JP2014097475A - Method for treating coal gasification drainage water - Google Patents

Method for treating coal gasification drainage water Download PDF

Info

Publication number
JP2014097475A
JP2014097475A JP2012251322A JP2012251322A JP2014097475A JP 2014097475 A JP2014097475 A JP 2014097475A JP 2012251322 A JP2012251322 A JP 2012251322A JP 2012251322 A JP2012251322 A JP 2012251322A JP 2014097475 A JP2014097475 A JP 2014097475A
Authority
JP
Japan
Prior art keywords
metal
selenium
coal gasification
titanium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012251322A
Other languages
Japanese (ja)
Inventor
Yoshikazu Tanitsu
愛和 谷津
Hiroyuki Asada
裕之 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kurita Water Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kurita Water Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2012251322A priority Critical patent/JP2014097475A/en
Publication of JP2014097475A publication Critical patent/JP2014097475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which can efficiently treat coal gasification drainage water through metal reduction treatment and wet oxidation treatment.SOLUTION: The method comprises: bringing coal gasification drainage water into contact with a metal reductant to reduce selenium; and then subjecting the drainage water to catalytic wet oxidation treatment. The method preferably comprises: subjecting treated water in which selenium is reduced by bringing the coal gasification drainage water into contact with the metal reductant, to coagulation and solid-liquid separation treatment; and then subjecting the treated water to the catalytic wet oxidation treatment. As a metal for the metal reductant, titanium and aluminum are preferably used.

Description

本発明は、石炭ガス化排水の処理方法に係り、特に石炭ガス化排水中のセレンを還元処理した後、COD成分やアンモニア等を湿式酸化処理する方法に関する。   The present invention relates to a method for treating coal gasification wastewater, and more particularly, to a method for performing wet oxidation treatment of COD components, ammonia and the like after reducing selenium in coal gasification wastewater.

石炭ガス化排水には、セレン、COD成分、アンモニアなどが含まれている。セレン含有排水の処理方法として、金属チタンと他の金属との合金又は混合物と接触させ、該他の金属の一部を溶出させてセレンを還元する方法が知られている(特許文献1〜3)。   Coal gasification wastewater contains selenium, COD components, ammonia and the like. As a method for treating selenium-containing wastewater, there is known a method of reducing selenium by bringing it into contact with an alloy or mixture of metal titanium and another metal and eluting a part of the other metal (Patent Documents 1 to 3). ).

COD成分含有排水を湿式酸化処理することも知られている(例えば特許文献4〜6)。   It is also known to wet-treat COD component-containing wastewater (for example, Patent Documents 4 to 6).

特開2008−30020JP2008-30020 特開2009−11914JP2009-11914 特開2009−11915JP2009-11915 特開2004−17003JP2004-17003 特開平9−253667JP-A-9-253667 特開平7−265878JP-A-7-265878

セレンやCOD成分等を含有する石炭ガス化排水をまず触媒湿式酸化処理し、次いで金属還元処理した場合、触媒湿式酸化処理工程で触媒から溶出した微量の貴金属等(チタンよりも貴な金属)が金属還元処理工程においてチタンの表面に析出し、セレンの還元処理反応が阻害される。   When coal gasification wastewater containing selenium, COD components, etc. is first subjected to catalytic wet oxidation treatment and then metal reduction treatment, trace amounts of noble metals (metals precious than titanium) eluted from the catalyst in the catalytic wet oxidation treatment process. In the metal reduction treatment step, it is deposited on the surface of titanium, and the selenium reduction treatment reaction is inhibited.

金属還元処理の還元金属としてチタン以外の2種以上の金属を用いる場合も、貴な金属(還元体)よりもさらに貴な金属を含む排水を処理する場合は、上記チタンを用いた場合と同様のセレン還元反応の阻害が起こる。   When two or more metals other than titanium are used as the reducing metal in the metal reduction treatment, wastewater containing noble metal further than noble metal (reduced form) is treated in the same manner as when titanium is used. Inhibition of the selenium reduction reaction occurs.

本発明は、石炭ガス化排水を金属還元処理及び湿式酸化処理により効率よく処理することができる方法を提供することを目的とする。   An object of the present invention is to provide a method capable of efficiently treating coal gasification wastewater by metal reduction treatment and wet oxidation treatment.

本発明の石炭ガス化排水の処理方法は、石炭ガス化排水を金属還元体と接触させてセレンを還元し、その後、触媒湿式酸化処理することを特徴とするものである。   The method for treating coal gasification wastewater of the present invention is characterized in that the coal gasification wastewater is brought into contact with a metal reductant to reduce selenium, and then subjected to catalytic wet oxidation treatment.

金属還元体の金属としては、チタンとアルミニウムが好適である。   Titanium and aluminum are suitable as the metal of the metal reductant.

本発明では、金属還元体と接触させてセレンを還元した処理水を凝集及び固液分離処理し、次いで触媒湿式酸化処理することが好ましい。   In the present invention, it is preferable to subject the treated water that has been brought into contact with the metal reductant to reduce selenium to flocculation and solid-liquid separation treatment, and then to catalytic wet oxidation treatment.

