically, an inorganic fine powder selected from zirconium oxide, titanium dioxide, and aluminum oxide is preferable, and the disadvantage of silicone rubber can be obtained by highly filling the addition-curable silicone composition of the present invention. It is possible to improve gas permeability, and to impart excellent properties such as imparting high refractive index. More preferably, the inorganic fine powder is zirconium oxide.

なお、無機微粉末の平均粒径は、レーザ回折・散乱法による測定法で5〜1,000nmであることが好ましい。   The average particle size of the inorganic fine powder is preferably 5 to 1,000 nm as measured by a laser diffraction / scattering method.

本発明のマイナスイオン帯電無機微粉末は、表面に上記一般式(1)で示されるパーフロロアルキル基含有有機ケイ素化合物を無機微粉末100質量部に対して、1〜60質量部、好ましくは3〜50質量部添加処理してグラフト化し、マイナスイオン反発の効果で分散させたマイナスイオン帯電無機微粉末である。   The negative ion-charged inorganic fine powder of the present invention has a perfluoroalkyl group-containing organosilicon compound represented by the above general formula (1) on the surface in an amount of 1 to 60 parts by weight, preferably 3 parts per 100 parts by weight of the inorganic fine powder. It is a negative ion charged inorganic fine powder which is grafted by adding 50 parts by mass and dispersed by the effect of negative ion repulsion.

上記のマイナスイオン帯電無機微粉末は、ゼータ電位で−60mV〜−150mVの値を示すマイナスイオン帯電無機微粉末であることが好ましく、−60mV未満ではマイナスイオン反発の効果が少なく、マイナスイオン帯電無機微粉末の分散性が不十分な場合が生じる。一方、−150mVを超えるとマイナスイオン反発性が強すぎて、逆にシリコーン樹脂中への配合が困難となる場合が生じる。好ましくは−80mV〜−140mVの値を示すマイナスイオン帯電無機微粉末である。   The negative ion charged inorganic fine powder is preferably a negative ion charged inorganic fine powder exhibiting a value of −60 mV to −150 mV at a zeta potential, and less than −60 mV has little negative ion repulsion effect, and the negative ion charged inorganic fine powder. In some cases, the dispersibility of the fine powder is insufficient. On the other hand, if it exceeds -150 mV, the negative ion repulsion property is too strong, and conversely, it may be difficult to blend into the silicone resin. Preferably, it is a negative ion charged inorganic fine powder having a value of -80 mV to -140 mV.

また、マイナスイオン帯電無機微粉末は、鉄粉との摩擦帯電量で−30μC/g〜−200μC/gの値を示す帯電無機微粉末であることが好ましい。−30μC/g未満の摩擦帯電量ではイオン反発の効果が少なく、マイナスイオン帯電無機微粉末の分散性が不十分な場合が生じる。一方、−200μC/gを超えるとイオン反発性が強すぎて、逆にシリコーン樹脂中への配合が困難となる場合が生じる。好ましくは−70μC/g〜−150μC/gの値を示すマイナスイオン帯電無機微粉末である。
上記ゼータ電位、鉄粉との摩擦帯電量を示すマイナスイオン帯電無機微粉末は、上記の通り、上記一般式(1)で示されるパーフロロアルキル基含有有機ケイ素化合物を無機微粉末100質量部に対して1〜60質量部添加処理してグラフト化することにより得ることができる。
Further, the negative ion charged inorganic fine powder is preferably a charged inorganic fine powder having a value of −30 μC / g to −200 μC / g in terms of triboelectric charge with iron powder. When the triboelectric charge amount is less than −30 μC / g, the effect of ion repulsion is small and the dispersibility of the negative ion charged inorganic fine powder may be insufficient. On the other hand, if it exceeds −200 μC / g, the ionic repulsion property is too strong, and conversely, it may be difficult to blend into the silicone resin. Preferably, it is a negative ion charged inorganic fine powder showing a value of −70 μC / g to −150 μC / g.
As described above, the negative ion charged inorganic fine powder showing the zeta potential and the triboelectric charge amount with the iron powder contains 100 parts by mass of the perfluoroalkyl group-containing organosilicon compound represented by the general formula (1) as described above. On the other hand, it can be obtained by adding 1 to 60 parts by mass and grafting.

本発明のマイナスイオン帯電無機微粉末は、付加硬化型シリコーン組成物中のシラン及びシロキサン成分の合計100質量部に対して、マイナスイオン帯電無機微粉末を5〜400質量部配合することで透明性に優れた硬化物を与える付加硬化型シリコーン組成物となる。その添加量が5質量部未満では高屈折率特性が得られず、また400質量部を超えると配合が困難であり、分散不良による透明性の低下や配合物の高粘度化やペースト化による作業性の低下をもたらす。好ましくは20〜200質量部、更に好ましくは50〜100質量部添加することにより、作業性、高屈折率特性に優れた透明性シリコーン組成物となる。   The negative ion charged inorganic fine powder of the present invention is transparent by blending 5 to 400 parts by weight of negative ion charged inorganic fine powder with respect to 100 parts by weight of the total of silane and siloxane components in the addition-curable silicone composition. It becomes an addition-curable silicone composition that gives an excellent cured product. If the added amount is less than 5 parts by mass, high refractive index characteristics cannot be obtained, and if it exceeds 400 parts by mass, blending is difficult, and the work is performed by lowering the transparency due to poor dispersion, increasing the viscosity of the compound, or making a paste. Causes sex decline. By adding preferably 20 to 200 parts by mass, and more preferably 50 to 100 parts by mass, a transparent silicone composition excellent in workability and high refractive index characteristics is obtained.

更に詳述すると、本発明の付加硬化型シリコーン組成物は、下記シリコーン組成物に上記のマイナスイオン帯電無機微粉末を配合した透明性に優れる硬化物を与える付加硬化型シリコーン組成物で、
(i)アルケニル基含有オルガノポリシロキサン、
(ii)オルガノハイドロジェンポリシロキサン、
(iii)白金族金属系触媒
を必須成分として含有する。
More specifically, the addition-curable silicone composition of the present invention is an addition-curable silicone composition that gives a cured product excellent in transparency in which the negative ion-charged inorganic fine powder is blended with the following silicone composition.
(I) an alkenyl group-containing organopolysiloxane,
(Ii) organohydrogenpolysiloxane,
(Iii) A platinum group metal catalyst is contained as an essential component.

