JP2014102043A - Biomass burner - Google Patents

Biomass burner Download PDF

Info

Publication number
JP2014102043A
JP2014102043A JP2012255085A JP2012255085A JP2014102043A JP 2014102043 A JP2014102043 A JP 2014102043A JP 2012255085 A JP2012255085 A JP 2012255085A JP 2012255085 A JP2012255085 A JP 2012255085A JP 2014102043 A JP2014102043 A JP 2014102043A
Authority
JP
Japan
Prior art keywords
biomass
nozzle
cylinder nozzle
air
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012255085A
Other languages
Japanese (ja)
Other versions
JP6056409B2 (en
Inventor
Masahito Tamura
雅人 田村
Ryunosuke Itokazu
龍之介 糸数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012255085A priority Critical patent/JP6056409B2/en
Publication of JP2014102043A publication Critical patent/JP2014102043A/en
Application granted granted Critical
Publication of JP6056409B2 publication Critical patent/JP6056409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biomass burner which improves ignition stability of fuel even when using woody biomass as the fuel.SOLUTION: A biomass burner includes: a nozzle main body 8 comprising an inner cylindrical nozzle 12 which is disposed on the central shaft center of a throat 4 disposed on a furnace wall 3 and circulates an auxiliary combustion air 22 therethrough and an outer cylindrical nozzle 11 which is disposed on the outside concentrically with the inner cylindrical nozzle and circulates a biomass-mixed flow 20 in which a transfer medium 19 of low-oxygen concentration and woody biomass are mixed therethrough; a wind box 5 in which the nozzle main body is housed; and a secondary air regulating device 9 which is housed in the wind box, is disposed on the top end part of the nozzle main body and supplies combustion air 6. A combustion air channel 31 which causes either one side of the combustion air supplied from the secondary air regulating device and the auxiliary combustion air which is circulated in the inner cylinder nozzle to interrupt the biomass-mixed flow is formed.

Description

本発明は、ボイラ火炉の壁面に設けられ、木質ペレットや木質チップ等の木質系バイオマス燃料を燃焼させるバイオマスバーナに関するものである。   The present invention relates to a biomass burner that is provided on a wall surface of a boiler furnace and burns woody biomass fuel such as wood pellets and wood chips.

現在、ボイラの固形燃料として使用されているのは、主に石炭であるが、CO2 の削減対策として、再生可能で環境負荷の少ない木質系バイオマスを燃料とする等の燃料の多様化が検討されている。 Currently, coal is mainly used as solid fuel for boilers, but as a measure to reduce CO 2 , diversification of fuels such as wood-based biomass that is renewable and has a low environmental impact is considered. Has been.

従来は、木質系バイオマスを燃料とする場合、ミルにて石炭と木質系バイオマスとを混合粉砕し、石炭と木質系バイオマスを混合させた粉砕物をバーナに送給し燃料としている。近年では木質系バイオマス燃料の混合比率を増大させることが要請されている。   Conventionally, when wood-based biomass is used as fuel, coal and wood-based biomass are mixed and pulverized by a mill, and a pulverized product obtained by mixing coal and wood-based biomass is supplied to a burner as fuel. In recent years, it has been required to increase the mixing ratio of woody biomass fuel.

然し乍ら、混合粉砕の場合、混合比率を増大させるには限界があり、木質系バイオマスを大量に粉砕することができないことから、木質系バイオマスをバーナの燃料として充分に供給できない。更に、石炭と木質系バイオマスとでは燃焼特性が異なる為、木質系バイオマスの比率を増大させると燃焼が不安定となる虞れがあった。   However, in the case of mixed pulverization, there is a limit to increasing the mixing ratio, and a large amount of woody biomass cannot be crushed, so that woody biomass cannot be sufficiently supplied as fuel for the burner. Furthermore, since combustion characteristics differ between coal and woody biomass, there is a risk that combustion will become unstable if the ratio of woody biomass is increased.

尚、特許文献1には、バイオマスが混合燃料流体として導入される燃料ノズルと、該燃料ノズルの中心部に設けられた中心空気ノズルと、前記燃料ノズルの外周に設けられた空気噴出ノズルと、前記中心空気ノズルに供給する燃焼用空気の一部が供給され前記燃料ノズルの内壁部に複数設けられた追加空気ノズルを有し、前記燃料ノズルを流れる燃料粒子が下流側の流路拡大部に於いて前記追加空気ノズルからの空気と混合され、前記燃料ノズルの出口部に配置された保炎器と衝突し、火炉内で逆流を生じさせて燃料粒子の着火性を高める木質バイオマス直接粉砕燃焼方法と装置とボイラシステムが開示されている。   In Patent Document 1, a fuel nozzle into which biomass is introduced as a mixed fuel fluid, a central air nozzle provided at the center of the fuel nozzle, an air ejection nozzle provided at the outer periphery of the fuel nozzle, A part of the combustion air supplied to the central air nozzle is supplied, and a plurality of additional air nozzles are provided on the inner wall of the fuel nozzle, and fuel particles flowing through the fuel nozzle are formed in the downstream channel enlargement part. The wood biomass direct pulverization combustion which is mixed with the air from the additional air nozzle and collides with the flame holder disposed at the outlet of the fuel nozzle, thereby causing the back flow in the furnace and improving the ignitability of the fuel particles. A method, apparatus, and boiler system are disclosed.

特開2010−242999号公報JP 2010-242999 A

本発明は斯かる実情に鑑み、木質系バイオマスを燃料とした場合でも、燃料の着火安定性を向上させるバイオマスバーナを提供するものである。   In view of such circumstances, the present invention provides a biomass burner that improves the ignition stability of fuel even when woody biomass is used as fuel.

本発明は、炉壁に設けられたスロートの中心軸心上に設けられ、補助燃焼用空気が流通する内筒ノズル及び該内筒ノズルと同心で外側に設けられ低酸素濃度の搬送媒体と木質系バイオマスが混合されたバイオマス混合流が流通する外筒ノズルからなるノズル本体と、該ノズル本体を収納するウインドボックスと、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられ燃焼用空気を供給する2次空気調整装置とを具備し、該2次空気調整装置から供給される前記燃焼用空気、前記内筒ノズル内を流通する前記補助燃焼用空気のいずれか一方を前記バイオマス混合流に割込ませる燃焼用空気流路を形成したバイオマスバーナに係るものである。   The present invention relates to an inner cylinder nozzle provided on a central axis of a throat provided on a furnace wall, through which auxiliary combustion air flows, and a low oxygen concentration carrier medium and wood provided concentrically outside the inner cylinder nozzle. Nozzle body composed of an outer cylinder nozzle through which a biomass mixed flow mixed with biomass is distributed; a wind box that houses the nozzle body; and a combustion chamber that is housed in the wind box and provided at the tip of the nozzle body A secondary air conditioner for supplying air, and mixing one of the combustion air supplied from the secondary air conditioner and the auxiliary combustion air flowing in the inner cylinder nozzle with the biomass The present invention relates to a biomass burner in which a combustion air flow path to be interrupted is formed.

又本発明は、前記燃焼用空気流路は、前記外筒ノズルに等角度ピッチで形成され、前記内筒ノズルに向って軸心方向に傾斜する凹溝であり、前記外筒ノズルと前記内筒ノズルとの間に前記凹溝によって周方向に分割されたバイオマス混合流路が形成されたバイオマスバーナに係るものである。   According to the present invention, the combustion air flow path is a concave groove formed in the outer cylinder nozzle at an equiangular pitch and inclined in the axial direction toward the inner cylinder nozzle. The present invention relates to a biomass burner in which a biomass mixing channel divided in the circumferential direction by the concave groove is formed between the cylinder nozzle.

又本発明は、前記凹溝が前記外筒ノズルの先端部に形成され、前記燃焼用空気と前記バイオマス混合流とが同一円周上に、又周方向に於いて交互に分割された状態で前記外筒ノズルの先端より噴出されるバイオマスバーナに係るものである。   In the present invention, the concave groove is formed at the tip of the outer cylinder nozzle, and the combustion air and the biomass mixed flow are alternately divided on the same circumference in the circumferential direction. The present invention relates to a biomass burner ejected from the tip of the outer cylinder nozzle.

又本発明は、前記凹溝が前記外筒ノズルの中途部に形成され、前記燃焼用空気と前記バイオマス混合流とが前記外筒ノズルの内部で混合されるバイオマスバーナに係るものである。   The present invention also relates to a biomass burner in which the concave groove is formed in the middle part of the outer cylinder nozzle, and the combustion air and the biomass mixed flow are mixed inside the outer cylinder nozzle.

又本発明は、前記凹溝が旋回に合わせて周方向に傾斜されたバイオマスバーナに係るものである。   The present invention also relates to a biomass burner in which the concave groove is inclined in the circumferential direction in accordance with the turning.

更に又本発明は、前記燃焼用空気流路は、前記内筒ノズルに等角度ピッチで形成され、前記外筒ノズルに向って軸心から離反する様傾斜する凸溝であり、前記外筒ノズルと前記内筒ノズルとの間に前記凸溝によって周方向に分割されたバイオマス混合流路が形成されたバイオマスバーナに係るものである。   Further, in the present invention, the combustion air flow path is a convex groove formed at an equiangular pitch on the inner cylinder nozzle and inclined toward the outer cylinder nozzle so as to be separated from the axis. And a biomass burner in which a biomass mixing channel divided in the circumferential direction by the convex grooves is formed between the inner cylinder nozzle and the inner cylinder nozzle.

本発明によれば、炉壁に設けられたスロートの中心軸心上に設けられ、補助燃焼用空気が流通する内筒ノズル及び該内筒ノズルと同心で外側に設けられ低酸素濃度の搬送媒体と木質系バイオマスが混合されたバイオマス混合流が流通する外筒ノズルからなるノズル本体と、該ノズル本体を収納するウインドボックスと、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられ燃焼用空気を供給する2次空気調整装置とを具備し、該2次空気調整装置から供給される前記燃焼用空気、前記内筒ノズル内を流通する前記補助燃焼用空気のいずれか一方を前記バイオマス混合流に割込ませる燃焼用空気流路を形成したので、前記燃焼用空気と前記バイオマス混合流とが素早く混合され、該バイオマス混合流が前記スロートより噴出される段階で充分に酸素濃度を上昇させることができ、前記バイオマス混合流の着火を安定させ、又着火を促進させることができるという優れた効果を発揮する。   According to the present invention, the inner cylinder nozzle provided on the center axis of the throat provided in the furnace wall, through which auxiliary combustion air flows, and the low oxygen concentration carrier medium provided concentrically on the outer side with the inner cylinder nozzle A nozzle body composed of an outer cylinder nozzle through which a mixed biomass mixed with woody biomass circulates, a wind box that houses the nozzle body, and is housed in the wind box and provided at the tip of the nozzle body A secondary air conditioner for supplying combustion air, wherein either one of the combustion air supplied from the secondary air conditioner or the auxiliary combustion air flowing through the inner cylinder nozzle is Since the combustion air flow path for interrupting the biomass mixed flow is formed, the combustion air and the biomass mixed flow are quickly mixed, and the biomass mixed flow is injected from the throat. Sufficiently able to increase the oxygen concentration in the stage is, to stabilize the ignition of the biomass mixed flow, also exhibits an excellent effect that the ignition can be promoted.

本発明の第1の実施例に係るバーナを示し、(A)は該バーナの概略立断面図であり、(B)は(A)のA−A矢視図である。The burner which concerns on 1st Example of this invention is shown, (A) is a general | schematic elevation sectional drawing of this burner, (B) is an AA arrow directional view of (A). 本発明の第2の実施例に係るバーナを示し、(A)は該バーナの概略立断面図であり、(B)は(A)のB−B矢視図である。The burner which concerns on the 2nd Example of this invention is shown, (A) is a schematic elevation sectional drawing of this burner, (B) is a BB arrow line view of (A). 本発明の第1の実施例に係るバーナの凹溝を周方向に傾斜させた場合を示す正面図である。It is a front view which shows the case where the ditch | groove of the burner which concerns on 1st Example of this invention is inclined in the circumferential direction. 本発明の第3の実施例に係るバーナを示し、(A)は該バーナの概略立断面図であり、(B)は(A)のC−C矢視図である。The burner which concerns on the 3rd Example of this invention is shown, (A) is a schematic sectional drawing of this burner, (B) is CC arrow directional view of (A).