本発明の石炭ガス化排水の処理方法では、石炭ガス化排水をまず金属還元処理し、その後触媒湿式酸化処理するので、金属還元処理工程における貴な金属によるセレン還元反応の阻害がなく、石炭ガス化排水を長期にわたって安定して効率よく処理することができる。   In the coal gasification wastewater treatment method of the present invention, the coal gasification wastewater is first subjected to metal reduction treatment, and then subjected to catalytic wet oxidation treatment, so there is no inhibition of selenium reduction reaction by noble metal in the metal reduction treatment step, and coal gas Chemical wastewater can be treated stably and efficiently over a long period of time.

なお、セレン処理の還元体にチタンとアルミニウムを使用する場合は、セレン還元後の凝集沈殿によりフッ素化合物を一部除去できる。したがって、排水中のフッ素による触媒湿式酸化処理装置材料の腐食が低減できる。   In addition, when using titanium and aluminum for the reduced body of a selenium process, a part of fluorine compound can be removed by the aggregation precipitation after a selenium reduction | restoration. Therefore, corrosion of the catalyst wet oxidation treatment apparatus material due to fluorine in the waste water can be reduced.

金属還元処理の工程図である。It is process drawing of a metal reduction process. 触媒湿式酸化処理の工程図である。It is process drawing of a catalyst wet oxidation process.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、石炭ガス化排水を処理するものである。石炭ガス化排水は、石炭ガス化発電所などにおける石炭のガス化工程からの排水である。石炭ガス化排水は、通常はセレンを0.2〜5mg/L、COD成分を100〜1500mg/L、アンモニアを100〜4000mg/L程度含んでいる。   The present invention treats coal gasification wastewater. Coal gasification wastewater is wastewater from a coal gasification process in a coal gasification power plant or the like. Coal gasification wastewater usually contains about 0.2 to 5 mg / L of selenium, 100 to 1500 mg / L of COD components, and about 100 to 4000 mg / L of ammonia.

本発明では、この石炭ガス化排水をまず金属還元体によって処理する。金属還元体としては、第1の金属と、それよりも貴な第2の金属とを用いるのが好ましく、特に金属チタンと、金属チタン以外の他の金属との合金又は混合物を使用するのが好ましい。金属チタンと合金化又は混合する他の金属としては、各種の金属を使用できるが、金属溶出後のpH調整により生成する水酸化物からなる汚泥が白色を呈する金属であることが好ましい。汚泥が白色であると、褐色などに着色している場合に比べて、汚泥の処分が容易である。白色の汚泥を生成させる金属としては、アルミニウム、亜鉛、スズ、銅などがあり、いずれも好適に使用できる。特に、アルミニウム、亜鉛、スズは溶解性の面でも優れており、本発明では好適に使用できる。金属チタン以外の他の金属としては、1種の金属のみでもよいが、2種以上の複数金属の混合又は合金であってもよい。   In the present invention, this coal gasification wastewater is first treated with a metal reductant. As the metal reductant, it is preferable to use a first metal and a second metal that is more noble than that. In particular, it is preferable to use an alloy or a mixture of metal titanium and another metal other than metal titanium. preferable. As other metals alloyed with or mixed with titanium metal, various metals can be used, but it is preferable that the sludge composed of hydroxide generated by pH adjustment after elution of metal exhibits a white color. When the sludge is white, it is easier to dispose of the sludge than when it is colored brown or the like. Examples of the metal that generates white sludge include aluminum, zinc, tin, and copper, and any of them can be suitably used. In particular, aluminum, zinc, and tin are excellent in terms of solubility, and can be suitably used in the present invention. As the metal other than metal titanium, only one kind of metal may be used, or a mixture or alloy of two or more kinds of metals may be used.

本発明で使用する金属チタンと他の金属との合金は、固溶体、金属間化合物、共有合金のいずれをも使用できる。合金化方法としては、例えば、金属のイオン化傾向の差を利用する方法、電解法、溶融法などを採用することができる。   As an alloy of titanium metal and another metal used in the present invention, any of a solid solution, an intermetallic compound, and a covalent alloy can be used. As an alloying method, for example, a method using a difference in ionization tendency of metal, an electrolytic method, a melting method, or the like can be employed.

また、本発明では、金属チタンと他の金属とを、合金化しないで、混合物として使用することもできる。粉状物、粒状物、繊維状物などの形態の金属チタンと、粉状物、粒状物、繊維状物などの形態の他の金属とを、同種の形態を混合して、または、異種の形態を混合して混合物とすることができる。   Moreover, in this invention, metal titanium and another metal can also be used as a mixture, without alloying. Metal titanium in the form of powder, granule, fiber, etc. and other metal in the form of powder, granule, fiber, etc., mixed in the same form or different Forms can be mixed into a mixture.

チタンと他の金属との合金または混合物の形状は、表面積が大きいものであることが好ましい。例えば、粒径10μm〜5mm程度の粉状物、粒状物、繊維状物、微細薄膜などとして使用する。   The shape of the alloy or mixture of titanium and another metal is preferably one having a large surface area. For example, it is used as a powdery material, a granular material, a fibrous material, a fine thin film, or the like having a particle size of about 10 μm to 5 mm.

セレン含有排水を、チタンと他の金属との合金又は混合物と接触させる方法に制限はなく、任意の形式の還元反応器で接触させることができる。還元反応器として、例えば、反応槽にセレン含有排水を導入するとともに粉状、細粒状の合金又は混合物を添加するようにした還元反応槽であってもよく、粒状、繊維状などの合金又は混合物を充填し、充填層に排水を通水する充填塔であってもよい。   There is no restriction | limiting in the method of contacting a selenium containing waste_water | drain with the alloy or mixture of titanium and another metal, It can contact with arbitrary types of reduction reactors. The reduction reactor may be, for example, a reduction reaction tank in which selenium-containing wastewater is introduced into the reaction tank and a powdered, fine-grained alloy or mixture is added. It is also possible to use a packed tower in which waste water is passed through the packed bed.

セレン含有排水を金属チタンと他の金属との合金又は混合物と接触させると、排水中に他の金属が溶出し、溶解する。金属が溶出してイオンになる際に、強い還元作用が生じ、排水中のセレンは還元される。この金属の溶出は中性では長時間を要するために、セレン含有排水に酸を添加して金属の溶出を促進することが好ましい。添加する酸としては、例えば、塩酸、硫酸などを挙げることができる。酸の添加量は、溶出させる金属の量に応じて設定することが好ましい。金属の溶出量は概ね酸の添加量と比例関係にあり、予め実験によって求めた関係式により、酸の添加量を定めることができる。また、金属の溶出量は、還元処理すべき6価セレン濃度に応じて設定することができる。   When the selenium-containing wastewater is brought into contact with an alloy or mixture of titanium metal and another metal, the other metal is eluted and dissolved in the wastewater. When the metal elutes into ions, a strong reducing action occurs, and selenium in the wastewater is reduced. Since this metal elution is neutral and takes a long time, it is preferable to promote acid elution by adding an acid to the selenium-containing wastewater. Examples of the acid to be added include hydrochloric acid and sulfuric acid. The amount of acid added is preferably set according to the amount of metal to be eluted. The metal elution amount is generally proportional to the acid addition amount, and the acid addition amount can be determined by a relational expression obtained in advance by experiments. Further, the elution amount of the metal can be set according to the hexavalent selenium concentration to be reduced.

セレン含有排水中に溶出したセレン以外の金属、例えば、アルミニウム、亜鉛は、セレン酸イオンと下式のように反応して、セレンを還元すると考えられる。   Metals other than selenium eluted in the selenium-containing wastewater, such as aluminum and zinc, are considered to react with selenate ions as shown below to reduce selenium.

2Al+SeO 2−+8H→2Al3++Se+4H
3Zn+SeO 2−+8H→3Zn2++Se+4H
本発明において金属チタンと他の金属との合金化又は混合による共存状態下で排水と接触させると、金属チタンまたは他の金属の単独接触による処理に比べ、大幅にセレン還元処理性能が向上する。その理由として、アルミニウム、亜鉛などのチタン以外の金属が溶解して、酸が存在してもほとんど溶解しないチタンを通して電子が移動し、チタン表面でセレンが還元される。その際に何らかの電気的効果が発現している可能性が考えられる。
2Al 0 + SeO 4 2− + 8H + → 2Al 3+ + Se 0 + 4H 2 O
3Zn 0 + SeO 4 2− + 8H + → 3Zn 2+ + Se 0 + 4H 2 O
In the present invention, when contact is made with wastewater under the coexistence state by alloying or mixing of metal titanium and another metal, the selenium reduction treatment performance is greatly improved as compared with the treatment by single contact of metal titanium or other metal. The reason is that metals other than titanium, such as aluminum and zinc, dissolve, electrons move through titanium that hardly dissolves even in the presence of an acid, and selenium is reduced on the titanium surface. At that time, there is a possibility that some electrical effect is manifested.

金属チタンの容積Tと他の金属の容積Mとの比T/Mは、1/4以上、特に1/2以上であることが好ましい。この比T/Mが1/4以上であるとセレン還元処理性能が良好になる。この理由は、金属チタンの割合が高いため、他の金属の溶解の際に生じた電子が金属チタンの表面に移動する量が増加し、該金属チタンの表面で還元されるセレンの量が増加するためであると考えられる。これに対し、この比T/Mが1/4未満であると、金属チタンの割合が低いため、他の金属の溶解の際に生じた電子のうち、該他の金属の表面で放出されてしまう電子の量が増加すると共に、金属チタン表面まで移動してセレンの還元に寄与する電子の量が減少するために、セレン還元処理性能が低下するものと考えられる。   The ratio T / M between the volume T of metallic titanium and the volume M of other metals is preferably ¼ or more, particularly preferably ½ or more. When the ratio T / M is 1/4 or more, the selenium reduction treatment performance is improved. The reason for this is that since the proportion of titanium metal is high, the amount of electrons generated during the dissolution of other metals moves to the surface of the titanium metal, and the amount of selenium reduced on the surface of the metallic titanium increases. It is thought that it is to do. On the other hand, when the ratio T / M is less than ¼, the ratio of metal titanium is low, so among the electrons generated when other metals are dissolved, they are emitted from the surface of the other metals. It is considered that the performance of selenium reduction treatment decreases because the amount of electrons that increase and the amount of electrons that move to the metal titanium surface and contribute to the reduction of selenium decreases.

