JP2014096461A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2014096461A
JP2014096461A JP2012246741A JP2012246741A JP2014096461A JP 2014096461 A JP2014096461 A JP 2014096461A JP 2012246741 A JP2012246741 A JP 2012246741A JP 2012246741 A JP2012246741 A JP 2012246741A JP 2014096461 A JP2014096461 A JP 2014096461A
Authority
JP
Japan
Prior art keywords
solder
power module
metal layer
insulating substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012246741A
Other languages
Japanese (ja)
Other versions
JP6232697B2 (en
Inventor
Kazuhisa Fujii
和久 藤井
Akio Yoshimoto
昭雄 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012246741A priority Critical patent/JP6232697B2/en
Publication of JP2014096461A publication Critical patent/JP2014096461A/en
Application granted granted Critical
Publication of JP6232697B2 publication Critical patent/JP6232697B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of cooling capacity of a power module at low costs.SOLUTION: A power module includes: an insulation substrate (12); a semiconductor element (24) mounted on one surface of the insulation substrate (12); a first metal layer (14) which is formed on the other surface of the insulation substrate (12); a heat radiation member (42); and solder layers (32) which join the heat radiation member (42) to the first metal layer (14). A sum of perimeters of regions at the solder layers (32) which contact with the first metal layer (14) is longer than a perimeter of the other surface of the insulation substrate (12).

Description

本発明は、半導体素子を有するパワーモジュールに関する。   The present invention relates to a power module having a semiconductor element.

近年、インバータ等で使用されるパワーモジュールの冷却性能の向上が求められている。パワーモジュールは、一般に、半導体素子が搭載されたセラミック基板を有している。半導体素子を冷却する必要があるので、セラミック基板には、一般に、グリース等のサーマルインターフェースマテリアルを介してヒートシンクが取り付けられる。熱抵抗を小さくするために、サーマルインターフェースマテリアルを使わずに、セラミック基板とヒートシンクとを半田等により直接接合する方法も考案されている。   In recent years, there has been a demand for improved cooling performance of power modules used in inverters and the like. The power module generally has a ceramic substrate on which a semiconductor element is mounted. Since it is necessary to cool the semiconductor element, a heat sink is generally attached to the ceramic substrate via a thermal interface material such as grease. In order to reduce the thermal resistance, a method has been devised in which a ceramic substrate and a heat sink are directly joined by solder or the like without using a thermal interface material.

しかしながら、セラミック基板に用いられるアルミナや窒化アルミニウムと、ヒートシンクに用いられる熱伝導率のよい銅やアルミニウム合金とでは、熱膨張係数が異なるので、熱応力が発生する。その結果、セラミック基板にクラックが生じたり、セラミック基板とヒートシンクとを接合している半田層にクラックが生じたり、ヒートシンクのセラミック基板への接合面に反りが生じたりすることがあり、いずれの場合にも冷却性能が低下する。   However, thermal stress occurs because alumina or aluminum nitride used for the ceramic substrate and copper or aluminum alloy with good thermal conductivity used for the heat sink have different thermal expansion coefficients. As a result, cracks may occur in the ceramic substrate, cracks may occur in the solder layer that joins the ceramic substrate and the heat sink, and warpage may occur on the bonding surface of the heat sink to the ceramic substrate. In addition, the cooling performance decreases.

そこで、多孔質金属(特許文献1)、応力吸収空間を有する部材(特許文献2)、又は低熱膨張材料(特許文献3)を、熱応力を緩和するための応力緩和層として用いることにより、クラックや反りを防止する方法が知られている。半田層の厚さを増加させることが有効であることも知られている(特許文献4)。   Therefore, by using a porous metal (Patent Literature 1), a member having a stress absorption space (Patent Literature 2), or a low thermal expansion material (Patent Literature 3) as a stress relaxation layer for relaxing thermal stress, There are known methods for preventing warping and warping. It is also known that increasing the thickness of the solder layer is effective (Patent Document 4).

特開平8−335652号公報JP-A-8-335652 特許第4621531号公報Japanese Patent No. 4621531 特開2004−153075号公報JP 2004-153075 A 特開平9−252082号公報Japanese Patent Laid-Open No. 9-252082

しかし、応力緩和層を用いると、冷却性能が低下し、更にはコストも増大する。また、半田層の厚さを大きくしようとしても、セラミック基板とヒートシンク等の放熱部材とを半田を溶融させて接合する際に、セラミック基板が半田層に沈んでしまうことがあり、半田層の厚さを制御することは難しい。セラミック基板が半田層に沈むと、セラミック基板の傾きや位置のずれが発生しやすい。傾きが発生すると、部分的に半田層が薄くなり、半田層にクラックが発生しやすくなる。傾きを防ぐために、セラミック基板を支持するための構造を設けてもよいが、製造コストが上昇する。   However, when the stress relaxation layer is used, the cooling performance is lowered and the cost is further increased. Even if the thickness of the solder layer is increased, when the ceramic substrate and a heat radiating member such as a heat sink are joined by melting the solder, the ceramic substrate may sink into the solder layer. It is difficult to control. When the ceramic substrate sinks into the solder layer, the ceramic substrate is likely to be tilted or displaced. When the tilt occurs, the solder layer is partially thinned, and cracks are likely to occur in the solder layer. In order to prevent the inclination, a structure for supporting the ceramic substrate may be provided, but the manufacturing cost increases.

本発明は、パワーモジュールの冷却性能の低下を低コストで防ぐことを目的とする。   An object of this invention is to prevent the fall of the cooling performance of a power module at low cost.

第1の発明は、絶縁基板(12)と、前記絶縁基板(12)の一方の面に搭載された半導体素子(24)と、前記絶縁基板(12)の他方の面に形成された第1金属層(14)と、放熱部材(42)と、前記放熱部材(42)と前記第1金属層(14)とを接合する半田層(32)とを備え、前記半田層(32)の、前記第1金属層(14)と接する領域の周囲長の総計は、前記絶縁基板(12)の前記他方の面の周囲長より長いパワーモジュールである。   According to a first aspect of the present invention, there is provided an insulating substrate (12), a semiconductor element (24) mounted on one surface of the insulating substrate (12), and a first surface formed on the other surface of the insulating substrate (12). A metal layer (14), a heat dissipation member (42), and a solder layer (32) for joining the heat dissipation member (42) and the first metal layer (14), the solder layer (32), The total perimeter of the region in contact with the first metal layer (14) is a power module longer than the perimeter of the other surface of the insulating substrate (12).

第1の発明によると、放熱部材(42)と第1金属層(14)とを接合するときにおける溶融した半田層(32)の表面張力が、半田層(32)と第1金属層(14)とが単純な形状の1つの領域で接する場合に比べて大きくなる。このため、絶縁基板(12)が半田層(32)に沈みにくくなり、絶縁基板(12)の傾きを抑えることができ、半田層(32)の厚さの最小値(TN)が小さくなり過ぎないようにすることができる。   According to the first invention, the surface tension of the molten solder layer (32) when joining the heat dissipation member (42) and the first metal layer (14) is such that the solder layer (32) and the first metal layer (14 ) And a single region of a simple shape. For this reason, the insulating substrate (12) is less likely to sink into the solder layer (32), the inclination of the insulating substrate (12) can be suppressed, and the minimum thickness (TN) of the solder layer (32) becomes too small. Can not be.