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1(A)(B)に於いて、本発明の第1の実施例に於けるバイオマスバーナ1について説明する。尚、以下の実施例では、燃料として木質系バイオマスのみが供給される。   First, with reference to FIGS. 1A and 1B, a biomass burner 1 according to a first embodiment of the present invention will be described. In the following examples, only woody biomass is supplied as fuel.

図1(A)中、2は火炉、3は該火炉の炉壁を示している。該炉壁3にはスロート4が設けられ、該炉壁3の反火炉2側にはウインドボックス5が取付けられ、該ウインドボックス5の内部に前記バイオマスバーナ1が前記スロート4と同心に設けられている。又、前記ウインドボックス5には、該ウインドボックス5内に燃焼用空気である2次空気6を供給する2次空気供給路7が接続されている。   In FIG. 1A, 2 is a furnace and 3 is a furnace wall of the furnace. The furnace wall 3 is provided with a throat 4, a wind box 5 is attached to the furnace wall 3 on the side of the anti-fire furnace 2, and the biomass burner 1 is provided concentrically with the throat 4 inside the wind box 5. ing. The wind box 5 is connected to a secondary air supply path 7 for supplying secondary air 6 as combustion air into the wind box 5.

前記バイオマスバーナ1は、ノズル本体8と、該ノズル本体8の先端部(前記火炉2側の端部)を囲む様に設けられた2次空気調整装置9とを具備し、該2次空気調整装置9を介して、前記スロート4に前記2次空気6が供給される様になっている。   The biomass burner 1 includes a nozzle main body 8 and a secondary air adjusting device 9 provided so as to surround the tip end portion (end portion on the furnace 2 side) of the nozzle main body 8, and the secondary air adjustment The secondary air 6 is supplied to the throat 4 through a device 9.

前記ノズル本体8は、同心に設けられた外筒ノズル11、内筒ノズル12及び該内筒ノズル12の中心線上に配設されたオイルバーナ13を具備しており、前記外筒ノズル11と前記内筒ノズル12は、それぞれ先端部が先端に向って縮径するテーパ形状となっている。前記外筒ノズル11の基端は端板14により閉塞され、前記オイルバーナ13は前記端板14を貫通して前記内筒ノズル12内に延出し、又進退可能となっている。   The nozzle body 8 includes a concentric outer cylinder nozzle 11, an inner cylinder nozzle 12, and an oil burner 13 disposed on the center line of the inner cylinder nozzle 12. Each of the inner cylinder nozzles 12 has a tapered shape in which the tip portion is reduced in diameter toward the tip. The base end of the outer cylinder nozzle 11 is blocked by an end plate 14, and the oil burner 13 extends through the end plate 14 into the inner cylinder nozzle 12, and can advance and retreat.

又、前記外筒ノズル11先端部のテーパ形状部分が燃料噴出部16となっており、前記外筒ノズル11の前記燃料噴出部16よりも基端側は燃料導通部15となっている。前記内筒ノズル12及び前記燃料導通部15の断面形状はそれぞれ円形であり、前記内筒ノズル12と前記燃料導通部15間には中空筒状の空間である燃料導通空間17が形成される。   Further, the tapered portion at the tip of the outer cylinder nozzle 11 is a fuel ejection portion 16, and the base end side of the outer cylinder nozzle 11 is closer to the fuel conduction portion 15 than the fuel ejection portion 16. The inner cylinder nozzle 12 and the fuel conducting portion 15 are circular in cross section, and a fuel conducting space 17 that is a hollow cylindrical space is formed between the inner cylinder nozzle 12 and the fuel conducting portion 15.

前記燃料導通部15の基端部には、1次空気導入管18が前記外筒ノズル11に接線方向から設けられ、前記1次空気導入管18はバイオマスミル(図示せず)に接続されている。搬送媒体である1次空気19、及び該1次空気19に運搬された木質系バイオマスが混合されたバイオマス混合流20が、前記1次空気導入管18を介して前記燃料導通空間17に接線方向から流入し、該燃料導通空間17内部を旋回しながら前記燃料噴出部16の先端から噴出される様になっている。   A primary air introduction pipe 18 is provided from the tangential direction to the outer cylinder nozzle 11 at the base end of the fuel conducting part 15, and the primary air introduction pipe 18 is connected to a biomass mill (not shown). Yes. A biomass mixed stream 20 in which primary air 19 as a carrier medium and woody biomass transported in the primary air 19 are mixed is tangential to the fuel conduction space 17 via the primary air introduction pipe 18. And is ejected from the tip of the fuel ejection portion 16 while turning inside the fuel conduction space 17.

尚、搬送媒体である前記1次空気19は、前記火炉2から排出される燃焼排ガスをそのまま使用するか、燃焼排ガスを空気と混合させることで、酸素濃度が例えば12%以上14%以下とされ、低酸素濃度の搬送媒体となっている。搬送媒体が低酸素濃度となることで、前記バイオマスミルに粉砕されてから前記燃料導通空間17に流入する迄の搬送行程に於いて、前記バイオマス混合流20が高温となった場合でも、木質系バイオマスが自然発火しない様になっている。   The primary air 19 serving as a carrier medium is made to use an exhaust gas discharged from the furnace 2 as it is or by mixing the combustion exhaust gas with air, so that the oxygen concentration is, for example, 12% or more and 14% or less. It is a carrier medium with a low oxygen concentration. Even if the biomass mixed stream 20 becomes a high temperature in the transportation process from being pulverized by the biomass mill and flowing into the fuel conduction space 17 because the transportation medium has a low oxygen concentration, the wood system Biomass does not ignite spontaneously.

又、前記内筒ノズル12の基端側には3次空気導入管21の一端が連通し、該3次空気導入管21の他端は前記ウインドボックス5内、模擬空気供給部(図示せず)等に連通している。前記ウインドボックス5内の前記2次空気6や酸素濃度21%程度の空気、或は模擬空気供給部から酸素と二酸化炭素を混合させた模擬空気等を燃焼用補助空気である3次空気22として前記3次空気導入管21に導入し、該3次空気導入管21より前記3次空気22を前記内筒ノズル12内に供給することで、該内筒ノズル12内部の圧力が上昇し、前記火炉2内から炉内灰が前記内筒ノズル12内に入込むのを防止すると共に、前記火炉2内の排ガスが前記3次空気導入管21を逆流することを防止する。   Further, one end of a tertiary air introduction pipe 21 communicates with the proximal end side of the inner cylinder nozzle 12, and the other end of the tertiary air introduction pipe 21 is provided in the wind box 5 and a simulated air supply unit (not shown). ) Etc. The secondary air 6 in the wind box 5 or air having an oxygen concentration of about 21%, or simulated air in which oxygen and carbon dioxide are mixed from the simulated air supply unit is used as the tertiary air 22 as auxiliary combustion air. By introducing the tertiary air 22 into the inner cylinder nozzle 12 through the tertiary air introduction pipe 21 and introducing the tertiary air 22 into the inner cylinder nozzle 12, the pressure inside the inner cylinder nozzle 12 increases, The furnace ash is prevented from entering the inner cylinder nozzle 12 from the furnace 2 and the exhaust gas in the furnace 2 is prevented from flowing back through the tertiary air introduction pipe 21.

前記2次空気調整装置9は、前記ノズル本体8の先端部を収納する補助空気調整機構23と、該補助空気調整機構23の外側に同心多重に設けられた主空気調整機構24から構成されている。   The secondary air adjustment device 9 includes an auxiliary air adjustment mechanism 23 that houses the tip of the nozzle body 8 and a main air adjustment mechanism 24 that is provided concentrically outside the auxiliary air adjustment mechanism 23. Yes.

前記補助空気調整機構23は、先端に向って縮径する第1空気ガイドダクト25と、円周等間隔で回転自在に多数設けられたインナ空気ベーン26とを有し、該インナ空気ベーン26はリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。又、前記主空気調整機構24は先端に向って縮径する第2空気ガイドダクト27と、円周等間隔で回転可能に多数設けられたアウタ空気ベーン28とを有し、該アウタ空気ベーン28は、前記インナ空気ベーン26と同様にリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。   The auxiliary air adjusting mechanism 23 includes a first air guide duct 25 that is reduced in diameter toward the tip, and a plurality of inner air vanes 26 that are rotatably provided at equal circumferential intervals. Synchronous rotation is possible via a link mechanism (not shown), and the inclination angle with respect to the air flow can be changed. The main air adjusting mechanism 24 includes a second air guide duct 27 that is reduced in diameter toward the tip, and a plurality of outer air vanes 28 that are rotatably provided at equal circumferential intervals. Can be rotated synchronously via a link mechanism (not shown) in the same manner as the inner air vane 26, and the inclination angle with respect to the air flow can be changed.

尚、前記第2空気ガイドダクト27の先端は、前記スロート4に連続し、前記第1空気ガイドダクト25の先端は前記スロート4内に位置し、前記外筒ノズル11、前記内筒ノズル12の先端は前記第1空気ガイドダクト25の先端よりも後退した位置となっている。   The tip of the second air guide duct 27 is continuous with the throat 4, and the tip of the first air guide duct 25 is located in the throat 4, so that the outer cylinder nozzle 11 and the inner cylinder nozzle 12 The front end is a position retracted from the front end of the first air guide duct 25.

次に、図1(B)に於いて、前記外筒ノズル11の前記燃料噴出部16について説明する。   Next, referring to FIG. 1B, the fuel ejection portion 16 of the outer cylinder nozzle 11 will be described.

該燃料噴出部16には、所定の角度ピッチで所要数、例えば90°間隔で4箇所に外周面から前記内筒ノズル12に向って軸心側に傾斜する凹溝29が形成される。該凹溝29により前記第1空気ガイドダクト25との間で前記スロート4中心部に向い、前記2次空気6を前記バイオマス混合流20に割込ませる為の燃焼用空気流路である2次空気流路31が形成される。   The fuel ejection portion 16 is formed with concave grooves 29 that are inclined from the outer peripheral surface toward the inner cylinder nozzle 12 toward the axial center side at a required number, for example, at 90 ° intervals at a predetermined angular pitch. A secondary air passage for combustion that is directed to the center of the throat 4 between the first air guide duct 25 and the concave air groove 29 to interrupt the secondary air 6 into the biomass mixed stream 20. An air flow path 31 is formed.

又、前記燃料噴出部16と前記内筒ノズル12の先端部と前記凹溝29との間で、前記バイオマス混合流20が流通するバイオマス混合流路32が形成されるが、該バイオマス混合流路32は前記凹溝29によって周方向に分割された状態となる。   Further, a biomass mixing channel 32 through which the biomass mixed flow 20 flows is formed between the fuel ejection portion 16, the tip of the inner cylinder nozzle 12, and the concave groove 29. 32 is divided in the circumferential direction by the concave groove 29.

次に、前記バイオマスバーナ1での燃焼について説明する。   Next, combustion in the biomass burner 1 will be described.

バイオマスミル(図示せず)により粉砕された木質系バイオマスの粉体が、燃焼排ガス等低酸素濃度の搬送媒体である前記1次空気19により搬送され、前記1次空気導入管18より前記バイオマス混合流20として前記燃料導通空間17の基部に供給される。   Woody biomass powder pulverized by a biomass mill (not shown) is transported by the primary air 19 which is a transport medium of low oxygen concentration such as combustion exhaust gas, and the biomass mixing is performed from the primary air introduction pipe 18. A stream 20 is supplied to the base of the fuel conduction space 17.

前記バイオマス混合流20は、前記燃料導通空間17を旋回しながら前記火炉2に向って流動し、前記バイオマス混合流路32から前記火炉2に噴出される。   The biomass mixed flow 20 flows toward the furnace 2 while turning in the fuel conduction space 17, and is ejected from the biomass mixing flow path 32 to the furnace 2.

前記ウインドボックス5には、燃焼用空気である前記2次空気6が所定温度に昇温されて供給される。該2次空気6は前記アウタ空気ベーン28により旋回が与えられ、前記第2空気ガイドダクト27を介して前記バイオマス混合流20と共に前記火炉2に噴出される。   The secondary air 6 as combustion air is heated to a predetermined temperature and supplied to the wind box 5. The secondary air 6 is swirled by the outer air vane 28 and is jetted into the furnace 2 together with the biomass mixed flow 20 through the second air guide duct 27.

又、前記第2空気ガイドダクト27に取込まれた前記2次空気6の一部は前記インナ空気ベーン26を介して前記第1空気ガイドダクト25内部に取込まれ、2次補助空気として噴出される。   A part of the secondary air 6 taken into the second air guide duct 27 is taken into the first air guide duct 25 through the inner air vane 26 and ejected as secondary auxiliary air. Is done.

この時、前記第1空気ガイドダクト25内部に取込まれた前記2次空気6の一部は、前記2次空気流路31を介して、即ち前記バイオマス混合流路32と同一円周上に、又周方向に於いて前記バイオマス混合流20と交互に前記燃料噴出部16から噴出される様になっており、前記2次空気6と前記バイオマス混合流20とが素早く混合され、該バイオマス混合流20中の酸素濃度が燃焼可能な酸素濃度迄上昇する。   At this time, a part of the secondary air 6 taken into the first air guide duct 25 passes through the secondary air flow path 31, that is, on the same circumference as the biomass mixing flow path 32. In the circumferential direction, the fuel mixture is alternately ejected from the fuel jet section 16 and the secondary air 6 and the biomass mixture stream 20 are quickly mixed, and the biomass mixture is mixed. The oxygen concentration in stream 20 rises to a combustible oxygen concentration.

又、前記インナ空気ベーン26は、空気流れに対して傾斜しており、取込んだ前記2次空気6に旋回流を与える様になっている。   The inner air vane 26 is inclined with respect to the air flow so as to give a swirl flow to the taken-in secondary air 6.

前記アウタ空気ベーン28による旋回流の調整、風量調整、前記インナ空気ベーン26による旋回流の調整、風量調整で前記2次空気6の供給量及び流れの状態が変化し、木質系バイオマスの燃焼状態が調整される。   The supply amount and flow state of the secondary air 6 are changed by adjusting the swirl flow by the outer air vane 28, adjusting the air volume, adjusting the swirl flow by the inner air vane 26, and adjusting the air volume, and the combustion state of the woody biomass. Is adjusted.

又、前記2次空気6の一部、或は酸素と二酸化炭素を混合させた模擬空気が、前記3次空気22として前記3次空気導入管21を介して前記内筒ノズル12に導かれ、該内筒ノズル12の先端より噴出される。前記3次空気22が噴出されることで、木質系バイオマスの燃焼状態が調整される。従って、前記2次空気6の調整、前記3次空気22の調整等により、木質系バイオマスの燃焼状態が最適となる様に調整される。   Further, a part of the secondary air 6 or simulated air in which oxygen and carbon dioxide are mixed is introduced as the tertiary air 22 to the inner cylinder nozzle 12 through the tertiary air introduction pipe 21. It is ejected from the tip of the inner cylinder nozzle 12. The combustion state of the woody biomass is adjusted by ejecting the tertiary air 22. Therefore, the combustion state of the woody biomass is adjusted to be optimum by adjusting the secondary air 6 and the tertiary air 22.

上述の様に、第1の実施例では、前記外筒ノズル11の先端部に軸心方向に傾斜する前記凹溝29を形成し、該凹溝29と前記第1空気ガイドダクト25との間に形成された前記2次空気流路31を介して噴出される前記2次空気6と、前記バイオマス混合流路32を介して噴出される前記バイオマス混合流20とを同一円周上に噴出させる様になっているので、前記2次空気6と前記バイオマス混合流20とが素早く混合され、該バイオマス混合流20が前記火炉2に噴出される段階で充分に酸素濃度を上昇させることができ、前記燃料導通空間17に導入される前記1次空気19の酸素濃度が低い場合であっても、着火を安定させ、又着火を促進させることができる。   As described above, in the first embodiment, the concave groove 29 inclined in the axial direction is formed at the tip of the outer cylinder nozzle 11, and the concave groove 29 and the first air guide duct 25 are disposed between the concave groove 29 and the first air guide duct 25. The secondary air 6 ejected through the secondary air flow path 31 formed in the above and the biomass mixed flow 20 ejected through the biomass mixing flow path 32 are ejected on the same circumference. Since the secondary air 6 and the biomass mixed stream 20 are quickly mixed, the oxygen concentration can be sufficiently increased at the stage where the biomass mixed stream 20 is ejected into the furnace 2, Even when the oxygen concentration of the primary air 19 introduced into the fuel conduction space 17 is low, ignition can be stabilized and ignition can be promoted.

又、前記凹溝29を所定の間隔で所要数形成したことで、前記2次空気流路31及び前記バイオマス混合流路32とが周方向に相互分割され、前記2次空気6と前記バイオマス混合流20とが周方向に於いて交互に噴出される様になっているので、前記2次空気6と前記バイオマス混合流20との混合がより促進され、着火を安定させ、着火を促進させることができる。   In addition, since the required number of the concave grooves 29 are formed at a predetermined interval, the secondary air flow path 31 and the biomass mixing flow path 32 are mutually divided in the circumferential direction, and the secondary air 6 and the biomass mixing are divided. Since the stream 20 is alternately ejected in the circumferential direction, the mixing of the secondary air 6 and the biomass mixed stream 20 is further promoted, the ignition is stabilized, and the ignition is promoted. Can do.

又、前記2次空気流路31を前記外筒ノズル11の先端部に形成し、着火に充分な酸素濃度を有する経路を先端部に限定しているので、前記燃料導通空間17を流動する前記バイオマス混合流20が低酸素状態となり、木質系バイオマスが自然発火するのを防止することができ、安全性を向上させることができる。   Further, since the secondary air flow path 31 is formed at the front end of the outer cylinder nozzle 11 and a path having an oxygen concentration sufficient for ignition is limited to the front end, the flow through the fuel conduction space 17 is performed. The biomass mixed stream 20 is in a low oxygen state, the woody biomass can be prevented from spontaneous ignition, and the safety can be improved.

更に、前記3次空気導入管21を介して前記2次空気6、或は模擬空気等を前記内筒ノズル12に供給しているので、前記バイオマス混合流20が噴出される前記外筒ノズル11の内側と外側から燃焼用空気を供給することができ、前記バイオマス混合流20と燃焼用空気との混合を促進することができ、木質系バイオマスの着火及び燃焼の安定性をより高めることができる。   Further, since the secondary air 6 or simulated air is supplied to the inner cylinder nozzle 12 through the tertiary air introduction pipe 21, the outer cylinder nozzle 11 from which the biomass mixed flow 20 is ejected. Combustion air can be supplied from the inside and outside of the gas, the mixing of the biomass mixed stream 20 and the combustion air can be promoted, and the ignition stability and combustion stability of the woody biomass can be further improved. .

次に、図2(A)(B)に於いて、本発明の第2の実施例について説明する。尚、図2(A)(B)中、図1(A)(B)中と同等のものには同符号を付し、その説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. 2A and 2B, the same components as those in FIGS. 1A and 1B are denoted by the same reference numerals, and the description thereof is omitted.

第1の実施例では、凹溝29(図1参照)を燃料噴出部16に形成していたが、第2の実施例では、燃料導通部15の先端部、即ち外筒ノズル11の中途部に内筒ノズル12に向って軸心方向に傾斜する凹溝34を形成してもよい。該凹溝34により2次空気6をバイオマス混合流20に割込ませる為の燃焼用空気流路である2次空気流路35を形成している。   In the first embodiment, the concave groove 29 (see FIG. 1) is formed in the fuel ejection portion 16, but in the second embodiment, the tip portion of the fuel conducting portion 15, that is, the middle portion of the outer cylinder nozzle 11. A concave groove 34 inclined in the axial direction toward the inner cylinder nozzle 12 may be formed. The concave groove 34 forms a secondary air flow path 35 which is a combustion air flow path for interrupting the secondary air 6 into the biomass mixed flow 20.

第2の実施例に於いては、該2次空気流路35を介して燃料導通空間17中に前記2次空気6を導入させ、前記燃料導通空間17を流動する前記バイオマス混合流20と混合させる構造となっているので、混合状態の流路を長くすることができ、前記バイオマス混合流20に対する前記2次空気6の混合をより促進させ、木質系バイオマスの着火の安定性をより向上させることができる。   In the second embodiment, the secondary air 6 is introduced into the fuel conduction space 17 through the secondary air flow path 35 and mixed with the biomass mixed stream 20 flowing in the fuel conduction space 17. Since the mixed flow path can be lengthened, the mixing of the secondary air 6 to the biomass mixed stream 20 is further promoted, and the stability of ignition of the woody biomass is further improved. be able to.

尚、前記燃料導通部15の先端部に前記凹溝34を形成するのではなく、前記燃料導通部15の周面に等間隔で孔を穿設し、該孔を2次空気流路として前記燃料導通空間17と前記第1空気ガイドダクト25とを連通させる様にしてもよい。   Instead of forming the concave groove 34 at the tip of the fuel conducting portion 15, holes are formed at equal intervals in the peripheral surface of the fuel conducting portion 15, and the holes serve as secondary air flow paths. The fuel conduction space 17 and the first air guide duct 25 may be communicated with each other.

更に、第1、第2の実施例に於いては、凹溝29,34を軸心方向にのみ傾斜させているが、軸心方向への傾斜に加え、前記2次空気6の旋回、前記バイオマス混合流20の旋回に合わせて周方向に傾斜させてもよい。図3は、例えば第1の実施例に於ける前記凹溝29を周方向に傾斜させた場合を示している。該凹溝29を周方向に傾斜させることで、2次空気流路31を流れる前記2次空気6の旋回、前記2次空気流路31間を流れる前記バイオマス混合流20の旋回が阻害されるのを防止でき、より混合を促進することができる。   Further, in the first and second embodiments, the concave grooves 29 and 34 are inclined only in the axial direction, but in addition to the inclination in the axial direction, the swirling of the secondary air 6, You may make it incline in the circumferential direction according to turning of the biomass mixed flow 20. FIG. 3 shows a case where the concave groove 29 in the first embodiment is inclined in the circumferential direction, for example. By tilting the concave groove 29 in the circumferential direction, the swirling of the secondary air 6 flowing through the secondary air flow path 31 and the swirling of the biomass mixed flow 20 flowing between the secondary air flow paths 31 are inhibited. Can be prevented and further mixing can be promoted.

次に、図4(A)(B)に於いて、本発明の第3の実施例について説明する。尚図4(A)(B)中、図1(A)(B)中と同等のものには同符号を付し、その説明を省略する。   Next, a third embodiment of the present invention will be described with reference to FIGS. 4 (A) and 4 (B), components equivalent to those in FIGS. 1 (A) and 1 (B) are denoted by the same reference numerals, and description thereof is omitted.

第1の実施例及び第2の実施例では、内筒ノズル12に向って軸心方向に傾斜する凹溝29,34を外筒ノズル11に形成していたが、第3の実施例では該外筒ノズル11に向って傾斜する凸溝36を前記内筒ノズル12先端部のテーパ形状部分に形成している。   In the first embodiment and the second embodiment, the concave grooves 29 and 34 that are inclined in the axial direction toward the inner cylinder nozzle 12 are formed in the outer cylinder nozzle 11. A convex groove 36 inclined toward the outer cylinder nozzle 11 is formed in a tapered portion at the tip of the inner cylinder nozzle 12.

前記凸溝36は、所定の角度ピッチで所要数、例えば90°間隔で4箇所に形成され、前記外筒ノズル11に向って軸心から離反する様傾斜している。前記凸溝36により、前記内筒ノズル12内を流通する3次空気22をバイオマス混合流20に割込ませる為の燃焼用空気流路である3次空気流路37が形成される。   The convex grooves 36 are formed at a predetermined number, for example, four places at intervals of 90 ° at a predetermined angular pitch, and are inclined toward the outer cylinder nozzle 11 so as to be separated from the axis. The convex groove 36 forms a tertiary air flow path 37 that is a combustion air flow path for interrupting the tertiary air 22 flowing through the inner cylinder nozzle 12 into the biomass mixed flow 20.

又、前記外筒ノズル11の先端部と前記内筒ノズル12の先端部と前記凸溝36との間で、前記バイオマス混合流20が流通するバイオマス混合流路38が形成されるが、該バイオマス混合流路38は前記凸溝36によって周方向に分割された状態となる。   Further, a biomass mixing channel 38 through which the biomass mixed flow 20 flows is formed between the tip of the outer cylinder nozzle 11, the tip of the inner cylinder nozzle 12, and the convex groove 36. The mixing channel 38 is divided in the circumferential direction by the convex groove 36.