なお、他の金属の充填容量を一定とし、かつこの比T/Mを大きくする場合、良好な還元処理性能が維持されるものの、多量の金属チタンが必要になると共に、これら他の金属及び金属チタンを充填する装置の容積を大きくする必要がある。このため、この比T/Mは4/1以下、特に2/1以下であることが好ましい。より好ましくは、この比T/Mは1/4〜4/1、特に1/2〜2/1である。   When the filling capacity of other metals is constant and the ratio T / M is increased, a good reduction treatment performance is maintained, but a large amount of titanium metal is required, and these other metals and metals The volume of the titanium filling device needs to be increased. For this reason, this ratio T / M is preferably 4/1 or less, particularly 2/1 or less. More preferably, this ratio T / M is 1/4 to 4/1, in particular 1/2 to 2/1.

本発明では、他の金属はアルミニウムが好適である。また、金属チタンの容積をTとし、アルミニウムの容積をAとした場合、T/Aが1/4〜4/1特に1/2〜2/1であると、きわめて効率よくセレンを除去することができる。   In the present invention, the other metal is preferably aluminum. Also, when the volume of titanium metal is T and the volume of aluminum is A, when T / A is 1/4 to 4/1, particularly 1/2 to 2/1, selenium is removed very efficiently. Can do.

還元されたセレン、例えば、6価セレンは大部分が0価のセレンとなり、合金又は混合物のチタン表面に析出して、排水から除去される。残余のセレンは6価から低価数例えば、4価のセレンに還元され、凝集処理により沈殿しやすい形態となる。   Reduced selenium, for example hexavalent selenium, becomes mostly zero-valent selenium, which is deposited on the titanium surface of the alloy or mixture and removed from the waste water. Residual selenium is reduced from hexavalent to low valent selenium, for example, tetravalent selenium, and is easily precipitated by agglomeration.

本発明においては、セレン含有排水を還元処理後、還元処理水を凝集処理するのが好ましい。凝集処理は、還元処理水のpHを調整して、溶出した金属を水酸化物などの不溶性化合物として析出させ、析出した金属化合物を固液分離することによって行われる。   In the present invention, it is preferable to subject the selenium-containing wastewater to a reduction treatment and then a reduction treatment of the reduction-treated water. The agglomeration treatment is performed by adjusting the pH of the reduction treatment water, precipitating the eluted metal as an insoluble compound such as hydroxide, and solid-liquid separation of the precipitated metal compound.

還元処理水のpH調整は、通常、水酸化ナトリウム、水酸化カリウム、消石灰などのアルカリを添加しておこなう。金属チタンとともに使用した金属がアルミニウムのときは、還元処理水にアルカリを添加し、溶解アルミニウムを水酸化アルミニウムとして析出させる。アルカリの添加によりpHを5〜8に調整するのがよく、pH4以下またはpH9以上では水酸化アルミニウムは溶解するので、不適である。金属チタンとともに使用した金属が亜鉛のときはpHを9〜10、スズのときは8前後にpH調整することにより、水酸化物として析出する。   The pH of the reduced water is usually adjusted by adding an alkali such as sodium hydroxide, potassium hydroxide or slaked lime. When the metal used with the metal titanium is aluminum, an alkali is added to the reduction-treated water, and the dissolved aluminum is precipitated as aluminum hydroxide. It is preferable to adjust the pH to 5 to 8 by adding an alkali, and aluminum hydroxide dissolves at pH 4 or lower or pH 9 or higher, which is not suitable. When the metal used together with titanium metal is zinc, the pH is adjusted to 9 to 10, and when it is tin, it is precipitated as a hydroxide by adjusting the pH to around 8.

pH調整によって金属化合物を析出させる際、又は析出させた後、有機凝集剤(高分子凝集剤)及び/又は無機凝集剤を添加し、固液分離性を向上させることができる。   When or after the metal compound is precipitated by adjusting the pH, an organic flocculant (polymer flocculant) and / or an inorganic flocculant can be added to improve the solid-liquid separation.

析出した金属化合物を水中から分離するために、固液分離操作を行う。固液分離は、通常用いられる任意の方法を採用でき、沈殿、濾過、遠心分離、膜分離などにより、処理水と不溶性金属化合物からなる汚泥とに分離する。   In order to separate the precipitated metal compound from water, a solid-liquid separation operation is performed. For solid-liquid separation, any commonly used method can be adopted, and separation into treated water and sludge composed of an insoluble metal compound is performed by precipitation, filtration, centrifugation, membrane separation, or the like.