第2の発明は、第1の発明において、前記半田層(32)の領域は、複数の領域に分割されているパワーモジュールである。   A second invention is a power module according to the first invention, wherein a region of the solder layer (32) is divided into a plurality of regions.

第2の発明によると、半田層(32)の領域が複数の領域に分割されているので、半田層(32)の、第1金属層(14)と接する領域の周囲長の総計が長くなる。   According to the second invention, since the area of the solder layer (32) is divided into a plurality of areas, the total perimeter of the area of the solder layer (32) in contact with the first metal layer (14) becomes longer. .

第3の発明は、第2の発明において、前記複数の領域の一部は、前記絶縁基板(12)の周辺部に対応する位置に設けられているパワーモジュールである。   A third invention is the power module according to the second invention, wherein a part of the plurality of regions is provided at a position corresponding to a peripheral portion of the insulating substrate (12).

第3の発明によると、半田が存在しない領域を半導体素子(24)の近くに有しないようにすることができる。   According to the third aspect of the present invention, it is possible to avoid having a region where no solder exists near the semiconductor element (24).

第4の発明は、第1の発明において、前記半田層(32)の領域は、前記半導体素子(24)の直下の領域の全体を含むパワーモジュールである。   A fourth invention is a power module according to the first invention, wherein the region of the solder layer (32) includes the entire region immediately below the semiconductor element (24).

第4の発明によると、半導体素子(24)から放熱部材(42)へ熱を十分に伝えることができる。   According to the fourth invention, heat can be sufficiently transferred from the semiconductor element (24) to the heat radiating member (42).

第5の発明は、第1の発明において、前記第1金属層(14)又は前記放熱部材(42)の互いに対向する面の少なくとも一方には、平面視において、前記半田層(32)の領域以外の領域でソルダーレジスト(34,36)が塗布されているパワーモジュールである。   In a fifth aspect based on the first aspect, at least one of the first metal layer (14) and the heat dissipating member (42) facing each other has a region of the solder layer (32) in plan view. It is a power module in which a solder resist (34, 36) is applied in a region other than.

第5の発明によると、ソルダーレジスト(36)の塗布によって半田が存在しない領域を設けることができる。   According to the fifth aspect of the present invention, it is possible to provide a region where no solder exists by applying the solder resist (36).

第6の発明は、第1の発明において、前記第1金属層(14)は、平面視において、前記半田層(32)の領域の形状と略同一の形状を有するパワーモジュールである。   A sixth invention is the power module according to the first invention, wherein the first metal layer (14) has substantially the same shape as that of the area of the solder layer (32) in plan view.

第6の発明によると、第1金属層(14)の形状に応じて半田が存在しない領域を設けることができる。   According to the sixth aspect of the present invention, it is possible to provide a region where no solder exists according to the shape of the first metal layer (14).

第7の発明は、第1の発明において、前記絶縁基板は、平面視において、前記半田層(32)の領域以外の領域で貫通孔を有するパワーモジュールである。   A seventh invention is the power module according to the first invention, wherein the insulating substrate has a through hole in a region other than the region of the solder layer (32) in a plan view.

第7の発明によると、貫通孔を有するので、パワーモジュールが封止材(54)によって封止される際に空気が残留しにくくなる。   According to the seventh aspect, since the through hole is provided, air hardly remains when the power module is sealed with the sealing material (54).

第8の発明は、第7の発明において、前記絶縁基板(12)の前記一方の面に第2金属層(16)を更に有し、前記第2金属層(16)は、平面視において、前記半田層(32)の領域以外の領域で貫通孔(74)を有するパワーモジュールである。   According to an eighth aspect, in the seventh aspect, the insulating substrate (12) further includes a second metal layer (16) on the one surface, and the second metal layer (16) is The power module has a through hole (74) in a region other than the region of the solder layer (32).

第8の発明によると、半田が存在しない領域に第2金属層(16)が存在している場合にも、封止される際に空気が残留しにくくなる。   According to the eighth aspect of the invention, even when the second metal layer (16) is present in a region where no solder is present, air hardly remains when sealed.

第1の発明によると、半田層(32)の厚さの最小値(TN)が小さくなり過ぎないようにすることができるので、半田層(32)におけるクラックの発生を抑えることができる。したがって、パワーモジュールの冷却性能の低下を防ぐことができる。   According to the first invention, it is possible to prevent the minimum value (TN) of the thickness of the solder layer (32) from becoming too small, so that the occurrence of cracks in the solder layer (32) can be suppressed. Therefore, it is possible to prevent a decrease in the cooling performance of the power module.

第2の発明によると、半田層(32)の、金属層(14)と接する領域の周囲長の総計が長くなるので、半田層(32)の表面張力が大きくなる。   According to the second aspect of the invention, the total perimeter of the area of the solder layer (32) in contact with the metal layer (14) is increased, so that the surface tension of the solder layer (32) is increased.

第3又は第4の発明によると、半導体素子(24)の放熱を妨げないようにすることができる。   According to the third or fourth invention, the heat dissipation of the semiconductor element (24) can be prevented.

第5又は第6の発明によると、半田層(32)の、金属層(14)と接する領域を制御することができる。   According to the fifth or sixth invention, the region of the solder layer (32) in contact with the metal layer (14) can be controlled.

第7又は第8の発明によると、パワーモジュールが封止材(54)によって封止される際に空気が残留しにくくなり、封止材(54)によって満たされないボイド(72)の発生を抑えることができる。   According to the seventh or eighth invention, when the power module is sealed with the sealing material (54), it is difficult for air to remain, and the generation of the void (72) not filled with the sealing material (54) is suppressed. be able to.