ここで、(i)成分のアルケニル基含有オルガノポリシロキサンとしては、ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサンが用いられ、これは付加硬化型シリコーン組成物のベースポリマーとして使用されている公知のオルガノポリシロキサンであり、GPC(ゲルパーミエションクロマトグラフィー)によるポリスチレン換算重量平均分子量が、通常3,000〜300,000程度で、オストワルド粘度計による常温(25℃)で100〜1,000,000mm2/s、特に200〜100,000mm2/s程度の粘度を有するものが好ましく、下記平均組成式(2)で示されるものが用いられる。 Here, as the alkenyl group-containing organopolysiloxane of component (i), an organopolysiloxane containing at least two alkenyl groups bonded to silicon atoms is used, and this is used as a base polymer of an addition-curable silicone composition. Is a known organopolysiloxane having a polystyrene-reduced weight average molecular weight of about 3,000 to 300,000 by GPC (gel permeation chromatography) and 100 at ordinary temperature (25 ° C.) by an Ostwald viscometer. Those having a viscosity of about 1,000,000 mm 2 / s, particularly about 200 to 100,000 mm 2 / s are preferred, and those represented by the following average composition formula (2) are used.

3 bSiO(4-b)/2 (2)
(式中、R3は独立に非置換又は置換の炭素原子数1〜10、好ましくは1〜8の一価炭化水素基、アルコキシ基、水酸基、ハロゲン原子より選ばれ、bは1.5〜2.8、好ましくは1.8〜2.5、より好ましくは1.95〜2.05の範囲の正数である。)
R 3 b SiO (4-b) / 2 (2)
(In the formula, R 3 is independently selected from unsubstituted or substituted carbon atoms of 1 to 10, preferably 1 to 8 monovalent hydrocarbon groups, alkoxy groups, hydroxyl groups, and halogen atoms; 2.8, preferably 1.8 to 2.5, more preferably a positive number in the range of 1.95 to 2.05.)

上記R3としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2−フェニルエチル基等のアラルキル基;及び、これらの基の炭素原子に結合した水素原子の一部又は全部がハロゲン原子、シアノ基等で置換された、例えば、クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、2−シアノエチル基等;また、アルコキシ基、水酸基、ハロゲン原子が挙げられる。 R 3 is an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, an octyl group, a nonyl group or a decyl group; a cyclohexyl group Cycloalkyl groups such as vinyl groups, allyl groups, propenyl groups, isopropenyl groups, butenyl groups, etc .; aryl groups such as phenyl groups, tolyl groups, xylyl groups, naphthyl groups; benzyl groups, 2-phenylethyl groups An aralkyl group such as, and a part or all of hydrogen atoms bonded to carbon atoms of these groups are substituted with a halogen atom, a cyano group, or the like, for example, a chloromethyl group, a 3-chloropropyl group, 3, 3 , 3-trifluoropropyl group, 2-cyanoethyl group and the like; and an alkoxy group, a hydroxyl group and a halogen atom.

オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を少なくとも2個有することから、ビニル基、アリル基等のアルケニル基を必ず含有する。中でも合成のしやすさ、耐熱性からビニル基が好ましい。その他の有機基としてはメチル基及びフェニル基が好ましい。特に付加硬化型シリコーン組成物の硬化特性や光学特性、耐熱性等から、R3の50モル%以上はメチル基であることが好ましい。例えば分子鎖両末端ジメチルビニル基停止ポリジメチルシロキサン、分子鎖両末端ジメチルビニル基停止ポリジメチルシロキサン・メチルフェニルシロキサン共重合体が好ましい。 Since the organopolysiloxane has at least two alkenyl groups bonded to silicon atoms, it always contains alkenyl groups such as vinyl groups and allyl groups. Among these, a vinyl group is preferable from the viewpoint of ease of synthesis and heat resistance. Other organic groups are preferably a methyl group and a phenyl group. In particular, from the viewpoint of curing characteristics, optical characteristics, heat resistance, and the like of the addition-curable silicone composition, 50 mol% or more of R 3 is preferably a methyl group. For example, a polydimethylsiloxane terminated with a dimethylvinyl group terminated at both molecular chains and a polydimethylsiloxane / methylphenylsiloxane copolymer terminated with a dimethylvinyl group terminated at both molecular chains are preferred.

(ii)成分のオルガノハイドロジェンポリシロキサンは、(iii)成分の白金族系金属触媒の触媒作用により、上記(i)成分のオルガノポリシロキサンと付加反応して架橋結合を形成し、3次元網状構造のゴム弾性体を与える架橋剤である。
(ii)成分はケイ素原子に結合した水素原子を1分子中2個以上有するオルガノハイドロジェンポリシロキサンで、下記平均組成式(3)で表される。
The organohydrogenpolysiloxane of component (ii) is subjected to an addition reaction with the organopolysiloxane of component (i) to form a crosslink by the catalytic action of the platinum group metal catalyst of component (iii) to form a three-dimensional network. It is a crosslinking agent that gives a rubber elastic body having a structure.
Component (ii) is an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule, and is represented by the following average composition formula (3).

4 cdSiO(4-c-d)/2 (3)
(式中、R4は独立に炭素原子数1〜6の一価炭化水素基、水素原子、アルコキシ基、水酸基、ハロゲン原子より選ばれ、c及びdは、好ましくは0.7≦c≦2.1、0.001≦d≦1.0、かつ0.8≦c+d≦3.0、より好ましくは1.0≦c≦2.0、0.01≦d≦1.0、かつ1.5≦c+d≦2.5を満足する正数である。)
R 4 c H d SiO (4-cd) / 2 (3)
(Wherein R 4 is independently selected from a monovalent hydrocarbon group having 1 to 6 carbon atoms, a hydrogen atom, an alkoxy group, a hydroxyl group, and a halogen atom, and c and d are preferably 0.7 ≦ c ≦ 2) .1, 0.001 ≦ d ≦ 1.0 and 0.8 ≦ c + d ≦ 3.0, more preferably 1.0 ≦ c ≦ 2.0, 0.01 ≦ d ≦ 1.0, and 1. (It is a positive number satisfying 5 ≦ c + d ≦ 2.5.)

(ii)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常、2〜200個)、好ましくは3個以上(通常、3〜100個)含有する。(ii)成分は、(i)成分と反応し、架橋剤として作用する。   The component (ii) organohydrogenpolysiloxane contains at least two hydrogen atoms (SiH groups) bonded to silicon atoms (usually 2 to 200), preferably 3 or more (usually 3 to 100). To do. The component (ii) reacts with the component (i) and acts as a crosslinking agent.

