JP2014095114A - Porous heat conductive material and method for manufacturing the same - Google Patents

Porous heat conductive material and method for manufacturing the same Download PDF

Info

Publication number
JP2014095114A
JP2014095114A JP2012246279A JP2012246279A JP2014095114A JP 2014095114 A JP2014095114 A JP 2014095114A JP 2012246279 A JP2012246279 A JP 2012246279A JP 2012246279 A JP2012246279 A JP 2012246279A JP 2014095114 A JP2014095114 A JP 2014095114A
Authority
JP
Japan
Prior art keywords
conductive material
metal
carrier
heat conductive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012246279A
Other languages
Japanese (ja)
Other versions
JP6127456B2 (en
Inventor
Yasuhiro Kawaguchi
康弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2012246279A priority Critical patent/JP6127456B2/en
Publication of JP2014095114A publication Critical patent/JP2014095114A/en
Application granted granted Critical
Publication of JP6127456B2 publication Critical patent/JP6127456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a porous heat conductive material which is lighter in weight and more excellent in thermal conductivity than conventional ones.SOLUTION: A porous heat conductive material 1 has a structure where particles 5 made of ceramics are carried on a carrier 3 made of a porous metal. Preferably, the content of a metal part composing the carrier 3 is 20-40 vol.%, the content of the particles 5 made of ceramics is 20-50 vol.%, and the content of pores 7 contained in the carrier 3 is 30-50 vol.%. The carrier 3 is preferably formed by impregnating slurry, prepared by dispersing metal particles in a dispersion medium, in a foamed resin material, and then heating it under a temperature condition capable of melting at least a part of the metal particles to connect between the metal particles, and removing components contained in the dispersion medium and the foamed resin material.

Description

本発明は、熱伝導性が高くて軽量な多孔質熱伝導材、及びその製造方法に関する。   The present invention relates to a porous heat conductive material having high heat conductivity and light weight, and a method for producing the same.

従来、熱源となる箇所(例えば発熱性の高い素子)に付設されるヒートシンク(放熱体)としては、銅やアルミニウムといった熱伝導性の高い金属材料で形成されたものが利用されていた。   Conventionally, as a heat sink (heat radiating body) attached to a location serving as a heat source (for example, an element having high heat generation property), a heat sink made of a metal material having high heat conductivity such as copper or aluminum has been used.

しかし、これらの材料は、線膨張係数が比較的大きいため、例えば熱源となる箇所に対して接着しても、その接合箇所よりも熱膨張しやすく、これが原因で接合面に空隙が生じてしまうと、放熱性能が低下してしまうなどの問題が生じることがあった。   However, since these materials have a relatively large linear expansion coefficient, for example, even if they are bonded to a location that becomes a heat source, they are more likely to thermally expand than the junction location, and this causes a void in the junction surface. In some cases, the heat dissipation performance is degraded.

こうした問題に対し、より線膨張係数が小さい素材としては、金属とセラミックスの複合材料が提案されている(例えば、特許文献1及び特許文献2参照。)。下記特許文献1に記載の金属−セラミックス複合材料は、多孔質セラミックス焼結体の気孔内に金属の溶湯を加圧含浸させることによって形成されたものである。同技術において、セラミックス焼結体の例としては、炭化ケイ素、窒化ケイ素、窒化アルミニウム、アルミナなどが挙げられ、金属の例としては、銅、銅合金、アルミニウム、アルミニウム合金などが挙げられている。   In order to solve such a problem, a composite material of metal and ceramic has been proposed as a material having a smaller linear expansion coefficient (see, for example, Patent Document 1 and Patent Document 2). The metal-ceramic composite material described in the following Patent Document 1 is formed by pressure impregnation of a molten metal into pores of a porous ceramic sintered body. In this technology, examples of the ceramic sintered body include silicon carbide, silicon nitride, aluminum nitride, and alumina, and examples of the metal include copper, copper alloy, aluminum, and aluminum alloy.

また、下記特許文献2に記載の高熱伝導性材料は、銅粉末と炭化ケイ素粉末を混合して、その混合粉末を金型に充填してプレス成形し、その成形体を銅の溶融温度付近で焼結することによって形成されたものである。   In addition, the high thermal conductivity material described in the following Patent Document 2 is a mixture of copper powder and silicon carbide powder, filled with the mixed powder in a mold, and press-molded. It is formed by sintering.

特開2000−336438号公報JP 2000-336438 A 特開2002−356735号公報JP 2002-356735 A

しかしながら、上記各文献に記載の材料は、いずれも相応に熱伝導性が高い上に、先に説明したような金属材料に比べれば線膨張係数が低いという特性は備えているものの、極めて重い(比重の大きい)材料となる。   However, each of the materials described in the above documents has a correspondingly high thermal conductivity and a characteristic that the coefficient of linear expansion is lower than that of the metal material described above, but is extremely heavy ( Material).