本発明の実施形態に係るパワーモジュールの構成例を示す断面図である。It is sectional drawing which shows the structural example of the power module which concerns on embodiment of this invention. 図1の放熱部材の上面の例を示す平面図である。It is a top view which shows the example of the upper surface of the heat radiating member of FIG. 図3(a)〜図3(d)は、絶縁基板と放熱部材との接合の手順の例を示す断面図である。FIG. 3A to FIG. 3D are cross-sectional views illustrating an example of a procedure for joining the insulating substrate and the heat dissipation member. 半田層が1つの領域のみを有する場合における、放熱部材の上面の例を示す平面図である。It is a top view which shows the example of the upper surface of a thermal radiation member in case a solder layer has only one area | region. 絶縁基板等が放熱部材の上面に対して平行ではない場合の例を示す断面図である。It is sectional drawing which shows an example in case an insulated substrate etc. are not parallel with respect to the upper surface of a thermal radiation member. 半田層の厚さの最小値を各サンプルについて示すグラフである。It is a graph which shows the minimum value of the thickness of a solder layer about each sample. 絶縁基板と放熱部材とが成す角度を各サンプルについて示すグラフである。It is a graph which shows the angle which an insulated substrate and a thermal radiation member comprise about each sample. 図1のパワーモジュールの変形例を示す断面図である。It is sectional drawing which shows the modification of the power module of FIG. 図1のパワーモジュールの他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the power module of FIG. 図1のパワーモジュールの他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the power module of FIG. 図1の放熱部材の上面の他の例を示す平面図である。It is a top view which shows the other example of the upper surface of the heat radiating member of FIG. 図12(a)〜図12(d)は、図1の放熱部材の上面の更に他の例を示す平面図である。12 (a) to 12 (d) are plan views showing still another example of the upper surface of the heat dissipation member of FIG. 図13(a)〜図13(d)は、図1の放熱部材の上面の更に他の例を示す平面図である。FIG. 13A to FIG. 13D are plan views showing still another example of the upper surface of the heat dissipating member of FIG. 図14(a)及び図14(b)は、図1の放熱部材の上面の更に他の例を示す平面図である。14A and 14B are plan views showing still another example of the upper surface of the heat dissipating member of FIG. 図15(a)〜図15(d)は、図1の放熱部材の上面の更に他の例を示す平面図である。FIG. 15A to FIG. 15D are plan views showing still another example of the upper surface of the heat dissipating member of FIG. パワーモジュールにおいてボイドが形成された場合の例を示す断面図である。It is sectional drawing which shows the example when a void is formed in a power module. 図17(a)及び図17(b)は、図1のパワーモジュールおいて絶縁基板に貫通孔を設けた場合の例を示す断面図である。17 (a) and 17 (b) are cross-sectional views showing an example in which a through hole is provided in the insulating substrate in the power module of FIG. 図18(a)及び図18(b)は、図1のパワーモジュールおいて絶縁基板に貫通孔を設けた場合の他の例を示す断面図である。18 (a) and 18 (b) are cross-sectional views showing another example in which a through hole is provided in the insulating substrate in the power module of FIG.

以下、本発明の実施の形態について、図面を参照しながら説明する。図面において同じ参照番号で示された構成要素は、同一の又は類似の構成要素である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Components shown with the same reference numbers in the drawings are identical or similar components.

図1は、本発明の実施形態に係るパワーモジュールの構成例を示す断面図である。図1のパワーモジュール(100)は、絶縁基板(12)と、金属層(14,16)と、半田層(22,32)と、半導体素子(24)と、ボンディングワイヤ(26)と、放熱部材(42)と、ケース(52)と、封止材(54)とを有する。以下の説明では、「主面」は、部材の面のうち、厚み方向(積層方向)において互いに対向する一対の面を示す。   FIG. 1 is a cross-sectional view illustrating a configuration example of a power module according to an embodiment of the present invention. 1 includes an insulating substrate (12), metal layers (14, 16), solder layers (22, 32), semiconductor elements (24), bonding wires (26), and heat dissipation. It has a member (42), a case (52), and a sealing material (54). In the following description, “main surfaces” indicate a pair of surfaces facing each other in the thickness direction (stacking direction) among the surfaces of the members.

絶縁基板(12)は、絶縁材料(例えば、セラミックス)で構成されている。絶縁基板(12)は、例えば矩形状に形成されている。絶縁基板(12)の一方の主面(上面)には、金属層(16)が形成されている。金属層(16)は、導電性材料(例えば、銅,銅合金,アルミニウム,アルミニウム合金等)によって構成されている。金属層(16)は、所定の回路パターンを有するように形成されている。絶縁基板(12)のこの主面には、半導体素子(24)が搭載されている。具体的には、半導体素子(24)は、半田層(22)によって金属層(16)と接合されている。半導体素子(24)は、例えば、パワートランジスタや、整流ダイオードである。半導体素子(24)は、ボンディングワイヤ(26)によって金属層(16)の一部に電気的に接続されている。   The insulating substrate (12) is made of an insulating material (for example, ceramics). The insulating substrate (12) is formed in a rectangular shape, for example. A metal layer (16) is formed on one main surface (upper surface) of the insulating substrate (12). The metal layer (16) is made of a conductive material (for example, copper, copper alloy, aluminum, aluminum alloy, etc.). The metal layer (16) is formed to have a predetermined circuit pattern. A semiconductor element (24) is mounted on this main surface of the insulating substrate (12). Specifically, the semiconductor element (24) is joined to the metal layer (16) by the solder layer (22). The semiconductor element (24) is, for example, a power transistor or a rectifier diode. The semiconductor element (24) is electrically connected to a part of the metal layer (16) by a bonding wire (26).

絶縁基板(12)の他方の主面(下面)には、金属層(14)が形成されている。金属層(14)は、導電性材料(例えば、銅,銅合金,アルミニウム,アルミニウム合金等)によって構成されている。放熱部材(42)は、伝熱性材料(例えば、銅,銅合金,アルミニウム,アルミニウム合金等)によって構成されている。半田層(32)は、放熱部材(42)と金属層(14)とを接合する。放熱部材(42)は、例えば矩形状に形成されている。ここでは省略したが、放熱部材(42)は放熱フィンを有していてもよい。   A metal layer (14) is formed on the other main surface (lower surface) of the insulating substrate (12). The metal layer (14) is made of a conductive material (for example, copper, copper alloy, aluminum, aluminum alloy, etc.). The heat radiating member (42) is made of a heat conductive material (for example, copper, copper alloy, aluminum, aluminum alloy, etc.). The solder layer (32) joins the heat dissipation member (42) and the metal layer (14). The heat radiating member (42) is formed in a rectangular shape, for example. Although omitted here, the heat dissipating member (42) may have heat dissipating fins.

ケース(52)は、例えば筒状であって、絶縁基板(12)等を囲むように放熱部材(42)の上に形成されている。ケース(52)は、例えば樹脂によって構成されている。ケース(52)内の半導体素子(24)等は、水分、塵埃、接触等からの保護のために、封止材(54)によって封止されている。封止材(54)は、例えば、シリコン系のゲルや、エポキシ系のハードレジンである。   The case (52) has a cylindrical shape, for example, and is formed on the heat dissipation member (42) so as to surround the insulating substrate (12) and the like. The case (52) is made of resin, for example. The semiconductor element (24) and the like in the case (52) are sealed with a sealing material (54) for protection from moisture, dust, contact, and the like. The sealing material (54) is, for example, a silicon-based gel or an epoxy-based hard resin.