(ii)成分の分子構造は特に制限されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、いずれの分子構造でも(ii)成分として使用することができる。(ii)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2〜200個、好ましくは3〜100個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが好ましく使用できる。   The molecular structure of component (ii) is not particularly limited, and any molecular structure such as linear, cyclic, branched, or three-dimensional network (resin) can be used as component (ii). (Ii) When the component has a linear structure, the SiH group is bonded to the silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, but is bonded to the silicon atom in both of them. Also good. Moreover, the number (or degree of polymerization) of silicon atoms in one molecule is usually 2 to 200, preferably about 3 to 100, and an organohydrogenpolysiloxane that is liquid at room temperature (25 ° C.) is preferable. Can be used.

上記平均組成式(3)で表されるオルガノハイドロジェンポリシロキサンの具体例としては、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体などが挙げられる。 Specific examples of the organohydrogenpolysiloxane represented by the above average composition formula (3) include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (Hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both Terminal trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends dimethylhydrogensiloxy group-blocked dimethyl Loxane / methylhydrogensiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, both-end trimethyl Siloxy group-blocked methylhydrogensiloxane / methylphenylsiloxane / dimethylsiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane / diphenylsiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked methylhydro siloxane-dimethylsiloxane-methylphenylsiloxane copolymers, (CH 3) 2 HSiO 1/2 units and (CH 3) 3 S Copolymers consisting of O 1/2 units and SiO 4/2 units, copolymers comprising (CH 3) 2 HSiO 1/2 units and SiO 4/2 units, (CH 3) 2 HSiO 1/2 Examples thereof include a copolymer comprising units, SiO 4/2 units, and (C 6 H 5 ) SiO 3/2 units.

(ii)成分の添加量は、オルガノポリシロキサン付加硬化組成物中のケイ素原子に結合したアルケニル基1モル当たり、(ii)成分中のSiH基の量が0.1〜5.0モル、好ましくは0.5〜3.0モル、より好ましくは0.8〜2.0モルとなる量である。(ii)成分の添加量が、(i)成分のオルガノポリシロキサン含有アルケニル基1モル当たり、SiH基の量が0.1モルより少なくなる量であると、本発明の組成物から得られる硬化物の架橋密度が低くなりすぎ、機械強度が不足する。また、耐熱性が悪影響を受ける。一方、(ii)成分の添加量が5.0モル(SiH基量)より多くなると、硬化物中に脱水素反応による発泡が生じる。また、金型からの離型性の低下や更に残存SiH基による物性の経時変化の発現や硬化物の耐熱性の低下など悪影響を受ける。   Component (ii) is added in an amount of 0.1 to 5.0 moles of SiH groups in component (ii) per mole of alkenyl groups bonded to silicon atoms in the organopolysiloxane addition-curing composition. Is 0.5 to 3.0 mol, more preferably 0.8 to 2.0 mol. Curing obtained from the composition of the present invention when the amount of component (ii) is such that the amount of SiH groups is less than 0.1 mol per mol of organopolysiloxane-containing alkenyl groups of component (i) The crosslink density of the product becomes too low, and the mechanical strength is insufficient. In addition, the heat resistance is adversely affected. On the other hand, when the amount of component (ii) added exceeds 5.0 mol (SiH group amount), foaming due to dehydrogenation occurs in the cured product. In addition, there are adverse effects such as a decrease in releasability from the mold, an expression of changes in physical properties due to residual SiH groups, and a decrease in heat resistance of the cured product.

(iii)成分の白金族金属系触媒は、(i)成分の主剤と(ii)成分の架橋剤との付加硬化反応(ヒドロシリル化)を促進させるための触媒として使用される。(iii)成分としては、公知の白金族金属系触媒を用いることができるが、白金もしくは白金化合物を用いることが好ましい。
(iii)成分の具体例としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体が挙げられる。
The (iii) component platinum group metal catalyst is used as a catalyst for promoting the addition curing reaction (hydrosilylation) between the main component (i) and the crosslinking agent (ii). As the component (iii), a known platinum group metal catalyst can be used, but it is preferable to use platinum or a platinum compound.
Specific examples of the component (iii) include platinum black, platinous chloride, chloroplatinic acid, alcohol-modified products of chloroplatinic acid, and complexes of chloroplatinic acid with olefins, aldehydes, vinyl siloxanes or acetylene alcohols. It is done.

(iii)成分の添加量は、触媒としての有効量であり、希望する硬化速度に応じて適宜増減すればよいが、(i)成分の主剤100質量%に対して、白金族金属に換算して質量基準で好ましくは0.1〜1,000ppm、より好ましくは1〜200ppmの範囲である。   The amount of the component (iii) is an effective amount as a catalyst, and may be appropriately increased or decreased depending on the desired curing rate. However, the component (i) is converted to a platinum group metal with respect to 100% by mass of the main component. Preferably, it is 0.1 to 1,000 ppm, more preferably 1 to 200 ppm in terms of mass.

本発明の付加硬化型シリコーン組成物は、LED素子封止用、特に青色や白色LEDや紫外LEDの素子封止用として有用なものである。青色LEDを用いる白色化するために各種公知の蛍光体粉末を添加することができる。代表的な黄色蛍光体として一般式E35012:M(式中成分Eは、Y、Gd、Tb、La、Lu、Se及びSmからなるグループからなる少なくとも1つの元素を有し、成分Fは、Al、Ga及びInからなるグループからなる少なくとも1つの元素を有し、成分Mは、Ce、Pr、Eu、Cr、Nd及びErからなるグループから少なくとも1つの元素を有する)のガーネットのグループからなる蛍光体粒子を含有するのが特に有利である。青色光を放射する発光ダイオードチップを備えた白色光を放射する発光ダイオード素子用に蛍光体として、Y3Al512:Ce蛍光体及び/又は(Y、Gd、Tb)3(Al、Ga)512:Ce蛍光体が適している。 The addition-curable silicone composition of the present invention is useful for LED element sealing, particularly for blue, white LED, and ultraviolet LED element sealing. Various known phosphor powders can be added for whitening using a blue LED. As a typical yellow phosphor, a general formula E 3 F 50 O 12 : M (wherein component E has at least one element consisting of a group consisting of Y, Gd, Tb, La, Lu, Se and Sm, The component F has at least one element consisting of a group consisting of Al, Ga and In, and the component M has at least one element from the group consisting of Ce, Pr, Eu, Cr, Nd and Er) It is particularly advantageous to contain phosphor particles of the group Y 3 Al 5 O 12 : Ce phosphor and / or (Y, Gd, Tb) 3 (Al, Ga) as phosphors for light emitting diode elements that emit white light with light emitting diode chips that emit blue light ) 5 O 12 : Ce phosphor is suitable.

