JP2014103080A - Energy-saving controller - Google Patents

Energy-saving controller Download PDF

Info

Publication number
JP2014103080A
JP2014103080A JP2012256407A JP2012256407A JP2014103080A JP 2014103080 A JP2014103080 A JP 2014103080A JP 2012256407 A JP2012256407 A JP 2012256407A JP 2012256407 A JP2012256407 A JP 2012256407A JP 2014103080 A JP2014103080 A JP 2014103080A
Authority
JP
Japan
Prior art keywords
unit
power consumption
shielding
light
solar radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012256407A
Other languages
Japanese (ja)
Inventor
Natsuko Shioda
奈津子 塩田
Toshihito Kido
稔人 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012256407A priority Critical patent/JP2014103080A/en
Publication of JP2014103080A publication Critical patent/JP2014103080A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly acquire necessary power consumption regarding illumination and air conditioning in spite of a climate change, thereby achieving energy-saving according to climate with high accuracy.SOLUTION: An energy-saving controller 1 is provided with a shield control unit 8. The shield control unit 8 controls a solar radiation shield unit 2 so that is achieved a shield state corresponding to a sum, which is the minimum of sums, of the power consumption of an illumination unit 3 and the power consumption of an air conditioning unit 4 in each of a plurality of shield states of the solar radiation shield unit 2, the power consumption of the illumination unit 3 being needed for an indoor illuminance to be changed to a set illuminance and determined according to the luminous energy of detected visible radiation and the shield state, and the power consumption of the air conditioning unit 4 being needed for an indoor temperature to be changed to a set temperature and determined according to a detected temperature, the luminous energy of detected infrared radiation, and the shield state.

Description

本発明は、室内の消費電力の最小化を図る省エネルギー制御装置に関するものである。   The present invention relates to an energy saving control device for minimizing indoor power consumption.

近年、省エネルギー対策のため、窓ガラスの面積を広く取って室内に太陽光を多く取り込み、室内照明の点灯時間を削減する建物が増えている。しかし、このような建物では、窓ガラスの面積が増えることにより、室内に取り込まれる赤外線の量も増え、これが室温上昇につながる。室内に取り込まれる赤外線の量を制御すべく、窓ガラスの内側(室内側)にブラインドを設ける手法があるが、この場合は、照明と空調の消費電力が最小となるようにブラインドを制御することが望まれる。   In recent years, as an energy saving measure, an increasing number of buildings take a large area of the window glass, take in a lot of sunlight into the room, and reduce the lighting time of the room lighting. However, in such buildings, as the area of the window glass increases, the amount of infrared rays taken into the room also increases, which leads to an increase in room temperature. In order to control the amount of infrared rays taken into the room, there is a method of installing a blind inside the window glass (inside the room). In this case, control the blind so that the power consumption of lighting and air conditioning is minimized. Is desired.

この点、例えば特許文献1では、日射量検出器にて日射量を検出しながら、照明消費エネルギーと空調消費エネルギーとの和が最小となるように、ブラインドの開閉を制御している。より詳しくは、ブラインド開の初期状態から、日射量が増加していない場合は、ブラインドを開状態で維持し、日射量が増加している場合は、ブラインドを開状態と閉状態との間の中間状態に設定する。そして、照明消費エネルギーと空調消費エネルギーとの和が、ブラインド開状態のときよりも減少していなければ、ブラインドを開状態に戻し、ブラインド開状態のときよりも減少していれば、ブラインドを閉状態に設定する。その後、照明消費エネルギーと空調消費エネルギーとの和が、ブラインド中間状態のときよりも減少していなければ、ブラインドを中間状態に戻し、ブラインド中間状態のときよりも減少していれば、ブラインドを閉状態に維持する。   In this regard, for example, in Patent Document 1, the opening / closing of the blind is controlled so that the sum of the illumination energy consumption and the air conditioning consumption energy is minimized while detecting the amount of solar radiation with a solar radiation amount detector. More specifically, when the amount of solar radiation has not increased from the initial state of blind opening, the blind is maintained in the open state, and when the amount of solar radiation has increased, the blind is between the open state and the closed state. Set to an intermediate state. If the sum of the energy consumed by lighting and the energy consumed by air conditioning is not reduced compared to when the blind is open, the blind is returned to the open state, and if it is less than when the blind is open, the blind is closed. Set to state. After that, if the sum of lighting energy consumption and air-conditioning energy consumption is not decreased compared to the blind intermediate state, the blind is returned to the intermediate state, and if it is decreased compared to the blind intermediate state, the blind is closed. Maintain state.

一般に、日射量とは、太陽からの放射エネルギー量を言う。日射量検出器(日射計)では、300nm〜3000nmの波長域における日射量を測定するが、室内に入射する太陽光の波長分布、すなわち分光放射照度(単位波長あたりの照射量)までは測定しない。   In general, the amount of solar radiation refers to the amount of radiant energy from the sun. The solar radiation detector (irradiometer) measures the amount of solar radiation in the wavelength range of 300 nm to 3000 nm, but does not measure the wavelength distribution of sunlight incident into the room, that is, the spectral irradiance (irradiation amount per unit wavelength). .

特開平7−127897号公報(請求項1、段落〔0027〕〜〔0039〕、図1、図2等参照)Japanese Patent Laid-Open No. 7-127897 (refer to claim 1, paragraphs [0027] to [0039], FIG. 1, FIG. 2, etc.)

ところで、図15は、室内に入射する太陽光の分光放射照度を、晴れの日と曇りの日とのそれぞれについて示しており、図16は、晴れの日の最大分光放射照度を基準にして、曇りの日の分光放射照度を正規化(規格化)して示したものである。このように、室内に入射する太陽光の分光放射照度は天候によって変動し、晴れの日と曇りの日とでは、室内に入射する可視光(例えば波長0.4μm〜0.7μmの光)の光量および赤外光(例えば波長0.7μm〜1.8μmの光)の光量がそれぞれ異なる。また、分光放射照度が最大となる波長は、晴れの日の場合と曇りの日の場合とでほぼ同じであるが、上記波長よりも長波長側では、晴れの日に比べて曇りの日のほうが、分光放射照度の減少の仕方が急である。   Incidentally, FIG. 15 shows the spectral irradiance of sunlight incident on the room for each of a sunny day and a cloudy day, and FIG. 16 is based on the maximum spectral irradiance on a sunny day. The spectral irradiance on a cloudy day is normalized (standardized). As described above, the spectral irradiance of sunlight incident on the room varies depending on the weather. On a sunny day and a cloudy day, visible light (for example, light having a wavelength of 0.4 μm to 0.7 μm) incident on the room The amount of light and the amount of infrared light (for example, light having a wavelength of 0.7 μm to 1.8 μm) are different. The wavelength at which the spectral irradiance is maximum is almost the same on a sunny day and on a cloudy day, but on a longer wavelength side than the above wavelength, it is a cloudy day compared to a sunny day. However, the method of decreasing the spectral irradiance is more rapid.

可視光の光量は、室内の明るさ(照度)に関連し、可視光の光量が多くなると(例えば晴れの日の場合)、室内の照度を設定照度にするのに必要な照明の消費電力は少なくなり、可視光の光量が少なくなると(例えば曇りの日の場合)、室内の照度を設定照度にするのに必要な照明の消費電力は多くなる。一方、赤外光の光量は、室内の空調(温度)に関連し、赤外光の光量が多くなると(例えば夏場で晴れの場合)、室内の温度を設定温度にするのに必要な空調の消費電力は多くなり、赤外光の光量が少なくなると(例えば夏場で曇りの日の場合)、室内の温度を設定温度にするのに必要な空調の消費電力は少なくなる。   The amount of visible light is related to the brightness (illuminance) of the room. When the amount of visible light increases (for example, on a sunny day), the power consumption of the illumination required to set the room illuminance to the set illuminance is When the amount of visible light decreases and the amount of visible light decreases (for example, on a cloudy day), the power consumption of illumination necessary to set the room illuminance to the set illuminance increases. On the other hand, the amount of infrared light is related to indoor air conditioning (temperature). When the amount of infrared light increases (for example, when it is sunny in summer), the amount of air conditioning required to bring the indoor temperature to the set temperature. When the power consumption increases and the amount of infrared light decreases (for example, on a cloudy day in summer), the power consumption of the air conditioning required to bring the room temperature to the set temperature decreases.

このように可視光および赤外光の各光量が天候によって変動すると、室内の照度を設定照度にするのに必要な照明の消費電力や、室内の温度を設定温度にするのに必要な空調の消費電力も変動する。しかし、従来のように、日射量の測定だけでは、室内の照度に関連する可視光の光量や、室内の温度に関連する赤外光の光量は不明であるため、天候が変動しても(可視光および赤外光の各光量が変動しても)、照明や空調に関して必要な消費電力を正確に取得することができず、省エネルギー化を天候に応じて精度よく図ることができないという問題が生ずる。   When the amount of visible light and infrared light varies depending on the weather in this way, the power consumption of the lighting required to set the room illuminance to the set illuminance and the air conditioning required to set the room temperature to the set temperature. Power consumption also varies. However, since the amount of visible light related to the illuminance in the room and the amount of infrared light related to the room temperature are unknown only by measuring the amount of solar radiation as in the past, even if the weather fluctuates ( (Even if the amount of light of each of visible light and infrared light fluctuates), it is impossible to accurately acquire the power consumption required for lighting and air conditioning, and energy saving cannot be achieved accurately according to the weather. Arise.

なお、空調の消費電力は、設定温度のほかに現在の室温によっても変わってくるため、省エネルギー化を図る上では、この点も考慮する必要がある。   In addition, since the power consumption of an air conditioning changes also with the present room temperature besides setting temperature, in order to attain energy saving, it is necessary to consider this point.

本発明は、上記の問題点を解決するためになされたもので、その目的は、天候が変動しても、照明や空調に関して必要な消費電力を正確に取得することができ、省エネルギー化を天候に応じて精度よく図ることができる省エネルギー制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems. The purpose of the present invention is to accurately acquire power consumption necessary for lighting and air conditioning even when the weather fluctuates, and to save energy. It is an object of the present invention to provide an energy-saving control device that can be accurately performed according to the above.

本発明に係る省エネルギー制御装置は、室内の消費電力の最小化を図る省エネルギー制御装置であって、室内の照度を設定照度に制御する照明部と、室内の温度を設定温度に制御する空気調和部と、室内の温度を検出する温度検出部と、放射される太陽光に含まれる可視光および赤外光の各光量を検出する光量検出部と、室内への日射の遮蔽状態を複数段階で調整する日射遮蔽部と、前記日射遮蔽部を制御する遮蔽制御部とを備え、前記遮蔽制御部は、前記日射遮蔽部の複数の遮蔽状態のそれぞれにおける前記照明部の消費電力と前記空気調和部の消費電力との和であって、検出された可視光の光量と日射の遮蔽状態とに応じて決まる、室内の照度を前記設定照度まで変化させるのに必要な前記照明部の消費電力と、検出された温度、検出された赤外光の光量および日射の遮蔽状態に応じて決まる、室内の温度を前記設定温度まで変化させるのに必要な前記空気調和部の消費電力との和のうち、最小となる和に対応する遮蔽状態に前記日射遮蔽部を制御することを特徴としている。   An energy-saving control device according to the present invention is an energy-saving control device that minimizes indoor power consumption, and includes an illumination unit that controls indoor illuminance to a set illuminance, and an air conditioning unit that controls indoor temperature to a set temperature. And a temperature detection unit that detects the temperature of the room, a light amount detection unit that detects each light amount of visible light and infrared light contained in the emitted sunlight, and the indoor solar radiation shielding state are adjusted in multiple stages And a shielding control unit that controls the solar shielding unit, wherein the shielding control unit includes power consumption of the illumination unit and the air conditioning unit in each of a plurality of shielding states of the solar radiation shielding unit. The power consumption of the illumination unit, which is the sum of the power consumption and is required to change the illuminance in the room to the set illuminance, which is determined according to the detected amount of visible light and the shielding state of solar radiation, and detection Temperature detected Corresponding to the minimum sum among the sums of the power consumption of the air conditioning unit required to change the indoor temperature to the set temperature, which is determined according to the amount of infrared light and the shielding state of solar radiation. The solar radiation shielding part is controlled to be in a shielding state.

上記の構成によれば、遮蔽制御部により、複数の遮蔽状態(例えば開状態、閉状態)のそれぞれにおける照明部の消費電力と空気調和部の消費電力との和のうち、最小となる和に対応する遮蔽状態に日射遮蔽部が制御される。このとき、光量検出部および温度検出部により、現在の可視光と赤外光の各光量および現在の室内の温度を検出し、これらに応じた照明部および空気調和部の各消費電力を取得するので、天候が変動して可視光や赤外光の各光量が変動しても、その都度、照明部および空気調和部の必要な消費電力を正確に取得することができる。その結果、室内の省エネルギー化を天候に応じて精度よく図ることができる。   According to the above configuration, the shielding control unit reduces the sum of the power consumption of the illumination unit and the power consumption of the air conditioning unit in each of a plurality of shielding states (for example, an open state and a closed state) to a minimum sum. The solar shading unit is controlled to the corresponding shielding state. At this time, the current light amount of the visible light and the infrared light and the current indoor temperature are detected by the light amount detection unit and the temperature detection unit, and the power consumption of the illumination unit and the air conditioning unit corresponding to these is obtained. Therefore, even if the weather changes and the light amounts of visible light and infrared light fluctuate, the necessary power consumption of the illumination unit and the air conditioning unit can be accurately acquired each time. As a result, energy saving in the room can be accurately achieved according to the weather.

前記遮蔽制御部は、室内の照度を前記設定照度にするのに必要な前記照明部の消費電力を、可視光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶するとともに、室内の温度を前記設定温度にするのに必要な前記空調部の消費電力を、室内の温度の複数種類、赤外光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶する記憶部と、前記記憶部から、検出された可視光の光量に応じた前記照明部の消費電力を、前記日射遮蔽部の複数の遮蔽状態のそれぞれについて抽出するとともに、検出された温度および検出された赤外光の光量に応じた前記空気調和部の消費電力を、前記日射遮蔽部の複数の遮蔽状態のそれぞれについて抽出し、前記日射遮蔽部の複数の遮蔽状態のうち、抽出した前記照明部の消費電力と前記空気調和部の消費電力との和が最小となるような遮蔽状態を選択する遮蔽状態選択部と、選択した遮蔽状態となるように前記日射遮蔽部を制御する制御指示部とを有していてもよい。   The said shielding control part memorize | stores the power consumption of the said illumination part required in order to make indoor illumination intensity into the said setting illumination intensity about each combination of the several types of light quantity of visible light, and the several shielding state of the said solar radiation shielding part. In addition, the power consumption of the air-conditioning unit required to set the indoor temperature to the set temperature is set to each of a plurality of types of indoor temperatures, a plurality of types of light amounts of infrared light, and a plurality of shielding states of the solar radiation shielding unit. The storage unit that stores the combination and the power consumption of the illumination unit corresponding to the detected amount of visible light are extracted from each of the plurality of shielding states of the solar shading unit and detected from the storage unit. The power consumption of the air conditioning unit corresponding to the temperature and the detected amount of infrared light is extracted for each of the plurality of shielding states of the solar radiation shielding unit, and the plurality of shielding states of the solar radiation shielding unit are extracted. In other words, a shielding state selection unit that selects a shielding state that minimizes the sum of the power consumption of the extracted illumination unit and the power consumption of the air conditioning unit, and the solar radiation shielding unit so as to be in the selected shielding state And a control instruction unit for controlling the control.

検出された可視光の光量に応じた照明部の消費電力と、検出された室内の温度および赤外光の光量に応じた空気調和部の消費電力とを、日射遮蔽部の複数の遮蔽状態のそれぞれについて記憶部から抽出し、複数の遮蔽状態のうち、所定の条件(抽出した照明部の消費電力と空気調和部の消費電力との和が最小となる条件)を満足する遮蔽状態を選択して日射遮蔽部を制御する。このように記憶部を用い、検出結果に応じた照明部および空気調和部の各消費電力を抽出するという手法により、照明部および空気調和部の必要な消費電力を天候に応じて正確に取得することが確実に可能となる。   The power consumption of the illumination unit according to the detected light amount of visible light and the power consumption of the air conditioning unit according to the detected indoor temperature and the light amount of infrared light are determined in a plurality of shielding states of the solar radiation shielding unit. Extract each from the storage unit, and select a shielding state that satisfies a predetermined condition (a condition in which the sum of the power consumption of the extracted lighting unit and the power consumption of the air conditioning unit is minimized) from among a plurality of shielding states. To control the solar shading. In this way, by using the storage unit and extracting each power consumption of the illumination unit and the air conditioning unit according to the detection result, the necessary power consumption of the illumination unit and the air conditioning unit is accurately acquired according to the weather. It will be possible.

前記遮蔽制御部は、室内の照度を前記設定照度にするのに必要な前記照明部の消費電力を、可視光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶するとともに、室内の温度を前記設定温度にするのに必要な前記空調部の消費電力を、室内の温度の複数種類、赤外光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶する記憶部と、前記日射遮蔽部の現在の遮蔽状態における前記照明部の消費電力および前記空気調和部の消費電力をそれぞれ検出する消費電力検出部と、前記記憶部から、検出された可視光の光量に応じた前記照明部の消費電力を、前記日射遮蔽部の現在の遮蔽状態とは異なる遮蔽状態について抽出するとともに、検出された温度および検出された赤外光の光量に応じた前記空気調和部の消費電力を、前記日射遮蔽部の現在の遮蔽状態とは異なる遮蔽状態について抽出する抽出部と、前記消費電力検出部にて検出された、前記照明部の消費電力と前記空気調和部の消費電力との和と、前記抽出部にて抽出された、前記照明部の消費電力と前記空気調和部の消費電力との和とのうち、最小となるほうに対応する遮蔽状態を選択する遮蔽状態選択部と、選択した遮蔽状態となるように前記日射遮蔽部を制御する制御指示部とを有していてもよい。   The said shielding control part memorize | stores the power consumption of the said illumination part required in order to make indoor illumination intensity into the said setting illumination intensity about each combination of the several types of light quantity of visible light, and the several shielding state of the said solar radiation shielding part. In addition, the power consumption of the air-conditioning unit required to set the indoor temperature to the set temperature is set to each of a plurality of types of indoor temperatures, a plurality of types of light amounts of infrared light, and a plurality of shielding states of the solar radiation shielding unit. Detected from the storage unit that stores the combination, the power consumption detection unit that detects the power consumption of the illumination unit and the power consumption of the air conditioning unit in the current shielding state of the solar radiation shielding unit, and the storage unit The power consumption of the illumination unit according to the amount of visible light is extracted for a shielding state different from the current shielding state of the solar radiation shielding unit, and the detected temperature and the detected infrared The extraction unit that extracts the power consumption of the air-conditioning unit according to the amount of light for a shielding state different from the current shielding state of the solar radiation shielding unit, and the illumination unit detected by the power consumption detection unit Of the sum of the power consumption and the power consumption of the air conditioning unit, and the sum of the power consumption of the lighting unit and the power consumption of the air conditioning unit extracted by the extraction unit You may have the shielding state selection part which selects the corresponding shielding state, and the control instruction | indication part which controls the said solar radiation shielding part so that it may become the selected shielding state.

照明部の消費電力と空気調和部の消費電力との和として、現在の遮蔽状態で消費電力検出部にて実際に検出された各消費電力の和と、現在の遮蔽状態とは異なる遮蔽状態について記憶部から抽出された各消費電力の和とが比較され、最小となるほうに対応する遮蔽状態が選択され、その遮蔽状態に日射遮蔽部が制御される。このように比較対象の一方が、実際に検出された値(消費電力)の和であるので、どちらが最小であるかの判断をより精度よく行うことができ、省エネルギー制御をより精度よく行うことができる。   About the sum of the power consumption of the lighting unit and the power consumption of the air conditioning unit, the sum of each power consumption actually detected by the power consumption detection unit in the current shielding state, and the shielding state different from the current shielding state The sum of the respective power consumptions extracted from the storage unit is compared, and the shielding state corresponding to the minimum is selected, and the solar radiation shielding unit is controlled to the shielding state. Thus, since one of the comparison targets is the sum of the actually detected values (power consumption), it is possible to more accurately determine which is the smallest and to perform energy saving control more accurately. it can.

前記制御指示部は、前記遮蔽状態選択部にて選択した遮蔽状態に応じて、前記設定照度および前記設定温度の少なくとも一方を調整してもよい。   The control instruction unit may adjust at least one of the set illuminance and the set temperature according to the shielding state selected by the shielding state selection unit.

このようにすることで、照明部および空気調和部の少なくとも一方における消費電力をさらに低減して、室内の省エネルギー化をさらに図ることができる。   By doing in this way, the power consumption in at least one of an illumination part and an air conditioning part can further be reduced, and the indoor energy saving can further be aimed at.

前記光量検出部は、前記可視光を透過させる第1のフィルタと、前記赤外光に含まれる近赤外光を透過させる第2のフィルタと、前記第1のフィルタおよび前記第2のフィルタを透過した光をそれぞれ異なる領域で受光するセンサとを有していてもよい。   The light quantity detection unit includes a first filter that transmits the visible light, a second filter that transmits near-infrared light included in the infrared light, the first filter, and the second filter. You may have the sensor which light-receives the transmitted light in a different area | region, respectively.

第1および第2のフィルタとセンサとを組み合わせることで、可視光の光量と赤外光(近赤外光)の光量とを同時に検出することができる。   By combining the first and second filters and the sensor, the amount of visible light and the amount of infrared light (near infrared light) can be detected simultaneously.

前記第1のフィルタは、人間の目の分光視感効率に対応する分光透過特性を有していることが望ましい。   The first filter preferably has a spectral transmission characteristic corresponding to the spectral luminous efficiency of the human eye.

第1のフィルタは、人間が目で見て最も明るいと感じる波長(例えば555nm付近)の光を最もよく透過するので、第1のフィルタを介してセンサが可視光を受光することで、人間の明るさの感覚に合わせた明るさ(光量)を検出することができる。   The first filter transmits the light of the wavelength that humans feel the brightest to see (for example, near 555 nm), so that the sensor receives visible light through the first filter, so that It is possible to detect the brightness (light quantity) that matches the sense of brightness.

前記第2のフィルタは、透過波長域の異なる複数の領域に分割されており、前記光量検出部は、前記第2のフィルタの各領域を透過した光の光量に基づいて、前記赤外光に含まれる該第2のフィルタの透過波長域外の光の光量を求め、これらの光量の和を前記赤外光の光量として検出する赤外光量算出部をさらに備えていてもよい。   The second filter is divided into a plurality of regions having different transmission wavelength ranges, and the light amount detection unit converts the infrared light into the infrared light based on the amount of light transmitted through each region of the second filter. An infrared light amount calculation unit may be further provided that obtains the light amount outside the transmission wavelength range of the second filter included and detects the sum of these light amounts as the light amount of the infrared light.

第2のフィルタが、近赤外光しか透過しない場合でも、透過波長域の異なる複数の領域で受光した各光量から、赤外光に含まれる残りの波長域の光量を予測することができる。この予測は、各光量を用いた演算によって行ってもよいし、各光量を入力とし、予測値を出力とするテーブルを利用して行ってもよい。このように、第2のフィルタで受光した光(近赤外光)の光量と予測した光量との和を赤外光の光量として検出することで、空気調和部の消費電力をより正確に取得することができる。   Even when the second filter transmits only near-infrared light, it is possible to predict the amount of light in the remaining wavelength region included in the infrared light from each amount of light received in a plurality of regions having different transmission wavelength regions. This prediction may be performed by calculation using each light quantity, or may be performed using a table having each light quantity as an input and a predicted value as an output. In this manner, the power consumption of the air-conditioning unit can be obtained more accurately by detecting the sum of the light amount received by the second filter (near infrared light) and the predicted light amount as the light amount of infrared light. can do.

本発明によれば、可視光および赤外光の各光量を検出するとともに、室内の温度を検出し、照明部および空気調和部の必要な消費電力として、上記の検出結果に応じた消費電力を取得するので、天候が変動して可視光や赤外光の各光量が変動しても、その都度、照明部および空気調和部の必要な消費電力を正確に取得することができ、省エネルギー化を天候に応じて精度よく図ることができる。   According to the present invention, the light amounts of visible light and infrared light are detected, the temperature of the room is detected, and the power consumption according to the detection result is obtained as necessary power consumption of the illumination unit and the air conditioning unit. Therefore, even if the weather changes and each light quantity of visible light and infrared light fluctuates, the required power consumption of the lighting unit and air conditioning unit can be obtained accurately each time, saving energy. It can be done accurately according to the weather.

本発明の実施の一形態に係る省エネルギー制御装置の概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the energy saving control apparatus which concerns on one Embodiment of this invention. 上記省エネルギー制御装置が備える光量検出部の一構成例を示す平面図である。It is a top view which shows one structural example of the light quantity detection part with which the said energy saving control apparatus is provided. 人間の目の分光視感効率と、上記光量検出部の第1のフィルタの分光透過特性とを示すグラフである。It is a graph which shows the spectral luminous efficiency of human eyes, and the spectral transmission characteristic of the 1st filter of the said light quantity detection part. 上記省エネルギー制御装置が備える記憶部の記憶内容の一例を示す説明図である。It is explanatory drawing which shows an example of the memory content of the memory | storage part with which the said energy saving control apparatus is provided. 上記省エネルギー制御装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the said energy saving control apparatus. 冬場の晴れの日における複数の時刻での太陽光の分光放射照度を示すグラフである。It is a graph which shows the spectral irradiance of the sunlight in the several time in the clear day of winter. 本発明の他の実施の形態に係る省エネルギー制御装置の概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the energy saving control apparatus which concerns on other embodiment of this invention. 上記省エネルギー制御装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the said energy saving control apparatus. 本発明のさらに他の実施の形態に係る省エネルギー制御装置の概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the energy saving control apparatus which concerns on further another embodiment of this invention. 上記光量検出部の他の構成を示すブロック図である。It is a block diagram which shows the other structure of the said light quantity detection part. 太陽光の分光放射照度と、赤外域のスペクトルの近似式のグラフとを併せて示した説明図である。It is explanatory drawing which showed together the spectral irradiance of sunlight, and the graph of the approximate expression of the spectrum of an infrared region. 上記光量検出部のさらに他の構成を示すブロック図である。It is a block diagram which shows the further another structure of the said light quantity detection part. 上記光量検出部のテーブル記憶部の記憶内容の一例を示す説明図である。It is explanatory drawing which shows an example of the memory content of the table memory | storage part of the said light quantity detection part. 窓ガラスの分光透過特性の一例を示すグラフである。It is a graph which shows an example of the spectral transmission characteristic of a window glass. 室内に入射する太陽光の分光放射照度を、晴れの日と曇りの日とのそれぞれについて示すグラフである。It is a graph which shows the spectral irradiance of the sunlight which enters into a room about each of a clear day and a cloudy day. 晴れの日の最大分光放射照度を基準にして、曇りの日の分光放射照度を正規化して示したグラフである。It is the graph which normalized and showed the spectral irradiance of the cloudy day on the basis of the maximum spectral irradiance of the sunny day.

〔実施の形態1〕
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to the drawings.

図1は、本実施形態の省エネルギー制御装置1の概略の構成を示すブロック図である。省エネルギー制御装置1は、室内の消費電力の最小化を図るものであり、日射遮蔽部2と、照明部3と、空調部4と、制御装置本体5とを備えている。日射遮蔽部2、照明部3および空調部4は、制御装置本体5によって監視または制御される。   FIG. 1 is a block diagram showing a schematic configuration of an energy saving control device 1 of the present embodiment. The energy saving control device 1 is intended to minimize indoor power consumption, and includes a solar radiation shielding unit 2, an illumination unit 3, an air conditioning unit 4, and a control device main body 5. The solar radiation shielding unit 2, the illumination unit 3, and the air conditioning unit 4 are monitored or controlled by the control device body 5.

日射遮蔽部2は、室内への日射の遮蔽状態を複数段階で調整するものであり、例えば外部からの信号に基づいて開閉角度が制御されるブラインド(電動ブラインドを含む)で構成されている。日射遮蔽部2の遮蔽状態としては、ここでは説明の理解がしやすいように、太陽光を室内に取り込む開状態および太陽光を遮断する閉状態の2段階を考える。なお、日射遮蔽部2は、透過率を変更することが可能な窓であってもよい。   The solar radiation shielding unit 2 adjusts the indoor solar radiation shielding state in a plurality of stages. For example, the solar radiation shielding unit 2 includes a blind (including an electric blind) whose opening / closing angle is controlled based on a signal from the outside. As the shielding state of the solar radiation shielding unit 2, here, two steps are considered, that is, an open state in which sunlight is taken into the room and a closed state in which sunlight is blocked so that the explanation can be easily understood. The solar shading unit 2 may be a window capable of changing the transmittance.

照明部3は、室内の照度を設定照度に制御するものであり、例えば部屋の天井に設置される照明器具(蛍光灯)を想定することができる。なお、照明部3は、LEDまたは電球を用いた照明器具や、スタンド照明を含んでいてもよい。室内の照度は、机上面のセンサで検出する場合や、机や床で反射された光を天井面に設置のセンサで検出する場合がある。   The illuminating unit 3 controls the illuminance in the room to the set illuminance. For example, a lighting fixture (fluorescent lamp) installed on the ceiling of the room can be assumed. In addition, the illumination part 3 may contain the lighting fixture using LED or a light bulb, and stand illumination. The indoor illuminance may be detected by a sensor on the desk top surface, or the light reflected by the desk or floor may be detected by a sensor installed on the ceiling surface.

空調部4は、室内の温度を設定温度に制御する空気調和部であり、例えば冷暖房装置がこれに相当する。   The air conditioning unit 4 is an air conditioning unit that controls the indoor temperature to a set temperature. For example, the air conditioning unit corresponds to this.

制御装置本体5は、温度検出部6と、光量検出部7と、遮蔽制御部8とを有している。   The control device main body 5 includes a temperature detection unit 6, a light amount detection unit 7, and a shielding control unit 8.

温度検出部6は、室内の温度を検出するものであり、例えば温度センサで構成されている。   The temperature detection unit 6 detects the temperature in the room, and is constituted by a temperature sensor, for example.

光量検出部7は、放射される太陽光に含まれる可視光および赤外光の各光量を検出するものであり、日射遮蔽部2によって太陽光が遮蔽されない場所(例えば日射遮蔽部2よりも窓ガラス側)に位置している。   The light amount detection unit 7 detects each light amount of visible light and infrared light included in the emitted sunlight, and is a place where the sunlight is not shielded by the solar radiation shielding unit 2 (for example, a window that is more open than the solar radiation shielding unit 2). Located on the glass side).

ここで、本明細書では、可視光の波長域は380nm〜770nmとし、赤外光の波長域は770nm〜1mmとする。赤外光は、さらに近赤外光(波長0.77μm〜1.4μm)、中赤外光(波長1.4μm〜5μm)、遠赤外光(波長5μm〜1mm)に分けられる。   Here, in this specification, the wavelength range of visible light is 380 nm to 770 nm, and the wavelength range of infrared light is 770 nm to 1 mm. Infrared light is further divided into near infrared light (wavelength 0.77 μm to 1.4 μm), mid infrared light (wavelength 1.4 μm to 5 μm), and far infrared light (wavelength 5 μm to 1 mm).

図2は、光量検出部7の一構成例を示す平面図である。本実施形態では、光量検出部7は、第1のフィルタ11と、第2のフィルタ12と、センサ13とを有して構成されている。   FIG. 2 is a plan view illustrating a configuration example of the light amount detection unit 7. In the present embodiment, the light quantity detection unit 7 includes a first filter 11, a second filter 12, and a sensor 13.

第1のフィルタ11は、可視光を透過させ、他の波長域の光を遮断するフィルタである。第2のフィルタ12は、赤外光に含まれる近赤外光を透過させ、他の波長域の光を遮断するフィルタであり、透過波長域の異なる複数の領域12a・12bに分割されている。領域12aは、中心波長850nmの光(波長800〜900nm)を透過させ、領域12bは、中心波長1020nmの光(波長900〜1100nm)を透過させる。なお、第2のフィルタ12が複数の領域12a・12bに分割されているのは、第2のフィルタ12の透過波長域外の赤外光の光量を予測するためであるが、その詳細については実施の形態4で説明する。   The first filter 11 is a filter that transmits visible light and blocks light in other wavelength ranges. The second filter 12 is a filter that transmits near-infrared light included in infrared light and blocks light in other wavelength ranges, and is divided into a plurality of regions 12a and 12b having different transmission wavelength ranges. . The region 12a transmits light with a central wavelength of 850 nm (wavelength 800 to 900 nm), and the region 12b transmits light with a central wavelength of 1020 nm (wavelength 900 to 1100 nm). The reason why the second filter 12 is divided into a plurality of regions 12a and 12b is to predict the amount of infrared light outside the transmission wavelength range of the second filter 12, but details thereof are implemented. This will be described in the fourth form.

センサ13は、例えばシリコンフォトダイオードで構成されており、第1のフィルタ11および第2のフィルタ12を透過した光をそれぞれ異なる領域で受光することにより、可視光の光量および赤外光(特に近赤外光)の光量をそれぞれ検出する。センサ13からは、受光した各光量に応じた電気信号が遮蔽制御部8に出力される。   The sensor 13 is composed of, for example, a silicon photodiode. The sensor 13 receives light transmitted through the first filter 11 and the second filter 12 in different regions, thereby allowing the amount of visible light and infrared light (particularly near light) to be detected. Infrared light) is detected. From the sensor 13, an electrical signal corresponding to each received light amount is output to the shielding control unit 8.

このように、第1のフィルタ11と、第2のフィルタ12と、センサ13とを組み合わせることで、可視光の光量と赤外光(近赤外光)の光量とを同時に検出することができる。   Thus, by combining the first filter 11, the second filter 12, and the sensor 13, the amount of visible light and the amount of infrared light (near infrared light) can be detected simultaneously. .

図3は、人間の目の分光視感効率と、第1のフィルタ11の分光透過特性とを示すグラフである。同図に示すように、第1のフィルタ11は、人間の目の分光視感効率に対応する分光透過特性を有している。ここで、分光視感効率は、比視感度とも言い、エネルギーが同じ場合の最大感度(通常は1)に対する波長ごとの感度の比率(相対値)のことを指す。なお、人間は、目というセンサによって周囲の明暗を感じ、目は、可視域の各波長成分を含む光に対して応答する光検出器と見ることができることから、その波長応答特性を分光視感効率と言うこともできる。明るさの感覚は、人間の目が受ける光の波長によって異なり、黄色や緑色の光は、同じ強さの赤色や青色の光より明るく感じる。つまり、人間が最も明るく感じる光は、波長555nm付近の黄緑系の光である。   FIG. 3 is a graph showing the spectral luminous efficiency of the human eye and the spectral transmission characteristics of the first filter 11. As shown in the figure, the first filter 11 has a spectral transmission characteristic corresponding to the spectral luminous efficiency of the human eye. Here, the spectral luminous efficiency is also referred to as specific luminous efficiency, and refers to the ratio (relative value) of the sensitivity for each wavelength with respect to the maximum sensitivity (usually 1) when the energy is the same. Humans can sense the brightness of the surroundings with a sensor called the eye, and the eye can be seen as a photodetector that responds to light containing each wavelength component in the visible range. It can also be called efficiency. The sense of brightness depends on the wavelength of light received by the human eye, and yellow and green light feel brighter than red and blue light of the same intensity. That is, the light that human beings feel most bright is yellowish green light having a wavelength of around 555 nm.

このように、第1のフィルタ11が、人間の目の分光視感効率に対応する分光透過特性を有しており、人間が目で見て最も明るいと感じる波長(555nm付近)の光を最も多く透過させる。したがって、第1のフィルタ11を介してセンサ13が可視光を受光することにより、センサ13にて、人間の明るさの感覚に合わせた明るさ(光量)を検出することができる。なお、第1のフィルタ11を、R(赤)、G(緑)、B(青)の各色光をそれぞれ透過させるフィルタで構成し、センサ13にてRGBの各色光の光量をもとに明るさ算出を行ってもよい。   As described above, the first filter 11 has spectral transmission characteristics corresponding to the spectral luminous efficiency of the human eye, and the light with the wavelength (near 555 nm) that the human eye feels the brightest is the most. Make it transparent. Therefore, when the sensor 13 receives visible light through the first filter 11, the sensor 13 can detect the brightness (light quantity) that matches the sense of human brightness. The first filter 11 is configured by a filter that transmits light of each color of R (red), G (green), and B (blue), and is brightened by the sensor 13 based on the amount of light of each color of RGB. Calculation may be performed.

次に、遮蔽制御部8について説明する。遮蔽制御部8は、日射遮蔽部2の複数の遮蔽状態(開状態、閉状態)のそれぞれにおける照明部3の消費電力と空調部4の消費電力との和のうち、最小となる和に対応する遮蔽状態に日射遮蔽部2を制御する。このような遮蔽制御部8は、図1に示すように、記憶部21と、遮蔽状態選択部22と、制御指示部23とを有して構成されている。   Next, the shielding control unit 8 will be described. The shielding control unit 8 corresponds to the minimum sum among the sum of the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in each of the plurality of shielding states (open state, closed state) of the solar radiation shielding unit 2. The solar radiation shielding part 2 is controlled to the shielding state to be performed. As shown in FIG. 1, the shielding control unit 8 has a storage unit 21, a shielding state selection unit 22, and a control instruction unit 23.

記憶部21は、室内の照度を設定照度にするのに必要な照明部3の消費電力を、可視光の光量の複数種類および日射遮蔽部2の複数の遮蔽状態の各組み合わせについて記憶するとともに、室内の温度を設定温度にするのに必要な空調部4の消費電力を、室内の温度の複数種類、赤外光の光量の複数種類および日射遮蔽部2の複数の遮蔽状態の各組み合わせについて記憶するメモリ(消費電力記憶部)である。このような記憶部21は、例えば不揮発性メモリ(ハードディスク、光ディスク、半導体メモリなどを含む)で構成されている。   The storage unit 21 stores the power consumption of the illumination unit 3 necessary for setting the illuminance in the room to the set illuminance for each combination of a plurality of types of light amounts of visible light and a plurality of shielding states of the solar radiation shielding unit 2. The power consumption of the air conditioning unit 4 necessary for setting the indoor temperature to the set temperature is stored for each combination of a plurality of types of indoor temperatures, a plurality of types of infrared light amounts, and a plurality of shielding states of the solar radiation shielding unit 2. Memory (power consumption storage unit). Such a storage unit 21 is configured by, for example, a nonvolatile memory (including a hard disk, an optical disk, a semiconductor memory, and the like).

図4は、記憶部21の記憶内容の一例を示している。このように、記憶部21には、室内の温度(室温)、可視光量、赤外光量、遮蔽状態、設定温度、設定照度の各組み合わせについて、必要な照明部3の消費電力および空調部4の消費電力が予め記憶されている。なお、図4で空欄となっている箇所にも、実際には、室温等に関する情報が埋められているものとする。また、可視光量および赤外光量については、ある値を基準とした相対的な値でそれぞれ示している。   FIG. 4 shows an example of the contents stored in the storage unit 21. As described above, the storage unit 21 includes the necessary power consumption of the illumination unit 3 and the air conditioning unit 4 for each combination of indoor temperature (room temperature), visible light amount, infrared light amount, shielding state, set temperature, and set illuminance. The power consumption is stored in advance. In addition, it is assumed that information regarding room temperature and the like is actually filled in a blank area in FIG. Further, the visible light amount and the infrared light amount are shown as relative values based on a certain value.

遮蔽状態選択部22は、記憶部21から、光量検出部7にて検出された可視光の光量に応じた照明部3の消費電力を、日射遮蔽部2の複数の遮蔽状態のそれぞれについて抽出するとともに、温度検出部6にて検出された温度および光量検出部7にて検出された赤外光の光量に応じた空気調和部4の消費電力を、日射遮蔽部2の複数の遮蔽状態のそれぞれについて抽出する。そして、遮蔽状態選択部22は、日射遮蔽部2の複数の遮蔽状態のうち、抽出した照明部3の消費電力と空気調和部4の消費電力との和が最小となるような遮蔽状態を選択する。制御指示部23は、遮蔽状態選択部22にて選択した遮蔽状態となるように、日射遮蔽部2を制御する。なお、遮蔽状態選択部22および制御指示部23は、例えばCPU(Central Processing Unit )として一体的に構成されていてもよいし、別々のCPUで構成されていてもよい。   The shielding state selection unit 22 extracts the power consumption of the illumination unit 3 corresponding to the amount of visible light detected by the light amount detection unit 7 for each of the plurality of shielding states of the solar radiation shielding unit 2 from the storage unit 21. In addition, the power consumption of the air conditioning unit 4 according to the temperature detected by the temperature detection unit 6 and the amount of infrared light detected by the light amount detection unit 7 is determined for each of the plurality of shielding states of the solar radiation shielding unit 2. Extract about. And the shielding state selection part 22 selects the shielding state from which the sum of the power consumption of the extracted illumination part 3 and the power consumption of the air conditioning part 4 becomes the minimum among the several shielding states of the solar radiation shielding part 2. To do. The control instruction unit 23 controls the solar radiation shielding unit 2 so as to be in the shielding state selected by the shielding state selection unit 22. In addition, the shielding state selection part 22 and the control instruction | indication part 23 may be comprised integrally as CPU (Central Processing Unit), for example, and may be comprised by separate CPU.

次に、本実施形態の省エネルギー制御装置1の動作について説明する。図5は、本実施形態の省エネルギー制御装置1の動作の流れを示すフローチャートである。まず、省エネルギー制御装置1の電源(主電源)がONされると(S1)、温度検出部6は、現在の室内の温度を検出し、光量検出部7は、放射される太陽光に含まれる可視光および赤外光の各光量を検出する(S2)。そして、遮蔽状態選択部22は、記憶部21から、S2にて検出された可視光の光量に応じた照明部3の消費電力を、日射遮蔽部2の開状態、閉状態のそれぞれについて抽出するとともに、S2にて検出された温度および検出された赤外光の光量に応じた空気調和部4の消費電力を、日射遮蔽部2の開状態、閉状態のそれぞれについて抽出する(S3)。   Next, operation | movement of the energy saving control apparatus 1 of this embodiment is demonstrated. FIG. 5 is a flowchart showing a flow of operations of the energy saving control device 1 of the present embodiment. First, when the power source (main power source) of the energy saving control device 1 is turned on (S1), the temperature detection unit 6 detects the current indoor temperature, and the light amount detection unit 7 is included in the emitted sunlight. Each light quantity of visible light and infrared light is detected (S2). And the shielding state selection part 22 extracts the power consumption of the illumination part 3 according to the light quantity of the visible light detected in S2 from the memory | storage part 21 about each of the open state of the solar radiation shielding part 2, and a closed state. At the same time, the power consumption of the air conditioning unit 4 corresponding to the temperature detected in S2 and the detected amount of infrared light is extracted for each of the open state and the closed state of the solar radiation shielding unit 2 (S3).

続いて、遮蔽状態選択部22は、抽出した、日射遮蔽部2の開状態における照明部3の消費電力と空気調和部4の消費電力との和A1を算出するとともに、抽出した、日射遮蔽部2の閉状態における照明部3の消費電力と空気調和部4の消費電力との和A2を算出する(S4)。そして、遮蔽状態選択部22は、和A1と和A2との大小を比較する(S5)。S5にて、和A2のほうが小さい(最小である)場合には、和A2に対応する遮蔽状態(閉状態)が選択され、制御指示部23によって閉状態となるように日射遮蔽部2の遮蔽状態が制御される(S6)。一方、S5にて、和A1のほうが小さい(最小である)場合には、和A1に対応する遮蔽状態(開状態)が選択され、制御指示部23によって開状態となるように日射遮蔽部2の遮蔽状態が制御される(S7)。   Subsequently, the shielding state selection unit 22 calculates the sum A1 of the extracted power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in the opened state of the solar radiation shielding unit 2, and extracts the solar radiation shielding unit. The sum A2 of the power consumption of the illumination unit 3 in the closed state 2 and the power consumption of the air conditioning unit 4 is calculated (S4). Then, the shielding state selection unit 22 compares the sums A1 and A2 (S5). If the sum A2 is smaller (smallest) in S5, the shielding state (closed state) corresponding to the sum A2 is selected, and the solar radiation shielding unit 2 is shielded by the control instruction unit 23 so as to be in the closed state. The state is controlled (S6). On the other hand, when the sum A1 is smaller (smallest) in S5, the shielding state (open state) corresponding to the sum A1 is selected, and the solar radiation shielding unit 2 is opened by the control instruction unit 23. Is controlled (S7).

例えば、検出された室温、検出された可視光量および赤外光量、設定温度、設定照度に基づき、必要な照明部3の消費電力および空調部4の消費電力として、図4の番号1および2の欄に示される値が抽出されたとき、日射遮蔽部2の開状態における照明部3の消費電力と空気調和部4の消費電力との和A1は9.1kWhであり、日射遮蔽部2の閉状態における照明部3の消費電力と空気調和部4の消費電力との和A2は9.0kWhである。この場合、A1>A2であるため、和A2に対応する閉状態が選択され、開状態となるように日射遮蔽部2が制御される。これにより、照明部3および空調部4を含めた室内の省エネルギー化を図ることができる。   For example, based on the detected room temperature, the detected visible light intensity and infrared light intensity, the set temperature, and the set illuminance, the required power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 are the numbers 1 and 2 in FIG. When the value shown in the column is extracted, the sum A1 of the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in the open state of the solar radiation shielding unit 2 is 9.1 kWh, and the solar radiation shielding unit 2 is closed. The sum A2 of the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in the state is 9.0 kWh. In this case, since A1> A2, the closed state corresponding to the sum A2 is selected, and the solar radiation shielding unit 2 is controlled to be in the open state. Thereby, energy saving in the room including the illumination unit 3 and the air conditioning unit 4 can be achieved.

その後、省エネルギー制御装置1の電源がOFFされるまで、S2以降の動作が繰り返される(S8、S9)。S8にて電源がOFFされない場合、S9にて、S2の温度等の検出から所定時間(例えば30分や1時間)が経過したかどうかが判断され、所定時間が経過している場合はS2に戻る。なお、S9にて所定時間の経過を判断する代わりに、室温がS2での検出時から所定量だけ変化したかを判断するようにしてもよい。   Then, the operation | movement after S2 is repeated until the power supply of the energy saving control apparatus 1 is turned off (S8, S9). If the power is not turned off in S8, it is determined in S9 whether or not a predetermined time (for example, 30 minutes or 1 hour) has elapsed since the detection of the temperature or the like in S2, and if the predetermined time has elapsed, the process proceeds to S2. Return. Instead of determining whether the predetermined time has elapsed in S9, it may be determined whether the room temperature has changed by a predetermined amount from the time of detection in S2.

図6は、冬場の晴れの日における複数の時刻での太陽光の分光放射照度を示している。同図に示すように、同じ日でも、時刻によって、可視光の例えば波長400〜500nm付近における放射照度の変化の仕方が異なり、赤外光の例えば波長800〜900nm付近および950〜1100nm付近における放射照度の変化の仕方が異なる。したがって、S9にて、所定時間経過後に、S2以降の動作を繰り返すことにより、同じ日での時刻の変化(可視光および赤外光の光量変化)に追従した制御を行うことが可能となる。   FIG. 6 shows the spectral irradiance of sunlight at a plurality of times on a sunny day in winter. As shown in the figure, even on the same day, the way of changing the irradiance of visible light, for example, in the vicinity of a wavelength of 400 to 500 nm differs depending on the time, and the radiation of infrared light in the vicinity of a wavelength of, for example, 800-900 nm and 950-1100 nm The way the illuminance changes is different. Therefore, by repeating the operation after S2 after a predetermined time has elapsed in S9, it becomes possible to perform control following the time change (change in the amount of visible light and infrared light) on the same day.

以上のように、遮蔽制御部8は、日射遮蔽部2の開状態、閉状態のそれぞれにおける照明部3の消費電力と空調部4の消費電力との和A1・A2のうち、最小となる和に対応する遮蔽状態に日射遮蔽部2を制御する。図4で示したように、室内の照度を設定照度まで変化させるのに必要な照明部3の消費電力は、可視光の光量と日射遮蔽部2の遮蔽状態とに応じて決まっており、室内の温度を設定温度まで変化させるのに必要な空調部4の消費電力は、室温、赤外光の光量および遮蔽状態に応じて決まっている。   As described above, the shielding control unit 8 is the smallest sum among the sums A1 and A2 of the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in the open state and the closed state of the solar radiation shielding unit 2, respectively. The solar radiation shielding part 2 is controlled to the shielding state corresponding to. As shown in FIG. 4, the power consumption of the illumination unit 3 required to change the illuminance in the room to the set illuminance is determined according to the amount of visible light and the shielding state of the solar shading unit 2, The power consumption of the air-conditioning unit 4 necessary for changing the temperature to the set temperature is determined according to the room temperature, the amount of infrared light, and the shielding state.

したがって、現在の可視光および赤外光の光量、現在の室内の温度を検出し、これらに応じた照明部3および空調部4の各消費電力を取得することにより、天候が変動して可視光や赤外光の各光量が変動しても、その都度、照明部3および空調部4の必要な消費電力を正確に取得することができる。これにより、天候が変動しても、異なる遮蔽状態について得られる和A1と和A2との大小比較を高精度で行うことができ、省エネルギー化を天候に応じて精度よく図ることができる。   Therefore, by detecting the current amount of visible light and infrared light, the current indoor temperature, and acquiring the respective power consumption of the illumination unit 3 and the air conditioning unit 4 according to these, the weather fluctuates and the visible light changes. Even if each light quantity of infrared light fluctuates, the required power consumption of the illumination unit 3 and the air conditioning unit 4 can be obtained accurately each time. Thereby, even if the weather fluctuates, the magnitude comparison between the sum A1 and the sum A2 obtained for different shielding states can be performed with high accuracy, and energy saving can be accurately achieved according to the weather.

また、遮蔽状態選択部22は、光量検出部7にて検出された可視光の光量に応じた照明部3の消費電力と、温度検出部6にて検出された室温および光量検出部7にて検出された赤外光の光量に応じた空調部4の消費電力とを、日射遮蔽部2の開状態、閉状態のそれぞれについて記憶部21から抽出し、開状態および閉状態のうち、抽出した照明部3の消費電力と空調部4の消費電力との和が最小となる遮蔽状態を選択して日射遮蔽部2を制御している。このように記憶部21から、検出結果に応じた照明部3および空調部4の各消費電力を抽出するという手法により、照明部3および空調部4の必要な消費電力を天候に応じて正確に取得することが確実に可能となる。   Further, the shielding state selection unit 22 uses the power consumption of the illumination unit 3 according to the amount of visible light detected by the light amount detection unit 7, the room temperature detected by the temperature detection unit 6, and the light amount detection unit 7. The power consumption of the air-conditioning unit 4 corresponding to the detected amount of infrared light is extracted from the storage unit 21 for each of the open state and the closed state of the solar radiation shielding unit 2, and extracted from the open state and the closed state. The solar radiation shielding unit 2 is controlled by selecting a shielding state in which the sum of the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 is minimized. In this way, by using the method of extracting the power consumption of the illumination unit 3 and the air conditioning unit 4 according to the detection result from the storage unit 21, the required power consumption of the illumination unit 3 and the air conditioning unit 4 can be accurately determined according to the weather. It is definitely possible to obtain it.

〔実施の形態2〕
本発明の他の実施の形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to the drawings.

図7は、本実施形態の省エネルギー制御装置1の概略の構成を示すブロック図である。本実施形態の省エネルギー制御装置1は、実施の形態1の構成において、遮蔽制御部8が消費電力検出部24および抽出部25をさらに備えたものである。   FIG. 7 is a block diagram showing a schematic configuration of the energy saving control device 1 of the present embodiment. In the energy saving control device 1 of the present embodiment, the shielding control unit 8 further includes a power consumption detection unit 24 and an extraction unit 25 in the configuration of the first embodiment.

消費電力検出部24は、日射遮蔽部2の現在の遮蔽状態における照明部3の消費電力および空調部4の消費電力をそれぞれ測定、検出する測定器(検出器)である。つまり、消費電力検出部24は、日射遮蔽部2が開状態、閉状態のいずれかの状態で、そのときに室内の照度を設定照度にするのに必要な照明部3の消費電力を実際に検出するとともに、室内の温度を設定温度にするのに必要な空調部4の消費電力を実際に検出することになる。   The power consumption detection unit 24 is a measuring device (detector) that measures and detects the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in the current shielding state of the solar radiation shielding unit 2. In other words, the power consumption detection unit 24 actually calculates the power consumption of the illumination unit 3 that is required to change the illuminance in the room to the set illuminance when the solar radiation shielding unit 2 is in the open state or the closed state. In addition to the detection, the power consumption of the air-conditioning unit 4 necessary for setting the indoor temperature to the set temperature is actually detected.

抽出部25は、記憶部21から、光量検出部7にて検出された可視光の光量に応じた照明部3の消費電力を、日射遮蔽部2の現在の遮蔽状態とは異なる遮蔽状態について抽出するとともに、温度検出部6にて検出された温度および光量検出部7にて検出された赤外光の光量に応じた空調部4の消費電力を、日射遮蔽部2の現在の遮蔽状態とは異なる遮蔽状態について抽出するものである。なお、抽出部25は、CPUとして遮蔽状態選択部22と一体的に構成されてもよい。   The extraction unit 25 extracts, from the storage unit 21, the power consumption of the illumination unit 3 according to the amount of visible light detected by the light amount detection unit 7 in a shielding state different from the current shielding state of the solar radiation shielding unit 2. In addition, the power consumption of the air conditioning unit 4 according to the temperature detected by the temperature detection unit 6 and the amount of infrared light detected by the light amount detection unit 7 is the current shielding state of the solar radiation shielding unit 2. It extracts for different shielding states. In addition, the extraction part 25 may be comprised integrally with the shielding state selection part 22 as CPU.

なお、日射遮蔽部2の現在の遮蔽状態が開状態か閉状態かを判断するにあたっては、例えば遮蔽状態を検知するセンサを別途設けて、そのセンサからの信号に基づいて判断してもよいし、制御指示部23にて日射遮蔽部2を制御する際に、遮蔽状態に関する情報を別のメモリに記憶させておいて、抽出部21がそのメモリ内の情報を参照することで判断してもよい。   In determining whether the current shielding state of the solar radiation shielding unit 2 is an open state or a closed state, for example, a sensor for detecting the shielding state may be separately provided, and the determination may be made based on a signal from the sensor. When the solar radiation shielding unit 2 is controlled by the control instruction unit 23, information relating to the shielding state is stored in another memory, and the extraction unit 21 makes a judgment by referring to the information in the memory. Good.

図8は、本実施形態の省エネルギー制御装置1の動作の流れを示すフローチャートである。本実施形態では、図5のS3以降が、S11〜S18に置き換わっている。   FIG. 8 is a flowchart showing a flow of operation of the energy saving control device 1 of the present embodiment. In this embodiment, S3 and subsequent steps in FIG. 5 are replaced with S11 to S18.

すなわち、S2の後、消費電力検出部24は、日射遮蔽部2の現在の遮蔽状態における照明部3の消費電力および空調部4の消費電力を検出する(S11)。なお、S11の工程は、S1の後であれば、S2よりも先に行われてもよいし、S2と並行して行われてもよい。   That is, after S2, the power consumption detection unit 24 detects the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 in the current shielding state of the solar radiation shielding unit 2 (S11). Note that the step of S11 may be performed prior to S2 as long as it is after S1, or may be performed in parallel with S2.

次に、抽出部25は、日射遮蔽部2の現在の遮蔽状態が開状態であれば、記憶部21から、検出された可視光および赤外光の光量、検出された室温に応じた、照明部3および空調部4の各消費電力として、閉状態についてのものを抽出し、現在の遮蔽状態が閉状態であれば、照明部3および空調部4の各消費電力として、開状態についてのものを抽出する(S12)。   Next, if the current shielding state of the solar radiation shielding unit 2 is an open state, the extraction unit 25 illuminates the storage unit 21 according to the detected amounts of visible light and infrared light, and the detected room temperature. As the power consumption of the unit 3 and the air conditioning unit 4, those for the closed state are extracted. If the current shielding state is the closed state, the power consumption of the lighting unit 3 and the air conditioning unit 4 is for the open state. Is extracted (S12).

遮蔽状態選択部22は、消費電力検出部24にて検出された、照明部3の消費電力と空調部4の消費電力との和B1と、抽出部25にて抽出された、照明部3の消費電力と空調部4の消費電力との和B2とを算出する(S13)。その後は、実施の形態1と同様の手順が実行される。つまり、遮蔽状態選択部22は、和B1と和B2との大小を比較する(S14)。S14にて、和B2のほうが小さい場合、和B2に対応する遮蔽状態が選択され、制御指示部23により、選択された上記遮蔽状態に日射遮蔽部2が制御される(S15)。一方、S14にて、和B1のほうが小さい場合、和B1に対応する遮蔽状態が選択され、制御指示部23により、選択された上記遮蔽状態に日射遮蔽部2が制御される(S16)。そして、制御装置本体5の電源がOFFされるまで、S2以降の動作が繰り返される(S17、S18)。   The shielding state selection unit 22 detects the sum B1 of the power consumption of the illumination unit 3 and the power consumption of the air conditioning unit 4 detected by the power consumption detection unit 24 and the extraction unit 25 of the illumination unit 3. The sum B2 of the power consumption and the power consumption of the air conditioning unit 4 is calculated (S13). Thereafter, the same procedure as in the first embodiment is executed. That is, the shielding state selection unit 22 compares the sum B1 and the sum B2 (S14). If the sum B2 is smaller in S14, the shielding state corresponding to the sum B2 is selected, and the solar radiation shielding unit 2 is controlled to the selected shielding state by the control instruction unit 23 (S15). On the other hand, when the sum B1 is smaller in S14, the shielding state corresponding to the sum B1 is selected, and the solar radiation shielding unit 2 is controlled to the selected shielding state by the control instruction unit 23 (S16). And the operation | movement after S2 is repeated until the power supply of the control apparatus main body 5 is turned off (S17, S18).

以上のように、本実施形態では、S14にて、現在(最初)の遮蔽状態において、消費電力検出部24で実際に検出された各消費電力の和B1と、現在の遮蔽状態とは異なる遮蔽状態について記憶部21から抽出された各消費電力の和B2とが比較される。このように比較対象の一方が、実際に検出された各消費電力(実測値)の和であるので、どちらが最小であるかの判断をより精度よく行うことができ、省エネルギー制御をより精度よく行うことができる。   As described above, in this embodiment, in S14, in the current (first) shielding state, the sum B1 of each power consumption actually detected by the power consumption detecting unit 24 is different from the current shielding state. The power consumption sum B2 extracted from the storage unit 21 for the state is compared. Thus, since one of the comparison targets is the sum of the actually detected power consumptions (actually measured values), it is possible to more accurately determine which is the minimum and perform energy saving control more accurately. be able to.

〔実施の形態3〕
本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to the drawings.

図9は、本実施形態の省エネルギー制御装置1の概略の構成を示すブロック図である。本実施形態では、実施の形態2の省エネルギー制御装置1において、制御指示部23が、遮蔽状態選択部22にて選択した遮蔽状態に応じて、照明部3の設定照度および空調部4の設定温度の少なくとも一方を調整するようにしている。   FIG. 9 is a block diagram showing a schematic configuration of the energy saving control device 1 of the present embodiment. In the present embodiment, in the energy saving control device 1 of the second embodiment, the control instruction unit 23 sets the set illuminance of the illumination unit 3 and the set temperature of the air conditioning unit 4 according to the shielding state selected by the shielding state selection unit 22. At least one of them is adjusted.

例えば、遮蔽状態選択部22にて選択した遮蔽状態が閉状態である場合、そのような遮蔽状態となるように日射遮蔽部2を制御すると、赤外光が日射遮蔽部2で遮蔽される分、室内の温度上昇が抑制される。この場合、夏場であれば、空調部4の設定温度を少し上げても室内を快適に保つことができる。このように設定温度を上げることで、室内の省エネルギー化をさらに図ることができる。   For example, when the shielding state selected by the shielding state selection unit 22 is a closed state, if the solar radiation shielding unit 2 is controlled to be in such a shielding state, the infrared light is shielded by the solar radiation shielding unit 2. The temperature rise in the room is suppressed. In this case, in the summer, the room can be kept comfortable even if the set temperature of the air conditioning unit 4 is slightly increased. By increasing the set temperature in this way, it is possible to further save energy in the room.

また、遮蔽状態選択部22にて選択した遮蔽状態が開状態である場合、そのような遮蔽状態となるように日射遮蔽部2を制御すると、可視光が日射遮蔽部2を介して室内に取り込まれるため、照明部3の設定照度を少し下げても、室内の明るさが大きく低下することはない。この場合、設定照度を下げることで、室内の省エネルギー化をさらに図ることができる。   Further, when the shielding state selected by the shielding state selection unit 22 is an open state, if the solar radiation shielding unit 2 is controlled so as to be in such a shielding state, visible light is taken into the room via the solar radiation shielding unit 2. Therefore, even if the set illuminance of the illumination unit 3 is slightly reduced, the brightness of the room is not greatly reduced. In this case, it is possible to further save energy in the room by lowering the set illuminance.

また、日射遮蔽部2が開状態のとき、可視光および赤外光の両方も室内に取り込まれるため、冬場であれば、設定照度を少し下げても、室内の明るさが大きく低下することはなく、同時に、設定温度を少し下げても室内を温かく保つことができる。したがって、この場合は、照明部3の設定照度および空調部4の設定温度を両方とも下げて、室内の省エネルギー化をより一層図ることができる。   In addition, when the solar shading unit 2 is in an open state, both visible light and infrared light are taken into the room. Therefore, in winter, even if the set illuminance is slightly reduced, the brightness of the room is greatly reduced. At the same time, the room can be kept warm even if the set temperature is lowered a little. Therefore, in this case, both the set illuminance of the illuminating unit 3 and the set temperature of the air conditioning unit 4 can be lowered to further save energy in the room.

なお、本実施形態のような制御指示部23の制御(遮蔽状態に応じた設定照度や設定温度の調整)は、実施の形態1の構成にも勿論適用することができる。   Of course, the control of the control instruction unit 23 (adjustment of the set illuminance and the set temperature according to the shielding state) as in the present embodiment can also be applied to the configuration of the first embodiment.

〔実施の形態4〕
本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 4]
The following will describe still another embodiment of the present invention with reference to the drawings.

図10は、光量検出部7の他の構成を示すブロック図である。光量検出部7は、図2で示した構成に加えて、赤外光量算出部14をさらに備えている。赤外光量算出部14は、第2のフィルタ12の各領域12a・12bを透過してセンサ13にて受光した各光の光量に基づいて、赤外光に含まれる第2のフィルタ12の透過波長域外の光(例えば中赤外光)の光量を求め(予測し)、これらの光量の和を赤外光の光量として検出する。   FIG. 10 is a block diagram illustrating another configuration of the light amount detection unit 7. The light quantity detection unit 7 further includes an infrared light quantity calculation unit 14 in addition to the configuration shown in FIG. The infrared light amount calculation unit 14 transmits the second filter 12 included in the infrared light based on the light amount of each light transmitted through the respective regions 12 a and 12 b of the second filter 12 and received by the sensor 13. The amount of light outside the wavelength range (for example, mid-infrared light) is obtained (predicted), and the sum of these amounts is detected as the amount of infrared light.

図11は、太陽光の分光放射照度(日射スペクトル)に、赤外域のスペクトルの近似式Fのグラフを併せて示したものである。近似式Fは、y=266.69x-2.5849(x;波長、y;放射照度(光量に相当する)、決定係数R2=0.7133)の関数で示されるが、これは、中心波長850nmおよび1020nmの各光の光量値をもとに得られたものである。 FIG. 11 shows the spectral irradiance (sunlight spectrum) of sunlight together with a graph of the approximate expression F of the spectrum in the infrared region. The approximate expression F is expressed as a function of y = 266.69x −2.5849 (x; wavelength, y; irradiance (corresponding to the amount of light), determination coefficient R 2 = 0.7133), which has a center wavelength of 850 nm. And obtained based on the light quantity value of each light of 1020 nm.

第2のフィルタ12は、前述したように、中心波長850nmおよび1020nmの光を透過させるものであり、赤外光の一部しか透過させない。そこで、赤外光量算出部14は、上記した近似式Fを利用して、第2のフィルタ12の透過波長域外(例えば1.1μm〜2.5μm)の光の光量(面積)を積分によって求め、受光した近赤外光の光量と、積分によって求めた光量との和を、赤外光の光量として検出する。これにより、近赤外光を検出する構成であっても、実際の赤外光の光量に近い値を得ることができ、空気調和部の消費電力をより正確に取得することができる。   As described above, the second filter 12 transmits light having center wavelengths of 850 nm and 1020 nm, and transmits only a part of infrared light. Therefore, the infrared light amount calculation unit 14 obtains the light amount (area) of light outside the transmission wavelength range (for example, 1.1 μm to 2.5 μm) of the second filter 12 by integration using the above approximate expression F. The sum of the received light amount of near infrared light and the light amount obtained by integration is detected as the light amount of infrared light. Thereby, even if it is the structure which detects near-infrared light, the value close | similar to the light quantity of actual infrared light can be obtained, and the power consumption of an air conditioning part can be acquired more correctly.

なお、赤外光の上記光量には、水による吸収領域(波長0.94μm、1.12μm、1.4μm付近)の光量(図11の斜線部の面積)が差し引かれているものとする。ここで、水による赤外光の吸収量は、受光した中心波長850nmおよび1020nmの光の各光量によって異なる。したがって、例えば、赤外光のスペクトルの近似式Fを、近赤外光の受光量に応じて複数用意しておき、その中から適切な近似式Fを選択するようにすれば、水による赤外光の吸収量も考慮して、赤外光の光量をより正確に算出することができる。   It is assumed that the amount of light in the absorption region by water (wavelengths near 0.94 μm, 1.12 μm, and 1.4 μm) (area of the hatched portion in FIG. 11) is subtracted from the above-described amount of infrared light. Here, the amount of infrared light absorbed by water varies depending on the amount of received light having a center wavelength of 850 nm and 1020 nm. Therefore, for example, if a plurality of approximate expressions F of the spectrum of infrared light are prepared in accordance with the amount of received near-infrared light, and an appropriate approximate expression F is selected from among them, red by water The amount of infrared light can be calculated more accurately in consideration of the amount of external light absorbed.

また、図12は、光量検出部7のさらに他の構成を示すブロック図である。光量検出部7は、図10で示した構成に加えて、テーブル記憶部15をさらに備えていてもよい。テーブル記憶部15には、図13に示すように、第2のフィルタ12の各領域12a・12bを透過した光の光量を入力とし、第2のフィルタ12の透過波長域外の赤外光の光量を出力とするデータ表(テーブル)が記憶されている。赤外光量算出部14は、このようなテーブルを参照し、入力値(近赤外光の各光量値)に対応する出力値を求めてこれらを足し合わせることにより、赤外光全体の光量を取得することもできる。   FIG. 12 is a block diagram showing still another configuration of the light amount detection unit 7. The light quantity detection unit 7 may further include a table storage unit 15 in addition to the configuration shown in FIG. As shown in FIG. 13, the table storage unit 15 receives the amount of light transmitted through the regions 12 a and 12 b of the second filter 12, and the amount of infrared light outside the transmission wavelength range of the second filter 12. Is stored as a data table (table). The infrared light amount calculation unit 14 refers to such a table, obtains an output value corresponding to an input value (each light amount value of near infrared light), and adds them to obtain the light amount of the entire infrared light. It can also be acquired.

ところで、図14は、省エネルギー制御装置1が設置される部屋の窓ガラスの分光透過特性の一例を示すグラフである。近年では、赤外光の透過率を下げて冷房効率を高めるようにした窓ガラスも利用されている。このような窓ガラスが設置されている部屋では、窓ガラスを介して室内に入射した太陽光の波長分布が、通常の窓ガラスを介して室内に入射した太陽光の波長分布とは異なるため、近赤外光よりも長波長側の赤外光の光量の予測に影響が生じる。   Incidentally, FIG. 14 is a graph showing an example of the spectral transmission characteristics of the window glass of the room where the energy saving control device 1 is installed. In recent years, a window glass that reduces the transmittance of infrared light to increase the cooling efficiency is also used. In a room where such a window glass is installed, the wavelength distribution of sunlight that enters the room through the window glass is different from the wavelength distribution of sunlight that enters the room through a normal window glass, This affects the prediction of the amount of infrared light longer than near infrared light.

この場合は、室内での近赤外光の検出値(光量値)から窓外での近赤外光の光量値を逆算し、さらに太陽光のスペクトルから中赤外光の光量値を算出し、さらに窓ガラスの分光透過率を掛け合わせて、室内での中赤外光の光量値を算出し、検出した近赤外光の光量と算出した中赤外光の光量との和をとることで、赤外光の光量を算出(取得)することができる。   In this case, the light amount value of the near infrared light outside the window is calculated backward from the detected value (light amount value) of the near infrared light in the room, and the light amount value of the mid infrared light is calculated from the spectrum of sunlight. Furthermore, multiply the spectral transmittance of the window glass to calculate the amount of mid-infrared light in the room, and take the sum of the detected near-infrared light amount and the calculated mid-infrared light amount. Thus, the amount of infrared light can be calculated (acquired).

以上の各実施の形態では、日射遮蔽部2の遮蔽状態が、開状態、閉状態の2段階である例について説明したが、開状態と閉状態との間の中間状態を加えた3段階であってもよく、それ以上の多段階であってもよい。また、究極的には、日射遮蔽部2は遮蔽状態が連続して変化するものであってもよい。これらの場合でも、上述した各実施の形態の省エネルギー制御を行うことができる。   In each of the above-described embodiments, the example in which the shielding state of the solar radiation shielding unit 2 is in two stages of the open state and the closed state has been described, but in three stages including an intermediate state between the open state and the closed state. It may be present or may be multistage beyond that. Ultimately, the solar shading unit 2 may be one in which the shielding state changes continuously. Even in these cases, the energy saving control of each embodiment described above can be performed.

なお、光量検出部7の第2のフィルタ12は、透過波長域の異なる3つ以上の領域に分割されていてもよい。第2のフィルタ12の分割数を増やすことにより、検出される近赤外光の光量値数が増えるので、各光量値から第2のフィルタ12の透過波長域外の光の光量値を算出する際の精度を向上させることができ、赤外光の光量をより正確に算出(取得)することが可能となる。   Note that the second filter 12 of the light amount detection unit 7 may be divided into three or more regions having different transmission wavelength regions. By increasing the number of divisions of the second filter 12, the number of detected near-infrared light amounts increases. And the amount of infrared light can be calculated (acquired) more accurately.

なお、空調部4の消費電力については、室内の温度、赤外光の光量および遮蔽状態に加え、照明による室温上昇や外気温のデータも考慮して設定してもよい。   Note that the power consumption of the air conditioning unit 4 may be set in consideration of room temperature rise due to illumination and data on the outside air temperature in addition to the room temperature, the amount of infrared light, and the shielding state.

本発明は、日射遮蔽部の遮蔽状態を制御して、室内の照明部および空調部のトータルの消費電力を最小に抑える省エネルギー制御装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an energy saving control device that controls the shielding state of the solar radiation shielding unit to minimize the total power consumption of the indoor lighting unit and the air conditioning unit.

1 省エネルギー制御装置
2 日射遮蔽部
3 照明部
4 空調部(空気調和部)
6 温度検出部
7 光量検出部
8 遮蔽制御部
11 第1のフィルタ
12 第2のフィルタ
12a 領域
12b 領域
13 センサ
14 赤外光量算出部
21 記憶部
22 遮蔽状態選択部
23 制御指示部
24 消費電力検出部
25 抽出部
DESCRIPTION OF SYMBOLS 1 Energy-saving control apparatus 2 Solar radiation shielding part 3 Illumination part 4 Air-conditioning part (air conditioning part)
6 Temperature Detection Unit 7 Light Amount Detection Unit 8 Shielding Control Unit 11 First Filter 12 Second Filter 12a Region 12b Region 13 Sensor 14 Infrared Light Amount Calculation Unit 21 Storage Unit 22 Shielding State Selection Unit 23 Control Instruction Unit 24 Power Consumption Detection Part 25 Extractor

Claims (7)

室内の消費電力の最小化を図る省エネルギー制御装置であって、
室内の照度を設定照度に制御する照明部と、
室内の温度を設定温度に制御する空気調和部と、
室内の温度を検出する温度検出部と、
放射される太陽光に含まれる可視光および赤外光の各光量を検出する光量検出部と、
室内への日射の遮蔽状態を複数段階で調整する日射遮蔽部と、
前記日射遮蔽部を制御する遮蔽制御部とを備え、
前記遮蔽制御部は、前記日射遮蔽部の複数の遮蔽状態のそれぞれにおける前記照明部の消費電力と前記空気調和部の消費電力との和であって、検出された可視光の光量と日射の遮蔽状態とに応じて決まる、室内の照度を前記設定照度まで変化させるのに必要な前記照明部の消費電力と、検出された温度、検出された赤外光の光量および日射の遮蔽状態に応じて決まる、室内の温度を前記設定温度まで変化させるのに必要な前記空気調和部の消費電力との和のうち、最小となる和に対応する遮蔽状態に前記日射遮蔽部を制御することを特徴とする省エネルギー制御装置。
An energy-saving control device for minimizing indoor power consumption,
An illumination unit for controlling the illuminance in the room to the set illuminance;
An air conditioner for controlling the room temperature to a set temperature;
A temperature detector for detecting the temperature in the room;
A light amount detection unit for detecting each light amount of visible light and infrared light contained in the emitted sunlight;
A solar shading unit that adjusts the shielding state of solar radiation in the room in multiple stages;
A shielding control unit for controlling the solar radiation shielding unit,
The shielding control unit is a sum of the power consumption of the illumination unit and the power consumption of the air conditioning unit in each of a plurality of shielding states of the solar radiation shielding unit, and shields the amount of detected visible light and solar radiation. Depending on the state, depending on the power consumption of the illumination unit necessary to change the illuminance in the room to the set illuminance, the detected temperature, the amount of detected infrared light, and the shielding state of solar radiation The solar radiation shielding unit is controlled to a shielding state corresponding to a minimum sum among the sum of the power consumption of the air conditioning unit necessary to change the indoor temperature to the set temperature. Energy saving control device.
前記遮蔽制御部は、
室内の照度を前記設定照度にするのに必要な前記照明部の消費電力を、可視光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶するとともに、室内の温度を前記設定温度にするのに必要な前記空調部の消費電力を、室内の温度の複数種類、赤外光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶する記憶部と、
前記記憶部から、検出された可視光の光量に応じた前記照明部の消費電力を、前記日射遮蔽部の複数の遮蔽状態のそれぞれについて抽出するとともに、検出された温度および検出された赤外光の光量に応じた前記空気調和部の消費電力を、前記日射遮蔽部の複数の遮蔽状態のそれぞれについて抽出し、前記日射遮蔽部の複数の遮蔽状態のうち、抽出した前記照明部の消費電力と前記空気調和部の消費電力との和が最小となるような遮蔽状態を選択する遮蔽状態選択部と、
選択した遮蔽状態となるように前記日射遮蔽部を制御する制御指示部とを有していることを特徴とする請求項1に記載の省エネルギー制御装置。
The shielding control unit
The power consumption of the illuminating unit necessary for setting the illuminance in the room to the set illuminance is stored for each combination of a plurality of types of light amounts of visible light and a plurality of shielding states of the solar radiation shielding unit, and the indoor temperature A storage unit that stores power consumption of the air-conditioning unit necessary for setting the set temperature for each combination of a plurality of types of indoor temperatures, a plurality of types of infrared light amounts, and a plurality of shielding states of the solar radiation shielding unit When,
The power consumption of the illumination unit corresponding to the detected amount of visible light is extracted from the storage unit for each of the plurality of shielding states of the solar radiation shielding unit, and the detected temperature and the detected infrared light The power consumption of the air conditioning unit according to the amount of light is extracted for each of the plurality of shielding states of the solar radiation shielding unit, and among the plurality of shielding states of the solar radiation shielding unit, the extracted power consumption of the illumination unit and A shielding state selection unit that selects a shielding state that minimizes the sum of the power consumption of the air conditioning unit;
The energy saving control device according to claim 1, further comprising: a control instruction unit that controls the solar radiation shielding unit so as to be in a selected shielding state.
前記遮蔽制御部は、
室内の照度を前記設定照度にするのに必要な前記照明部の消費電力を、可視光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶するとともに、室内の温度を前記設定温度にするのに必要な前記空調部の消費電力を、室内の温度の複数種類、赤外光の光量の複数種類および前記日射遮蔽部の複数の遮蔽状態の各組み合わせについて記憶する記憶部と、
前記日射遮蔽部の現在の遮蔽状態における前記照明部の消費電力および前記空気調和部の消費電力をそれぞれ検出する消費電力検出部と、
前記記憶部から、検出された可視光の光量に応じた前記照明部の消費電力を、前記日射遮蔽部の現在の遮蔽状態とは異なる遮蔽状態について抽出するとともに、検出された温度および検出された赤外光の光量に応じた前記空気調和部の消費電力を、前記日射遮蔽部の現在の遮蔽状態とは異なる遮蔽状態について抽出する抽出部と、
前記消費電力検出部にて検出された、前記照明部の消費電力と前記空気調和部の消費電力との和と、前記抽出部にて抽出された、前記照明部の消費電力と前記空気調和部の消費電力との和とのうち、最小となるほうに対応する遮蔽状態を選択する遮蔽状態選択部と、
選択した遮蔽状態となるように前記日射遮蔽部を制御する制御指示部とを有していることを特徴とする請求項1に記載の省エネルギー制御装置。
The shielding control unit
The power consumption of the illuminating unit necessary for setting the illuminance in the room to the set illuminance is stored for each combination of a plurality of types of light amounts of visible light and a plurality of shielding states of the solar radiation shielding unit, and the indoor temperature A storage unit that stores power consumption of the air-conditioning unit necessary for setting the set temperature for each combination of a plurality of types of indoor temperatures, a plurality of types of infrared light amounts, and a plurality of shielding states of the solar radiation shielding unit When,
A power consumption detection unit that detects power consumption of the illumination unit and power consumption of the air conditioning unit in the current shielding state of the solar radiation shielding unit;
The power consumption of the illumination unit corresponding to the detected amount of visible light is extracted from the storage unit for a shielding state different from the current shielding state of the solar radiation shielding unit, and the detected temperature and the detected temperature are detected. An extraction unit that extracts the power consumption of the air-conditioning unit according to the amount of infrared light for a shielding state different from the current shielding state of the solar radiation shielding unit;
The sum of the power consumption of the illumination unit and the power consumption of the air conditioning unit detected by the power consumption detection unit, the power consumption of the illumination unit and the air conditioning unit extracted by the extraction unit A shielding state selection unit that selects a shielding state corresponding to the minimum of the sum of the power consumption of
The energy saving control device according to claim 1, further comprising: a control instruction unit that controls the solar radiation shielding unit so as to be in a selected shielding state.
前記制御指示部は、前記遮蔽状態選択部にて選択した遮蔽状態に応じて、前記設定照度および前記設定温度の少なくとも一方を調整することを特徴とする請求項2または3に記載の省エネルギー制御装置。   The energy-saving control device according to claim 2, wherein the control instruction unit adjusts at least one of the set illuminance and the set temperature according to a shielding state selected by the shielding state selection unit. . 前記光量検出部は、前記可視光を透過させる第1のフィルタと、前記赤外光に含まれる近赤外光を透過させる第2のフィルタと、前記第1のフィルタおよび前記第2のフィルタを透過した光をそれぞれ異なる領域で受光するセンサとを有していることを特徴とする請求項1から4のいずれかに記載の省エネルギー制御装置。   The light quantity detection unit includes a first filter that transmits the visible light, a second filter that transmits near-infrared light included in the infrared light, the first filter, and the second filter. The energy-saving control device according to claim 1, further comprising a sensor that receives the transmitted light in different areas. 前記第1のフィルタは、人間の目の分光視感効率に対応する分光透過特性を有していることを特徴とする請求項5に記載の省エネルギー制御装置。   6. The energy saving control device according to claim 5, wherein the first filter has a spectral transmission characteristic corresponding to a spectral luminous efficiency of a human eye. 前記第2のフィルタは、透過波長域の異なる複数の領域に分割されており、
前記光量検出部は、前記第2のフィルタの各領域を透過した光の光量に基づいて、前記赤外光に含まれる該第2のフィルタの透過波長域外の光の光量を求め、これらの光量の和を前記赤外光の光量として検出する赤外光量算出部をさらに備えていることを特徴とする請求項5または6に記載の省エネルギー制御装置。
The second filter is divided into a plurality of regions having different transmission wavelength ranges,
The light amount detection unit obtains the light amount of light outside the transmission wavelength range of the second filter included in the infrared light based on the light amount of light transmitted through each region of the second filter, and these light amounts The energy-saving control apparatus according to claim 5, further comprising an infrared light amount calculation unit that detects the sum of the two as the light amount of the infrared light.
JP2012256407A 2012-11-22 2012-11-22 Energy-saving controller Pending JP2014103080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256407A JP2014103080A (en) 2012-11-22 2012-11-22 Energy-saving controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256407A JP2014103080A (en) 2012-11-22 2012-11-22 Energy-saving controller

Publications (1)

Publication Number Publication Date
JP2014103080A true JP2014103080A (en) 2014-06-05

Family

ID=51025398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256407A Pending JP2014103080A (en) 2012-11-22 2012-11-22 Energy-saving controller

Country Status (1)

Country Link
JP (1) JP2014103080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357832A (en) * 2015-12-08 2016-02-24 浙江中节能绿建环保科技有限公司 Air-conditioning and lighting device controller
CN106885340A (en) * 2017-03-16 2017-06-23 青岛海尔空调器有限总公司 The control method of air conditioner room unit zoned air
CN107084426A (en) * 2017-03-16 2017-08-22 青岛海尔空调器有限总公司 Air conditioner room unit
CN110599756A (en) * 2019-09-06 2019-12-20 珠海格力电器股份有限公司 Infrared receiving device and method and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357832A (en) * 2015-12-08 2016-02-24 浙江中节能绿建环保科技有限公司 Air-conditioning and lighting device controller
CN106885340A (en) * 2017-03-16 2017-06-23 青岛海尔空调器有限总公司 The control method of air conditioner room unit zoned air
CN107084426A (en) * 2017-03-16 2017-08-22 青岛海尔空调器有限总公司 Air conditioner room unit
CN110599756A (en) * 2019-09-06 2019-12-20 珠海格力电器股份有限公司 Infrared receiving device and method and air conditioner

Similar Documents

Publication Publication Date Title
US11696382B2 (en) Measuring lighting levels using a visible light sensor
Carlucci et al. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design
EP2566303B1 (en) Lighting system
US9603223B2 (en) Illumination controller
CN110536998B (en) Visible light sensor configured for glare detection and control of motorized window treatments
US20150092259A1 (en) Control System For Color Rendering Of Optical Glazings
US20140303788A1 (en) Dynamic façade system consisting of controllable windows, automated shades and dimmable electric lights
US8947759B2 (en) Partially tinted clear state for improved color and solar-heat gain control of electrochromic devices
US9832831B2 (en) Electric light and daylight control system with a dual-mode light sensor
US20050047133A1 (en) Diode-based light sensors and methods
US20020179817A1 (en) Illumination management system
US9288875B2 (en) Method and apparatus for multiple sensor lighting control systems for daylight harvesting
CN104718439A (en) Illumination sensor for distinguishing between different contributions to a sensed light level
US11378456B2 (en) System and method for calibrating a light color sensor
US9942965B1 (en) Light controller
CN104704435A (en) Methods and apparatus for adjusting a lighting parameter in a light management system based on user action.
JP2014103080A (en) Energy-saving controller
CN108235518B (en) LED intelligent control energy-saving system
Bellia et al. Evaluating performance of daylight-linked building controls during preliminary design
JP6388602B2 (en) Control unit for controlling the color of the window
US20190342974A1 (en) Color temperature sensor
Arnal et al. Consideration of glare from daylight in the control of the luminous atmosphere in buildings
JP2014103081A (en) Energy-saving controller
JP2001052879A (en) Lighting system and optical sensor
JP4045500B2 (en) Lighting control device and lighting fixture provided with the same