図2は、図1の放熱部材(42)の上面の例を示す平面図である。図1は、図2のA−A面での断面図である。放熱部材(42)は、例えば、アルミニウム製であって、半田付け性を向上させるために、その表面にはニッケルめっき処理が行われている。図2のように、放熱部材(42)の上面には、半田層(32)の3つの領域(32A,32B,32C)(以下では半田領域とも称する)と、それ以外の非半田領域とが存在する。非半田領域には、ソルダーレジスト(36)が塗布されている。半田領域(32A,32B,32C)の間でブリッジが形成されるのを防ぐために、半田領域(32A,32B,32C)に挟まれた非半田領域(ここではソルダーレジスト(36)が塗布された一部の領域(36B,36C))の幅は、例えば1mm以上にする。   FIG. 2 is a plan view showing an example of the upper surface of the heat dissipation member (42) of FIG. 1 is a cross-sectional view taken along plane AA of FIG. The heat radiating member (42) is made of, for example, aluminum, and the surface thereof is subjected to nickel plating in order to improve solderability. As shown in FIG. 2, on the upper surface of the heat dissipation member (42), there are three regions (32A, 32B, 32C) (hereinafter also referred to as solder regions) of the solder layer (32) and other non-solder regions. Exists. A solder resist (36) is applied to the non-solder area. In order to prevent a bridge from being formed between the solder areas (32A, 32B, 32C), a non-solder area (here, solder resist (36)) was applied between the solder areas (32A, 32B, 32C) The width of some of the regions (36B, 36C) is, for example, 1 mm or more.

図2には、平面視において、絶縁基板(12)及び金属層(14)が放熱部材(42)に重なる領域が示されている。金属層(14)は、例えば矩形の領域を有しており、その面積は絶縁基板(12)の面積以下である。絶縁基板(12)の面積は放熱部材(42)の面積より小さい。   FIG. 2 shows a region where the insulating substrate (12) and the metal layer (14) overlap the heat dissipation member (42) in plan view. The metal layer (14) has, for example, a rectangular region, and the area is equal to or smaller than the area of the insulating substrate (12). The area of the insulating substrate (12) is smaller than the area of the heat dissipation member (42).

半田層(32)の、金属層(14)と接する領域(図2では半田領域(32A,32B,32C))の周囲長の総計は、半田層(32)が例えば金属層(14)とほぼ同様の1つの矩形領域のみを有する場合より長い。また、半田層(32)の、金属層(14)と接する領域の周囲長の総計は、絶縁基板(12)の下面の周囲長より長い。これらの領域の周囲長の総計は、これらの領域の全体を含む矩形の周囲長より長いとも言える。図2では半田層(32)の領域の全体が金属層(14)に接しているが、半田層(32)の領域の全体のうちの一部が金属層(14)に接していなくてもよい。金属層(14)のうちの一部が半田層(32)に接していなくてもよい。   The total perimeter of the area of the solder layer (32) in contact with the metal layer (14) (the solder area (32A, 32B, 32C) in FIG. 2) is approximately equal to that of the metal layer (14). It is longer than the case of having only one rectangular area. Further, the total perimeter of the area of the solder layer (32) in contact with the metal layer (14) is longer than the perimeter of the lower surface of the insulating substrate (12). It can be said that the total perimeter of these areas is longer than the perimeter of the rectangle including the whole of these areas. In FIG. 2, the entire region of the solder layer (32) is in contact with the metal layer (14), but a part of the entire region of the solder layer (32) may not be in contact with the metal layer (14). Good. A part of the metal layer (14) may not be in contact with the solder layer (32).

図2には、平面視において、半導体素子(24)が放熱部材(42)に重なる領域も示されている。このように、半田領域(32A)は、半導体素子(24)の直下の領域の全体を含む。半田領域(32B,32C)は、絶縁基板(12)の周辺部に対応する位置に設けられている。周辺部とは、例えば、半導体素子(24)の直下の領域以外の領域である。   FIG. 2 also shows a region where the semiconductor element (24) overlaps the heat dissipation member (42) in plan view. Thus, the solder region (32A) includes the entire region directly below the semiconductor element (24). The solder regions (32B, 32C) are provided at positions corresponding to the peripheral portion of the insulating substrate (12). The peripheral portion is, for example, a region other than a region directly below the semiconductor element (24).

図3(a)〜図3(d)は、絶縁基板(12)と放熱部材(42)との接合の手順の例を示す断面図である。これらの図は、図2のA−A面での断面図である。ここでは、絶縁基板(12)に搭載された半導体素子(24)等の図示を省略する。   FIG. 3A to FIG. 3D are cross-sectional views showing an example of a procedure for joining the insulating substrate (12) and the heat radiating member (42). These drawings are cross-sectional views taken along plane AA of FIG. Here, illustration of the semiconductor element (24) and the like mounted on the insulating substrate (12) is omitted.

まず、放熱部材(42)の表面に、ソルダーレジスト(36)を図2のようなパターンで塗布する(図3(a))。次に、放熱部材(42)の上にメタルマスク(62)を載せ、クリーム半田(31)を塗布する(図3(b))。メタルマスク(62)の厚さは、例えば600μmである。メタルマスク(62)には、図2の半田領域(32A,32B,32C)に対応する部分に穴が開けられているので、半田領域(32A,32B,32C)にクリーム半田(31)が載った状態になる。次に、金属層(14,16)が両主面に形成された絶縁基板(12)を、クリーム半田(31)の上に載せる(図3(c))。クリーム半田(31)の上に載せる前に、金属層(14)の表面においてソルダーレジスト(36)に対向する部分には、ソルダーレジスト(34)を塗布しておく。次に、図3(c)のモジュール全体をリフロー炉に入れ、クリーム半田(31)を溶融させ(図3(d))、その後冷却する。以上により、金属層(14)と放熱部材(42)とが半田層(32)で接合される。   First, a solder resist (36) is applied to the surface of the heat radiating member (42) in a pattern as shown in FIG. 2 (FIG. 3 (a)). Next, a metal mask (62) is placed on the heat dissipation member (42), and cream solder (31) is applied (FIG. 3B). The thickness of the metal mask (62) is, for example, 600 μm. Since the metal mask (62) has holes in the portions corresponding to the solder regions (32A, 32B, 32C) in FIG. 2, the cream solder (31) is placed on the solder regions (32A, 32B, 32C). It becomes a state. Next, the insulating substrate (12) on which the metal layers (14, 16) are formed on both main surfaces is placed on the cream solder (31) (FIG. 3 (c)). Before being placed on the cream solder (31), the solder resist (34) is applied to the surface of the metal layer (14) facing the solder resist (36). Next, the entire module of FIG. 3C is put into a reflow furnace, the cream solder (31) is melted (FIG. 3D), and then cooled. As described above, the metal layer (14) and the heat dissipation member (42) are joined by the solder layer (32).