その他の蛍光体として、例えばCaGa24:Ce3+及びSrGa24:Ce3+、YAlO3:Ce3+、YGaO3:Ce3+、Y(Al、Ga)O3:Ce3+、Y2SiO5:Ce3+等が挙げられる。また、混合色光を作製するためには、これらの蛍光体の他に希土類でドープされたアルミン酸塩や希土類でドープされたオルトケイ酸塩などが適している。 Other phosphors include, for example, CaGa 2 S 4 : Ce 3+ and SrGa 2 S 4 : Ce 3+ , YAlO 3 : Ce 3+ , YGaO 3 : Ce 3+ , Y (Al, Ga) O 3 : Ce 3 + , Y 2 SiO 5 : Ce 3+ and the like. In addition to these phosphors, aluminate doped with rare earths or orthosilicates doped with rare earths are suitable for producing mixed color light.

本発明の組成物に、上記公知蛍光体を樹脂層の厚みにより組成物中のシラン及びシロキサン成分の合計(即ち、(i)、(ii)成分の合計)100質量部に対して0.5〜200質量部配合することで青色を白色に変換することができる。蛍光体は一般的に比重が重いためシリコーン組成物が硬化する過程で沈降してしまい、目的とする均一分散をさせることが非常に困難である。しかし、本発明の組成物を使用することでこの種の不具合を解消することができる。   In the composition of the present invention, the known phosphor is added in an amount of 0.5 to 100 parts by mass of the total of silane and siloxane components in the composition (that is, the total of (i) and (ii) components) depending on the thickness of the resin layer. Blue can be converted into white by blending ~ 200 parts by mass. In general, since the specific gravity of the phosphor is heavy, it settles in the process of curing the silicone composition, and it is very difficult to achieve the desired uniform dispersion. However, this type of problem can be eliminated by using the composition of the present invention.

本発明の組成物は上記(i)〜(iii)成分及び/又は蛍光体に加えて、本発明の目的及び効果を損なわない範囲で、補強性充填剤、熱安定剤、接着性付与剤、滑剤、可塑剤、帯電防止剤、難燃剤など各種機能性添加剤を配合してもよい。例えば、煙霧質シリカ、沈澱法シリカなどの補強性充填剤、離型剤としてのポリジメチルシロキサンなどを添加することができる。   In addition to the above components (i) to (iii) and / or the phosphor, the composition of the present invention is a reinforcing filler, a heat stabilizer, an adhesion-imparting agent, and the like within a range that does not impair the purpose and effect of the present invention. Various functional additives such as a lubricant, a plasticizer, an antistatic agent, and a flame retardant may be blended. For example, reinforcing fillers such as fumed silica and precipitated silica, polydimethylsiloxane as a release agent, and the like can be added.

本発明の組成物でLED等の発光半導体装置を封止する場合は、熱可塑性樹脂からなるプレモールドパッケージに搭載されたLED素子に該組成物を塗布することにより、該LED素子を該硬化物で封止することができる。また、該組成物をトルエンやキシレン等の有機溶媒に溶解して生成したワニスの状態で、該LED素子に塗布することができる。   When sealing a light emitting semiconductor device such as an LED with the composition of the present invention, the cured LED is obtained by applying the composition to an LED element mounted on a pre-mold package made of a thermoplastic resin. Can be sealed. Moreover, it can apply | coat to this LED element in the state of the varnish produced | generated by melt | dissolving this composition in organic solvents, such as toluene and xylene.

本発明の組成物は、その他にも、その優れた耐熱性、耐紫外線性、透明性等の特性から、ディスプレイの基板材料、接着剤、保護フィルム等の材料として、光記録媒体材料のディスク基板材料、保護フィルム、封止材、接着剤等として、光学機器材料のレンズ用材料、封止材、接着剤、フィルム等として、光部品材料としては光通信システム、光コネクタ周辺、光電子集積回路周辺の用途が挙げられる。具体的な用途は光学機器材料と同様の部品、用途例がある。   In addition, the composition of the present invention is a disk substrate of an optical recording medium material as a material of a display substrate material, an adhesive, a protective film, etc. due to its excellent heat resistance, ultraviolet resistance, transparency, Materials, protective films, sealing materials, adhesives, etc., optical materials, lens materials, sealing materials, adhesives, films, etc., optical component materials, optical communication systems, optical connector peripherals, optoelectronic integrated circuit peripherals Can be used. Specific applications include parts and application examples similar to those for optical equipment materials.

その他の用途としてファイバー材料、光・電子機能有機材料、光半導体集積回路材料等があり、例えばLSIや超LSI材料用のマイクロリソグラフィー用レジスト材料等の半導体集積回路周辺材料等の用途にも用いることができる。   Other uses include fiber materials, optical / electronic functional organic materials, and optical semiconductor integrated circuit materials. For example, they are also used for peripheral materials of semiconductor integrated circuits such as resist materials for microlithography for LSI and VLSI materials. Can do.

本発明材料は、各種用途において接着剤として、光学素子の封止材として、フィルムとして、またレンズ材料として好適な素材である。   The material of the present invention is a material suitable as an adhesive, a sealing material for optical elements, a film, and a lens material in various applications.

以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例で部は質量部を示す。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In addition, a part shows a mass part by the following example.