還元処理水のpH調整、固液分離により、還元処理時に溶出した金属が不溶化され、水中から分離され、金属を含まない処理水として排出することができる。また、この溶出金属が不溶性化合物、例えば、水酸化アルミニウムとして析出する際、水中に残留する還元された低価のセレンも水酸化アルミニウムのフロックに吸着され、共沈現象により除去できる。   The metal eluted during the reduction treatment is insolubilized by pH adjustment and solid-liquid separation of the reduced treated water, separated from the water, and discharged as treated water containing no metal. Further, when the eluted metal is precipitated as an insoluble compound, for example, aluminum hydroxide, reduced low-valent selenium remaining in the water is also adsorbed on the aluminum hydroxide floc and can be removed by a coprecipitation phenomenon.

また、セレン含有排水にフッ素及び又はホウ素が共存している場合、金属チタンとともに使用する金属としてアルミニウムを採用すると、還元処理後、pH調整により水酸化アルミニウムが析出する際、フッ素及び/又はホウ素も共沈現象により除去できる。   In addition, when fluorine and / or boron coexist in the selenium-containing wastewater, when aluminum is used as the metal to be used with the metal titanium, when aluminum hydroxide is precipitated by pH adjustment after the reduction treatment, fluorine and / or boron is also present. Can be removed by coprecipitation phenomenon.

石炭ガス化排水が濁質、セレン以外の重金属などを含有する場合には、金属還元処理する前に、たとえば、凝集装置、濾過装置、膜分離装置、活性炭吸着装置などの前処理装置(図示せず)に通水して、共存汚染物質を除去しておいてもよい。   When the coal gasification wastewater contains turbidity, heavy metals other than selenium, etc., before the metal reduction treatment, for example, a pretreatment device (not shown) such as an agglomeration device, a filtration device, a membrane separation device, or an activated carbon adsorption device. The coexisting pollutants may be removed.

以下に、図1を参照してセレン含有排水の金属還元処理装置について説明する。   Hereinafter, a metal reduction treatment apparatus for selenium-containing wastewater will be described with reference to FIG.

石炭ガス化排水又は上記のように前処理された前処理水よりなる被処理水は、pH調整槽1にて酸が添加された後、ポンプ2によって送液され、必要に応じ酸がライン添加された後、熱交換器3で加熱され、さらに加熱器4で加熱された後、還元塔5に通水され、金属還元体と接触し、セレンが還元される。還元塔5から流出した水は、前記熱交換器3にて被処理水と熱交換して降温した後、反応槽6に導入され、NaOH等のアルカリが添加され、撹拌され、pH6〜8特に約7とされる。次いで、凝集槽7に導入され、高分子凝集剤が添加され、撹拌された後、沈殿槽8に導入され、固液分離され、上澄液は金属還元処理水として取り出され、沈降汚泥は系外に排出される。   Water to be treated consisting of coal gasification wastewater or pretreated water pretreated as described above is added with acid in the pH adjustment tank 1 and then fed by the pump 2, and the acid is added to the line as necessary. After being heated by the heat exchanger 3 and further heated by the heater 4, the water is passed through the reduction tower 5 and comes into contact with the metal reductant to reduce selenium. The water flowing out from the reduction tower 5 is heat-exchanged with the water to be treated in the heat exchanger 3 and cooled, and then introduced into the reaction tank 6 and added with an alkali such as NaOH, stirred, and pH 6-8, in particular. It is about 7. Next, the polymer flocculant is introduced into the flocculation tank 7 and added and stirred. Then, it is introduced into the precipitation tank 8 and separated into solid and liquid, and the supernatant is taken out as metal reduction treated water. Discharged outside.

本発明では、この金属還元処理水を次に触媒湿式酸化処理する。触媒湿式酸化処理は、被処理水に空気等の酸素含有ガスを混入させ、触媒によって酸化処理するものである。   In the present invention, this metal reduction treated water is then subjected to catalytic wet oxidation treatment. In the catalytic wet oxidation treatment, an oxygen-containing gas such as air is mixed into the water to be treated, and is oxidized with a catalyst.

触媒としては、Fe、Co、Ni、Ru、Rh、Pd、Ir、Pt、Cu、AuおよびWならびにこれら金属の水不溶性乃至難溶性の化合物が挙げられる。この様な化合物のより具体的な例としては、酸化物(酸化コバルト、酸化鉄など)、塩化物(二塩化ルテニウム、二塩化白金など)、硫化物(硫化ルテニウム、硫化ロジウムなど)などが挙げられる。これら金属およびその化合物は、単独で使用しても良く或いは2種以上を併用しても良い。これらの触媒活性成分は、常法に従って、公知の金属酸化物担体或いは金属担体に担持した状態で使用される。金属酸化物担体および金属担体としては、特に限定されず、公知の触媒担体として使用されているものをそのまま使用することができる。金属酸化物担体としては、アルミナ、シリカ、ジルコニア、チタニア、これら金属酸化物を含む複合金属酸化物乃至混合金属酸化物(アルミナ−シリカ、アルミナ−シリカ−ジルコニア、チタニア−ジルコニアなど)、これら金属酸化物または複合金属酸化物乃至混合金属酸化物を主成分とする金属酸化物系担体などが挙げられ、金属担体としては、鉄、アルミニウムなどが挙げられる。これらの担体中では、耐久性に優れたジルコニア、チタニアおよびチタニア−ジルコニアがより好ましい。   Examples of the catalyst include Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt, Cu, Au, and W, and water-insoluble or hardly soluble compounds of these metals. More specific examples of such compounds include oxides (such as cobalt oxide and iron oxide), chlorides (such as ruthenium dichloride and platinum dichloride), and sulfides (such as ruthenium sulfide and rhodium sulfide). It is done. These metals and their compounds may be used alone or in combination of two or more. These catalytically active components are used in a state where they are supported on a known metal oxide carrier or metal carrier according to a conventional method. The metal oxide carrier and the metal carrier are not particularly limited, and those used as known catalyst carriers can be used as they are. Examples of metal oxide carriers include alumina, silica, zirconia, titania, composite metal oxides or mixed metal oxides containing these metal oxides (alumina-silica, alumina-silica-zirconia, titania-zirconia, etc.), and these metal oxides. And metal oxide-based carriers mainly composed of mixed metal oxides or mixed metal oxides, and examples of the metal carriers include iron and aluminum. Among these carriers, zirconia, titania and titania-zirconia having excellent durability are more preferable.

担持触媒の形状も、特に限定されず、球状、ペレット状、円柱状、破砕片状、粉末状、ハニカム状などが挙げられる。この様な担持触媒を充填使用する場合の反応器容積は、固定床の場合には、液の空間速度が0.5〜10hr−1程度、より好ましくは1〜5hr−1程度となるようにすることが良い。固定床で使用する担持触媒の大きさは、球状、ペレット状、円柱状、破砕片状。粉末状などの場合には、通常1〜50mm程度、より好ましくは3〜25mm程度である。また、触媒をハニカム状担体に担持して使用する場合のハニカム構造体としては、開口部が四角形、六角形、円形などの任意の形状のものが使用される。単位容積当たりの面積、開口率なども特に限定されるものではないが、通常単位容積当たりの面積として200〜800m/m程度、開口率40〜80%程度のものを使用する。ハニカム構造体の材質としても、上記と同様の金属酸化物および金属が例示され、やはり耐久性に優れたジルコニア、チタニアおよびチタニア−ジルコニアがより好ましい。 The shape of the supported catalyst is not particularly limited, and examples thereof include a spherical shape, a pellet shape, a cylindrical shape, a crushed piece shape, a powder shape, and a honeycomb shape. In the case of using such a supported catalyst, the reactor volume is such that, in the case of a fixed bed, the space velocity of the liquid is about 0.5 to 10 hr −1 , more preferably about 1 to 5 hr −1. Good to do. The size of the supported catalyst used in the fixed bed is spherical, pellet-shaped, cylindrical, or fragmented. In the case of powder or the like, it is usually about 1 to 50 mm, more preferably about 3 to 25 mm. In addition, as a honeycomb structure when the catalyst is supported on a honeycomb-shaped carrier, an opening having an arbitrary shape such as a square, a hexagon, or a circle is used. The area per unit volume, the aperture ratio, and the like are not particularly limited, but usually those having an area per unit volume of about 200 to 800 m 2 / m 3 and an aperture ratio of about 40 to 80% are used. Examples of the material of the honeycomb structure include metal oxides and metals similar to those described above, and zirconia, titania, and titania-zirconia, which are also excellent in durability, are more preferable.

触媒湿式酸化反応器内の温度は、通常100℃程度以上、より好ましくは150〜370℃程度である。   The temperature in the catalytic wet oxidation reactor is usually about 100 ° C. or higher, more preferably about 150 to 370 ° C.

被処理物に添加される酸素量は、必要な理論酸素量以上、より好ましくは理論酸素量の1.05から1.5倍量程度である。   The amount of oxygen added to the object to be processed is not less than the required theoretical oxygen amount, more preferably about 1.05 to 1.5 times the theoretical oxygen amount.

図2は触媒湿式酸化処理装置を示すものである。前述の金属還元処理工程からの処理水よりなる被処理水を貯槽11に受け、ポンプ12により送水し、熱交換器13及び加熱器14によって加熱した後、触媒充填塔15に通水し、触媒湿式酸化処理する。触媒充填塔15の流出水は、熱交換器13にて被処理水と熱交換して降温した後、調圧弁16を経て触媒湿式酸化処理水として取り出される。   FIG. 2 shows a catalytic wet oxidation apparatus. Water to be treated consisting of treated water from the above-mentioned metal reduction treatment step is received in the storage tank 11, fed by the pump 12, heated by the heat exchanger 13 and the heater 14, then passed through the catalyst packed tower 15, and the catalyst Wet oxidation treatment. The effluent water from the catalyst packed tower 15 is heat-exchanged with the water to be treated in the heat exchanger 13 and cooled down, and then taken out as catalyst wet oxidation treated water through the pressure regulating valve 16.

以下に、実施例および比較例をあげて本発明を説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
粒径2〜5mm、純度99%以上の金属チタン20mL(14g)と、粒径1〜2mm、純度99.5%の金属アルミニウム10mL(5.9g)とを均一に混合した金属混合物(表1中では、Al/Tiと表示する。)を調製し、内径11mmのカラムに充填した。この金属混合物の金属チタンと金属アルミニウムとの容積比T/Aは2/1である。
Example 1
A metal mixture (Table 1) in which 20 mL (14 g) of metal titanium having a particle size of 2 to 5 mm and a purity of 99% or more and 10 mL (5.9 g) of metal aluminum having a particle size of 1 to 2 mm and a purity of 99.5% were uniformly mixed. (Indicated as Al / Ti.) Was prepared and packed in a column having an inner diameter of 11 mm. The volume ratio T / A of metal titanium and metal aluminum of this metal mixture is 2/1.

下記水質の石炭ガス化排水に硫酸を2500mg/L添加し、このカラムに、65℃に加温しながらSV5(hr−1)の流速で上向流にて通水し、還元処理した。次いで、カラム出口水に水酸化ナトリウムを添加してpH7前後に調整し、次いで高分子凝集剤としてクリファームPA893(栗田工業株式会社 商品)を2mg/L添加した後、沈殿槽(250mL)にて固液分離し、上澄液の水質を測定し、その結果を表1に示した。 2500 mg / L of sulfuric acid was added to the following water quality coal gasification wastewater, and this column was passed through an upward flow at a flow rate of SV5 (hr −1 ) while being heated to 65 ° C. for reduction treatment. Next, sodium hydroxide is added to the column outlet water to adjust the pH to around 7, and then 2 mg / L of Cryfarm PA893 (Kurita Kogyo Co., Ltd.) is added as a polymer flocculant, and then in a precipitation tank (250 mL). Solid-liquid separation was performed, and the water quality of the supernatant was measured. The results are shown in Table 1.

<石炭ガス化排水の水質>
セレン:3.3mg/L
NH−N:200mg/L
CODMn:210mg/L
フッ素化合物:15mg/L
<Water quality of coal gasification wastewater>
Selenium: 3.3 mg / L
NH 4 -N: 200 mg / L
COD Mn : 210 mg / L
Fluorine compound: 15 mg / L

次いで、この上澄水を下記条件にて容積50mLの触媒充填塔に通水して触媒湿式酸化処理した。
通水 :上向流
触媒 :1wt%白金担持チタニア触媒
通水温度 :160℃
圧力 :0.9MPa
通水速度 :SV=2hr−1
通水時pH:11
酸素量 :アンモニア、CODに対して1.2倍当量
Next, this supernatant water was passed through a 50 mL capacity catalyst packed tower under the following conditions to carry out catalytic wet oxidation treatment.
Water flow: Upflow catalyst: 1 wt% platinum-supported titania catalyst Water flow temperature: 160 ° C
Pressure: 0.9 MPa
Water flow rate: SV = 2 hr −1
PH during water flow: 11
Oxygen content: 1.2 times equivalent to ammonia and COD

処理水の水質の測定結果を表1に示す。   Table 1 shows the measurement results of the quality of the treated water.

比較例1
金属還元処理工程を触媒湿式酸化処理工程の後としたこと以外は実施例1と同一条件にて処理を行った。水質の測定結果を表1に示す。
Comparative Example 1
The treatment was performed under the same conditions as in Example 1 except that the metal reduction treatment step was after the catalyst wet oxidation treatment step. Table 1 shows the water quality measurement results.

Figure 2014097475
Figure 2014097475

表1から明らかな通り、実施例1では処理水中のセレン濃度が24日経過後でも十分に低いのに対し、比較例1では12日経過時点でセレン濃度が上昇する。この実施例1及び比較例1より、金属還元体法と触媒湿式酸化法を組み合わせて、セレンと、COD及び/又はアンモニアを含む排水を処理する場合、まず、金属還元体法を行い、続いて触媒湿式酸化法を行うことにより、セレン還元反応の阻害を抑制することができ、長期的な安定処理が可能になることが認められた。   As is apparent from Table 1, in Example 1, the selenium concentration in the treated water is sufficiently low even after 24 days, while in Comparative Example 1, the selenium concentration increases after 12 days. From Example 1 and Comparative Example 1, when the waste water containing selenium and COD and / or ammonia is treated by combining the metal reductant method and the catalytic wet oxidation method, first, the metal reductant method is performed. It was confirmed that by performing the catalytic wet oxidation method, inhibition of the selenium reduction reaction can be suppressed, and a long-term stable treatment becomes possible.

1 pH調整槽
3,13 熱交換器
4,14 加熱器
5 還元塔
15 触媒充填塔
16 調圧弁
DESCRIPTION OF SYMBOLS 1 pH adjustment tank 3,13 Heat exchanger 4,14 Heater 5 Reduction tower 15 Catalyst packed tower 16 Pressure regulation valve

Claims (3)

石炭ガス化排水を金属還元体と接触させてセレンを還元し、その後、触媒湿式酸化処理することを特徴とする石炭ガス化排水の処理方法。   A method for treating coal gasification wastewater, wherein the coal gasification wastewater is brought into contact with a metal reductant to reduce selenium, followed by catalytic wet oxidation treatment. 請求項1において、金属還元体の金属はチタンとアルミニウムであることを特徴とする石炭ガス化排水の処理方法。   2. The method for treating coal gasification waste water according to claim 1, wherein the metal of the metal reductant is titanium and aluminum. 請求項1又は2において、金属還元体と接触させてセレンを還元した処理水を凝集及び固液分離処理し、次いで触媒湿式酸化処理することを特徴とする石炭ガス化排水の処理方法。   The method for treating coal gasification wastewater according to claim 1 or 2, wherein the treated water obtained by bringing the selenium into contact with a metal reductant is subjected to coagulation and solid-liquid separation treatment, followed by catalytic wet oxidation treatment.
JP2012251322A 2012-11-15 2012-11-15 Method for treating coal gasification drainage water Pending JP2014097475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251322A JP2014097475A (en) 2012-11-15 2012-11-15 Method for treating coal gasification drainage water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251322A JP2014097475A (en) 2012-11-15 2012-11-15 Method for treating coal gasification drainage water

Publications (1)

Publication Number Publication Date
JP2014097475A true JP2014097475A (en) 2014-05-29

Family

ID=50939972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251322A Pending JP2014097475A (en) 2012-11-15 2012-11-15 Method for treating coal gasification drainage water

Country Status (1)

Country Link
JP (1) JP2014097475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152386A (en) * 2015-05-18 2015-12-16 宣城得奇环保科技有限公司 Mixed sewage treatment technology
CN105645634A (en) * 2016-01-11 2016-06-08 浙江奇彩环境科技股份有限公司 Treatment method of epoxy resin synthesis wastewater
CN106946407A (en) * 2017-03-31 2017-07-14 大唐国际化工技术研究院有限公司 A kind of process for reclaiming of crushed coal pressure gasifying wastewater biochemical water outlet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221151A (en) * 2009-03-24 2010-10-07 Electric Power Dev Co Ltd Method of treating coal gasification wastewater
JP2011200848A (en) * 2010-03-26 2011-10-13 Chiyoda Kako Kensetsu Kk Treatment method of wastewater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221151A (en) * 2009-03-24 2010-10-07 Electric Power Dev Co Ltd Method of treating coal gasification wastewater
JP2011200848A (en) * 2010-03-26 2011-10-13 Chiyoda Kako Kensetsu Kk Treatment method of wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152386A (en) * 2015-05-18 2015-12-16 宣城得奇环保科技有限公司 Mixed sewage treatment technology
CN105645634A (en) * 2016-01-11 2016-06-08 浙江奇彩环境科技股份有限公司 Treatment method of epoxy resin synthesis wastewater
CN106946407A (en) * 2017-03-31 2017-07-14 大唐国际化工技术研究院有限公司 A kind of process for reclaiming of crushed coal pressure gasifying wastewater biochemical water outlet

Similar Documents

Publication Publication Date Title
JP5417927B2 (en) Coal gasification wastewater treatment method
JP5261950B2 (en) Method and apparatus for treating selenium-containing wastewater
CN101386437B (en) Method for removing coking waste water cyanide
WO2015109899A1 (en) Method for quickly and effectively removing heavy metals in water body
CN105731624B (en) Method for treating reverse osmosis concentrated water by utilizing heterogeneous Fenton-like reaction catalytic oxidation
CN104628200B (en) A kind of method utilizing photoelectric combination technical finesse organic wastewater
CN103787537B (en) A kind for the treatment of process of sewage and application thereof
WO2015096536A1 (en) Method for removing cyanide in wastewater by recycling electroplating sludge
Tang et al. High selective reduction of nitrate into nitrogen by novel Fe-Cu/D407 composite with excellent stability and activity
Xu et al. Enhanced reactivity and electron selectivity of GAC-Fe-Cu ternary micro-electrolysis system toward p-chloronitrobenzene under oxic conditions
Bayon et al. Remediation of cobalt from semiconductor wastewater in the frame of fluidized-bed homogeneous granulation process
JP2014097475A (en) Method for treating coal gasification drainage water
JP4877103B2 (en) Method and apparatus for treating selenium-containing wastewater
JP5109505B2 (en) Method and apparatus for treating selenium-containing wastewater
Fan et al. Selective reduction of NO3−-N from wastewater to N2 by Zn/Ag bimetallic particles combined with wet ammonia oxidation process
CN116161834A (en) Heavy metal wastewater treatment method based on zero-valent iron packed bed system
CN104858425B (en) Method for weakening oxidization of metal nanoparticles
Liu et al. Selective reduction of nitrate to nitrogen gas with hydrating electrons from the photo-corrosion of natural pyrite
JP5810639B2 (en) Method and apparatus for treating selenium-containing water
JP4246809B2 (en) Wastewater treatment method
CN110790417B (en) Treatment method of hardware and electronic electroplating wastewater
Lalhriatpuia et al. Novel biochar supported heterojunction of RH-BC (Fe0/Au0) catalyst: A highly efficient catalyst in the degradation of micro-pollutants
JP2015039652A (en) Method and apparatus for treating selenium-containing water
JP3358905B2 (en) Method for treating wastewater containing nitrate nitrogen and ammonia nitrogen
JP2006218343A (en) Method and apparatus for treating selenium-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206