一例として、金属層(14)のサイズが57mm×37mm、半田領域に挟まれたソルダーレジスト(36)の領域(36B,36C)の幅が2mm、半田の表面張力(γs)が470mN/m(0.470N/m)である場合について、溶融した半田の表面張力を求める。絶縁基板(12)上の金属層(14)が半田層(32)と接触する長さ(接触長さ)(Ls)は、半田領域(32A,32B,32C)の周囲長の総和に等しく、408mm(0.408m)であるので、表面張力(Fs)は、
Fs = γs×Ls = 0.470×0.408 = 0.192N
である。絶縁基板(12)等(半田層(32)の上にある半導体素子(24)等を含む)の質量(Mb)は15.4g、重力加速度(g)は9.8m/s2であるので、絶縁基板(12)等による荷重(Fb)は、
Fb = Mb×g = 0.0154×9.8 = 0.1509N
荷重(Fb)に対する表面張力(Fs)の比(R)は、
R = Fs/Fb = 0.192/0.1509 = 1.27
表面張力(Fs)が荷重(Fb)より大きいので、半田層(32)の上にある絶縁基板(12)等は、基本的には半田層(32)に沈まない。
As an example, the size of the metal layer (14) is 57mm x 37mm, the width of the solder resist (36) region (36B, 36C) sandwiched between the solder regions is 2mm, and the solder surface tension (γs) is 470mN / m ( For the case of 0.470 N / m), obtain the surface tension of the molten solder. The length (contact length) (Ls) at which the metal layer (14) on the insulating substrate (12) contacts the solder layer (32) is equal to the total perimeter of the solder area (32A, 32B, 32C) Since it is 408mm (0.408m), the surface tension (Fs) is
Fs = γs x Ls = 0.470 x 0.408 = 0.192N
It is. Weight of the insulating substrate (12) or the like (including semiconductor devices above the solder layer (32) (24), etc.) (Mb) is 15.4 g, so the gravitational acceleration (g) is a 9.8 m / s 2, insulation The load (Fb) due to the substrate (12) etc. is
Fb = Mb x g = 0.0154 x 9.8 = 0.1509N
The ratio (R) of surface tension (Fs) to load (Fb) is
R = Fs / Fb = 0.192 / 0.1509 = 1.27
Since the surface tension (Fs) is larger than the load (Fb), the insulating substrate (12) and the like on the solder layer (32) basically does not sink into the solder layer (32).

図4は、半田層(32)が1つの領域のみを有する場合における、放熱部材(42)の上面の例を示す平面図である。ソルダーレジスト(36)及びメタルマスク(62)を用いずにクリーム半田(31)を塗布し、溶融させると、放熱部材(42)の上面に例えば図4のように半田層(32)が形成される。図5は、絶縁基板(12)等が放熱部材(42)の上面に対して平行ではない場合の例を示す断面図である。   FIG. 4 is a plan view showing an example of the upper surface of the heat dissipation member (42) when the solder layer (32) has only one region. When cream solder (31) is applied and melted without using the solder resist (36) and the metal mask (62), the solder layer (32) is formed on the upper surface of the heat dissipation member (42) as shown in FIG. 4, for example. The FIG. 5 is a cross-sectional view showing an example where the insulating substrate (12) or the like is not parallel to the upper surface of the heat dissipation member (42).

一例として、図4において金属層(14)のサイズが57mm×37mmである場合について、溶融した半田の表面張力を求める。絶縁基板(12)上の金属層(14)が半田層(32)と接触する長さ(Ls0)は、金属層(14)の領域の周囲長にほぼ等しく、188mm(0.188m)である。これは絶縁基板(12)の周囲長より少し短い。表面張力(Fs0)は、
Fs0 = γs×Ls0 = 0.470×0.188 = 0.0884N
である。半田層(32)の上にある絶縁基板(12)等による荷重(Fb)は、上述のように0.1509Nであるので、荷重(Fb)に対する表面張力(Fs0)の比(R0)は、
R0 = Fs0/Fb = 0.0884/0.1509 = 0.586
表面張力(Fs0)が荷重(Fb)より小さいので、半田層(32)の上にある絶縁基板(12)等は、半田層(32)に沈んでしまい、図5のように、放熱部材(42)に対して傾くことが多い。絶縁基板(12)等が傾くと、つまり、絶縁基板(12)と放熱部材(42)とが成す角度(θ)が大きくなると、半田層(32)の厚さの最小値(TN)が小さくなる。
As an example, when the size of the metal layer (14) in FIG. 4 is 57 mm × 37 mm, the surface tension of the molten solder is obtained. The length (Ls0) at which the metal layer (14) on the insulating substrate (12) contacts the solder layer (32) is approximately equal to the peripheral length of the region of the metal layer (14), and is 188 mm (0.188 m). This is slightly shorter than the perimeter of the insulating substrate (12). The surface tension (Fs0) is
Fs0 = γs x Ls0 = 0.470 x 0.188 = 0.0884N
It is. Since the load (Fb) due to the insulating substrate (12) etc. on the solder layer (32) is 0.1509N as described above, the ratio (R0) of the surface tension (Fs0) to the load (Fb) is
R0 = Fs0 / Fb = 0.0884 / 0.1509 = 0.586
Since the surface tension (Fs0) is smaller than the load (Fb), the insulating substrate (12) etc. on the solder layer (32) sinks into the solder layer (32), and as shown in FIG. 42) is often inclined. When the insulating substrate (12) etc. is tilted, that is, when the angle (θ) between the insulating substrate (12) and the heat dissipation member (42) is increased, the minimum value (TN) of the solder layer (32) is decreased. Become.

図2のように半田層(32)を形成した場合と、図4のように半田層(32)を形成した場合とについて、サンプルを8個ずつ作成した。各サンプルについて半田層(32)の厚さの最小値(TN)と、絶縁基板(12)と放熱部材(42)とが成す角度(θ)とを測定した。表1は、図2のように複数の半田領域を有する半田層(32)を形成した場合のサンプル(A1,A2,A3,A4,A5,A6,A7,A8)についての測定結果である。表2は、図4のように1つの半田領域のみを有する半田層(32)を形成した場合のサンプル(P1,P2,P3,P4,P5,P6,P7,P8)についての測定結果である。   Eight samples were prepared for each of the case where the solder layer (32) was formed as shown in FIG. 2 and the case where the solder layer (32) was formed as shown in FIG. For each sample, the minimum thickness (TN) of the solder layer (32) and the angle (θ) formed by the insulating substrate (12) and the heat dissipation member (42) were measured. Table 1 shows the measurement results for the samples (A1, A2, A3, A4, A5, A6, A7, A8) when the solder layer (32) having a plurality of solder regions is formed as shown in FIG. Table 2 shows the measurement results for the samples (P1, P2, P3, P4, P5, P6, P7, P8) when the solder layer (32) having only one solder region is formed as shown in FIG. .