[合成例1]
・ナノ酸化ジルコニウム(ナノジルコニア)のグラフト化
リフラックスコンデンサーを備えたフラスコにナノジルコニア(平均粒径15±3nm、西ドイツ製)10.0部に下記構造を有するカップリング剤(1)4.0部、脱水トルエン100部を加えて窒素置換後、110℃で16時間反応させることでグラフト反応を行った。反応終了後、遠心分離装置を用い、グラフト化したジルコニアとトルエンと未反応カップリング剤を分離し、更に100部のトルエンを加え、撹拌する操作を2回行い、次いで遠心分離を繰り返して未反応のカップリング剤を除去した。その後、分離したジルコニアを120℃で4時間乾燥することで、グラフト化ナノジルコニア(1)を得た。
得られたナノジルコニア(1)のグラフト化率はTGAで測定した結果、11.0%であった。また、FT−IRによる分析でもグラフト化を確認した。
同様な方法で下記構造を有するカップリング剤(2)〜(3)を用いて2種類のグラフト化ナノジルコニアを作成した。得られたナノジルコニア(2)及び(3)のグラフト化率はTGAで測定し、また、FT−IRによる分析でもグラフト化を確認した。
[Synthesis Example 1]
-Grafting of nano zirconium oxide (nano zirconia) Coupling agent (1) 4.0 having the following structure in 10.0 parts of nano zirconia (average particle size 15 ± 3 nm, manufactured in West Germany) in a flask equipped with a reflux condenser. After 100 parts of dehydrated toluene and 100 parts of dehydrated toluene were replaced with nitrogen, a graft reaction was performed by reacting at 110 ° C. for 16 hours. After completion of the reaction, the grafted zirconia, toluene and unreacted coupling agent are separated using a centrifuge, and further 100 parts of toluene is added and stirred twice, and then the centrifugation is repeated to unreact. The coupling agent was removed. Then, the grafted nano zirconia (1) was obtained by drying the separated zirconia at 120 ° C. for 4 hours.
The grafting rate of the obtained nano zirconia (1) was 11.0% as measured by TGA. Grafting was also confirmed by analysis by FT-IR.
Two types of grafted nano-zirconia were prepared using coupling agents (2) to (3) having the following structure in the same manner. Grafting rate of the obtained nano zirconia (2) and (3) was measured by TGA, and grafting was also confirmed by analysis by FT-IR.

・カップリング剤(1)
613(CH22Si(OCH33(KBM−7603;信越化学工業(株)製)
・カップリング剤(2)
CF3(CH22Si(OCH33(KBM−7103;信越化学工業(株)製)
・カップリング剤(3)
CH3Si(OCH33(KBM−13;信越化学工業(株)製)
・ Coupling agent (1)
C 6 F 13 (CH 2) 2 Si (OCH 3) 3 (KBM-7603; Shin-Etsu Chemical Co., Ltd.)
・ Coupling agent (2)
CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 (KBM-7103; manufactured by Shin-Etsu Chemical Co., Ltd.)
・ Coupling agent (3)
CH 3 Si (OCH 3 ) 3 (KBM-13; manufactured by Shin-Etsu Chemical Co., Ltd.)

[実施例1〜2、比較例1〜2]
得られたグラフト化ナノジルコニア(1)[実施例1]、グラフトナノジルコニア(2)[実施例2]、グラフト化ナノジルコニア(3)[比較例1]及び未処理ナノジルコニア[比較例2]1部をシリコーンオイル(KF−96−100cs、信越化学工業(株)製)10部に添加混合して分散させ、24時間放置後の分散性を表1に示す。
また、上記グラフト化ナノジルコニア(1)〜(3)及び未処理ナノジルコニアのゼータ電位及び鉄粉との摩擦帯電による帯電量を表1に示す。
[Examples 1-2, Comparative Examples 1-2]
Grafted nano-zirconia (1) [Example 1], grafted nano-zirconia (2) [Example 2], grafted nano-zirconia (3) [Comparative Example 1] and untreated nano-zirconia [Comparative Example 2] 1 part is added and mixed in 10 parts of silicone oil (KF-96-100cs, manufactured by Shin-Etsu Chemical Co., Ltd.) and dispersed. Table 1 shows the dispersibility after standing for 24 hours.
Table 1 shows the zeta potential of the grafted nano zirconia (1) to (3) and the untreated nano zirconia and the charge amount due to frictional charging with iron powder.

Figure 2014114194
Figure 2014114194

「ゼータ電位の測定方法」
ゼータ電位の測定は、大塚電子株式会社ELSZ−2Nで測定。
グラフト化ナノジルコニア(1)〜(3)及び未処理のナノジルコニアをそれぞれ0.010g量り取り、メタノールを30mL加えて分散させた。その分散溶媒を適量測定用セルに移し、積算回数10回でそれぞれ5回測定。温度は25℃で測定した。
(溶媒屈折率1.3312、溶媒粘度0.5440(cP)、溶媒の誘電率33.6)
"Method for measuring zeta potential"
The zeta potential was measured with Otsuka Electronics Co., Ltd. ELSZ-2N.
Grafted nano zirconia (1) to (3) and untreated nano zirconia were each weighed out in 0.010 g, and 30 mL of methanol was added and dispersed. The dispersion solvent was transferred to a cell for measuring an appropriate amount and measured 5 times with 10 integrations. The temperature was measured at 25 ° C.
(Solvent refractive index 1.3312, solvent viscosity 0.5440 (cP), solvent dielectric constant 33.6)

「摩擦帯電量の測定方法」
測定方法は「日本画像学会のトナー帯電測定法」に準拠して測定した。
ナノジルコニアを、濃度が1質量%となるようにキャリアであるフェライト(パウダーテック社製、商品名:FL100)に添加し、振とう基により、10分間混合して、摩擦帯電を行った。この試料0.2gを用いて、帯電量をブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、商品名:TB−200型、窒素ブロー圧力:0.05mPa、窒素ブロー時間:60秒)で測定した。
"Measurement method of triboelectric charge"
The measurement method was based on “Toner charge measurement method of the Japanese Imaging Society”.
Nano-zirconia was added to ferrite (product name: FL100, manufactured by Powder Tech Co., Ltd.) as a carrier so as to have a concentration of 1% by mass, and mixed for 10 minutes with a shaking group to perform tribocharging. Using 0.2 g of this sample, the charge amount was measured by a blow-off powder charge amount measuring device (trade name: TB-200, manufactured by Toshiba Chemical Co., Ltd., nitrogen blow pressure: 0.05 mPa, nitrogen blow time: 60 seconds) Measured with

「分散性」
◎:極めて良好 ○:良好 ×:一部沈降 ×××:全て沈降
"Dispersibility"
◎: Extremely good ○: Good ×: Partial sedimentation XX: All sedimentation

[合成例2]
・ナノジルコニアのグラフト化
合成例1と同様にして、ナノジルコニア10.0部にカップリング剤(1)を0.4部から2.0部に変量してグラフト反応を行った。その後も同様な処理を行い、グラフト化したグラフト化ナノジルコニア(表2)を得た。
得られたグラフト化ナノジルコニアのグラフト化率はTGAにより測定した。結果を表2に示す。また、FT−IRによる分析でもグラフト化を確認した。
[Synthesis Example 2]
-Grafting of nano zirconia In the same manner as in Synthesis Example 1, 10.0 parts of nano zirconia was subjected to graft reaction by changing the coupling agent (1) from 0.4 parts to 2.0 parts. Thereafter, similar treatment was performed to obtain grafted nano-zirconia (Table 2).
The grafting rate of the obtained grafted nano-zirconia was measured by TGA. The results are shown in Table 2. Grafting was also confirmed by analysis by FT-IR.