そのため、上記各文献に記載された材料で、ヒートシンクのような放熱部品を製造することはできるものの、そのような放熱部品は極めて重いものとなるので、例えば、軽量化を図りたい機器等で採用することは困難な場合があった。   Therefore, although it is possible to manufacture heat dissipation parts such as heat sinks with the materials described in each of the above documents, such heat dissipation parts are extremely heavy, so they are used, for example, in equipment that wants to reduce weight. It was sometimes difficult to do.

本発明は、上記問題を解決するためになされたものであり、その目的は、従来品よりも軽量で熱伝導性にも優れた多孔質熱伝導材、及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a porous heat conductive material that is lighter than conventional products and excellent in thermal conductivity, and a method for producing the same. .

以下、本発明において採用した構成について説明する。
本発明の多孔質熱伝導材は、多孔質化された金属からなる担体に、セラミックスからなる粒子を担持した構造を有するものである。
Hereinafter, the configuration employed in the present invention will be described.
The porous heat conductive material of the present invention has a structure in which particles made of ceramic are supported on a porous metal carrier.

このように構成された多孔質熱伝導材によれば、金属材料とセラミックス材料との複合材料で構成されているので、比較的高い熱伝導性を容易に確保することができる。また、金属材料とセラミックス材料との複合材料で構成されているので、金属材料のみで構成される熱伝導材に比べ、線膨張係数を小さくすることができる。   According to the porous heat conductive material configured as described above, since it is configured by a composite material of a metal material and a ceramic material, relatively high heat conductivity can be easily ensured. Moreover, since it is comprised with the composite material of a metal material and a ceramic material, a linear expansion coefficient can be made small compared with the heat conductive material comprised only with a metal material.

そのため、例えば、本発明の多孔質熱伝導材を、発熱性の高い半導体素子などの表面に固着しても、金属材料のみで構成される熱伝導材に比べ、熱伝導材の熱膨張が抑制される。したがって、熱伝導材の熱膨張が抑制されれば、素子と熱伝導材との接合面に空隙が生じにくくなるので、そのような空隙が生じることに起因する放熱性能の低下を抑制することができる。   Therefore, for example, even if the porous heat conductive material of the present invention is fixed to the surface of a highly exothermic semiconductor element or the like, the thermal expansion of the heat conductive material is suppressed compared to a heat conductive material composed only of a metal material. Is done. Therefore, if the thermal expansion of the heat conducting material is suppressed, voids are less likely to be formed on the joint surface between the element and the heat conducting material, so that it is possible to suppress deterioration in heat dissipation performance due to such voids. it can.

また、金属材料とセラミックス材料の配合比を調節することにより、線膨張係数の値をある程度の範囲内でコントロールすることもできる。したがって、熱伝導材の固着対象箇所の熱膨張率を考慮して線膨張係数の値を調節することで、固着対象箇所と熱伝導材との接合面に空隙が生じるのを抑制することができ、放熱性能の低下を抑制することができる。   Further, the value of the linear expansion coefficient can be controlled within a certain range by adjusting the mixing ratio of the metal material and the ceramic material. Therefore, by adjusting the value of the coefficient of linear expansion in consideration of the coefficient of thermal expansion at the location where the thermal conductive material is to be fixed, it is possible to suppress the formation of voids at the bonding surface between the target location and the thermal conductive material. , A decrease in heat dissipation performance can be suppressed.

さらに、本発明の多孔質熱伝導材は、先行技術として例示したもの(セラミックスの多孔質体に金属を含浸させたものや、セラミックス粉と金属粉を混合・焼結したもの)とは異なり、担体中には気孔部分が残されて多孔質化された構造とされている。そのため、気孔部分のない中実構造とされる先行技術に比べ、気孔部分が残されている分だけ見かけの比重が小さくなり、熱伝導材の軽量化を図ることができる。   Furthermore, the porous heat conductive material of the present invention is different from those exemplified as the prior art (a ceramic porous body impregnated with metal, a ceramic powder mixed with metal powder and sintered), The carrier has a porous structure in which pores are left behind. For this reason, the apparent specific gravity is reduced by the amount of the remaining pore portion as compared with the prior art that has a solid structure without the pore portion, and the weight of the heat conductive material can be reduced.