Figure 2014096461
Figure 2014096461

Figure 2014096461
Figure 2014096461

図6は、半田層(32)の厚さの最小値(TN)を各サンプルについて示すグラフである。図7は、絶縁基板(12)と放熱部材(42)とが成す角度(θ)を各サンプルについて示すグラフである。半田層(32)の厚さの最小値(TN)は、サンプル(A1-A8)の方がサンプル(P1-P8)より大きいことがわかる。つまり、サンプル(A1-A8)の方が、半田層(32)にクラック等が生じにくい。絶縁基板(12)と放熱部材(42)とが成す角度(θ)、言い換えると絶縁基板(12)の傾きは、サンプル(A1-A8)の方がサンプル(P1-P8)より小さいことがわかる。   FIG. 6 is a graph showing the minimum value (TN) of the thickness of the solder layer (32) for each sample. FIG. 7 is a graph showing the angle (θ) formed by the insulating substrate (12) and the heat dissipation member (42) for each sample. It can be seen that the minimum thickness (TN) of the solder layer (32) is larger in the sample (A1-A8) than in the sample (P1-P8). That is, the sample (A1-A8) is less likely to cause cracks in the solder layer (32). The angle (θ) formed by the insulating substrate (12) and the heat dissipation member (42), in other words, the inclination of the insulating substrate (12) is found to be smaller in the sample (A1-A8) than in the sample (P1-P8). .

図8は、図1のパワーモジュール(100)の変形例を示す断面図である。図9及び図10は、図1のパワーモジュール(100)の他の変形例を示す断面図である。ここでは、絶縁基板(12)に搭載された半導体素子(24)等の図示を省略する。また、見やすくするために、絶縁基板(12)と放熱部材(42)とが分離した状態で示す。   FIG. 8 is a cross-sectional view showing a modification of the power module (100) of FIG. 9 and 10 are cross-sectional views showing other modifications of the power module (100) of FIG. Here, illustration of the semiconductor element (24) and the like mounted on the insulating substrate (12) is omitted. For the sake of clarity, the insulating substrate (12) and the heat dissipation member (42) are shown separated.

図8では、金属層(14)の表面には、平面視において、半田層(32)の領域以外の領域でソルダーレジスト(34)が塗布されている。しかし、放熱部材(42)の表面にはソルダーレジスト(36)を塗布しない。図9では、金属層(14)の表面にはソルダーレジスト(34)を塗布せず、代わりに、図3(c)等でソルダーレジスト(34)が塗布されるべき部分に金属層(14)が存在しないように、金属層(14)を形成しておく。つまり、金属層(14)は、平面視において、半田層(32)の領域(32A,32B,32C)の形状と略同一の形状を有する。図9の場合においても、半田層(32)の、金属層(14)と接する領域の周囲長の総計は、これらの領域の全体を含む矩形の周囲長や絶縁基板(12)の下面の周囲長より長い。図10では、図9のパワーモジュールにおいて、放熱部材(42)の表面にもソルダーレジスト(36)の塗布を行わない。   In FIG. 8, a solder resist (34) is applied to the surface of the metal layer (14) in a region other than the region of the solder layer (32) in plan view. However, the solder resist (36) is not applied to the surface of the heat dissipation member (42). In FIG. 9, the solder resist (34) is not applied to the surface of the metal layer (14). Instead, the metal layer (14) is applied to the portion where the solder resist (34) is to be applied in FIG. The metal layer (14) is formed so as to prevent the presence of. That is, the metal layer (14) has substantially the same shape as the region (32A, 32B, 32C) of the solder layer (32) in plan view. Also in the case of FIG. 9, the total perimeter of the area of the solder layer (32) in contact with the metal layer (14) is the perimeter of the rectangle including the entire area or the circumference of the lower surface of the insulating substrate (12). Longer than long. In FIG. 10, the solder resist (36) is not applied to the surface of the heat dissipation member (42) in the power module of FIG.

非半田領域の幅をある程度の大きさに設定すれば、図8〜図10のいずれにおいても、半田が存在しない領域を形成することができる。非半田領域の幅は、例えば1mm以上にする。図8〜図10の方法によると、ソルダーレジスト(34又は36)を塗布をする工程を減らせるので、パワーモジュールを効率よく作成することができる。   If the width of the non-solder area is set to a certain size, an area in which no solder is present can be formed in any of FIGS. The width of the non-solder area is, for example, 1 mm or more. According to the method of FIGS. 8 to 10, the number of steps of applying the solder resist (34 or 36) can be reduced, so that the power module can be efficiently produced.

図11は、図1の放熱部材(42)の上面の他の例を示す平面図である。図2では、半田層(32)は3つの半田領域(32A,32B,32C)を有しているが、これらの領域は分離していなくてもよい。例えば、これらがつながっていて、図11のように半田層(32)が1つの領域しか有していなくてもよい。表面張力は、半田層(32)の、金属層(14)と接する領域の周囲長の総計に比例するからである。図11の場合にも、図2の場合とほぼ同様の表面張力が得られる。   FIG. 11 is a plan view showing another example of the upper surface of the heat dissipation member (42) of FIG. In FIG. 2, the solder layer (32) has three solder regions (32A, 32B, 32C), but these regions may not be separated. For example, they may be connected, and the solder layer (32) may have only one region as shown in FIG. This is because the surface tension is proportional to the total perimeter of the area of the solder layer (32) in contact with the metal layer (14). In the case of FIG. 11 as well, a surface tension substantially similar to that in the case of FIG. 2 is obtained.

図12(a)〜図12(d)、図13(a)〜図13(d)、図14(a)、図14(b)、及び図15(a)〜図15(d)は、図1の放熱部材(42)の上面の更に他の例を示す平面図である。図11〜図15(d)においては、ソルダーレジスト(36)で示された領域以外は、半田層(32)の半田領域である。   12 (a) to 12 (d), FIG. 13 (a) to FIG. 13 (d), FIG. 14 (a), FIG. 14 (b), and FIG. 15 (a) to FIG. It is a top view which shows the further another example of the upper surface of the heat radiating member (42) of FIG. In FIG. 11 to FIG. 15D, the region other than the region indicated by the solder resist (36) is the solder region of the solder layer (32).

絶縁基板(12)等のバランスを保つため、以上の例においては、半田層(32)の領域の形状は点対称である。しかし、表面張力が十分にある場合等には、領域の形状は点対称でなくてもよい。   In order to maintain the balance of the insulating substrate (12) and the like, in the above example, the shape of the region of the solder layer (32) is point-symmetric. However, when the surface tension is sufficient, the shape of the region may not be point symmetric.

図16は、パワーモジュールにおいてボイドが形成された場合の例を示す断面図である。図16のパワーモジュールでは、半田が存在しない領域に、絶縁基板(12)、金属層(14)、半田層(32)、及び放熱部材(42)等で囲まれた空間が形成される。封止材(54)によって封止される際に、この空間には空気が残留しやすく、空気が残留すると、封止材(54)によって満たされないボイド(72)が生じる。ボイド(72)は、水の浸入による腐食や絶縁不良の原因となる。封止材(54)の充填時や熱硬化時に減圧してボイド(72)の形成を防止する方法があるが、これには設備が必要であり、製品コストが増大する。そこで、ボイド(72)の形成を防止する構造の例を次に示す。   FIG. 16 is a cross-sectional view showing an example where a void is formed in the power module. In the power module of FIG. 16, a space surrounded by an insulating substrate (12), a metal layer (14), a solder layer (32), a heat radiating member (42), etc. is formed in a region where no solder exists. When sealing with the sealing material (54), air tends to remain in this space, and when air remains, a void (72) that is not filled with the sealing material (54) is generated. The void (72) causes corrosion and insulation failure due to water intrusion. There is a method of preventing the formation of the void (72) by reducing the pressure when the sealing material (54) is filled or thermosetting, but this requires equipment and increases the product cost. Therefore, an example of a structure for preventing the formation of the void (72) is shown below.

