JP2014098222A - Method for producing reinforcing fiber and reinforcing fiber - Google Patents

Method for producing reinforcing fiber and reinforcing fiber Download PDF

Info

Publication number
JP2014098222A
JP2014098222A JP2012251306A JP2012251306A JP2014098222A JP 2014098222 A JP2014098222 A JP 2014098222A JP 2012251306 A JP2012251306 A JP 2012251306A JP 2012251306 A JP2012251306 A JP 2012251306A JP 2014098222 A JP2014098222 A JP 2014098222A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing fiber
producing
heat treatment
dry heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012251306A
Other languages
Japanese (ja)
Inventor
Shintaro Shimada
慎太郎 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012251306A priority Critical patent/JP2014098222A/en
Publication of JP2014098222A publication Critical patent/JP2014098222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a reinforcing fiber, which is a method for producing a reinforcing fiber such as a rubber-reinforcing fiber and a resin-reinforcing fiber, and can produce the reinforcing fiber having superior thermal dimensional stability with high efficiency, and to provide a reinforcing fiber obtained by the producing method.SOLUTION: The method for producing the reinforcing fiber comprises the steps of: preparing a fiber made of a thermoplastic resin having a melting point of 210°C or higher and a strength of 5 cN/dtex or more; subjecting the fiber to dry heat treatment under tension or relaxation at a raito of -10% to +10%, at a temperature lower than the melting point by 10°C or more and a temperature of 100°C or higher; and then subjecting the fiber to super-heated steam treatment.

Description

本発明は、ゴム補強用繊維や樹脂補強用繊維などの補強用繊維の製造方法であって、熱寸法安定性に優れた補強用繊維を高効率で製造できる補強用繊維の製造方法および該製造方法により得られた補強用繊維に関する。   The present invention relates to a method for producing a reinforcing fiber such as a rubber reinforcing fiber or a resin reinforcing fiber, which can efficiently produce a reinforcing fiber excellent in thermal dimensional stability, and the production thereof. The present invention relates to a reinforcing fiber obtained by the method.

従来、タイヤ、トランスミッションベルト、ゴムホースなどの車輌用ゴム部品や、自動車・家電・OA機器等の樹脂材料などは、強度、耐久性などを付加するために様々な繊維で補強している。このような繊維補強材料は、近年ますます高まってきている軽量化、薄型化といった低燃費化、省エネルギーの観点から、材料を補強する繊維に対しては熱寸法安定性などの高性能化とともにコストダウンの要求が高まっている。中でも汎用性が高いポリエステル、ポリアミドといった熱可塑性樹脂からなる繊維は、更なる熱寸法安定化と高効率生産の両立が望まれている。   Conventionally, rubber parts for vehicles such as tires, transmission belts, rubber hoses, and resin materials for automobiles, home appliances, office automation equipment, and the like have been reinforced with various fibers to add strength and durability. Such fiber reinforced materials are becoming increasingly cost-effective along with higher performance such as thermal dimensional stability for fibers that reinforce materials, from the viewpoint of fuel efficiency and energy saving, which are increasing in recent years. The demand for down is increasing. In particular, fibers made of thermoplastic resins such as polyester and polyamide, which have high versatility, are desired to achieve both further thermal dimensional stabilization and high-efficiency production.

こういった背景のもと、熱可塑性樹脂からなる繊維の熱寸法安定性を高める方法としては、例えば、特許文献1では、ポリエステルを紡糸口金から溶融吐出した後、1500〜4000m/分の引取り速度で引取り、次いで超臨界流体またはそれに類する流体で20〜100℃、7〜25MPaの圧力下で処理すると同時にまたはその後に延伸するポリエステル繊維の製造方法が提案されている。しかしながら、この方法はポリエステル繊維を超臨界流体で可塑化して延伸し高強度化と高弾性率化、低収縮化の両立を図るものであるが、紡糸段階での処理のため緩和、熱固定時間が短く、低収縮化に至らないばかりでなく、断糸・毛羽などの多発によって工業生産性が極めて低いという問題があった。   Under such a background, as a method for improving the thermal dimensional stability of a fiber made of a thermoplastic resin, for example, in Patent Document 1, polyester is melted and discharged from a spinneret, and then 1500 to 4000 m / min is taken up. It has been proposed to produce polyester fibers that are drawn at speed and then drawn simultaneously with or after treatment with a supercritical fluid or similar fluid at 20-100 ° C. under a pressure of 7-25 MPa. However, this method plasticizes polyester fiber with a supercritical fluid and draws it to achieve both high strength, high elastic modulus, and low shrinkage. In addition to being short and not resulting in low shrinkage, there was a problem that industrial productivity was extremely low due to the frequent occurrence of yarn breakage and fluff.

また、特許文献2では、溶融紡糸した未延伸糸を一旦巻き取ることなく連続して2段以上に多段延伸し、次いで最終延伸ローラーと弛緩ローラーとの間で過熱水蒸気を噴射しつつ弛緩率12%以上で熱処理した後、2500m/分以上の速度で巻き取る高タフネス低収縮ポリエステルの製造方法が提案されている。しかしながら、この方法では、12%以上の弛緩処理時に過熱蒸気噴射ノズルに糸条を通して処理しているため、張力変動による糸揺れが大きく、物性のバラツキが大きく、さらにノズルへの糸条接触による断糸、毛羽が多発するため工業生産性が極めて低いという問題があった。   Further, in Patent Document 2, a melt-spun undrawn yarn is continuously stretched in two or more stages without being wound once, and then a relaxation rate of 12 while jetting superheated steam between a final stretching roller and a relaxation roller. %, A method for producing a high toughness low shrinkage polyester which is wound up at a speed of 2500 m / min or more after heat treatment is proposed. However, in this method, since the yarn is processed through the superheated steam injection nozzle during the relaxation process of 12% or more, the yarn sway due to the tension fluctuation is large, the physical property variation is large, and further, the break due to the yarn contact with the nozzle is caused. There was a problem that industrial productivity was extremely low due to frequent occurrence of yarn and fluff.

特開2003−003324号公報JP 2003-003324 A 特開2000−027029号公報JP 2000-027029 A

本発明はかかる背景に鑑みなされたものであり、その目的は、ゴム補強用繊維や樹脂補強用繊維などの補強用繊維の製造方法であって、熱寸法安定性に優れた補強用繊維を高効率で製造できる補強用繊維の製造方法および該製造方法により得られた補強用繊維を提供することである。   The present invention has been made in view of such a background, and an object of the present invention is a method for producing a reinforcing fiber such as a rubber reinforcing fiber or a resin reinforcing fiber, which increases the reinforcing fiber excellent in thermal dimensional stability. It is an object to provide a method for producing a reinforcing fiber that can be produced efficiently and a reinforcing fiber obtained by the production method.

本発明者は上記課題を達成するため鋭意検討した結果、乾熱処理および過熱水蒸気処理の条件を巧みに組合せることにより熱寸法安定性に優れた補強用繊維を高効率で製造できることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that a reinforcing fiber excellent in thermal dimensional stability can be produced with high efficiency by skillfully combining the conditions of dry heat treatment and superheated steam treatment. The present invention has been completed through intensive studies.

かくして、本発明によれば「補強用繊維の製造方法であって、融点が210℃以上であり、かつ強度が5cN/dtex以上である、熱可塑性樹脂からなる繊維を、前記融点よりも10℃以上低くかつ100℃以上の温度で、−10%〜+10%の緊張または弛緩乾熱処理を施し、次いで過熱水蒸気処理を行うことを特徴とする補強用繊維の製造方法。」が提供される。   Thus, according to the present invention, “a method for producing a reinforcing fiber, which has a melting point of 210 ° C. or higher and a strength of 5 cN / dtex or more, is made of a thermoplastic resin, which is 10 ° C. higher than the melting point. There is provided a method for producing a reinforcing fiber, which is subjected to a tension or relaxation dry heat treatment of −10% to + 10% at a temperature lower than 100 ° C. or higher and then a superheated steam treatment.

その際、補強用繊維が、ゴム補強用繊維または樹脂補強用繊維であることが好ましい。また、前記乾熱処理を30〜240秒間行うことが好ましい。また、前記過熱水蒸気処理を、180〜350℃の温度で1〜120秒間行うことが好ましい。また、繊維を走行速度10〜100m/分で走行させながら、前記乾熱処理および過熱水蒸気処理を連続的に行うことが好ましい。また、前記繊維が、ポリエステル繊維またはポリアミド繊維であることが好ましい。また、前記繊維が、総繊度が500〜35000dtexの糸条であることが好ましい。また、前記繊維に、撚数30〜1000回/mの撚りが施されていることが好ましい。   At that time, the reinforcing fiber is preferably a rubber reinforcing fiber or a resin reinforcing fiber. The dry heat treatment is preferably performed for 30 to 240 seconds. The superheated steam treatment is preferably performed at a temperature of 180 to 350 ° C. for 1 to 120 seconds. Moreover, it is preferable that the dry heat treatment and the superheated steam treatment are continuously performed while the fiber is running at a running speed of 10 to 100 m / min. Moreover, it is preferable that the said fiber is a polyester fiber or a polyamide fiber. Moreover, it is preferable that the said fiber is a thread | yarn whose total fineness is 500-35000 dtex. Moreover, it is preferable that the said fiber is twisted 30-1000 times / m.

また、本発明によれば、前記の製造方法により得られた補強用繊維が提供される。その際、150℃における乾熱収縮率が1.0%未満であることが好ましい。   Moreover, according to this invention, the fiber for reinforcement obtained by the said manufacturing method is provided. At that time, the dry heat shrinkage at 150 ° C. is preferably less than 1.0%.

本発明によれば、ゴム補強用繊維や樹脂補強用繊維などの補強用繊維の製造方法であって、熱寸法安定性に優れた補強用繊維を高効率で製造できる補強用繊維の製造方法および該製造方法により得られた補強用繊維が提供される。   According to the present invention, there is provided a method for producing a reinforcing fiber such as a rubber reinforcing fiber or a resin reinforcing fiber, and a method for producing a reinforcing fiber capable of producing a reinforcing fiber excellent in thermal dimensional stability with high efficiency, and A reinforcing fiber obtained by the production method is provided.

本発明において用いることのできる繊維処理装置を模式的に示す図である。It is a figure which shows typically the fiber processing apparatus which can be used in this invention.

まず、本発明の製造方法において、融点が210℃以上(より好ましくは220℃以上、特に好ましくは220〜280℃)、強度(引張り強さ)が5cN/dtex以上(より好ましくは7cN/dtex以上、特に好ましくは7〜10cN/dtex)である熱可塑性樹脂からなる繊維を用いる。   First, in the production method of the present invention, the melting point is 210 ° C. or higher (more preferably 220 ° C. or higher, particularly preferably 220 to 280 ° C.), and the strength (tensile strength) is 5 cN / dtex or higher (more preferably 7 cN / dtex or higher). In particular, fibers made of a thermoplastic resin of 7 to 10 cN / dtex) are preferably used.

ここで、前記融点が210℃未満の場合、ゴム加硫成型あるいは樹脂の射出成型、プレス成型など加熱成型加工時に繊維が融解、劣化してしまい、補強材料としての適用性が損なわれるおそれがある。また、繊維の強度が5cN/dtex未満の場合、ゴム又は樹脂を補強するのに充分な製品強度が得られにくく、補強繊維をより一層多量に添加、使用する必要性が生じ、ゴムまたは樹脂製品の軽量化、薄膜化が損なわれるおそれがある。   Here, when the melting point is less than 210 ° C., the fiber melts and deteriorates at the time of heat molding such as rubber vulcanization molding, resin injection molding, press molding, and the applicability as a reinforcing material may be impaired. . Further, when the strength of the fiber is less than 5 cN / dtex, it is difficult to obtain a product strength sufficient to reinforce the rubber or resin, and it becomes necessary to add and use a larger amount of reinforcing fiber. There is a possibility that the weight reduction and thinning of the film may be impaired.

前記繊維の種類としては、熱可塑性樹脂からなる繊維であれば特に限定されないが、ポリエステル繊維またはポリアミド繊維が好ましい。なかでも、ポリエチレンテレフタレート繊維、ポリエチレン−2,6−ナフタレート繊維、ポリアリレート繊維、ナイロン6繊維、ナイロン66繊維、ナイロン46繊維などがより一層好ましい。前記ポリエステル繊維を形成するポリエステルとしては、マテリアルリサイクルまたはケミカルリサイクルされたポリエステルや、特開2004−270097号公報や特開2004−211268号公報に記載されているような、特定のリン化合物およびチタン化合物を含む触媒を用いて得られたポリエステル、ポリ乳酸やステレオコンプレックスポリ乳酸などの脂肪族ポリエステルでもよい。また、テレフタル酸成分の一部を他の二官能性カルボン酸成分で置換えたポリエステルであってもよく、および/またはグリコール成分の一部を他のジオール化合物で置換えたポリエステルであってもよい。   The fiber type is not particularly limited as long as it is a fiber made of a thermoplastic resin, but a polyester fiber or a polyamide fiber is preferable. Among these, polyethylene terephthalate fiber, polyethylene-2,6-naphthalate fiber, polyarylate fiber, nylon 6 fiber, nylon 66 fiber, nylon 46 fiber and the like are even more preferable. Examples of the polyester forming the polyester fiber include material-recycled or chemically-recycled polyester, and specific phosphorus compounds and titanium compounds as described in JP-A-2004-270097 and JP-A-2004-212268. Aliphatic polyesters such as polyester, polylactic acid and stereocomplex polylactic acid obtained by using a catalyst containing can be used. Moreover, the polyester which substituted a part of terephthalic acid component with the other bifunctional carboxylic acid component may be sufficient, and / or the polyester which substituted a part of glycol component with the other diol compound may be sufficient.

これらの繊維は汎用性が高いことからコスト、生産性とのバランスが優れている。なお、該繊維を構成する熱可塑性樹脂組成としては、主にこれらのポリマー主鎖からなるが、融点、熱寸法安定性や強度など機械特性を損なわない範囲で共重合したり、結晶核剤、増粘剤、熱安定化剤など各種改質剤を添加していてもよい。   Since these fibers are highly versatile, the balance between cost and productivity is excellent. The thermoplastic resin composition constituting the fiber is mainly composed of these polymer main chains, but may be copolymerized within a range that does not impair mechanical properties such as melting point, thermal dimensional stability and strength, Various modifiers such as thickeners and heat stabilizers may be added.

前記繊維の製糸方法は、特に制限はなく、従来公知の方法が採用される。例えば、ポリエステル繊維の場合、ポリエステル(チップ)を乾燥後、溶融紡糸して製造することが好ましい。また、溶融紡糸において、未延伸または部分延伸または延伸して引取り速度400〜5000m/分で引取ることが好ましい。引取り速度がこの範囲にあると、得られる繊維の強度も充分なものであるとともに、安定して捲取りを行うこともできる。さらには、上述の方法で得られた未延伸糸もしくは部分延伸糸を、延伸工程にて1.2倍〜6.0倍程度の範囲で延伸することが好ましい。   The fiber spinning method is not particularly limited, and a conventionally known method is employed. For example, in the case of a polyester fiber, it is preferable to produce the polyester (chip) by drying and then melt spinning. Moreover, in melt spinning, it is preferable to draw at a take-up speed of 400 to 5000 m / min after undrawn or partially drawn or drawn. When the take-up speed is within this range, the strength of the resulting fiber is sufficient and the staking can be performed stably. Furthermore, it is preferable that the undrawn yarn or the partially drawn yarn obtained by the above-described method is drawn in a range of about 1.2 times to 6.0 times in the drawing step.