また、本発明の多孔質熱伝導材の場合、金属材料とセラミックス材料の配合比を調節することにより、熱伝導材の局所において気孔部分が潰れる方向へ熱伝導材が変形可能な状態にすることもできる。したがって、気孔部分のない中実構造とされる先行技術に比べ、弾性変形若しくは塑性変形させやすい構造にすることもでき、例えば、固着対象箇所の凹凸や曲面に追従する形状に変形させることで、放熱性能を向上させることも可能となる。   Further, in the case of the porous heat conductive material of the present invention, by adjusting the mixing ratio of the metal material and the ceramic material, the heat conductive material can be deformed in a direction in which the pores are crushed locally in the heat conductive material. You can also. Therefore, compared to the prior art that is a solid structure without a pore portion, it can also be a structure that is easily elastically deformed or plastically deformed, for example, by deforming it into a shape that follows the unevenness and curved surface of the part to be fixed, It is also possible to improve the heat dissipation performance.

ところで、本発明の多孔質熱伝導材において、担体を構成する金属としては、目的とする熱伝導性が確保できれば、どのような金属を用いてもかまわない。ただし、比較的熱伝導性が高いことや、その他の条件(入手の容易さ、コスト面)などを考慮して、実用性が高いと考えられるものをいくつか例示するならば、担体を構成する金属は、銅、銅合金、アルミニウム、及びアルミニウム合金の中から選ばれるいずれか一種又は二種以上であることが好ましい。   By the way, in the porous thermal conductive material of the present invention, any metal may be used as the metal constituting the carrier as long as the desired thermal conductivity can be secured. However, if some examples are considered to be highly practical in view of relatively high thermal conductivity and other conditions (ease of availability, cost), etc., the carrier is constituted. The metal is preferably one or more selected from copper, copper alloys, aluminum, and aluminum alloys.

また、セラミックスの粒子についても、目的とする熱伝導性が確保できれば、どのようなセラミックスを用いてもかまわない。ただし、比較的熱伝導性が高いことや、その他の条件(入手の容易さ、コスト面)などを考慮して、実用性が高いと考えられるものをいくつか例示するならば、セラミックスは、SiC、Al23、Si34、MgO、及びBNの中から選ばれるいずれか一種又は二種以上であることが好ましい。 Further, any ceramic particles may be used as long as the desired thermal conductivity can be secured. However, in view of relatively high thermal conductivity and other conditions (ease of availability, cost) etc., some ceramics that are considered to be highly practical are exemplified by SiC. , Al 2 O 3 , Si 3 N 4 , MgO, and BN are preferably any one kind or two or more kinds.

さらに、金属とセラミックスの配合比や、熱伝導材全体に占める気孔率なども、期待する線膨張係数や比重などを勘案して調節されていればよいが、一例を挙げるならば、前記担体を構成する金属部分が20〜40体積%、前記セラミックスからなる粒子が20〜50体積%、前記担体中に含まれる気孔部分が30〜50体積%とされていることが好ましい。   Furthermore, the mixing ratio of the metal and ceramics and the porosity in the entire heat conductive material may be adjusted in consideration of the expected linear expansion coefficient, specific gravity, and the like. It is preferable that the metal portion is 20 to 40% by volume, the ceramic particles are 20 to 50% by volume, and the pores contained in the carrier are 30 to 50% by volume.

上記金属部分が20体積%を下回ると多孔質体の骨格となる構造を維持することが難しくなり始め、例えば粒子の担持が困難になったり、熱伝導材全体の形状を維持することが困難になったりする傾向が現れやすくなる。一方、金属部分が40体積%を上回ると、見かけの比重が大きくなる要因となり、また、線膨張係数が大きくなりやすく、例えば、固着対象箇所との間で膨張率のマッチングが悪くなるなどの問題を招くなどの傾向が現れやすくなる。   When the metal portion is less than 20% by volume, it becomes difficult to maintain the structure that becomes the skeleton of the porous body, for example, it becomes difficult to support particles or to maintain the shape of the entire heat conductive material Tend to appear. On the other hand, if the metal portion exceeds 40% by volume, the apparent specific gravity becomes a factor, and the coefficient of linear expansion tends to increase. For example, there is a problem that the matching of the expansion coefficient with the portion to be fixed is deteriorated. Tend to appear.

また、セラミックスからなる粒子が20体積%を下回ると、金属部分が増えるため、見かけの比重が大きくなる要因となり、また、線膨張係数が大きくなりやすく、例えば、固着対象箇所との間で膨張率のマッチングが悪くなるなどの問題を招くなどの傾向が現れやすくなる。一方、粒子が50体積%を上回ると、粒子の担持が困難になるなどの問題を招くなどの傾向が現れやすくなる。   Further, if the ceramic particles are less than 20% by volume, the metal portion increases, which causes a larger apparent specific gravity, and the linear expansion coefficient tends to increase. Tend to cause problems such as poor matching. On the other hand, when the amount of particles exceeds 50% by volume, a tendency such as causing problems such as difficulty in supporting particles tends to appear.

また、担体中に含まれる気孔部分が30体積%を下回ると、見かけの比重が大きくなる要因となる。一方、気孔部分が50体積%を上回ると、高い熱伝導性を維持することが難しくなる傾向がある。   Further, when the pore portion contained in the carrier is less than 30% by volume, the apparent specific gravity becomes a factor. On the other hand, if the pore portion exceeds 50% by volume, it tends to be difficult to maintain high thermal conductivity.

また、本発明の多孔質熱伝導材において、担体を多孔質化するための手法は、どのような手法であってもよいが、一例を挙げれば、前記担体は、金属粒子を分散媒に分散させてなるスラリーを発泡樹脂材料中に含浸させてから、前記金属粒子の少なくとも一部を溶融させることが可能な温度条件で加熱して、前記金属粒子間を接合するとともに、前記分散媒中に含まれる成分及び前記発泡樹脂材料を除去することによって形成されたものであると好ましい。このような担体であれば、本発明の多孔質熱伝導材を構成する上で十分に好適な程度まで多孔質化された金属担体となり、所期の熱伝導材を構成することができる。   Further, in the porous heat conductive material of the present invention, any method may be used to make the carrier porous. For example, the carrier disperses metal particles in a dispersion medium. The foamed resin material is impregnated with the slurry obtained, and heated at a temperature condition capable of melting at least a part of the metal particles to join the metal particles, and into the dispersion medium. It is preferable that it is formed by removing the contained component and the foamed resin material. If it is such a support | carrier, it will become a metal support | carrier made porous enough to comprise the porous heat conductive material of this invention, and it can comprise the intended heat conductive material.

また、上記のような担体にセラミックスからなる粒子を担持させる手法についても、どのような手法であってもよいが、これも一例を挙げれば、前記発泡樹脂材料は、前記セラミックスからなる粒子が含有された樹脂材料を発泡させたものであると好ましい。このような手法でセラミックスからなる粒子を担持させれば、粒子を多孔質担体中に均一に分散配置することができる。   Also, any method may be used for supporting the particles made of ceramics on the carrier as described above. However, for example, the foamed resin material contains the particles made of ceramics. It is preferable that the obtained resin material is foamed. If the ceramic particles are supported by such a method, the particles can be uniformly dispersed in the porous carrier.

ちなみに、上記以外の手法としては、金属粒子及びセラミックス粒子の双方をスラリー化して、スラリーを発泡樹脂材料中に含浸させる、という手法を採用することも考え得る。このような手法でも、金属粒子及びセラミックス粒子の双方をスラリー中で均一に分散させることができ、その分散状態のまま発泡樹脂材料中に含浸させることができればよい。   Incidentally, as a method other than the above, it may be possible to adopt a method in which both metal particles and ceramic particles are slurried and the slurry is impregnated into the foamed resin material. Even with such a technique, it is only necessary that both the metal particles and the ceramic particles can be uniformly dispersed in the slurry and can be impregnated in the foamed resin material in the dispersed state.

ただし、金属粒子及びセラミックス粒子の比重差や粒径差が原因で、両者を均一に分散させることが難しいこともあるので、そのような場合には、上述の通り、セラミックス粒子を発泡樹脂材料中に分散させておき、金属粒子だけをスラリー中に分散させると好ましい。あるいは、金属粒子を発泡樹脂材料中に分散させておき、セラミックス粒子だけをスラリー中に分散させてもよい。   However, due to differences in specific gravity and particle size between the metal particles and ceramic particles, it may be difficult to disperse them uniformly. In such a case, as described above, the ceramic particles are contained in the foamed resin material. It is preferable that only the metal particles are dispersed in the slurry. Alternatively, the metal particles may be dispersed in the foamed resin material, and only the ceramic particles may be dispersed in the slurry.

加えて、本発明の多孔質熱伝導材の製造方法は、金属粒子を分散媒に分散させてなるスラリーを作成する工程と、前記スラリーを発泡樹脂材料中に含浸させる工程と、前記スラリーを含浸させた前記発泡樹脂材料を、前記金属粒子の少なくとも一部を溶融させることが可能な温度条件で加熱することにより、前記金属粒子間を接合するとともに、前記分散媒中に含まれる成分及び前記発泡樹脂材料を除去する工程とを有する製法である。   In addition, the method for producing a porous heat conductive material of the present invention includes a step of creating a slurry in which metal particles are dispersed in a dispersion medium, a step of impregnating the slurry in a foamed resin material, and impregnating the slurry. The foamed resin material is heated under a temperature condition capable of melting at least a part of the metal particles, thereby joining the metal particles, and the components contained in the dispersion medium and the foam And a step of removing the resin material.

このような多孔質熱伝導材の製造方法によれば、上述した通りの多孔質熱伝導材を製造することができる。   According to such a manufacturing method of a porous heat conductive material, the porous heat conductive material as described above can be manufactured.

(a)は多孔質熱伝導材の構造を概念的に示す説明図、(b)は多孔質熱伝導材の使用例を示す説明図。(A) is explanatory drawing which shows notionally the structure of a porous heat conductive material, (b) is explanatory drawing which shows the usage example of a porous heat conductive material.

次に、本発明の実施形態について一例を挙げて説明する。
[多孔質熱伝導材の構造]
本発明の一実施形態として例示する多孔質熱伝導材1は、図1(a)に例示するように、多孔質化された金属からなる担体3に、セラミックスからなる粒子5を担持した構造を有する。本実施形態において、担体3を構成する金属としては銅(Cu)が利用され、粒子5を構成するセラミックスとしては炭化ケイ素(SiC)が利用されている。
Next, an embodiment of the present invention will be described with an example.
[Structure of porous heat conduction material]
A porous heat conductive material 1 exemplified as an embodiment of the present invention has a structure in which particles 5 made of ceramics are supported on a carrier 3 made of a porous metal, as shown in FIG. Have. In the present embodiment, copper (Cu) is used as the metal constituting the carrier 3, and silicon carbide (SiC) is used as the ceramic constituting the particles 5.

粒子5は、担体3を形成する金属部分の表面に粒子5の一部が露出する状態、又は、当該金属部分の内部に粒子5全体が包含される状態で、担体3に担持されている。また、多孔質体である担体3には、無数の気孔7が形成されている。本実施形態において、担体3を構成する金属部分は30体積%、セラミックスからなる粒子5は30体積%、担体3中に含まれる気孔7の部分は40体積%とされている。   The particles 5 are supported on the carrier 3 in a state where a part of the particles 5 is exposed on the surface of the metal part forming the carrier 3 or in a state where the whole particle 5 is included in the metal part. Innumerable pores 7 are formed in the carrier 3 which is a porous body. In the present embodiment, the metal portion constituting the carrier 3 is 30% by volume, the ceramic particles 5 are 30% by volume, and the pores 7 contained in the carrier 3 are 40% by volume.

以上のような構造とされた多孔質熱伝導材1は、目的に応じた所定の形状に加工されて適用対象箇所に装着される。例えば、図1(b)に示すように、発熱性の高い半導体素子11からの放熱を促す場合には、半導体素子11の上面形状に応じた形状及び寸法に加工されて、半導体素子11の上面に固着される。これにより、半導体素子11で発生する熱が多孔質熱伝導材1へと伝わって、半導体素子11の温度が低下することになる。   The porous heat conductive material 1 having the above-described structure is processed into a predetermined shape according to the purpose and is attached to the application target portion. For example, as shown in FIG. 1B, when radiating heat from the highly exothermic semiconductor element 11 is promoted, the semiconductor element 11 is processed into a shape and size corresponding to the upper surface shape of the semiconductor element 11. It is fixed to. Thereby, the heat generated in the semiconductor element 11 is transmitted to the porous heat conductive material 1, and the temperature of the semiconductor element 11 is lowered.

[多孔質熱伝導材の製造方法]
次に、上記多孔質熱伝導材1の製造方法について説明する。
まず、上記粒子5となるSiC粒子が30体積%入ったウレタンスポンジを作成した。具体的には、ポリウレタン用のポリオール50gとポリイソシアネート50gと触媒0.05g及びSiC粒子200gとを含むウレタン樹脂原料と発泡剤1gからなる素材を、60℃程度に加熱された型に注入して密閉した。その後、10分間程度発泡成形し、SiC粒子が入ったウレタンスポンジを作成した。
[Method for producing porous heat conductive material]
Next, the manufacturing method of the said porous heat conductive material 1 is demonstrated.
First, a urethane sponge containing 30% by volume of SiC particles serving as the particles 5 was prepared. Specifically, a material composed of a urethane resin raw material containing 50 g of polyurethane polyol, 50 g of polyisocyanate, 0.05 g of catalyst and 200 g of SiC particles and 1 g of a foaming agent is poured into a mold heated to about 60 ° C. Sealed. Thereafter, foam molding was performed for about 10 minutes to prepare a urethane sponge containing SiC particles.

また、ポリビニルアルコール粒子20gを水80mlに溶解してPVAスラリーを作成し、このPVAスラリー100gとCu粉末400gを高速でかき混ぜ、高粘度化し、Cu粉末入りPVAスラリーを作成した。そして、上記工程で作成したSiC粒子が入ったウレタンスポンジへ、Cu粉末入りPVAスラリーを含浸させた。   Further, 20 g of polyvinyl alcohol particles were dissolved in 80 ml of water to prepare a PVA slurry, and 100 g of this PVA slurry and 400 g of Cu powder were mixed at high speed to increase the viscosity, thereby preparing a PVA slurry containing Cu powder. Then, the PVA slurry containing Cu powder was impregnated into the urethane sponge containing the SiC particles prepared in the above process.

次に、上記Cu粒子入りPVAスラリーを含浸させたSiC粒子含有ウレタンスポンジを、窒素雰囲気とした加熱炉内に入れて、1000℃にて10分加熱して、所期の多孔質熱伝導材1を完成させた。   Next, the SiC particle-containing urethane sponge impregnated with the Cu particle-containing PVA slurry is placed in a heating furnace having a nitrogen atmosphere and heated at 1000 ° C. for 10 minutes to obtain the desired porous heat conductive material 1. Was completed.

上記加熱工程において、上述のPVAスラリー及びウレタンスポンジの部分は分解、気化される。また、Cu粒子は一部又は全部が熱で溶解することにより、Cu粒子間が接合されて、三次元的な網目状の骨格を有する担体3が形成されることになる。SiC粒子は、Cu粒子に比べて融点が格段に高いため、上記加熱工程において粒子が熱で溶解することはなく、粒子状のまま保持されて担体3に担持された粒子5となる。   In the heating step, the PVA slurry and the urethane sponge are decomposed and vaporized. Further, Cu particles are partly or wholly dissolved by heat, so that the Cu particles are joined together to form the carrier 3 having a three-dimensional network skeleton. Since SiC particles have a remarkably higher melting point than Cu particles, the particles are not dissolved by heat in the heating step, and become particles 5 held in the form of particles held on the carrier 3.

以上の工程で所期の多孔質熱伝導材1が完成することになるので、以下、必要に応じて所望の形状に加工した上で、適用対象箇所に多孔質熱伝導材1を固着するなど、任意の方法で多孔質熱伝導材1を使用することができる。   Since the desired porous heat conductive material 1 is completed by the above steps, the porous heat conductive material 1 is fixed to the application target portion after being processed into a desired shape as necessary. The porous heat conductive material 1 can be used by any method.

[効果]
以上説明した多孔質熱伝導材1によれば、金属材料(Cu)とセラミックス材料(SiC)との複合材料で構成されているので、比較的高い熱伝導性を容易に確保することができるとともに、金属材料のみで構成される熱伝導材に比べ、線膨張係数を小さくすることができる。
[effect]
According to the porous heat conductive material 1 described above, since it is composed of a composite material of a metal material (Cu) and a ceramic material (SiC), relatively high heat conductivity can be easily ensured. The coefficient of linear expansion can be made smaller than that of a heat conductive material composed only of a metal material.

そのため、図1(b)に例示したように、発熱性の高い半導体素子11などの表面に固着した場合、金属材料のみで構成される熱伝導材(ヒートシンクなどの放熱体)に比べ、熱伝導材の熱膨張が抑制される。したがって、多孔質熱伝導材1と半導体素子11との接合面に空隙が生じにくく、放熱性能の低下を抑制することができる。   Therefore, as illustrated in FIG. 1B, the heat conduction is higher when bonded to the surface of a highly exothermic semiconductor element 11 or the like than a heat conductive material (a heat sink such as a heat sink) composed only of a metal material. The thermal expansion of the material is suppressed. Therefore, voids are unlikely to occur at the joint surface between the porous heat conductive material 1 and the semiconductor element 11, and a reduction in heat dissipation performance can be suppressed.

また、上記多孔質熱伝導材1は、担体3が多孔質化されることにより、40体積%もの気孔7を備えているので、セラミックスの多孔質体に金属を含浸させた構造の熱伝導材や、セラミックス粉と金属粉を混合・焼結した熱伝導材のような、中実構造(内部に気孔部分がない構造)の熱伝導材に比べ、単位体積当たりの見かけの質量が小さくなる。したがって、軽量化が要求される機器(例えば、モバイル機器)などにおいて採用する場合に好適であり、機器の総重量削減に寄与することができる。   Further, since the porous heat conducting material 1 is provided with 40 volume% of pores 7 by making the carrier 3 porous, the heat conducting material having a structure in which a porous ceramic body is impregnated with metal. In addition, the apparent mass per unit volume is smaller than a heat conductive material having a solid structure (a structure having no pores inside) such as a heat conductive material in which ceramic powder and metal powder are mixed and sintered. Therefore, it is suitable for use in a device (for example, a mobile device) that is required to be reduced in weight, and can contribute to a reduction in the total weight of the device.

さらに、上記多孔質熱伝導材1の場合、多孔質熱伝導材1の局所において気孔7が潰れる方向へ担体3が弾性変形ないし塑性変形可能となっている。そのため、例えば、固着対象箇所に凹凸があったり固着対象箇所が曲面になったりしている場合でも、そのような凹凸や曲面に追従する形状に多孔質熱伝導材1を変形させて、多孔質熱伝導材1を固着対象箇所に密接配置することができる。したがって、そのような形状変更が困難な剛性の高い熱伝導材に比べ、凹凸や曲面に適用した場合の放熱性能を向上させることができる。   Furthermore, in the case of the porous heat conductive material 1, the carrier 3 can be elastically deformed or plastically deformed in the direction in which the pores 7 are crushed locally in the porous heat conductive material 1. Therefore, for example, even when the fixing target portion has irregularities or the fixing target portion has a curved surface, the porous heat conducting material 1 is deformed into a shape that follows such irregularities or a curved surface, and the porous The heat conductive material 1 can be closely arranged in the location to be fixed. Therefore, the heat dissipation performance when applied to irregularities and curved surfaces can be improved as compared to a highly rigid heat conducting material that is difficult to change in shape.

[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.

例えば、上記実施形態では、担体3を構成する多孔質金属の例として、多孔質化された銅を例示したが、他の金属からなる多孔質体を担体として採用してもよい。他の金属の例としては、アルミニウムを挙げることができる。あるいは、これらの金属の合金を利用してもよく、例えば、銅合金、アルミニウム合金などからなる多孔質体を担体としてもよい。これらの金属については、いずれか一種を採用すればよいが、必要ならば二種以上を併用してもよい。   For example, in the above embodiment, porous copper is exemplified as an example of the porous metal constituting the carrier 3, but a porous body made of another metal may be adopted as the carrier. Examples of other metals include aluminum. Alternatively, an alloy of these metals may be used. For example, a porous body made of a copper alloy, an aluminum alloy, or the like may be used as a carrier. Any one of these metals may be employed, but two or more may be used in combination if necessary.

また、上記実施形態では、粒子5を構成するセラミックスの例として、SiCを例示したが、熱伝導性が高いセラミックスであれば、他のセラミックスからなる粒子を採用してもよい。熱伝導性が高いセラミックスの例としては、SiCの他に、Al23、Si34、MgO、及びBNなどを挙げることができる。これらのセラミックスについても、いずれか一種を採用すればよいが、必要ならば二種以上を併用してもよい。 Moreover, in the said embodiment, although SiC was illustrated as an example of the ceramics which comprise the particle | grains 5, as long as it is a ceramic with high heat conductivity, you may employ | adopt the particle | grains which consist of other ceramics. Examples of ceramics having high thermal conductivity include Al 2 O 3 , Si 3 N 4 , MgO, and BN in addition to SiC. Any one of these ceramics may be employed, but two or more may be used in combination if necessary.

また、上記実施形態では、担体3を構成する金属部分、セラミックスからなる粒子5、及び担体3中に含まれる気孔7について、これら体積比が特定の値となる事例について説明したが、この体積比も任意に変更可能である。ただし、多孔質熱伝導材1の熱伝導性能を考慮すると、担体3を構成する金属部分は20〜40体積%、セラミックスからなる粒子5は20〜50体積%、担体3中に含まれる気孔7の部分は30〜50体積%、以上の数値範囲内で調節されていると好ましい。   In the above-described embodiment, the case where the volume ratio of the metal portion constituting the support 3, the particles 5 made of ceramics, and the pores 7 included in the support 3 has a specific value has been described. Can be arbitrarily changed. However, in consideration of the heat conduction performance of the porous heat conducting material 1, the metal portion constituting the carrier 3 is 20 to 40% by volume, the ceramic particles 5 are 20 to 50% by volume, and the pores 7 contained in the carrier 3 are included. Is preferably adjusted within the range of 30 to 50% by volume.

1…多孔質熱伝導材、3…担体、5…粒子、7…気孔、11…半導体素子。   DESCRIPTION OF SYMBOLS 1 ... Porous heat conductive material, 3 ... Carrier, 5 ... Particle, 7 ... Pore, 11 ... Semiconductor element.

Claims (4)

多孔質化された金属からなる担体に、セラミックスからなる粒子を担持した構造を有する多孔質熱伝導材。   A porous heat conducting material having a structure in which particles made of ceramic are supported on a porous metal carrier. 前記担体を構成する金属部分が20〜40体積%、前記セラミックスからなる粒子が20〜50体積%、前記担体中に含まれる気孔部分が30〜50体積%とされている
請求項1に記載の多孔質熱伝導材。
The metal part which comprises the said support | carrier is 20-40 volume%, the particle | grains which consist of the said ceramic are 20-50 volume%, and the pore part contained in the said support | carrier is 30-50 volume%. Porous heat conduction material.
前記担体は、金属粒子を分散媒に分散させてなるスラリーを発泡樹脂材料中に含浸させてから、前記金属粒子の少なくとも一部を溶融させることが可能な温度条件で加熱して、前記金属粒子間を接合するとともに、前記分散媒中に含まれる成分及び前記発泡樹脂材料を除去することによって形成されたものである
請求項1又は請求項2に記載の多孔質熱伝導材。
The carrier is impregnated with a slurry obtained by dispersing metal particles in a dispersion medium in a foamed resin material, and then heated under a temperature condition capable of melting at least a part of the metal particles. The porous heat conductive material according to claim 1 or 2, wherein the porous heat conductive material is formed by joining the components and removing a component contained in the dispersion medium and the foamed resin material.
金属粒子を分散媒に分散させてなるスラリーを作成する工程と、前記スラリーを発泡樹脂材料中に含浸させる工程と、前記スラリーを含浸させた前記発泡樹脂材料を、前記金属粒子の少なくとも一部を溶融させることが可能な温度条件で加熱することにより、前記金属粒子間を接合するとともに、前記分散媒中に含まれる成分及び前記発泡樹脂材料を除去する工程とを有する多孔質熱伝導材の製造方法。   A step of creating a slurry in which metal particles are dispersed in a dispersion medium; a step of impregnating the slurry in a foamed resin material; and the foamed resin material impregnated with the slurry, at least part of the metal particles. Production of a porous heat conductive material having a step of joining the metal particles by heating under a temperature condition capable of melting, and removing the components and the foamed resin material contained in the dispersion medium Method.
JP2012246279A 2012-11-08 2012-11-08 Method for producing porous heat conductive material Active JP6127456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012246279A JP6127456B2 (en) 2012-11-08 2012-11-08 Method for producing porous heat conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012246279A JP6127456B2 (en) 2012-11-08 2012-11-08 Method for producing porous heat conductive material

Publications (2)

Publication Number Publication Date
JP2014095114A true JP2014095114A (en) 2014-05-22
JP6127456B2 JP6127456B2 (en) 2017-05-17

Family

ID=50938434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246279A Active JP6127456B2 (en) 2012-11-08 2012-11-08 Method for producing porous heat conductive material

Country Status (1)

Country Link
JP (1) JP6127456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175275A1 (en) * 2019-02-26 2020-09-03 三菱ケミカル株式会社 Heat dissipation member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358431A (en) * 2003-06-06 2004-12-24 Taiheiyo Cement Corp Porous structure body, filter, and production method of porous structure body
US20110020662A1 (en) * 2009-07-22 2011-01-27 Kazutaka Okamoto Sintered porous metal body and a method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358431A (en) * 2003-06-06 2004-12-24 Taiheiyo Cement Corp Porous structure body, filter, and production method of porous structure body
US20110020662A1 (en) * 2009-07-22 2011-01-27 Kazutaka Okamoto Sintered porous metal body and a method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175275A1 (en) * 2019-02-26 2020-09-03 三菱ケミカル株式会社 Heat dissipation member
JPWO2020175275A1 (en) * 2019-02-26 2020-09-03
JP7259933B2 (en) 2019-02-26 2023-04-18 三菱ケミカル株式会社 Heat dissipation material

Also Published As

Publication number Publication date
JP6127456B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
EP2213756B1 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
CN103367270B (en) Aluminum silicon carbide composite material with laser welding layer and preparation method thereof
CN102962434B (en) Silicon carbide/copper silicon alloy codual-continuous composite and preparation method thereof
CN104962771B (en) Preparation method of directional porous SiC and diamond reinforced Al base composite material
CN107649688B (en) A kind of the diamond heat-conducting composite material and preparation method and application of easy processing
JP2000077584A (en) Metal matrix composite body
JP2011510502A (en) Heat sink and method for manufacturing the heat sink
CN115286408B (en) Method for preparing silicon carbide composite material part through laser 3D printing based on particle grading composite technology
CN103724046B (en) A kind of SiC foam and preparation method thereof
JP6127456B2 (en) Method for producing porous heat conductive material
JP2017143094A (en) Heat sink, thermoelectric conversion module, method of manufacturing heat sink
CN107760278A (en) Composition as thermal interfacial material
CN105774130B (en) A kind of high heat conduction high-air-tightness composite and preparation method thereof
CN103966533A (en) Diamond heat-conducting composite material and preparation method thereof
JP2001105124A (en) Heat radiation substrate for semi conductor device
JP5363418B2 (en) Method for producing high thermal conductive composite material
KR20170050951A (en) Porous metal based heat radiating material and method for producing the same
WO2023027661A1 (en) New generation hybrid composite heat sink with monolithic metal foam form
JP2012124391A (en) Heat transfer controlling member
JP5048266B2 (en) Heat dissipation board and manufacturing method thereof
KR101891405B1 (en) Metal foam and manufacturing method of the metal foam
RU2261780C1 (en) Method of producing metal composite materials and article made of such material
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
CN105921721A (en) Preparation method for 3D-SiC/Al composite material of 3D interpenetrating structure
US11952318B2 (en) Method for manufacturing ceramic composite material and product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6127456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250