第3の実施例に於いては、前記3次空気流路37を介して噴出される前記3次空気22と、前記バイオマス混合流路38を介して噴出される前記バイオマス混合流20とを同一円周上に噴出させる様になっているので、前記3次空気22と前記バイオマス混合流20とが素早く混合され、該バイオマス混合流20が前記火炉2に噴出される段階で充分に酸素濃度を上昇させることができ、燃料導通空間17に導入される1次空気19の酸素濃度が低い場合であっても着火を安定させ、又着火を促進させることができる。   In the third embodiment, the tertiary air 22 ejected through the tertiary air flow path 37 and the biomass mixed stream 20 ejected through the biomass mixing flow path 38 are the same. Since the third air 22 and the biomass mixed stream 20 are quickly mixed, and the biomass mixed stream 20 is ejected to the furnace 2, the oxygen concentration is sufficiently increased. Even when the oxygen concentration of the primary air 19 introduced into the fuel conduction space 17 is low, the ignition can be stabilized and the ignition can be promoted.

又、前記凸溝36を所定の間隔で所要数形成したことで、前記3次空気流路37及び前記バイオマス混合流路38とが周方向に相互分割され、前記3次空気22と前記バイオマス混合流20とが周方向に於いて交互に噴出される様になっているので、前記3次空気22と前記バイオマス混合流20との混合がより促進され、着火を安定させ、又着火を促進させることができる。   Further, by forming the required number of the convex grooves 36 at a predetermined interval, the tertiary air flow path 37 and the biomass mixing flow path 38 are mutually divided in the circumferential direction, and the tertiary air 22 and the biomass mixing are divided. Since the flow 20 is alternately ejected in the circumferential direction, the mixing of the tertiary air 22 and the biomass mixed flow 20 is further promoted, and the ignition is stabilized and the ignition is promoted. be able to.

尚、第1の実施例及び第2の実施例に於ける凹溝29,34と同様、前記凸溝36を前記バイオマス混合流20の旋回に合わせて周方向に傾斜させてもよい。前記凸溝36を周方向に傾斜させることで、前記バイオマス混合流路38を流れる前記バイオマス混合流20の旋回が阻害されるのを防止でき、より混合を促進させることができる。   In addition, like the concave grooves 29 and 34 in the first embodiment and the second embodiment, the convex grooves 36 may be inclined in the circumferential direction in accordance with the swirling of the biomass mixed flow 20. By inclining the convex groove 36 in the circumferential direction, it is possible to prevent the rotation of the biomass mixed flow 20 flowing through the biomass mixing flow path 38 from being inhibited, and to further promote mixing.

1 バイオマスバーナ
2 火炉
3 炉壁
4 スロート
5 ウインドボックス
6 2次空気
8 ノズル本体
9 2次空気調整装置
11 外筒ノズル
12 内筒ノズル
15 燃料導通部
16 燃料噴出部
19 1次空気
20 バイオマス混合流
22 3次空気(補助燃焼用空気)
23 補助空気調整機構
24 主空気調整機構
25 第1空気ガイドダクト
27 第2空気ガイドダクト
29 凹溝
31 2次空気流路(燃焼用空気流路)
32 バイオマス混合流路
34 凹溝
35 2次空気流路(燃焼用空気流路)
36 凸溝
37 3次空気流路(燃焼用空気流路)
38 バイオマス混合流路
DESCRIPTION OF SYMBOLS 1 Biomass burner 2 Furnace 3 Furnace wall 4 Throat 5 Wind box 6 Secondary air 8 Nozzle body 9 Secondary air conditioner 11 Outer cylinder nozzle 12 Inner cylinder nozzle 15 Fuel conduction part 16 Fuel ejection part 19 Primary air 20 Biomass mixed flow 22 Tertiary air (auxiliary combustion air)
23 Auxiliary air adjustment mechanism 24 Main air adjustment mechanism 25 First air guide duct 27 Second air guide duct 29 Concave groove 31 Secondary air flow path (combustion air flow path)
32 Biomass mixing channel 34 Concave groove 35 Secondary air channel (combustion air channel)
36 Convex groove 37 Tertiary air flow path (combustion air flow path)
38 Biomass mixing channel

Claims (6)

炉壁に設けられたスロートの中心軸心上に設けられ、補助燃焼用空気が流通する内筒ノズル及び該内筒ノズルと同心で外側に設けられ低酸素濃度の搬送媒体と木質系バイオマスが混合されたバイオマス混合流が流通する外筒ノズルからなるノズル本体と、該ノズル本体を収納するウインドボックスと、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられ燃焼用空気を供給する2次空気調整装置とを具備し、該2次空気調整装置から供給される前記燃焼用空気、前記内筒ノズル内を流通する前記補助燃焼用空気のいずれか一方を前記バイオマス混合流に割込ませる燃焼用空気流路を形成したことを特徴とするバイオマスバーナ。   An inner cylinder nozzle that is provided on the center axis of the throat provided on the furnace wall, through which auxiliary combustion air flows, and a concentric outer side of the inner nozzle and a carrier medium with low oxygen concentration and woody biomass are mixed A nozzle body composed of an outer cylinder nozzle through which the mixed biomass flow is circulated, a wind box that houses the nozzle body, and a combustion box that is housed in the wind box and provided at the tip of the nozzle body A secondary air conditioner, and interrupt one of the combustion air supplied from the secondary air conditioner and the auxiliary combustion air flowing in the inner cylinder nozzle into the biomass mixed flow A biomass burner characterized in that a combustion air passage is formed. 前記燃焼用空気流路は、前記外筒ノズルに等角度ピッチで形成され、前記内筒ノズルに向って軸心方向に傾斜する凹溝であり、前記外筒ノズルと前記内筒ノズルとの間に前記凹溝によって周方向に分割されたバイオマス混合流路が形成された請求項1のバイオマスバーナ。   The combustion air flow path is a concave groove formed in the outer cylinder nozzle at an equiangular pitch and inclined in the axial direction toward the inner cylinder nozzle, and is located between the outer cylinder nozzle and the inner cylinder nozzle. The biomass burner according to claim 1, wherein a biomass mixing channel divided in the circumferential direction by the concave groove is formed. 前記凹溝が前記外筒ノズルの先端部に形成され、前記燃焼用空気と前記バイオマス混合流とが同一円周上に、又周方向に於いて交互に分割された状態で前記外筒ノズルの先端より噴出される請求項2のバイオマスバーナ。   The concave groove is formed at the tip of the outer cylinder nozzle, and the combustion air and the biomass mixed flow are divided on the same circumference and alternately in the circumferential direction. The biomass burner according to claim 2, which is ejected from the tip. 前記凹溝が前記外筒ノズルの中途部に形成され、前記燃焼用空気と前記バイオマス混合流とが前記外筒ノズルの内部で混合される請求項2のバイオマスバーナ。   The biomass burner according to claim 2, wherein the concave groove is formed in a middle portion of the outer cylinder nozzle, and the combustion air and the biomass mixed flow are mixed inside the outer cylinder nozzle. 前記凹溝が旋回に合わせて周方向に傾斜された請求項2〜請求項4のうちいずれかのバイオマスバーナ。   The biomass burner according to any one of claims 2 to 4, wherein the concave groove is inclined in the circumferential direction in accordance with the turning. 前記燃焼用空気流路は、前記内筒ノズルに等角度ピッチで形成され、前記外筒ノズルに向って軸心から離反する様傾斜する凸溝であり、前記外筒ノズルと前記内筒ノズルとの間に前記凸溝によって周方向に分割されたバイオマス混合流路が形成された請求項1のバイオマスバーナ。   The combustion air flow path is a convex groove formed at an equiangular pitch in the inner cylinder nozzle and inclined toward the outer cylinder nozzle so as to be separated from the axis, and the outer cylinder nozzle, the inner cylinder nozzle, The biomass burner of Claim 1 in which the biomass mixing flow path divided | segmented into the circumferential direction by the said convex groove between was formed.
JP2012255085A 2012-11-21 2012-11-21 Biomass burner Active JP6056409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255085A JP6056409B2 (en) 2012-11-21 2012-11-21 Biomass burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255085A JP6056409B2 (en) 2012-11-21 2012-11-21 Biomass burner

Publications (2)

Publication Number Publication Date
JP2014102043A true JP2014102043A (en) 2014-06-05
JP6056409B2 JP6056409B2 (en) 2017-01-11

Family

ID=51024691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255085A Active JP6056409B2 (en) 2012-11-21 2012-11-21 Biomass burner

Country Status (1)

Country Link
JP (1) JP6056409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154532A (en) * 2014-08-11 2014-11-19 北京巴布科克·威尔科克斯有限公司 Center air ring concentrated type turbulent burner
KR101737235B1 (en) * 2015-12-16 2017-05-18 황명수 mixed-combustion burner
JP2019015418A (en) * 2017-07-04 2019-01-31 株式会社Ihi Combustion system
CN110589381A (en) * 2019-09-27 2019-12-20 方凌晨 Coal pushing device for thermal power plant fuel transportation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102504638B1 (en) * 2021-07-12 2023-03-02 한국생산기술연구원 Biomass burner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611109A (en) * 1992-01-27 1994-01-21 Foster Wheeler Energy Corp Divided flow burner assembly
JPH09329304A (en) * 1996-06-07 1997-12-22 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JP2010242999A (en) * 2009-04-02 2010-10-28 Babcock Hitachi Kk Method and device for directly pulverizing and burning woody biomass and boiler system
JP2011012836A (en) * 2009-06-30 2011-01-20 Takahashi Kikan:Kk Multitubular biomass combustion burner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611109A (en) * 1992-01-27 1994-01-21 Foster Wheeler Energy Corp Divided flow burner assembly
JPH09329304A (en) * 1996-06-07 1997-12-22 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JP2010242999A (en) * 2009-04-02 2010-10-28 Babcock Hitachi Kk Method and device for directly pulverizing and burning woody biomass and boiler system
JP2011012836A (en) * 2009-06-30 2011-01-20 Takahashi Kikan:Kk Multitubular biomass combustion burner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154532A (en) * 2014-08-11 2014-11-19 北京巴布科克·威尔科克斯有限公司 Center air ring concentrated type turbulent burner
KR101737235B1 (en) * 2015-12-16 2017-05-18 황명수 mixed-combustion burner
JP2019015418A (en) * 2017-07-04 2019-01-31 株式会社Ihi Combustion system
CN110589381A (en) * 2019-09-27 2019-12-20 方凌晨 Coal pushing device for thermal power plant fuel transportation
CN110589381B (en) * 2019-09-27 2021-05-28 国家能源集团宝庆发电有限公司 Coal pushing device for thermal power plant fuel transportation

Also Published As

Publication number Publication date
JP6056409B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5897363B2 (en) Pulverized coal biomass mixed burner
JP6011073B2 (en) Burner
JP5678603B2 (en) Pulverized coal burner
EP2829800B1 (en) Pulverized coal/biomass mixed-combustion burner and fuel combustion method
JP4383364B2 (en) Mixed burner
JP2009133508A (en) Burner, combustion device, and improving method of combustion device
JP6056409B2 (en) Biomass burner
JPH05231617A (en) Low nox short flame burner
ZA200709079B (en) Pulverized solid fuel burner
US20110056205A1 (en) Burner arrangement and use of same
JP5786516B2 (en) Burner
JP2009216281A (en) Burner for pulverized fuel
KR102318108B1 (en) Mixed-combustion burner device
JP2014153014A (en) Pulverized coal burner
JP2012255600A (en) Solid fuel burner and combustion device including the same
JP6243485B2 (en) Burner device and boiler for mixed firing
JP2013217579A (en) Multi-fuel firing device of coal and biomass and boiler equipped therewith
JP5471713B2 (en) Pulverized coal burner
JP5245558B2 (en) Burner for fine fuel
JP6102544B2 (en) Coal burning burner
JP2014105892A (en) Burner
JP6729045B2 (en) Combustion gas burner and by-product gas burner
JP2019015463A (en) Burner
JP2018040562A (en) Burner device for mixed combustion, and boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R151 Written notification of patent or utility model registration

Ref document number: 6056409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250