図17(a)及び図17(b)は、図1のパワーモジュールおいて絶縁基板(12)に貫通孔(74)を設けた場合の例を示す断面図である。これらの図は、図1のパワーモジュールが図9のような構成を有する場合の例を示す。図17(a)及び図17(b)のパワーモジュールにおいて、絶縁基板(12)は、平面視において、半田層(32)の領域(32A,32B,32C)以外の領域で貫通孔(74)を有する。図17(b)のパワーモジュールにおいては、絶縁基板(12)上の金属層(16)も、平面視において絶縁基板(12)と同様の位置に貫通孔(74)を有する。   17 (a) and 17 (b) are cross-sectional views showing an example in which the through hole (74) is provided in the insulating substrate (12) in the power module of FIG. These drawings show an example in which the power module of FIG. 1 has the configuration shown in FIG. In the power modules of FIGS. 17A and 17B, the insulating substrate (12) has through holes (74) in regions other than the regions (32A, 32B, 32C) of the solder layer (32) in plan view. Have In the power module of FIG. 17B, the metal layer (16) on the insulating substrate (12) also has a through hole (74) at the same position as the insulating substrate (12) in plan view.

図18(a)及び図18(b)は、図1のパワーモジュールおいて絶縁基板(12)に貫通孔(74)を設けた場合の他の例を示す断面図である。図18(a)及び図18(b)のパワーモジュールにおいて、絶縁基板(12)及び金属層(14)は、平面視において、半田層(32)の領域(32A,32B,32C)以外の領域で貫通孔(74)を有する。図18(b)のパワーモジュールにおいては、絶縁基板(12)の上面の金属層(16)も、平面視において半田層(32)の領域(32A,32B,32C)以外の領域で、絶縁基板(12)と同様の位置に貫通孔(74)を有する。   18 (a) and 18 (b) are cross-sectional views showing another example in the case where the through hole (74) is provided in the insulating substrate (12) in the power module of FIG. 18 (a) and 18 (b), the insulating substrate (12) and the metal layer (14) are regions other than the region (32A, 32B, 32C) of the solder layer (32) in plan view. And has a through hole (74). In the power module of FIG. 18 (b), the metal layer (16) on the upper surface of the insulating substrate (12) is also an area other than the area (32A, 32B, 32C) of the solder layer (32) in plan view. A through hole (74) is provided at the same position as (12).

図17(a)〜図18(b)のように貫通孔(74)を有することにより、残留した空気が絶縁基板(12)の上方に抜け、ボイド形成を防止することができる。貫通孔(74)の形状は、例えば円柱であるが、他の形状であってもよい。例えば、半田領域(32A,32B,32C)で挟まれた各領域(36B,36C)において、貫通孔(74)は1個又は複数個設けられる。   By having the through hole (74) as shown in FIGS. 17 (a) to 18 (b), the remaining air escapes above the insulating substrate (12), and void formation can be prevented. The shape of the through hole (74) is, for example, a cylinder, but may be another shape. For example, in each region (36B, 36C) sandwiched between solder regions (32A, 32B, 32C), one or a plurality of through holes (74) are provided.

以上のように本実施形態によると、放熱部材(42)と金属層(14)とを接合するときにおける溶融した半田層(32)の表面張力を大きくすることができる。このため、絶縁基板(12)が半田層(32)に沈みにくくなり、絶縁基板(12)の傾きを抑えることができ、半田層(32)の厚さの最小値(TN)が小さくなり過ぎないようにすることができる。したがって、半田層(32)におけるクラックの発生を抑え、パワーモジュールの冷却性能の低下を防ぐことができる。   As described above, according to the present embodiment, it is possible to increase the surface tension of the molten solder layer (32) when the heat dissipation member (42) and the metal layer (14) are joined. For this reason, the insulating substrate (12) is less likely to sink into the solder layer (32), the inclination of the insulating substrate (12) can be suppressed, and the minimum thickness (TN) of the solder layer (32) becomes too small. Can not be. Therefore, the generation of cracks in the solder layer (32) can be suppressed, and the cooling performance of the power module can be prevented from being lowered.

本発明の多くの特徴及び優位性は、記載された説明から明らかであり、よって添付の特許請求の範囲によって、本発明のそのような特徴及び優位性の全てをカバーすることが意図される。更に、多くの変更及び改変が当業者には容易に可能であるので、本発明は、図示され記載されたものと全く同じ構成及び動作に限定されるべきではない。したがって、全ての適切な改変物及び等価物は本発明の範囲に入るものとされる。   The many features and advantages of the present invention are apparent from the written description, and thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since many changes and modifications will readily occur to those skilled in the art, the present invention should not be limited to the exact construction and operation as illustrated and described. Accordingly, all suitable modifications and equivalents are intended to be within the scope of the present invention.

以上説明したように、本発明は、半導体素子を有するパワーモジュール等について有用である。   As described above, the present invention is useful for a power module having a semiconductor element.

12 絶縁基板
14 金属層(第1金属層)
16 金属層(第2金属層)
24 半導体素子
32 半田層
34,36 ソルダーレジスト
42 放熱部材
74 貫通孔
12 Insulating substrate 14 Metal layer (first metal layer)
16 Metal layer (second metal layer)
24 Semiconductor element 32 Solder layer 34, 36 Solder resist 42 Heat radiation member 74 Through hole

Claims (8)