次いで、前記繊維を無撚ないしは撚糸した状態(撚糸コード)で用いて、前記融点よりも10℃以上低くかつ100℃以上の温度(より好ましくは、前記融点よりも15℃以上低くかつ120℃以上の温度)で、−10%〜+10%の緊張または弛緩乾熱処理を施す。かかる乾熱処理により、あらかじめ繊維の乾燥とともに、結晶化度と結晶サイズを高めることが可能となる。   Next, the fiber is used in an untwisted or twisted state (twisted yarn cord), and is a temperature that is 10 ° C. or more lower than the melting point and 100 ° C. or more (more preferably, 15 ° C. or more lower than the melting point and 120 ° C. or more). At a temperature of −10% to + 10%. Such dry heat treatment makes it possible to increase the crystallinity and the crystal size as well as drying the fibers in advance.

その際、前記繊維は1本の糸条として用いてよいし、複数本の糸条を引きそろえて撚糸してもよい。その際、総繊度100〜5000dtexの糸条を複数本引きそろえて総繊度500〜35000dtexの糸条(「コード」ということもある。)とすることが、熱処理能力と生産能力上好ましい。撚数としては30〜1000回/mであると、繊維に伸度が付与されて補強用繊維の耐疲労性が向上し好ましい。また、撚りの形態としては、片撚、双撚、カバーリング等の撚りが例示されるが特に限定はされない。   At that time, the fiber may be used as a single yarn, or a plurality of yarns may be arranged and twisted. At that time, it is preferable in terms of heat treatment ability and production capacity to arrange a plurality of yarns having a total fineness of 100 to 5000 dtex to obtain yarns having a total fineness of 500 to 35000 dtex (sometimes referred to as “cords”). When the number of twists is 30 to 1000 times / m, the fiber is given an elongation, and the fatigue resistance of the reinforcing fiber is preferably improved. Moreover, as a form of a twist, twists, such as a single twist, a double twist, a cover ring, are illustrated, but it is not specifically limited.

また、前記乾熱処理の温度としては、100℃未満の場合は繊維を構成する結晶性熱可塑性樹脂の結晶化が進まないため、寸法安定性が低下してしまうおそれがある。一方、該繊維の融点より10℃未満の高い温度においては繊維が融着、融解が起こりやすく、強度低下や熱処理時の断糸が発生しやすくなるおそれがある。   In addition, when the temperature of the dry heat treatment is less than 100 ° C., crystallization of the crystalline thermoplastic resin constituting the fiber does not proceed, so that the dimensional stability may be lowered. On the other hand, when the temperature is higher than the melting point of the fiber by less than 10 ° C., the fiber is likely to be fused and melted, and there is a possibility that the strength is reduced and the yarn is broken during the heat treatment.

また、前記乾熱処理の熱処理時間としては、30〜240秒間(より好ましくは60〜180秒間)であることが良好な機械物性と熱寸法安定性を両立する上で好ましい。該熱処理時間が30秒未満であると、熱セットが不足して熱寸法安定性が低下するおそれがある。逆に、該熱処理時間が240秒間を越える場合は繊維を構成する熱可塑性樹脂の熱、空気酸化などの劣化により機械特性が低下するおそれがある。   The heat treatment time for the dry heat treatment is preferably 30 to 240 seconds (more preferably 60 to 180 seconds) in order to achieve both good mechanical properties and thermal dimensional stability. If the heat treatment time is less than 30 seconds, heat setting may be insufficient and thermal dimensional stability may be reduced. On the other hand, when the heat treatment time exceeds 240 seconds, there is a risk that the mechanical properties may be lowered due to deterioration of the thermoplastic resin constituting the fiber due to heat, air oxidation, or the like.

また、前記乾熱処理において、−10%〜+10%(より好ましくは−8%〜8%)の範囲で緊張あるいは弛緩乾熱処理を施すことも重要である。ここで、緊張率あるいは弛緩率は用いる繊維の熱収縮応力などの物性により適宜設定する。また、プラスの数値は緊張率を示し、マイナスの数値は弛緩率を示す。−10%未満(マイナスの数値が大きい場合)の弛緩率では、走行繊維の張力が低すぎて断糸など工程通過性が安定しないおそれがある。逆に、10%を越える緊張率では走行繊維の張力が高すぎて断糸、毛羽などの発生により工程通過性や品位の低下のおそれがある。   In the dry heat treatment, it is also important to perform a tension or relaxation dry heat treatment within a range of −10% to + 10% (more preferably −8% to 8%). Here, the tension rate or relaxation rate is appropriately set according to physical properties such as heat shrinkage stress of the fiber used. A positive value indicates a tension rate, and a negative value indicates a relaxation rate. When the relaxation rate is less than −10% (when the negative value is large), the tension of the traveling fiber is too low, and there is a possibility that process passability such as yarn breakage may not be stable. On the other hand, if the tension rate exceeds 10%, the tension of the running fiber is too high, and there is a risk that process passability and quality will be reduced due to the occurrence of yarn breakage, fluff and the like.

なお、前記緊張率は下記式により算出する。該緊張率がマイナスの数値の場合、弛緩率となる。
緊張率(%)=((走行繊維の乾熱処理炉出側速度)−(走行繊維の乾熱処理炉入側速度))/(走行繊維の乾熱処理炉入側速度)×100
The tension rate is calculated by the following formula. When the tension rate is a negative value, it becomes a relaxation rate.
Tension rate (%) = ((running fiber dry heat treatment furnace exit speed) − (running fiber dry heat treatment furnace entry speed)) / (running fiber dry heat treatment furnace entry speed) × 100

前記乾熱処理を施す速度(繊維の走行速度)としては、10〜100m/分(より好ましくは20〜90m/分)の範囲であることが好ましい。特に、この範囲で繊維を走行させながら、前記乾熱処理および後記の過熱水蒸気処理を連続的に行うことが好ましい。前記速度が10m/分以下では生産性が低くなるおそれがある。逆に、前記速度が100m/分を越えると、熱処理時間を維持するのにより大きい乾燥炉設備としなければならないだけでなく物性や工程の安定性にも問題が出やすくなるため生産効率が低下するおそれがある。   The speed for applying the dry heat treatment (fiber running speed) is preferably in the range of 10 to 100 m / min (more preferably 20 to 90 m / min). In particular, it is preferable to continuously perform the dry heat treatment and the superheated steam treatment described below while running the fiber in this range. If the speed is 10 m / min or less, the productivity may be lowered. On the other hand, if the speed exceeds 100 m / min, not only must a larger drying furnace be installed to maintain the heat treatment time, but also the physical properties and the stability of the process are likely to cause problems, leading to a reduction in production efficiency. There is a fear.

前記の乾熱処理としては、本発明の処理温度などの範囲において、複数段階に分けて連続的に処理してもよい。また、タイヤコードディップ処理機やシングルコードディップ処理機など既存の繊維加工用熱処理機を活用することは好ましいことである。
なお、前記の乾熱処理は繊維の紡糸工程とは別工程で行うことが好ましい。紡糸段階での熱処理では、非常に高速で短い熱処理時間となるため、繊維を形成するポリマーの緩和、結晶化が不十分となり熱寸法安定性に優れた補強用繊維を安定的に得ることが難しくなるおそれがある。
The dry heat treatment may be continuously performed in a plurality of stages within the range of the processing temperature of the present invention. In addition, it is preferable to utilize an existing fiber processing heat treatment machine such as a tire cord dip treatment machine or a single cord dip treatment machine.
The dry heat treatment is preferably performed in a process separate from the fiber spinning process. The heat treatment at the spinning stage is very fast and requires a short heat treatment time, so it is difficult to stably obtain reinforcing fibers with excellent thermal dimensional stability due to insufficient relaxation and crystallization of the polymer forming the fibers. There is a risk.

また、前記の乾熱処理の前工程で、公知のゴム補強用や樹脂補強用の繊維表面処理を繊維に施してもよい。例えば、繊維表面の活性化、接着処理として、エポキシ化合物、ウレタン化合物、レゾルシン・ホルマリン・ラテックス(RFL)などの熱硬化性樹脂処理や、ポリエステル、ポリアミド、ポリイミン、オレフィンの共重合や変性化合物などの熱可塑性樹脂処理、アニオン、ノニオン系界面活性剤などがあげられる。これらの処理は、取扱性、作業性、環境負荷の観点から、水系処理で用いられることが好ましい。   Moreover, you may give the fiber surface treatment for well-known rubber reinforcement or resin reinforcement to the fiber in the pre-process of the said dry heat processing. For example, fiber surface activation, adhesion treatment, epoxy compound, urethane compound, resorcin / formalin / latex (RFL) thermosetting resin treatment, polyester, polyamide, polyimine, olefin copolymerization and modification compounds, etc. Examples thereof include thermoplastic resin treatment, anion, and nonionic surfactant. These treatments are preferably used in an aqueous treatment from the viewpoints of handleability, workability, and environmental load.

上記のように乾熱処理を施した繊維は、引き続いて過熱水蒸気下で熱処理することが肝要である。具体的には、乾熱処理後の繊維を駆動ローラー間に設けられた180〜350℃(より好ましくは200℃〜300℃)の過熱水蒸気を封入した加温炉で連続的に熱処理することが好ましい。このように過熱水蒸気処理を加えることによってより一層緻密で均一な繊維微細構造が形成される。   It is important that the fiber subjected to the dry heat treatment as described above is subsequently heat-treated under superheated steam. Specifically, it is preferable to continuously heat-treat the fiber after the dry heat treatment in a heating furnace in which superheated steam of 180 to 350 ° C. (more preferably 200 to 300 ° C.) provided between the driving rollers is enclosed. . By applying the superheated steam treatment in this way, a finer and more uniform fiber microstructure is formed.

ここで、過熱水蒸気の温度が180℃未満では、熱セットが充分ではなく熱寸法安定性が低下するおそれがある。逆に、過熱水蒸気の温度が350℃を越える場合は、繊維の融解、融着により生産効率が低下するおそれがある。また、過熱水蒸気の処理時間としては1〜120秒間が優れた熱寸法安定性を得る上で好ましい。   Here, when the temperature of the superheated steam is lower than 180 ° C., the heat setting is not sufficient and the thermal dimensional stability may be lowered. On the other hand, when the temperature of the superheated steam exceeds 350 ° C., the production efficiency may decrease due to melting and fusion of the fibers. Moreover, as processing time of superheated steam, 1-120 second is preferable when obtaining the outstanding thermal dimensional stability.

前記過熱水蒸気処理を施す速度(繊維の走行速度)としては、10〜100m/分(より好ましくは20〜90m/分)の範囲であることが好ましい。特に、この範囲で繊維を走行させながら、前記乾熱処理および過熱水蒸気処理を連続的に行うことが好ましいは前述の通りである。   The speed at which the superheated steam treatment is performed (fiber running speed) is preferably in the range of 10 to 100 m / min (more preferably 20 to 90 m / min). In particular, as described above, it is preferable to continuously perform the dry heat treatment and the superheated steam treatment while running the fiber in this range.

また、過熱水蒸気処理に際し、公知の既存タイヤコード熱処理機やシングルコード熱処理機の乾燥炉を活用したり、過熱水蒸気処理炉を付加するなど既存設備を流用、活用することができることは言うまでもない。
かくして得られた補強用繊維は、熱寸法安定性に優れる。ここで、熱寸法安定性としては、150℃における乾熱収縮率が1.0%未満であることが好ましい。
かかる補強用繊維は熱寸法安定性に優れるため、ゴム補強用繊維材料、樹脂補強用繊維材料などとして好適に用いることができる。もちろん、他の用途に用いてもよい。
Needless to say, in the superheated steam treatment, existing facilities such as a drying furnace of a known existing tire cord heat treatment machine or single cord heat treatment machine can be used, or an existing superheated steam treatment furnace can be added.
The reinforcing fiber thus obtained is excellent in thermal dimensional stability. Here, as thermal dimensional stability, the dry heat shrinkage at 150 ° C. is preferably less than 1.0%.
Since such reinforcing fibers have excellent thermal dimensional stability, they can be suitably used as rubber reinforcing fiber materials, resin reinforcing fiber materials, and the like. Of course, you may use for another use.

(1)融点
Du Pont社製 熱示差分析計990型を使用し、昇温20℃/分で測定し、融解ピークをもとめた。
(2)繊維の強度(引張り強さ)、強力(引張り強力)、伸度、150℃乾熱収縮率
JIS L1013に従い測定を行った。
(1) Melting point Using a differential thermal analyzer 990 manufactured by Du Pont, measured at a temperature increase of 20 ° C./min, and obtained a melting peak.
(2) Fiber strength (tensile strength), strength (tensile strength), elongation, 150 ° C. dry heat shrinkage The measurement was performed according to JIS L1013.

[実施例1]
ポリエチレンテレフタレート繊維(帝人社製 BHT 総繊度1100dtex/フィラメント数250本 P900M;引張り強度8.1cN/dtex、150℃乾熱収縮率11.5%、融点263℃)をZ方向に400回/mの下撚を行い、この下撚コードを2本合せてS方向に400回/mの上撚を行い、1100dtex/1×2の撚糸コード(処理前の繊維)とした。この撚糸コードをリツラー社製コンピュートリーター処理機にて25m/分の速度で130℃×90秒間、+0.5%の緊張乾熱処理を行い、次いで220℃×90秒間、0%の定長乾熱処理を行い、引き続き250℃の過熱水蒸気下、30秒間の熱処理を−3.0%の弛緩条件で行い、ポリエチレンテレフタレート繊維からなる熱処理コード(補強用繊維)を得た。
得られた熱処理コード(補強用繊維)の物性は強力168N、伸度26.5%、44N荷伸7.5%、150℃乾熱収縮率0.2%であり、高強力かつ低収縮に優れたものであった。
次いで、前記熱処理コード(補強用繊維)をゴム補強用繊維材料としてゴム製品を得た。また、前記熱処理コード(補強用繊維)を樹脂補強用繊維材料として樹脂製品を得た。これらのゴム製品および樹脂製品は熱寸法安定性に優れるものであった。
[Example 1]
Polyethylene terephthalate fiber (BHT manufactured by Teijin Limited, 1100 dtex / 250 filaments P900M; tensile strength 8.1 cN / dtex, 150 ° C. dry heat shrinkage 11.5%, melting point 263 ° C.) 400 times / m in the Z direction Two lower twisted cords were combined and subjected to an upper twist of 400 times / m in the S direction to obtain a 1100 dtex / 1 × 2 twisted yarn cord (fiber before treatment). This twisted yarn cord was subjected to a + 0.5% tension dry heat treatment at 130 ° C. for 90 seconds at a speed of 25 m / min in a Ritzler computer treater processor, and then a constant length dry heat treatment of 0% at 220 ° C. for 90 seconds. Subsequently, heat treatment was performed for 30 seconds under superheated steam at 250 ° C. under a relaxation condition of −3.0% to obtain a heat treated cord (reinforcing fiber) made of polyethylene terephthalate fiber.
The physical properties of the obtained heat treated cord (reinforcing fiber) are 168N strong, 26.5% elongation, 7.5% 44N loading, 0.2% 150 ° C dry heat shrinkage, high strength and low shrinkage. It was excellent.
Next, a rubber product was obtained using the heat treated cord (reinforcing fiber) as a rubber reinforcing fiber material. Also, a resin product was obtained using the heat treated cord (reinforcing fiber) as a resin reinforcing fiber material. These rubber products and resin products were excellent in thermal dimensional stability.

[比較例1]
実施例1と同様にポリエチレンテレフタレート繊維からなる1100dtex/1×2撚糸コードを用い、リツラー社製コンピュートリーター処理機にて25m/分の速度で130℃×90秒間、+0.5%の緊張乾熱処理、次いで240℃×90秒間、−6.0%の弛緩乾熱処理を行い、ポリエチレンテレフタレート繊維からなる熱処理コード(補強用繊維)を得た。得られた熱処理コード(補強用繊維)の物性は強力157N、伸度24.2%、44N荷伸6.4%、150℃乾熱収縮率3.2%であり、実施例1で得られた熱処理コードに比べると強力、熱収縮に劣るものであった。
[Comparative Example 1]
Using a 1100 dtex / 1 × 2 twisted yarn cord made of polyethylene terephthalate fiber in the same manner as in Example 1, it was subjected to a tension dry heat treatment of + 0.5% at 130 ° C. for 90 seconds at a speed of 25 m / min. Then, a relaxation dry heat treatment of −6.0% was performed at 240 ° C. for 90 seconds to obtain a heat treated cord (reinforcing fiber) made of polyethylene terephthalate fiber. The physical properties of the obtained heat treated cord (reinforcing fiber) were 157 N strong, elongation 24.2%, 44 N load elongation 6.4%, 150 ° C. dry heat shrinkage 3.2%, and obtained in Example 1. Compared with the heat treatment cord, it was strong and inferior in heat shrinkage.

[実施例2]
ナイロン66繊維(旭化成せんい社製 レオナ66 T−5 総繊度1400dtex/フィラメント数210本;引張り強度8.9cN/dtex、150℃乾熱収縮率3.5%、融点260℃)をZ方向に300回/mの下撚を行い、この下撚コードを2本合せてS方向に300回/mの上撚を行い、1400T/1×2の撚糸コードとした。この撚糸コードをリツラー社製コンピュートリーター処理機にて25m/分の速度で130℃×90秒間、0.5%の緊張乾熱処理、次いで220℃×90秒間、0%の定長乾熱処理を行い、引き続き250℃の過熱水蒸気下、30秒間の熱処理を−1.0%の弛緩条件で行い、ナイロン66の熱処理コード(補強用繊維)を得た。得られた熱処理コード(補強用繊維)の物性は強力240N、伸度25.0%、66N荷伸10.2%、150℃乾熱収縮率0.1%であり、高強力かつ低収縮に優れたものであった。
[Example 2]
Nylon 66 fiber (Leona 66 T-5 manufactured by Asahi Kasei Fibers Co., Ltd., total fineness 1400 dtex / 210 filaments; tensile strength 8.9 cN / dtex, 150 ° C. dry heat shrinkage 3.5%, melting point 260 ° C.) 300 in Z direction Twist / m was twisted, and two of these lower twisted cords were combined and twisted 300 times / m in the S direction to obtain a 1400 T / 1 × 2 twisted cord. This twisted cord was subjected to a stress dry heat treatment of 0.5% at 130 ° C. for 90 seconds at a speed of 25 m / min in a computer treatment machine manufactured by Ritzler, followed by a constant length dry heat treatment of 0% at 220 ° C. for 90 seconds. Subsequently, heat treatment was performed for 30 seconds under superheated steam at 250 ° C. under a relaxation condition of −1.0% to obtain a heat treatment cord (reinforcing fiber) of nylon 66. The physical properties of the obtained heat treated cord (reinforcing fiber) are: strong 240N, elongation 25.0%, 66N load elongation 10.2%, 150 ° C dry heat shrinkage 0.1%, high strength and low shrinkage It was excellent.

[比較例2]
実施例2と同様にナイロン66繊維からなる総繊度1400dtex/フィラメント数210本撚糸コードを用い、リツラー社製コンピュートリーター処理機にて25m/分の速度で130℃×90秒間、0.5%の緊張乾熱処理、次いで230℃×90秒間、−3.0%の弛緩乾熱処理を行い、ナイロン66繊維からなる熱処理コードを得た。得られた熱処理コードの物性は強力231N、伸度23.4%、66N荷伸9.5%、150℃乾熱収縮率1.8%であり、実施例2に比べると強力、熱収縮に劣るものであった。
[Comparative Example 2]
In the same manner as in Example 2, using a twisted cord with a total fineness of 1400 dtex / 210 filaments composed of nylon 66 fibers, 0.5% of 130 ° C. for 90 seconds at a speed of 25 m / min with a Ritular computer treater processor. A tension dry heat treatment, followed by a -3.0% relaxation dry heat treatment at 230 ° C. for 90 seconds, gave a heat treatment cord made of nylon 66 fibers. The physical properties of the obtained heat treatment cord were strong 231N, elongation 23.4%, 66N load elongation 9.5%, 150 ° C. dry heat shrinkage 1.8%. It was inferior.

本発明によれば、ゴム補強用繊維や樹脂補強用繊維などの補強用繊維の製造方法であって、熱寸法安定性に優れた補強用繊維を高効率で製造できる補強用繊維の製造方法および該製造方法により得られた補強用繊維が提供され、その工業的価値は極めて大である。   According to the present invention, there is provided a method for producing a reinforcing fiber such as a rubber reinforcing fiber or a resin reinforcing fiber, and a method for producing a reinforcing fiber capable of producing a reinforcing fiber excellent in thermal dimensional stability with high efficiency, and The reinforcing fiber obtained by the production method is provided, and its industrial value is extremely large.

1 処理前の繊維
2 給糸クリール
3 駆動ローラー
4 ディッピングバス
5 乾熱処理炉
6 過熱水蒸気炉
7 捲取機
8 処理後の繊維
DESCRIPTION OF SYMBOLS 1 Fiber before processing 2 Yarn feeding creel 3 Drive roller 4 Dipping bath 5 Dry heat treatment furnace 6 Superheated steam furnace 7 Treader 8 Fiber after processing

Claims (10)

補強用繊維の製造方法であって、
融点が210℃以上であり、かつ強度が5cN/dtex以上である、熱可塑性樹脂からなる繊維を、前記融点よりも10℃以上低くかつ100℃以上の温度で、−10%〜+10%の緊張または弛緩乾熱処理を施し、次いで過熱水蒸気処理を行うことを特徴とする補強用繊維の製造方法。
A method of manufacturing a reinforcing fiber,
A fiber made of a thermoplastic resin having a melting point of 210 ° C. or higher and a strength of 5 cN / dtex or higher is -10% to + 10% tension at a temperature of 10 ° C. lower than the melting point and 100 ° C. or higher. Or the manufacturing method of the fiber for reinforcement characterized by performing relaxation | heat-drying heat processing and then performing a superheated steam process.
前記乾熱処理を30〜240秒間行う、請求項1に記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to claim 1, wherein the dry heat treatment is performed for 30 to 240 seconds. 前記過熱水蒸気処理を、180〜350℃の温度で1〜120秒間行う、請求項1または請求項2に記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to claim 1 or 2, wherein the superheated steam treatment is performed at a temperature of 180 to 350 ° C for 1 to 120 seconds. 繊維を走行速度10〜100m/分で走行させながら、前記乾熱処理および過熱水蒸気処理を連続的に行う、請求項1〜3のいずれかに記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to any one of claims 1 to 3, wherein the dry heat treatment and the superheated steam treatment are continuously performed while running the fiber at a running speed of 10 to 100 m / min. 前記繊維が、ポリエステル繊維またはポリアミド繊維である、請求項1〜4のいずれかに記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to any one of claims 1 to 4, wherein the fiber is a polyester fiber or a polyamide fiber. 前記繊維が、総繊度が500〜35000dtexの糸条である、請求項1〜5のいずれかに記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to any one of claims 1 to 5, wherein the fiber is a yarn having a total fineness of 500 to 35000 dtex. 前記繊維に、撚数30〜1000回/mの撚りが施されている、請求項1〜6のいずれかに記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to any one of claims 1 to 6, wherein the fiber is twisted with a twist number of 30 to 1000 times / m. 補強用繊維が、ゴム補強用繊維または樹脂補強用繊維である、請求項1〜7のいずれかに記載の補強用繊維の製造方法。   The method for producing a reinforcing fiber according to any one of claims 1 to 7, wherein the reinforcing fiber is a rubber reinforcing fiber or a resin reinforcing fiber. 請求項1〜8のいずれかに記載の製造方法により得られた補強用繊維。   Reinforcing fiber obtained by the production method according to claim 1. 150℃における乾熱収縮率が1.0%未満である、請求項9に記載の補強用繊維。   The reinforcing fiber according to claim 9, wherein the dry heat shrinkage at 150 ° C is less than 1.0%.
JP2012251306A 2012-11-15 2012-11-15 Method for producing reinforcing fiber and reinforcing fiber Pending JP2014098222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251306A JP2014098222A (en) 2012-11-15 2012-11-15 Method for producing reinforcing fiber and reinforcing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251306A JP2014098222A (en) 2012-11-15 2012-11-15 Method for producing reinforcing fiber and reinforcing fiber

Publications (1)

Publication Number Publication Date
JP2014098222A true JP2014098222A (en) 2014-05-29

Family

ID=50940446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251306A Pending JP2014098222A (en) 2012-11-15 2012-11-15 Method for producing reinforcing fiber and reinforcing fiber

Country Status (1)

Country Link
JP (1) JP2014098222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138312A (en) * 2018-02-06 2019-08-22 横浜ゴム株式会社 Method for manufacturing high pressure hose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138312A (en) * 2018-02-06 2019-08-22 横浜ゴム株式会社 Method for manufacturing high pressure hose

Similar Documents

Publication Publication Date Title
KR101403201B1 (en) Aramid Fiber Cord and Method for Manufacturing The Same
TWI422719B (en) Polyethylene naphthalate fiber and its manufacturing method
JPS5898419A (en) Polyester fiber of high strength with high thermal dimensional stability as well as chemical stability
TWI555889B (en) Polyester fiber for rubber reinforcing and its manufacturing method
WO2006080253A1 (en) Pneumatic radial tire for car
JP4950516B2 (en) Heavy duty pneumatic radial tire
JP2023548124A (en) A strength member comprising at least one rubber-coated first yarn for an elastomeric product, in particular a vehicle tire, a method for producing a rubber-coated strength member, and at least one rubber-coated first yarn. Vehicle tires with strength members
KR101878787B1 (en) Dimensionally stable polyethyleneterephthalate tire cord, method of manufacturing the same and tire including the same
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
KR20150097125A (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
KR101602387B1 (en) Method of manufacturing polyethyleneterephthalate tire cord with high modulus and polyethyleneterephthalate tire cord manufactured by the same method
JP2014098222A (en) Method for producing reinforcing fiber and reinforcing fiber
JP2007230406A (en) Pneumatic radial tire
JP2012067407A (en) Polycarbonate fiber and method for manufacturing the same
JP5542085B2 (en) Method for producing pretreated polyester fiber
JPS60185833A (en) Polyester fiber dip code for reinforcing rubber
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
JP4515919B2 (en) Manufacturing method of polyester fiber for rubber reinforcement
JP5542084B2 (en) Polyester fiber for rubber reinforcement
KR101312798B1 (en) Tire Cord Fabric and Method for Manufacturing The Same
KR100630264B1 (en) Hybrid dip cord
JP5302739B2 (en) High strength polyhexamethylene adipamide fiber
KR102241107B1 (en) Cap ply cord and manufacturing method of the same
KR102166025B1 (en) Process for manufacturing high modulus low shrinkage polyethylene terephthalate fiber and the polyethylene terephthalate fiber manufactured thereby
JPS593578B2 (en) Manufacturing method of high toughness polyester cord