[実施例3〜7]
合成例2で得られたグラフト化ナノジルコニア(4)〜(8)1部をシリコーンオイル(KF−96−100cs、信越化学工業(株)製)10部に添加混合して分散させ、24時間放置後の分散性を表2に示す。また、グラフト化率も表2に示す。
[Examples 3 to 7]
1 part of the grafted nano-zirconia (4) to (8) obtained in Synthesis Example 2 is added and mixed in 10 parts of silicone oil (KF-96-100cs, manufactured by Shin-Etsu Chemical Co., Ltd.) and dispersed for 24 hours. Table 2 shows the dispersibility after standing. The grafting rate is also shown in Table 2.

Figure 2014114194
Figure 2014114194

[実施例8〜10、比較例3〜4]
下記式(4)

Figure 2014114194
(但し、L=450)
で示される両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン75部に、(H2C=CH)(CH32SiO1/2単位7.5モル%と(CH33SiO1/2単位42.5モル%とSiO4/2単位50モル%とからなるレジン構造のビニルメチルシロキサン(VMQ)25部、下記式(5)
Figure 2014114194
(但し、M=10、N=8)
で示されるオルガノハイドロジェンポリシロキサンを5.3部(即ち、上記ビニル基含有で示されるジメチルポリシロキサン(4)及びVMQ中のビニル基に対するSiH基のモル比が1.5となる量に相当する)、及び塩化白金酸のオクチルアルコール変性溶液(白金濃度1質量%)を0.05部加え、良く撹拌して得たシリコーン組成物100部に、合成例1で得たグラフト化ナノジルコニア(1)をそれぞれ20部、50部、100部、0部、500部をプラネタリーミキサー中で添加混合して配合し、液状シリコーン組成物1〜5を調製した。シリコーン組成物5は高粘度のペースト状となり、作業性が悪く、良好な物性測定用の試験片が作製できなかった。シリコーン組成物5以外の組成物を用い、150℃×4時間の条件で硬化させた。
得られた硬化物の物性をJIS K6301に従い、測定した。また、屈折率と厚さ1mmの硬化膜で波長400〜800nmにおける光透過率を測定した。結果を表3に示す。また、ガラス基板上に銅に銀メッキを施した基板を置き、その上から前記組成物を厚さ0.3mmに塗布し、70℃、1時間で硬化させ、評価サンプルを作製した。この評価サンプルを体積2リットルの密閉容器に入れると共に、この密閉容器に(NH42S 20gと水10gを入れ、H2Sガスを発生させた密閉状態で23℃において表3に示す時間で放置し、銅に銀メッキを施した基板の腐食の発生を評価した。結果を表3に示す。 [Examples 8 to 10, Comparative Examples 3 to 4]
Following formula (4)
Figure 2014114194
(However, L = 450)
75 mol parts of (H 2 C═CH) (CH 3 ) 2 SiO 1/2 units and (CH 3 ) 3 SiO 1/2 units are added to 75 parts of both ends vinyldimethylsiloxy-blocked dimethylpolysiloxane represented by 25 parts of resin-structured vinylmethylsiloxane (VMQ) consisting of 42.5 mol% and SiO4 / 2 units 50 mol%, the following formula (5)
Figure 2014114194
(However, M = 10, N = 8)
This corresponds to 5.3 parts of the organohydrogenpolysiloxane represented by the formula (i.e., such that the molar ratio of SiH groups to vinyl groups in the dimethylpolysiloxane (4) represented by the vinyl group content and VMQ is 1.5). And 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid (platinum concentration of 1% by mass) and 100 parts of the silicone composition obtained by thoroughly stirring the grafted nano-zirconia obtained in Synthesis Example 1 ( 1) 20 parts, 50 parts, 100 parts, 0 parts, and 500 parts were added and mixed in a planetary mixer to prepare liquid silicone compositions 1 to 5, respectively. The silicone composition 5 became a high-viscosity paste, the workability was poor, and a test piece for measuring good physical properties could not be produced. A composition other than the silicone composition 5 was used and cured at 150 ° C. for 4 hours.
The physical properties of the obtained cured product were measured according to JIS K6301. Moreover, the light transmittance in wavelength 400-800nm was measured with the cured film of refractive index and thickness 1mm. The results are shown in Table 3. Moreover, the board | substrate which plated silver on copper was set | placed on the glass substrate, the said composition was apply | coated to thickness 0.3mm from it, and it hardened | cured at 70 degreeC for 1 hour, and produced the evaluation sample. The evaluation sample is put in a 2 liter volume sealed container, and 20 g of (NH 4 ) 2 S and 10 g of water are put in the sealed container, and the time shown in Table 3 at 23 ° C. in a sealed state where H 2 S gas is generated. And the occurrence of corrosion was evaluated on the copper-plated substrate. The results are shown in Table 3.

Figure 2014114194

○:腐食なし △:一部腐食 ×:黒色に変色(完全腐食)
Figure 2014114194

○: No corrosion △: Partial corrosion ×: Discoloration to black (complete corrosion)

[実施例11〜12、比較例5]
凹部の開口部を有するLED用プレモールドパッケージ(厚さ1mm、1辺が3mmで開口部、直径2.6mm、底辺部が銀メッキ)にInGaN系青色発光素子を銀ペーストを用いて固定させた。次に外部電極と発光素子を金ワイヤーにて外部電極と接続した。その後、下記表に示した実施例及び比較例のシリコーン組成物をパッケージ開口部内に注入し、60℃で1時間、更に150℃で2時間硬化させることで発光半導体素子を形成した。
作製した発光半導体装置を用い、下記方法により温度サイクル試験と初期の輝度を測定した。結果を表4に示す。
『温度サイクル試験』:−40℃/30分〜125℃/30分の冷熱サイクル試験において、1000サイクル後のパッケージに剥離のないものを「不良無」とした。
『初期の輝度』:LEDに10mAの電流を印加し、LEDを発光させて大塚電子製(LP−3400)により輝度を測定し、輝度が15mlm(ミリルーメン)以上のものを「良好」、輝度が15mlm(ミリルーメン)未満のものを「低下」とした。
[Examples 11 to 12, Comparative Example 5]
An InGaN-based blue light-emitting element was fixed to a pre-molded LED package having a recessed opening (thickness 1 mm, opening 3 mm on one side, diameter 2.6 mm, bottom plate silver-plated) using silver paste . Next, the external electrode and the light emitting element were connected to the external electrode with a gold wire. Thereafter, the silicone compositions of Examples and Comparative Examples shown in the following table were injected into the package opening and cured at 60 ° C. for 1 hour and further at 150 ° C. for 2 hours to form a light emitting semiconductor element.
Using the manufactured light emitting semiconductor device, the temperature cycle test and the initial luminance were measured by the following method. The results are shown in Table 4.
“Temperature cycle test”: In a cooling / heating cycle test of −40 ° C./30 minutes to 125 ° C./30 minutes, a package that did not peel after 1000 cycles was defined as “no defect”.
“Initial luminance”: Applying a current of 10 mA to the LED, causing the LED to emit light, measuring the luminance with Otsuka Electronics (LP-3400), and “good” when the luminance is 15 mlm (milli-lumen) or higher. A value of less than 15 mlm (milli-lumen) was defined as “decrease”.

Figure 2014114194
Figure 2014114194

Claims (10)

表面に下記一般式(1)で示されるパーフロロアルキル基含有有機ケイ素化合物を無機微粉末100質量部に対して1〜60質量部添加処理してグラフト化し、マイナスイオン反発の効果で分散させてなることを特徴とするマイナスイオン帯電無機微粉末。
Figure 2014114194
(式中、R1は炭素原子数1〜4の一価炭化水素基、R2は炭素原子数1〜4のアルコキシ基又はアシロキシ基、Qは炭素原子数2〜10の二価の有機基であり、aは0又は1、pは1〜20の整数である。)
The perfluoroalkyl group-containing organosilicon compound represented by the following general formula (1) is grafted on the surface by adding 1 to 60 parts by mass with respect to 100 parts by mass of the inorganic fine powder, and dispersed by the effect of negative ion repulsion. A negative ion charged inorganic fine powder characterized in that.
Figure 2014114194
Wherein R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R 2 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group, and Q is a divalent organic group having 2 to 10 carbon atoms. A is 0 or 1, and p is an integer of 1 to 20.)
パーフロロアルキル基含有有機ケイ素化合物が、下記一般式(1’)で示され、その添加量が無機微粉体100質量部に対して3〜50質量部であることを特徴とする請求項1記載のマイナスイオン帯電無機微粉末。
Figure 2014114194
(式中、R1は炭素原子数1〜4の一価炭化水素基、R2は炭素原子数1〜4のアルコキシ基又はアシロキシ基、Q’は炭素原子数2〜4の二価の有機基であり、aは0又は1、p’は5〜12の整数である。)
The perfluoroalkyl group-containing organosilicon compound is represented by the following general formula (1 '), and the addition amount is 3 to 50 parts by mass with respect to 100 parts by mass of the inorganic fine powder. Of negative ion charged inorganic fine powder.
Figure 2014114194
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R 2 is an alkoxy group or acyloxy group having 1 to 4 carbon atoms, and Q ′ is a divalent organic group having 2 to 4 carbon atoms. A is 0 or 1, and p ′ is an integer of 5 to 12.)
無機微粉末が、酸化ジルコニウム、二酸化チタン及び酸化アルミニウムから選択される無機微粉末である請求項1又は2記載のマイナスイオン帯電無機微粉末。   The negative ion charged inorganic fine powder according to claim 1 or 2, wherein the inorganic fine powder is an inorganic fine powder selected from zirconium oxide, titanium dioxide, and aluminum oxide. 無機微粉末が、酸化ジルコニウムである請求項3記載のマイナスイオン帯電無機微粉末。   The negative ion charged inorganic fine powder according to claim 3, wherein the inorganic fine powder is zirconium oxide. マイナスイオン帯電無機微粉末は、ゼータ電位で−60mV〜−150mVの値を示す帯電無機微粉末であることを特徴とする請求項1〜4のいずれか1項記載のマイナスイオン帯電無機微粉末。   The negative ion charged inorganic fine powder according to any one of claims 1 to 4, wherein the negative ion charged inorganic fine powder is a charged inorganic fine powder exhibiting a value of -60 mV to -150 mV at a zeta potential. マイナスイオン帯電無機微粉末は、鉄粉との摩擦帯電量で−30μC/g〜−200μC/gの値を示す帯電無機微粉末であることを特徴とする請求項1〜5のいずれか1項記載のマイナスイオン帯電無機微粉末。   6. The negative ion charged inorganic fine powder is a charged inorganic fine powder exhibiting a value of -30 [mu] C / g to -200 [mu] C / g in terms of triboelectric charge with iron powder. The negative ion charged inorganic fine powder as described. 付加硬化型シリコーン組成物中のシラン及びシロキサン成分の合計100質量部に対して、請求項1〜6のいずれか1項記載のマイナスイオン帯電無機微粉体を5〜400質量部含有することを特徴とする付加硬化型シリコーン組成物。   The negative ion charged inorganic fine powder according to any one of claims 1 to 6 is contained in an amount of 5 to 400 parts by mass with respect to a total of 100 parts by mass of the silane and siloxane components in the addition-curable silicone composition. An addition-curable silicone composition. 付加硬化型シリコーン組成物が、
(i)アルケニル基含有オルガノポリシロキサン、
(ii)オルガノハイドロジェンポリシロキサン、
(iii)白金族金属系触媒
を含有することを特徴とする請求項7記載の付加硬化型シリコーン組成物。
Addition-curable silicone composition is
(I) an alkenyl group-containing organopolysiloxane,
(Ii) organohydrogenpolysiloxane,
(Iii) The addition-curable silicone composition according to claim 7, further comprising a platinum group metal catalyst.
更に蛍光体を含有することを特徴とする請求項7又は8記載の付加硬化型シリコーン組成物。   The addition-curable silicone composition according to claim 7 or 8, further comprising a phosphor. 請求項7〜9のいずれか1項記載の付加硬化型シリコーン組成物の硬化物で封止したことを特徴とする発光半導体装置。   A light-emitting semiconductor device sealed with a cured product of the addition-curable silicone composition according to any one of claims 7 to 9.
JP2012271133A 2012-12-12 2012-12-12 Addition-curing silicone composition Active JP6016107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012271133A JP6016107B2 (en) 2012-12-12 2012-12-12 Addition-curing silicone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271133A JP6016107B2 (en) 2012-12-12 2012-12-12 Addition-curing silicone composition

Publications (2)

Publication Number Publication Date
JP2014114194A true JP2014114194A (en) 2014-06-26
JP6016107B2 JP6016107B2 (en) 2016-10-26

Family

ID=51170615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271133A Active JP6016107B2 (en) 2012-12-12 2012-12-12 Addition-curing silicone composition

Country Status (1)

Country Link
JP (1) JP6016107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111098A1 (en) * 2015-12-25 2017-06-29 旭硝子株式会社 Surface-modified metal oxide particles, production method, dispersion, curable composition, and cured product
JP2018062667A (en) * 2017-12-26 2018-04-19 第一工業製薬株式会社 Production method of silicone resin composition for optical semiconductor and production method of cured product of the composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393605A (en) * 1989-09-01 1991-04-18 Asahi Glass Co Ltd Improvement of flowability of metal oxide film powder
JPH0431312A (en) * 1990-05-25 1992-02-03 Mitsubishi Materials Corp Hydrophobic alumina
JPH0545926A (en) * 1991-02-15 1993-02-26 Mitsubishi Materials Corp Electrophotographic developer
JPH10133416A (en) * 1996-09-06 1998-05-22 Dainippon Ink & Chem Inc Electrophotographic spherical negative polarity toner
JP2007299981A (en) * 2006-05-01 2007-11-15 Sumitomo Osaka Cement Co Ltd Light emitting element, sealing composition thereof, and optical semiconductor device
JP2009063992A (en) * 2007-04-26 2009-03-26 Kao Corp Method for manufacturing toner for electrophotography
JP2009120437A (en) * 2007-11-14 2009-06-04 Niigata Univ Siloxane-grafted silica, highly transparent silicone composition, and light-emitting semiconductor device sealed with the composition
JP2009173757A (en) * 2008-01-23 2009-08-06 Sumitomo Osaka Cement Co Ltd Zirconia-containing silicone resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393605A (en) * 1989-09-01 1991-04-18 Asahi Glass Co Ltd Improvement of flowability of metal oxide film powder
JPH0431312A (en) * 1990-05-25 1992-02-03 Mitsubishi Materials Corp Hydrophobic alumina
JPH0545926A (en) * 1991-02-15 1993-02-26 Mitsubishi Materials Corp Electrophotographic developer
JPH10133416A (en) * 1996-09-06 1998-05-22 Dainippon Ink & Chem Inc Electrophotographic spherical negative polarity toner
JP2007299981A (en) * 2006-05-01 2007-11-15 Sumitomo Osaka Cement Co Ltd Light emitting element, sealing composition thereof, and optical semiconductor device
JP2009063992A (en) * 2007-04-26 2009-03-26 Kao Corp Method for manufacturing toner for electrophotography
JP2009120437A (en) * 2007-11-14 2009-06-04 Niigata Univ Siloxane-grafted silica, highly transparent silicone composition, and light-emitting semiconductor device sealed with the composition
JP2009173757A (en) * 2008-01-23 2009-08-06 Sumitomo Osaka Cement Co Ltd Zirconia-containing silicone resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111098A1 (en) * 2015-12-25 2017-06-29 旭硝子株式会社 Surface-modified metal oxide particles, production method, dispersion, curable composition, and cured product
CN108463434A (en) * 2015-12-25 2018-08-28 旭硝子株式会社 Surface modification metal oxide particle, manufacturing method, dispersion liquid, solidification compound and solidfied material
US10745508B2 (en) 2015-12-25 2020-08-18 AGC Inc. Surface-modified metal oxide particles, production method, dispersion liquid, curable composition, and cured product
JP7094107B2 (en) 2015-12-25 2022-07-01 Agc株式会社 Surface-modified metal oxide particles, manufacturing method, dispersion, curable composition and cured product
JP2018062667A (en) * 2017-12-26 2018-04-19 第一工業製薬株式会社 Production method of silicone resin composition for optical semiconductor and production method of cured product of the composition

Also Published As

Publication number Publication date
JP6016107B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
EP1767580B1 (en) Addition curing silicone composition capable of producing a cured product with excellent crack resistance
EP2060537B1 (en) Siloxane-grafted silica, transparent silicone composition, and optoelectronic device encapsulated therewith
CN108795053B (en) Addition-curable silicone composition, method for producing same, silicone cured product, and optical element
JPWO2006077667A1 (en) Silicone composition for sealing light emitting device and light emitting device
JP6389145B2 (en) Addition-curing silicone resin composition and semiconductor device
JP5643009B2 (en) Optical device using organopolysiloxane composition
JP7055255B1 (en) Method for Producing Thermally Conductive Silicone Composition
JP2017031141A (en) Hydrosilyl group-containing organopolysiloxane, method for producing the same and addition-curable silicone composition
JP2012180513A (en) Polyhedral structure polysiloxane modified body, composition containing the modified body, sealant using the composition, and optical device
JP2009024077A (en) Silicone-based composition containing silicone-based polymer particle and method for producing the same
JP2014031436A (en) Curable resin composition, cured product of the same, and optical semiconductor device using the cured product
JP5601481B2 (en) Highly transparent silicone composition and light-emitting semiconductor device sealed with the composition
TW201932540A (en) Curable silicone compositions
JP2016204426A (en) Addition curing type silicone composition and semiconductor device
JP5749543B2 (en) Thermosetting resin composition tablet and semiconductor package using the same
JP6016107B2 (en) Addition-curing silicone composition
JP2009263401A (en) Silicone-based composition containing silicone-based polymer particle, and method for producing the same
CN114466904A (en) Heat-conductive silicone composition and method for producing same
JP2022042170A (en) Thermosetting silicone composition
JP7042125B2 (en) Curable resin composition, cured product using the resin composition, encapsulant and optical semiconductor device
JP2015010132A (en) Curable resin composition and cured product obtained by curing the same
JP7390962B2 (en) Curable organosilicon resin composition
JP5996858B2 (en) Image sensor using organopolysiloxane composition
JP2017114963A (en) Addition-curable resin composition and semiconductor device
KR20200024719A (en) Addition-curable silicone composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160915

R150 Certificate of patent or registration of utility model

Ref document number: 6016107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250