絶縁基板(12)と、
前記絶縁基板(12)の一方の面に搭載された半導体素子(24)と、
前記絶縁基板(12)の他方の面に形成された第1金属層(14)と、
放熱部材(42)と、
前記放熱部材(42)と前記第1金属層(14)とを接合する半田層(32)とを備え、
前記半田層(32)の、前記第1金属層(14)と接する領域の周囲長の総計は、前記絶縁基板(12)の前記他方の面の周囲長より長い
パワーモジュール。
An insulating substrate (12);
A semiconductor element (24) mounted on one surface of the insulating substrate (12);
A first metal layer (14) formed on the other surface of the insulating substrate (12);
A heat dissipating member (42);
A solder layer (32) for joining the heat dissipation member (42) and the first metal layer (14);
A power module in which a total perimeter of a region of the solder layer (32) in contact with the first metal layer (14) is longer than a perimeter of the other surface of the insulating substrate (12).
請求項1に記載のパワーモジュールにおいて、
前記半田層(32)の領域は、複数の領域に分割されている
パワーモジュール。
The power module according to claim 1,
The area of the solder layer (32) is a power module divided into a plurality of areas.
請求項2に記載のパワーモジュールにおいて、
前記複数の領域の一部は、前記絶縁基板(12)の周辺部に対応する位置に設けられている
パワーモジュール。
The power module according to claim 2,
A part of said some area | region is a power module provided in the position corresponding to the peripheral part of the said insulated substrate (12).
請求項1に記載のパワーモジュールにおいて、
前記半田層(32)の領域は、前記半導体素子(24)の直下の領域の全体を含む
パワーモジュール。
The power module according to claim 1,
The area of the solder layer (32) includes the entire area immediately below the semiconductor element (24).
請求項1に記載のパワーモジュールにおいて、
前記第1金属層(14)又は前記放熱部材(42)の互いに対向する面の少なくとも一方には、平面視において、前記半田層(32)の領域以外の領域でソルダーレジスト(34,36)が塗布されている
パワーモジュール。
The power module according to claim 1,
At least one of the first metal layer (14) and the heat radiating member (42) facing each other has a solder resist (34, 36) in a region other than the region of the solder layer (32) in plan view. The applied power module.
請求項1に記載のパワーモジュールにおいて、
前記第1金属層(14)は、平面視において、前記半田層(32)の領域の形状と略同一の形状を有する
パワーモジュール。
The power module according to claim 1,
The first metal layer (14) is a power module having a shape substantially the same as the shape of the solder layer (32) in a plan view.
請求項1に記載のパワーモジュールにおいて、
前記絶縁基板(12)は、平面視において、前記半田層(32)の領域以外の領域で貫通孔(74)を有する
パワーモジュール。
The power module according to claim 1,
The insulating substrate (12) is a power module having a through hole (74) in a region other than the region of the solder layer (32) in plan view.
請求項7記載のパワーモジュールにおいて、
前記絶縁基板(12)の前記一方の面に第2金属層(16)を更に有し、
前記第2金属層(16)は、平面視において、前記半田層(32)の領域以外の領域で貫通孔(74)を有する
パワーモジュール。
The power module according to claim 7, wherein
A second metal layer (16) on the one surface of the insulating substrate (12);
The second metal layer (16) has a through hole (74) in a region other than the region of the solder layer (32) in plan view.
JP2012246741A 2012-11-08 2012-11-08 Power module Expired - Fee Related JP6232697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012246741A JP6232697B2 (en) 2012-11-08 2012-11-08 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012246741A JP6232697B2 (en) 2012-11-08 2012-11-08 Power module

Publications (2)

Publication Number Publication Date
JP2014096461A true JP2014096461A (en) 2014-05-22
JP6232697B2 JP6232697B2 (en) 2017-11-22

Family

ID=50939320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246741A Expired - Fee Related JP6232697B2 (en) 2012-11-08 2012-11-08 Power module

Country Status (1)

Country Link
JP (1) JP6232697B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121680A1 (en) * 2018-12-10 2020-06-18 富士電機株式会社 Semiconductor device
EP4131365A1 (en) * 2020-03-27 2023-02-08 Kyocera Corporation Electronic component mounting substrate and electronic device
WO2023195325A1 (en) * 2022-04-04 2023-10-12 三菱電機株式会社 Power module and power conversion device
US11817429B2 (en) 2019-03-06 2023-11-14 Denso Corporation Plurality of chips between two heat sinks

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088372A (en) * 1994-06-23 1996-01-12 Toshiba Corp Heat sink
JPH08274228A (en) * 1995-03-29 1996-10-18 Origin Electric Co Ltd Semiconductor mounting board, power semiconductor device and electronic circuit device
JPH0982844A (en) * 1995-09-20 1997-03-28 Mitsubishi Electric Corp Semiconductor module board and manufacture thereof
JP2003258415A (en) * 2002-02-28 2003-09-12 Hitachi Unisia Automotive Ltd Circuit board device
JP2004134746A (en) * 2002-08-13 2004-04-30 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2005109374A (en) * 2003-10-02 2005-04-21 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2009158502A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Semiconductor module
JP2010050381A (en) * 2008-08-25 2010-03-04 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088372A (en) * 1994-06-23 1996-01-12 Toshiba Corp Heat sink
JPH08274228A (en) * 1995-03-29 1996-10-18 Origin Electric Co Ltd Semiconductor mounting board, power semiconductor device and electronic circuit device
JPH0982844A (en) * 1995-09-20 1997-03-28 Mitsubishi Electric Corp Semiconductor module board and manufacture thereof
JP2003258415A (en) * 2002-02-28 2003-09-12 Hitachi Unisia Automotive Ltd Circuit board device
JP2004134746A (en) * 2002-08-13 2004-04-30 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2005109374A (en) * 2003-10-02 2005-04-21 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2009158502A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Semiconductor module
JP2010050381A (en) * 2008-08-25 2010-03-04 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121680A1 (en) * 2018-12-10 2020-06-18 富士電機株式会社 Semiconductor device
JPWO2020121680A1 (en) * 2018-12-10 2021-06-03 富士電機株式会社 Semiconductor device
US11348852B2 (en) 2018-12-10 2022-05-31 Fuji Electric Co., Ltd. Semiconductor device
US11817429B2 (en) 2019-03-06 2023-11-14 Denso Corporation Plurality of chips between two heat sinks
EP4131365A1 (en) * 2020-03-27 2023-02-08 Kyocera Corporation Electronic component mounting substrate and electronic device
EP4131365A4 (en) * 2020-03-27 2024-05-01 Kyocera Corp Electronic component mounting substrate and electronic device
WO2023195325A1 (en) * 2022-04-04 2023-10-12 三菱電機株式会社 Power module and power conversion device

Also Published As

Publication number Publication date
JP6232697B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5900620B2 (en) Semiconductor device
JP6983187B2 (en) Power semiconductor devices
JP6370257B2 (en) Semiconductor device
JP4989552B2 (en) Electronic components
US20170338189A1 (en) Insulated circuit board, power module and power unit
JPWO2015029511A1 (en) Semiconductor device and manufacturing method thereof
JP6261642B2 (en) Power semiconductor device
JP2012195492A5 (en)
JP6391527B2 (en) Power semiconductor module
JP6232697B2 (en) Power module
JP6849660B2 (en) Semiconductor device
JPWO2017130512A1 (en) Power module
JP2011134949A (en) Semiconductor device
US20140151891A1 (en) Semiconductor package
JP2011054732A (en) Semiconductor module
JP2004253738A (en) Package substrate and flip chip type semiconductor device
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP6048238B2 (en) Electronic equipment
WO2014141346A1 (en) Semiconductor device
JP2014187264A (en) Semiconductor device
JP2010251427A (en) Semiconductor module
JP2014041876A (en) Power semiconductor device
JP7156155B2 (en) semiconductor module
JP6907671B2 (en) Semiconductor device
JP6452748B2 (en) Method for manufacturing laminated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R151 Written notification of patent or utility model registration

Ref document number: 6232697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees