JP2014094323A - Filter device for water heat exchanger, refrigeration cycle device including this water heat exchanger, and method of suppressing adhesion of substance to be captured to water heat exchanger - Google Patents

Filter device for water heat exchanger, refrigeration cycle device including this water heat exchanger, and method of suppressing adhesion of substance to be captured to water heat exchanger Download PDF

Info

Publication number
JP2014094323A
JP2014094323A JP2012245396A JP2012245396A JP2014094323A JP 2014094323 A JP2014094323 A JP 2014094323A JP 2012245396 A JP2012245396 A JP 2012245396A JP 2012245396 A JP2012245396 A JP 2012245396A JP 2014094323 A JP2014094323 A JP 2014094323A
Authority
JP
Japan
Prior art keywords
filter
water
heat exchanger
filter unit
water heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012245396A
Other languages
Japanese (ja)
Other versions
JP5836915B2 (en
Inventor
Takafumi Nakai
隆文 中井
Kazuhiro Miya
一普 宮
Seiji Noda
清治 野田
Seiji Furukawa
誠司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012245396A priority Critical patent/JP5836915B2/en
Publication of JP2014094323A publication Critical patent/JP2014094323A/en
Application granted granted Critical
Publication of JP5836915B2 publication Critical patent/JP5836915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a filter device for a water heat exchanger capable of capturing a substance to be captured such as an iron rust particle from water flowing into a water circuit of the water heat exchanger while suppressing pressure fluctuations, and easily detecting filter replacement timing.SOLUTION: A water-heater-exchanger filter device 40 includes a first filter unit 2 and a second filter unit 3 provided on an inlet of a water channel 1a of a water heat exchanger 1; a bypass pipe 7 that acts as a bypass of the first filter unit 2 and the second filter unit 3; a pressure loss unit 6 provided at the bypass pipe 7; and a replacement-timing discrimination sensor 8. If the second filter unit 3 is greater than the first filter unit 2 in a pressure fluctuation when a substance to be captured is accumulated pressure losses of the first filter unit 2, the second filter unit 3, and the pressure loss unit 6 before the substance to be captured is accumulated are α, γ, and β, respectively, and pressure losses of the first filter unit 2 and the second filter unit 3 that come to the end of service lives are α' and γ', respectively, (α+γ)<β<(α'+γ') is satisfied.

Description

本発明は、水熱交換器用フィルタ装置、この水熱交換器用フィルタ装置を備えた冷凍サイクル装置、及び水熱交換器への被捕捉物の付着抑制方法に関するものである。   The present invention relates to a filter device for a water heat exchanger, a refrigeration cycle device including the filter device for a water heat exchanger, and a method for suppressing the adhesion of an object to be captured to the water heat exchanger.

従来より、冷媒と水とが熱交換する水熱交換器の水流路の入口側には、該水流路に異物が流入することを防止するため、ストレーナ(メッシュ状の濾過器)が取り付けられている。このストレーナによって、水中に混入した異物が取り除かれることにより、水熱交換器への異物流入が防止され、水熱交換器は本来の熱交換性能が維持されることとなる。しかしながら、ストレーナのメッシュ径(メッシュの開口部の大きさ)よりも小さい異物が水に混入してしまった場合、異物はストレーナを通過して水熱交換器の水流路の内部へと流入してしまう。この流入した異物が水流路の内壁に付着、堆積すると、水熱交換器の冷媒流路を流れる冷媒と水流路を流れる水との間の熱伝達性能が低下してしまうという課題や、水流路の圧力損失の増大によって水流路を流れる水の流量が低下してしまうという課題が発生する。   Conventionally, a strainer (mesh filter) is attached to the inlet side of the water flow path of the water heat exchanger that exchanges heat between the refrigerant and water in order to prevent foreign matter from flowing into the water flow path. Yes. The strainer removes foreign matter mixed in the water, thereby preventing foreign matter from flowing into the water heat exchanger and maintaining the original heat exchange performance of the water heat exchanger. However, if a foreign object smaller than the strainer mesh diameter (mesh opening size) enters the water, the foreign object passes through the strainer and flows into the water flow path of the water heat exchanger. End up. If the inflowing foreign matter adheres to and accumulates on the inner wall of the water flow path, the heat transfer performance between the refrigerant flowing through the refrigerant flow path of the water heat exchanger and the water flowing through the water flow path may be reduced. The problem that the flow volume of the water which flows through a water flow path will fall by the increase in pressure loss of will generate | occur | produce.

水中に混入する主要な異物として、水熱交換器の水流路に接続された水回路の配管から発生する鉄錆粒子が知られている。鉄錆粒子は、水回路の配管の腐食生成物であり、発生状況により大小さまざまな大きさの状態で水中に混入する。また、鉄錆粒子は、水熱交換器の水流路に供給する水道水の水質にも起因して、発生量や酸化状態も異なる。鉄錆粒子が微粒子の状態で水中に混入した場合、ストレーナを通過して、水熱交換器内部にスケールとして堆積し、上述の課題を引き起こす。この他、水道水成分に起因する炭酸カルシウム微粒子、ケイ酸微粒子等もストレーナを通過して、熱交換器内部にスケールとして堆積することが知られている。   As main foreign matters mixed in water, iron rust particles generated from piping of a water circuit connected to a water flow path of a water heat exchanger are known. Iron rust particles are corrosion products of piping in water circuits, and are mixed into water in various sizes depending on the state of occurrence. In addition, iron rust particles have different generation amounts and oxidation states due to the quality of tap water supplied to the water flow path of the water heat exchanger. When iron rust particles are mixed in water in the form of fine particles, they pass through the strainer and accumulate as scale inside the water heat exchanger, causing the above-mentioned problems. In addition, it is known that calcium carbonate fine particles, silicic acid fine particles, and the like resulting from tap water components pass through the strainer and accumulate as scales inside the heat exchanger.

鉄錆微粒子等が熱交換器内部にスケールとして付着することを防止するには、水質管理により鉄錆等を発生させないことが重要と考えられる。しかしながら、現実には、徹底した水質管理を行えないケースが多数あり、水熱交換器を定期的に洗浄する等の対策がとられているのが実情である。   In order to prevent iron rust fine particles and the like from adhering as a scale inside the heat exchanger, it is important to prevent iron rust from being generated by water quality management. However, in reality, there are many cases where thorough water quality management cannot be performed, and it is the actual situation that measures such as periodically washing the water heat exchanger are taken.

ここで、ストレーナでは除去できない鉄錆微粒子等を除去する技術も従来より提案されている。   Here, a technique for removing iron rust fine particles and the like that cannot be removed by a strainer has also been proposed.

例えば、特許文献1には、フィルタを用いることを特徴とするアルカリイオン整水器が開示されている。この特許文献1に記載のアルカリイオン整水器は、中空糸フィルタ及び抗菌活性炭フィルタを内蔵したカートリッジ式のフィルタによって、水道水を濾過して不純物を取り除いている。また、特許文献1に記載のアルカリイオン整水器は、主フィルタが目詰まりして所定の圧力を上回ると、予備フィルタに切り替わり、本来の機能を持続することができる。   For example, Patent Document 1 discloses an alkali ion water conditioner using a filter. The alkaline ionized water device described in Patent Document 1 removes impurities by filtering tap water with a cartridge-type filter incorporating a hollow fiber filter and an antibacterial activated carbon filter. Moreover, when the main filter is clogged and exceeds a predetermined pressure, the alkaline ionized water device described in Patent Document 1 can be switched to a preliminary filter and maintain its original function.

また例えば、特許文献2には、水質汚濁物質の濃度を低減させる浄化方法として、多孔質フィルタを用いることを特徴とする浄化方法が開示されている。この特許文献2に記載の浄化方法は、アルカリ土類炭酸塩の粉末と硫酸アルミニウム水溶液より合成される多孔質浄化材料を用いた多孔質フィルタによって、水質汚濁物質を除去することができる。   Further, for example, Patent Document 2 discloses a purification method characterized by using a porous filter as a purification method for reducing the concentration of water-polluting substances. In the purification method described in Patent Document 2, water pollutants can be removed by a porous filter using a porous purification material synthesized from an alkaline earth carbonate powder and an aqueous aluminum sulfate solution.

また例えば、特許文献3には、つまり除去手段を備え、水熱交換器の水側流路のつまりを除去することを特徴とするヒートポンプ給湯機が開示されている。詳しくは、この特許文献3には、水熱交換器の水流路に最大流量で水を流す構成をつまり除去手段として備え、当該つまり除去手段により、つまり要因であるスケールや浮遊物等を水熱交換器の水流路から流し出す技術が開示されている。また、この特許文献3には、水熱交換器に機械振動を与える構成をつまり除去手段として備え、当該つまり除去手段により、つまり要因であるスケールや浮遊物等を水熱交換器の水流路から流し出す技術が開示されている。また、この特許文献3には、水熱交換器の水流路と接続された水回路に設けられたフィルタをつまり除去手段として備え、当該つまり除去手段により、つまり要因であるスケールや浮遊物等を除去する技術が開示されている。   Further, for example, Patent Document 3 discloses a heat pump water heater that is provided with a removing means and removes the clogging of the water-side flow path of the water heat exchanger. Specifically, this Patent Document 3 is provided with a configuration that allows water to flow through the water flow path of the water heat exchanger at the maximum flow rate, that is, as removal means. A technique for discharging from the water flow path of the exchanger is disclosed. Further, this Patent Document 3 is provided with a configuration that gives mechanical vibration to the water heat exchanger as removal means, that is, the removal means, that is, the scale or suspended matter that is a factor from the water flow path of the water heat exchanger. Disclosed techniques are disclosed. In addition, this Patent Document 3 includes a filter provided in a water circuit connected to the water flow path of the water heat exchanger as a removal means, that is, the removal means, that is, a scale or a suspended matter as a factor. Techniques for removal are disclosed.

特開平8−257564号公報JP-A-8-257564 特開2009−214027号公報JP 2009-214027 A 特開2004−144445号公報JP 2004-144445 A

特許文献1に開示された技術は、中空糸及び抗菌活性炭で構成されたフィルタを用い、当該フィルタで水道水中の不純物を濾過(捕捉)して除去する技術である(以下、フィルタによって捕捉されるものを「被捕捉物」とも称する)。このため、特許文献1に記載のフィルタは、濾過が進行するに伴って、被捕捉物によりフィルタが目詰まりを起こしてしまう。つまり、特許文献1に記載のフィルタは、濾過の進行に伴って増加する圧力損失の増大量(圧力変動)が大きくなってしまうという課題があった。このため、水熱交換器を備えた空気調和機に特許文献1に記載のフィルタを採用した場合、以下のような課題が発生してしまう。   The technique disclosed in Patent Document 1 is a technique that uses a filter composed of a hollow fiber and antibacterial activated carbon and filters (captures) impurities in tap water with the filter (hereinafter, captured by the filter). Things are also called “captured objects”). For this reason, the filter described in Patent Document 1 is clogged by the captured object as the filtration proceeds. That is, the filter described in Patent Document 1 has a problem that the amount of increase in pressure loss (pressure fluctuation) that increases with the progress of filtration increases. For this reason, when the filter of patent document 1 is employ | adopted for the air conditioner provided with the water heat exchanger, the following subjects will generate | occur | produce.

従来より、水熱交換器を備えた空気調和機やヒートポンプ給湯機等(つまり、水熱交換器に接続された水回路及び冷媒回路を備えた冷凍サイクル装置)においては、水熱交換器の熱交換性能を保つため、水熱交換器内(より詳しくは水流路)を流れる水の流量及び圧力が設定値以下に低下したこと検知すると、システムエラーとして冷凍サイクル装置の構成機器を停止するように制御する場合がある。このような冷凍サイクル装置に特許文献1に記載のフィルタを採用すると、特許文献1に記載のフィルタは目詰まりによる圧力変動が大きいため、水熱交換器内(より詳しくは水流路)を流れる水の流量及び圧力が設定値以下に低下してしまい、冷凍サイクル装置を正常に運転することが困難になってしまうという課題があった。
例えば空気調和機の場合、フィルタの目詰まりによって水熱交換器内(より詳しくは水流路)を流れる水の圧力損失が100kPa程度増大した場合、水熱交換器内(より詳しくは水流路)を流れる水の流量が10%程度低下する場合がある。そして、このように水熱交換器内(より詳しくは水流路)を流れる水の流量が低下し、水熱交換器内(より詳しくは水流路)の最少流量を下回った場合、水熱交換器が凍結して凍結パンクに至る場合があった。
Conventionally, in an air conditioner or a heat pump water heater provided with a water heat exchanger (that is, a refrigeration cycle apparatus having a water circuit and a refrigerant circuit connected to the water heat exchanger), the heat of the water heat exchanger In order to maintain the exchange performance, when it is detected that the flow rate and pressure of the water flowing in the water heat exchanger (more specifically, the water flow path) has dropped below the set value, the components of the refrigeration cycle apparatus are stopped as a system error. May be controlled. When the filter described in Patent Document 1 is employed in such a refrigeration cycle apparatus, the pressure described in Patent Document 1 has a large pressure fluctuation due to clogging, and therefore water flowing in the water heat exchanger (more specifically, the water flow path). However, the flow rate and pressure of the refrigeration cycle are reduced below the set value, which makes it difficult to operate the refrigeration cycle apparatus normally.
For example, in the case of an air conditioner, when the pressure loss of water flowing in the water heat exchanger (more specifically, the water flow path) increases by about 100 kPa due to clogging of the filter, the water heat exchanger (more specifically, the water flow path) The flow rate of the flowing water may be reduced by about 10%. If the flow rate of water flowing in the water heat exchanger (more specifically, the water flow path) decreases in this way and falls below the minimum flow rate in the water heat exchanger (more specifically, the water flow path), the water heat exchanger May freeze and lead to freeze puncture.

また、水熱交換器を備えた空気調和機に特許文献1に記載のフィルタを採用した場合、次のような課題もあった。つまり、特許文献1に記載のフィルタは、例えば家庭内で使用されるアルカリイオン整水器に用いられることを想定している。このため、水熱交換器を備えたビル用及び工場用の空調機器に特許文献1に記載のフィルタを用い、鉄錆微粒子等の被捕捉物を当該フィルタで捕獲しようとした場合、非現実的な大きさ及び量のフィルタが必要になるという課題もあった。   Moreover, when the filter of patent document 1 was employ | adopted for the air conditioner provided with the water heat exchanger, there also existed the following subjects. That is, it is assumed that the filter described in Patent Document 1 is used for an alkaline ionized water device used in homes, for example. For this reason, when the filter described in Patent Document 1 is used for a building or factory air conditioner equipped with a water heat exchanger and an object to be captured such as iron rust particles is to be captured by the filter, it is impractical. There is also a problem that a filter having a large size and amount is required.

一例をあげると、東レ株式会社製の家庭用浄水器トレビーノ(登録商標)の1500L用のカートリッジ(品番:MKC.NTJ、H110×φ66mm)では、1Lの水を処理するのに必要な体積は1.0×10−6/Lである。一方、ビル用及び工場用の空調機器の水熱交換器の運転水流量を30m/Hrとして1ヶ月間運転した場合、2.2×1010Lの水をフィルタで処理することになり、この水の処理量からフィルタの必要なサイズを求めると、2.2×10となってしまう。つまり、水熱交換器を備えたビル用及び工場用の空調機器に特許文献1に記載のフィルタを用いた場合、1ヶ月でフィルタを交換又は洗浄すると想定しても、このような大容量のフィルタが必要となる。このフィルタの容量は、チリングユニット(圧縮機、空気熱交換器、減圧装置及び水熱交換器を収納したものであり、室内機と共に空気調和機を構成する構成要素)自体よりも大きなものであり、このような大容量のフィルタを空気調和機に備えることは非現実的と考えられる。 As an example, in a 1500L cartridge (product number: MKC.NTJ, H110 × φ66mm) of a household water purifier Trebino (registered trademark) manufactured by Toray Industries, Inc., the volume required to treat 1L of water is 1 0.0 × 10 −6 m 3 / L. On the other hand, when the operation water flow rate of the water heat exchangers for air conditioners for buildings and factories is operated for one month at 30 m 3 / Hr, 2.2 × 10 10 L of water will be treated with a filter, When the required size of the filter is obtained from the amount of water treated, it becomes 2.2 × 10 4 m 3 . That is, when the filter described in Patent Document 1 is used for air conditioning equipment for buildings and factories equipped with a water heat exchanger, even if it is assumed that the filter is replaced or cleaned in one month, such a large capacity A filter is required. The capacity of this filter is larger than the chilling unit (a component that houses a compressor, an air heat exchanger, a pressure reducing device, and a water heat exchanger, and constitutes an air conditioner together with an indoor unit) itself. It is considered impractical to provide such an air conditioner with such a large-capacity filter.

一方、特許文献2に記載のフィルタは、被捕捉物の捕捉(吸着)に伴う圧力損失の増大量(圧力変動)を、特許文献1に記載のフィルタよりも小さく抑えることができる。しかしながら、特許文献2に記載のフィルタは、多孔質フィルタが寿命に達すると被捕捉物(鉄錆微粒子等)を通過させてしまい、水熱交換器内部を清浄に保てなくなるという課題があった。また、特許文献2に記載のフィルタは、被捕捉物の捕捉(吸着)に伴う圧力損失の増大量(圧力変動)が比較的小さいため、流量や圧力変化等によってフィルタの交換時期を判別することが難しいという課題もあった。   On the other hand, the filter described in Patent Document 2 can suppress an increase in pressure loss (pressure fluctuation) associated with capturing (adsorption) of an object to be captured smaller than the filter described in Patent Document 1. However, the filter described in Patent Document 2 has a problem that when the porous filter reaches the end of its life, the trapped material (iron rust fine particles, etc.) is allowed to pass, and the interior of the water heat exchanger cannot be kept clean. . In addition, the filter described in Patent Document 2 has a relatively small increase in pressure loss (pressure fluctuation) associated with the capture (adsorption) of the captured object, so that the filter replacement time can be determined based on the flow rate or pressure change. There was also a problem that was difficult.

また、特許文献3に開示された技術のうち、水熱交換器の水流路に最大流量で水を流す構成、及び、水熱交換器に機械振動を与える構成をつまり除去手段とした技術は、水熱交換器内部に一旦付着したつまり要因物質を剥ぎ取るものであり、つまり要因物質を捕獲する機能がない。このため、これらの技術は、水熱交換器からのつまり要因物質の除去(剥ぎ取ること)を繰り返すうちに、徐々に水熱交換器の内部が洗浄残渣で汚染され、水熱交換器の熱伝達性能の低下を招くという課題があった。また、特許文献3に開示された技術のうち、水熱交換器の水流路と接続された水回路に設けられたフィルタをつまり除去手段とする技術においては、上述した特許文献1,2に記載のフィルタと同様の課題が発生してしまう。   Further, among the techniques disclosed in Patent Document 3, a technique in which water is supplied at a maximum flow rate to the water flow path of the water heat exchanger, and a technique that applies mechanical vibration to the water heat exchanger, that is, a technique that uses the removing means, It is intended to peel off the causative substance once adhering to the inside of the water heat exchanger, that is, it has no function of capturing the causative substance. For this reason, as these technologies repeatedly remove (peel) the causative substances from the water heat exchanger, the inside of the water heat exchanger is gradually contaminated with cleaning residues, and the heat of the water heat exchanger There was a problem that the transmission performance was reduced. In addition, among the techniques disclosed in Patent Document 3, the technique using the filter provided in the water circuit connected to the water flow path of the water heat exchanger, that is, the removing means, is described in Patent Documents 1 and 2 described above. The same problem as that of the filter will occur.

本発明は、上述のような課題を解決するためになされたものであり、圧力変動を抑制しつつ水熱交換器の水回路に流入する水から鉄錆微粒子等の被捕捉物を捕捉でき、つまり、水熱交換器の内部を清浄に保つことができ、フィルタの交換時期を検出することも容易な水熱交換器用フィルタ装置、この水熱交換器用フィルタ装置を備えた冷凍サイクル装置、及び水熱交換器への被捕捉物の付着抑制方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can capture captured objects such as iron rust fine particles from water flowing into the water circuit of the water heat exchanger while suppressing pressure fluctuation, That is, the water heat exchanger filter device that can keep the inside of the water heat exchanger clean and can easily detect the filter replacement time, a refrigeration cycle device including the water heat exchanger filter device, and water It aims at providing the adhesion suppression method of the to-be-captured object to a heat exchanger.

本発明に係る水熱交換器用フィルタ装置は、冷媒と水とが熱交換する水熱交換器の水流路の入口側に設けられ、水中の被捕捉物を捕捉する第1フィルタ部と、前記水熱交換器の水流路の入口側であって、前記第1フィルタ部よりも下流側に設けられるものであり、前記第1フィルタ部を通過した被捕捉物を捕捉する第2フィルタ部と、一端が前記第1フィルタ部の上流側に接続され、他端が前記第2フィルタ部と前記水熱交換器との間に接続されるバイパス配管と、該バイパス配管に設けられる圧力損失部と、前記バイパス配管に設けられ、前記バイパス配管に流れる流量が所定流量よりも大きくなったときに、前記第1フィルタ部及び前記第2フィルタ部の交換を促す報知部と、を備え、前記第2フィルタ部は、被捕捉物が貯留されていった際の圧力変動が前記第1フィルタ部よりも大きなものであり、被捕捉物が貯留される前の状態における前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部の圧力損失をα、γ及びβとし、寿命に達した状態における前記第1フィルタ部及び前記第2フィルタ部の圧力損失をα’及びγ’とした場合、(α+γ)<β<(α’+γ’)となるように、前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部を構成しているものである。   A filter device for a water heat exchanger according to the present invention is provided on the inlet side of a water flow path of a water heat exchanger that exchanges heat between a refrigerant and water, and includes a first filter section that captures an object to be captured in water, and the water A second filter part that is provided on the inlet side of the water flow path of the heat exchanger and downstream of the first filter part, and that captures an object to be captured that has passed through the first filter part; Is connected to the upstream side of the first filter part, the other end is connected between the second filter part and the water heat exchanger, a pressure loss part provided in the bypass pipe, An informing part that is provided in the bypass pipe and that prompts replacement of the first filter part and the second filter part when a flow rate flowing through the bypass pipe is greater than a predetermined flow rate, and the second filter part The trapped objects are stored And the pressure loss of the first filter unit, the second filter unit, and the pressure loss unit in a state before the captured object is stored is α, Assuming that γ and β and the pressure loss of the first filter portion and the second filter portion in the state where the lifetime has been reached are α ′ and γ ′, (α + γ) <β <(α ′ + γ ′) Further, the first filter unit, the second filter unit, and the pressure loss unit are configured.

また、本発明に係る冷凍サイクル装置は、圧縮機、空気熱交換器、減圧装置、及び前記水熱交換器の冷媒流路が接続され、冷媒が循環する冷媒回路と、前記水熱交換器の水流路に水を流す水回路と、を備え、前記水熱交換器の水流路の入口側に本発明に係る水熱交換器用フィルタ装置を備えたものである。   Further, the refrigeration cycle apparatus according to the present invention includes a compressor, an air heat exchanger, a decompression device, a refrigerant circuit in which the refrigerant flow path of the water heat exchanger is connected, and a refrigerant circuit that circulates, and the water heat exchanger. A water circuit for flowing water through the water flow path, and the water heat exchanger filter device according to the present invention on the inlet side of the water flow path of the water heat exchanger.

また、本発明に係る水熱交換器への被捕捉物の付着抑制方法は、冷媒と水とが熱交換する水熱交換器の水流路の入口側に設けられ、水中の被捕捉物を捕捉する第1フィルタ部と、前記水熱交換器の水流路の入口側であって、前記第1フィルタ部よりも下流側に設けられるものであり、前記第1フィルタ部を通過した被捕捉物を捕捉する第2フィルタ部と、一端が前記第1フィルタ部の上流側に接続され、他端が前記第2フィルタ部と前記水熱交換器との間に接続されるバイパス配管と、該バイパス配管に設けられる圧力損失部と、前記バイパス配管に設けられ、前記バイパス配管に流れる流量が所定流量よりも大きくなったときに、前記第1フィルタ部及び前記第2フィルタ部の交換を促す報知部と、を備え、前記第2フィルタ部は、被捕捉物が貯留されていった際の圧力変動が前記第1フィルタ部よりも大きなものであり、被捕捉物が貯留される前の状態における前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部の圧力損失をα、γ及びβとし、寿命に達した状態における前記第1フィルタ部及び前記第2フィルタ部の圧力損失をα’及びγ’とした場合、(α+γ)<β<(α’+γ’)となるように、前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部を構成し、所定量の被捕捉物が前記第1フィルタ部に貯留されるまでは、前記第1フィルタ部及び前記第2フィルタ部を通った水を前記水熱交換器の水流路に流入させ、前記第1フィルタ部が寿命となって前記第2フィルタ部が被捕捉物を捕捉し、前記第1フィルタ部及び前記第2フィルタ部の圧力損失が前記圧力損失部の圧力損失よりも大きくなると、前記バイパス配管を通った水を前記水熱交換器の水流路に流入させ、前記第1フィルタ部及び前記第2フィルタ部の交換を促す報知を行うものである。   In addition, the method for suppressing the adhesion of an object to be captured to the water heat exchanger according to the present invention is provided on the inlet side of the water flow path of the water heat exchanger where heat is exchanged between the refrigerant and water, and captures the object to be captured in the water. A first filter part that is provided on the inlet side of the water flow path of the water heat exchanger and on the downstream side of the first filter part, and the captured object that has passed through the first filter part. A second filter part to be captured; a bypass pipe having one end connected to the upstream side of the first filter part and the other end connected between the second filter part and the water heat exchanger; and the bypass pipe A pressure loss section provided in the bypass pipe, and a notification section that is provided in the bypass pipe and that prompts replacement of the first filter section and the second filter section when a flow rate flowing through the bypass pipe is greater than a predetermined flow rate. The second filter unit is captured The pressure fluctuation when the gas is stored is larger than that of the first filter unit, and the first filter unit, the second filter unit, and the pressure loss unit in a state before the captured object is stored. Is set to α, γ, and β, and when the pressure loss of the first filter portion and the second filter portion in the state of reaching the lifetime is set to α ′ and γ ′, (α + γ) <β <(α ′ The first filter unit, the second filter unit, and the pressure loss unit are configured so as to be + γ ′), and the first filter unit until a predetermined amount of the captured object is stored in the first filter unit. Water that has passed through the filter section and the second filter section is caused to flow into the water flow path of the water heat exchanger, the first filter section reaches the end of its life, and the second filter section captures an object to be captured. The pressure loss of the first filter part and the second filter part is When the pressure loss is greater than the pressure loss of the pressure loss part, the water passing through the bypass pipe is caused to flow into the water flow path of the water heat exchanger, and notification is made to prompt replacement of the first filter part and the second filter part. Is.

本発明は、水熱交換器の水流路の入口側に、第1フィルタ部及び第2フィルタ部を直列に接続している。また、本発明は、被捕捉物が貯留される前の状態における第1フィルタ部、第2フィルタ部及び圧力損失部の圧力損失をα、γ及びβとし、寿命に達した状態における第1フィルタ部及び第2フィルタ部の圧力損失をα’及びγ’とした場合、α+γ<β<α’+γ’となるように、第1フィルタ部、第2フィルタ部及び圧力損失部を構成している。このため、通常の運転状態では、水熱交換器の水流路に流入する水の主流路(大部分の水又は全部の水が流れる流路)は、第1フィルタ部及び第2フィルタ部を通る流路となる。つまり、水熱交換器の水流路に流入する水は、第1フィルタ部及び第2フィルタ部を通って被捕捉物が捕捉された後に、水熱交換器の水流路に流入する。   In the present invention, the first filter portion and the second filter portion are connected in series on the inlet side of the water flow path of the water heat exchanger. In addition, the present invention provides the first filter in a state where the first filter part, the second filter part, and the pressure loss part in a state before the trapped object is stored is α, γ, and β, and the life is reached. The first filter unit, the second filter unit, and the pressure loss unit are configured so that α + γ <β <α ′ + γ ′, where α ′ and γ ′ are the pressure losses of the first and second filter units. . For this reason, in a normal operation state, the main flow path (the flow path through which most or all of the water flows) of water flowing into the water flow path of the water heat exchanger passes through the first filter section and the second filter section. It becomes a flow path. That is, the water flowing into the water flow path of the water heat exchanger flows into the water flow path of the water heat exchanger after the captured object is captured through the first filter portion and the second filter portion.

ここで、本発明は、被捕捉物が貯留されていった際の圧力変動が第1フィルタ部よりも大きくなるように第2フィルタ部を構成している。つまり、本発明は、第1フィルタ部が寿命となって被捕捉物を捕捉できなくなり、第1フィルタ部の下流側に設けられた第2フィルタ部で被捕捉物を捕捉し始めると、第1フィルタ部及び第2フィルタ部が設けられた流路の圧力変動(圧力損失の増大量)が大きくなる構成となっている。このため、第1フィルタ部として被捕捉物の捕捉に伴う圧力変動(圧力損失の増大)が小さいフィルタを用いることができる。より詳しくは、第1フィルタ部として被捕捉物の捕捉に伴う圧力変動(圧力損失の増大)が小さいフィルタを用いても、第2フィルタ部の圧力変動によって第1フィルタ部の寿命、つまり交換時期を検出することができる。   Here, in the present invention, the second filter unit is configured such that the pressure fluctuation when the captured object is stored is larger than that of the first filter unit. That is, according to the present invention, when the first filter unit has reached the end of its life and the captured object cannot be captured, and the second filter unit provided on the downstream side of the first filter unit starts capturing the captured object, The pressure fluctuation (increase in pressure loss) of the flow path provided with the filter part and the second filter part is increased. For this reason, the filter with a small pressure fluctuation (increase in pressure loss) accompanying the capture | acquisition of a to-be-captured object can be used as a 1st filter part. More specifically, even if a filter having a small pressure fluctuation (increase in pressure loss) accompanying the capture of the object to be captured is used as the first filter section, the life of the first filter section, that is, the replacement time due to the pressure fluctuation of the second filter section. Can be detected.

このとき、本発明は、上述のように、第1フィルタ部、第2フィルタ部及び圧力損失部がα+γ<β<α’+γ’の関係となっている。このため、第1フィルタ部及び第2フィルタ部の圧力損失が圧力損失部の圧力損失βよりも大きくなると、水熱交換器の水流路に流入する水の主流路は、第1フィルタ部及び第2フィルタ部を通る流路から、圧力損失部が設けられたバイパス配管に切り替わる。そして、水熱交換器の水流路に流入する水の主流路がバイパス配管に切り替わると、報知部が第1フィルタ部及び第2フィルタ部の交換を促す。つまり、本発明は、圧力変動の限られた小さい条件{最大でもβ−(α+γ)}で、水熱交換器の水流路に流入する水の主流路がバイパス配管に切り替り、第1フィルタ部が寿命に到達したとして、報知部が第1フィルタ部及び第2フィルタ部の交換を報知することができる。   At this time, in the present invention, as described above, the first filter unit, the second filter unit, and the pressure loss unit have a relationship of α + γ <β <α ′ + γ ′. For this reason, when the pressure loss of the first filter part and the second filter part becomes larger than the pressure loss β of the pressure loss part, the main flow path of the water flowing into the water flow path of the water heat exchanger is the first filter part and the second filter part. 2 The flow path passing through the filter section is switched to a bypass pipe provided with a pressure loss section. Then, when the main flow path of the water flowing into the water flow path of the water heat exchanger is switched to the bypass pipe, the notification section prompts replacement of the first filter section and the second filter section. That is, according to the present invention, the main flow path of the water flowing into the water flow path of the water heat exchanger is switched to the bypass pipe under a small condition with a limited pressure fluctuation {maximum β− (α + γ)}. Can be notified that the first filter unit and the second filter unit have been replaced.

したがって、本発明は、圧力変動を抑制しつつ水熱交換器の水回路に流入する水から鉄錆微粒子等の被捕捉物を捕捉でき、つまり、水熱交換器の内部を清浄に保つことができ、フィルタの交換時期を検出することも容易にできる。   Therefore, the present invention can capture an object to be captured such as iron rust fine particles from water flowing into the water circuit of the water heat exchanger while suppressing pressure fluctuation, that is, keeping the inside of the water heat exchanger clean. It is also possible to easily detect the replacement time of the filter.

本発明の実施の形態1に係る空気調和機を示す構成図である。It is a block diagram which shows the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水熱交換器用フィルタ装置を示す構成図である。It is a block diagram which shows the filter apparatus for water heat exchangers which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第1フィルタ部を示す斜視図である。It is a perspective view which shows the 1st filter part which concerns on Embodiment 1 of this invention. 等電位点を説明する概念図である。It is a conceptual diagram explaining an equipotential point. 本発明の実施の形態2に係る水熱交換器用フィルタ装置を示す構成図である。It is a block diagram which shows the filter apparatus for water heat exchangers which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る空気調和機を示す構成図である。また、図2は、本発明の実施の形態1に係る水熱交換器用フィルタ装置を示す構成図である。
本実施の形態1に係る空気調和機30は、本実施の形態1に係る水熱交換器用フィルタ装置40(図2で詳細を後述する)を備えたものであり、例えばビル用及び工場用の空気調和機として用いられるものである。この空気調和機30は、冷媒回路20、及び、複数の室内機41が接続された水回路4を備えている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating an air conditioner according to Embodiment 1 of the present invention. Moreover, FIG. 2 is a block diagram which shows the filter apparatus for water heat exchangers which concerns on Embodiment 1 of this invention.
The air conditioner 30 according to the first embodiment includes the water heat exchanger filter device 40 according to the first embodiment (details will be described later with reference to FIG. 2). It is used as an air conditioner. The air conditioner 30 includes a refrigerant circuit 20 and a water circuit 4 to which a plurality of indoor units 41 are connected.

冷媒回路20は、圧縮機21、空気熱交換器22、膨張弁等の減圧装置23、及び水熱交換器1の冷媒流路1bが接続されて構成され、冷媒が循環するものである。圧縮機21は、冷媒を圧縮するものである。空気熱交換器22は、圧縮機21で圧縮した冷媒をファン22aから供給された空気で冷却し、当該冷媒を凝縮させるものである。減圧装置23は、空気熱交換器22で凝縮した冷媒を膨張させ、低温の冷媒にするものである。水熱交換器1は、減圧装置23で低温にされた冷媒を冷媒流路1bに流し、当該冷媒にて水流路1aを流れる冷媒を冷却するものである。つまり、水熱交換器1は、冷媒流路1bに流入した冷媒を蒸発させるものである。   The refrigerant circuit 20 is configured by connecting a compressor 21, an air heat exchanger 22, a decompression device 23 such as an expansion valve, and the refrigerant flow path 1b of the water heat exchanger 1, and the refrigerant circulates. The compressor 21 compresses the refrigerant. The air heat exchanger 22 cools the refrigerant compressed by the compressor 21 with the air supplied from the fan 22a, and condenses the refrigerant. The decompression device 23 expands the refrigerant condensed in the air heat exchanger 22 to form a low-temperature refrigerant. The water heat exchanger 1 causes the refrigerant that has been lowered in temperature by the decompression device 23 to flow into the refrigerant flow path 1b, and cools the refrigerant flowing through the water flow path 1a with the refrigerant. That is, the water heat exchanger 1 evaporates the refrigerant that has flowed into the refrigerant flow path 1b.

水回路4は、水熱交換器1の水流路1aと、該水流路1aの入口側に接続された往き配管4aと、該水流路1aの出口側に接続された戻り配管4bと、往き配管4a及び戻り配管4bに例えば並列接続された複数の室内機41と、水回路4内に水を流す(循環させる)ポンプ42を備えている。この水回路4は、水熱交換器1の水流路1aに水を流すものである。つまり、水流路1aに供給された水は、水熱交換器1の冷媒流路1bを流れる低温冷媒によって冷却される。そして、この冷却された水は、各室内機41の熱交換器に流入し、各室内機41が設けられた空調空間を冷房(空気調和)する。   The water circuit 4 includes a water flow path 1a of the water heat exchanger 1, a forward pipe 4a connected to the inlet side of the water flow path 1a, a return pipe 4b connected to the outlet side of the water flow path 1a, and a forward pipe. A plurality of indoor units 41 connected in parallel to 4a and the return pipe 4b, for example, and a pump 42 for flowing (circulating) water in the water circuit 4 are provided. The water circuit 4 allows water to flow through the water flow path 1 a of the water heat exchanger 1. That is, the water supplied to the water flow path 1 a is cooled by the low-temperature refrigerant flowing through the refrigerant flow path 1 b of the water heat exchanger 1. And this cooled water flows in into the heat exchanger of each indoor unit 41, and air-conditions the air-conditioned space in which each indoor unit 41 was provided (air conditioning).

また、本実施の形態1に係る空気調和機30は、水熱交換器1の熱交換性能を保つため、水熱交換器1の水流路1aを流れる水の流量及び圧力が設定値以下に低下したことを検知すると、システムエラーとして空気調和機30の構成機器(圧縮機21、水回路のポンプ42等)を停止する制御を行っている。これは、水熱交換器1の水流路1aを流れる水の圧力が低下し、水熱交換器1の水流路1aを流れる水の流量が低下して、水熱交換器1の最少流量を下回った場合、水熱交換器1が凍結して凍結パンクに至る可能性があるからである。   Further, in the air conditioner 30 according to the first embodiment, in order to maintain the heat exchange performance of the water heat exchanger 1, the flow rate and pressure of the water flowing through the water flow path 1a of the water heat exchanger 1 are reduced to a set value or less. When this is detected, control is performed to stop the components (compressor 21, water circuit pump 42, etc.) of the air conditioner 30 as a system error. This is because the pressure of the water flowing through the water flow path 1a of the water heat exchanger 1 decreases, the flow rate of the water flowing through the water flow path 1a of the water heat exchanger 1 decreases, and falls below the minimum flow rate of the water heat exchanger 1. This is because there is a possibility that the water heat exchanger 1 will freeze and become frozen puncture.

なお、本実施の形態1に係る空気調和機30は、冷媒回路20において水熱交換器1を蒸発器として用いたが、冷媒回路20内の冷媒の流れ方向を逆にして、冷媒回路20において水熱交換器1を凝縮器として用いてもよい。この場合、空気調和機30は、各室内機が設けられた空調空間を暖房(空気調和)することとなる。   In the air conditioner 30 according to the first embodiment, the water heat exchanger 1 is used as an evaporator in the refrigerant circuit 20, but in the refrigerant circuit 20, the flow direction of the refrigerant in the refrigerant circuit 20 is reversed. The water heat exchanger 1 may be used as a condenser. In this case, the air conditioner 30 heats (air-conditions) the air-conditioned space in which each indoor unit is provided.

上述のように構成された空気調和機30には、水回路4の往き配管4aに、水熱交換器用フィルタ装置40が設けられている。この水熱交換器用フィルタ装置40は、図2に示すように、第1フィルタ部2、第2フィルタ部3、切換スイッチ5、圧力損失部6、バイパス配管7、及び交換時期判別センサ8を備えている。   In the air conditioner 30 configured as described above, a water heat exchanger filter device 40 is provided in the forward piping 4 a of the water circuit 4. As shown in FIG. 2, the water heat exchanger filter device 40 includes a first filter unit 2, a second filter unit 3, a changeover switch 5, a pressure loss unit 6, a bypass pipe 7, and a replacement time determination sensor 8. ing.

第1フィルタ部2は、水熱交換器1の水流路1aの入口側(つまり、往き配管4a)に設けられ、水中の被捕捉物(鉄錆等)を捕捉するものである。第2フィルタ部3は、水熱交換器1の水流路1aの入口側であって、第1フィルタ部2よりも下流側に設けられるものである。つまり、第2フィルタ部3は、第1フィルタ部2の下流側となる往き配管4aに設けられている。換言すると、第1フィルタ部2及び第2フィルタ部3は、直列に往き配管4aに設けられている。第2フィルタ部3は、第1フィルタ部2で捕捉できなかった水中の被捕捉物を捕捉するものである。バイパス配管7は、一端が第1フィルタ部2の上流側となる往き配管4aに接続され、他端が第2フィルタ部3と水熱交換器1との間となる往き配管4aに接続されたものである。このバイパス配管7には、切換スイッチ5及び圧力損失部6が設けられている。切換スイッチ5は、バイパス配管7内の流路を開閉し、圧力損失部6は、バイパス配管7を流れる水に対して圧力損失を発生させる。交換時期判別センサ8は、バイパス配管7に流れる流量が所定流量よりも大きくなったときに、第1フィルタ部2の交換を促す情報を報知するものである。   The 1st filter part 2 is provided in the inlet side (namely, outgoing piping 4a) of the water flow path 1a of the water heat exchanger 1, and captures to-be-captured objects (iron rust etc.) in water. The second filter unit 3 is provided on the inlet side of the water flow path 1 a of the water heat exchanger 1 and on the downstream side of the first filter unit 2. In other words, the second filter unit 3 is provided in the forward piping 4 a on the downstream side of the first filter unit 2. In other words, the 1st filter part 2 and the 2nd filter part 3 are provided in the outgoing piping 4a in series. The second filter unit 3 captures an object to be captured in water that could not be captured by the first filter unit 2. One end of the bypass pipe 7 is connected to the forward pipe 4 a that is upstream of the first filter part 2, and the other end is connected to the forward pipe 4 a that is between the second filter part 3 and the hydrothermal exchanger 1. Is. The bypass pipe 7 is provided with a changeover switch 5 and a pressure loss unit 6. The changeover switch 5 opens and closes the flow path in the bypass pipe 7, and the pressure loss unit 6 generates a pressure loss with respect to the water flowing through the bypass pipe 7. The replacement time determination sensor 8 notifies information that prompts replacement of the first filter unit 2 when the flow rate flowing through the bypass pipe 7 becomes larger than a predetermined flow rate.

以下、水熱交換器用フィルタ装置40の各構成要素の詳細について説明する。   Hereinafter, the detail of each component of the filter apparatus 40 for water heat exchangers is demonstrated.

第1フィルタ部2は、容器2a内に鉄錆等の被捕捉物を捕捉する捕捉材2bを充填したものであり、例えば図3に示すように構成されている。   The 1st filter part 2 is filled with the capture | acquisition material 2b which captures captured objects, such as iron rust, in the container 2a, for example, is comprised as shown in FIG.

図3は、本発明の実施の形態1に係る第1フィルタ部を示す斜視図である。
図3に示すように、本実施の形態1に係る第1フィルタ部2の容器2aには、捕捉材2bとして、等電位点がpH6(本発明のpHAに相当)よりも小さい材料201、及び、等電位点がpH8(本発明のpHBに相当)よりも大きい材料202が充填されている。また、本実施の形態1では、等電位点がpH6よりも小さい材料201と、等電位点がpH8よりも大きい材料202とは、網目状の仕切り203で仕切られて、容器2a内に充填されている。つまり、本実施の形態1に係る第1フィルタ部2は、等電位点がpH6よりも小さい材料201と、等電位点がpH8よりも大きい材料202とが互いに接触しないように、容器2a内に充填されている。
FIG. 3 is a perspective view showing the first filter portion according to Embodiment 1 of the present invention.
As shown in FIG. 3, in the container 2a of the first filter unit 2 according to the first embodiment, as the trapping material 2b, a material 201 having an equipotential point smaller than pH 6 (corresponding to pHA of the present invention), and The material 202 having an equipotential point higher than pH 8 (corresponding to pH B of the present invention) is filled. In Embodiment 1, the material 201 having an equipotential point smaller than pH 6 and the material 202 having an equipotential point larger than pH 8 are partitioned by a mesh-like partition 203 and filled in the container 2a. ing. In other words, the first filter unit 2 according to the first embodiment is arranged in the container 2a so that the material 201 whose equipotential point is smaller than pH 6 and the material 202 whose equipotential point is larger than pH 8 do not contact each other. Filled.

ここで、第1フィルタ部2で被捕捉物を捕捉していくにつれて、第1フィルタ部2には被捕捉物が貯留されていくこととなる。つまり、第1フィルタ部2で被捕捉物を捕捉していくにつれて、第1フィルタ部2での圧力損失が増大していくこととなる。このため、本実施の形態1では、この第1フィルタ部2での圧力損失の増大によって、水熱交換器1の水流路1aを流れる水の流量が設定値以下に低下して、空気調和機30の構成機器(圧縮機21、水回路のポンプ42等)を停止する制御が行われないよう、被捕捉物の捕捉に伴って増加する第1フィルタ部2の圧力損失の増大量を抑制した構成としている。第1フィルタ部2のこの圧力損失の増大量は、捕捉材2bの充填層高さ、空搭速度、空隙率、捕捉材2bの代表径等に依存して変わるため、これらの値を適宜設定することにより調整することができる。   Here, as the captured object is captured by the first filter unit 2, the captured object is stored in the first filter unit 2. That is, as the captured object is captured by the first filter unit 2, the pressure loss at the first filter unit 2 increases. For this reason, in this Embodiment 1, with the increase in the pressure loss in this 1st filter part 2, the flow volume of the water which flows through the water flow path 1a of the water heat exchanger 1 falls below a setting value, and an air conditioner The amount of increase in pressure loss of the first filter unit 2 that increases with the capture of the captured object is suppressed so that control for stopping 30 components (such as the compressor 21 and the pump 42 of the water circuit) is not performed. It is configured. The amount of increase in the pressure loss of the first filter portion 2 varies depending on the packed bed height of the trapping material 2b, the flying speed, the porosity, the representative diameter of the trapping material 2b, etc., so these values are set appropriately. It can be adjusted by doing.

なお、捕捉材2bとして用いられている等電位点がpH6よりも小さい材料201は、特に限定されるものではないが、例えば次のような材料である。詳しくは、等電位点がpH6よりも小さい材料201は、α−Al(OH)、Sb、MnO、SiO、SnO(含水)、TiO(メンブレン活性層)、TiO(天然ルチル)、WO、UO−U(天然)、U、V、NaAlSi、亜塩素酸、イライト、カオリナイト、ベントナイト、白雲母、Na−パリゴルスカイト、葉ろう石、絹雲母、GaAl(合成)、Mg(OH)Si10、SiC、β−SiC、TiN、HCaNb10、燐灰石、水酸燐灰石(天然)、フッ素燐灰石、ZrP、輝銅鉱、方鉛鉱、閃亜鉛鉱、灰重石、ガラス、水和セルロース、三酢酸セルロース、ポリアミド、ポリエチレン、ポリメタクリル酸メチル、ポリフッ化エチレン、テフロン(登録商標)、ポリウレタン、カルボキシ化ポリスチレン、及びナイロン12等の材料から選定された少なくとも1つの材料である。 In addition, although the material 201 whose equipotential point used as the capture | acquisition material 2b is smaller than pH 6 is not specifically limited, For example, it is the following materials. Specifically, the material 201 having an equipotential point smaller than pH 6 is α-Al (OH) 3 , Sb 2 O 5 , MnO 2 , SiO 2 , SnO 2 (containing water), TiO 2 (membrane active layer), TiO 2. (natural rutile), WO 3, UO 2 -U 3 O 3 ( natural), U 3 O 3, V 3 O 8, NaAlSi 3 O 8, chlorite, illite, kaolinite, bentonite, muscovite, Na- Palygorskite, granite, sericite, GaAl 3 O 4 (synthesis), Mg 3 (OH) 2 Si 4 O 10 , SiC, β-SiC, TiN, HCa 2 Nb 3 O 10 , apatite, hydroxyapatite (naturally occurring) ), fluorapatite, ZrP 2 O 7, chalcocite, galena, sphalerite, scheelite, glass, cellulose hydrate, cellulose triacetate, polyamide, polyethylene, polymethacrylic Sanme Le, polyfluoroethylene, Teflon, polyurethane, at least one material selected carboxylated polystyrene, and a material such as nylon-12.

また、捕捉材2bとして用いられている等電位点がpH8よりも大きい材料202は、特に限定されるものではないが、例えば次のような材料である。詳しくは、等電位点がpH8よりも大きい材料202は、BeO(含水)、Cd(OH)、CdO、Co(OH)、Cu(OH)、CuO、La(含水)、Pb(OH)、MgO、Mg(OH)、Mn(OH)、NiO、Ni(OH)、PtO、PuO、Y(含水)、ZnO、方解石、蛍石、及びメラミンホルムアルデヒド等の材料から選定された少なくとも1つの材料である。 In addition, the material 202 having an equipotential point larger than pH 8 used as the capturing material 2b is not particularly limited, but is, for example, the following material. Specifically, the material 202 having an equipotential point greater than pH 8 is BeO (hydrous), Cd (OH) 2 , CdO, Co (OH) 2 , Cu (OH) 2 , CuO, La 2 O 3 (hydrous), pb (OH) 2, MgO, Mg (OH) 2, Mn (OH) 2, NiO, Ni (OH) 2, PtO 2, PuO 2, Y 2 O 3 ( water), ZnO, calcite, fluorite, and It is at least one material selected from materials such as melamine formaldehyde.

また、捕捉材2b(等電位点がpH6よりも小さい材料201、等電位点がpH8よりも大きい材料202)の形状も特に限定されるものではなく、粒状、球状、筒状、柱状、角状、網状、ハニカム状等、一般に用いられる捕捉材2bの形状と同様に加工して用いることが可能である。また、捕捉材2bの充填方法についても、特に限定されるものではない。   Further, the shape of the capturing material 2b (the material 201 whose equipotential point is smaller than pH 6 and the material 202 whose equipotential point is larger than pH 8) is not particularly limited, and is granular, spherical, cylindrical, columnar, angular. It can be used after being processed in the same manner as the shape of the generally used trapping material 2b, such as a net or honeycomb. Further, the method for filling the capturing material 2b is not particularly limited.

上記のように構成された第1フィルタ部2は、次のような仕組みで、水中に混入している鉄錆微粒子等の被捕捉物を捕捉することとなる。   The 1st filter part 2 comprised as mentioned above will catch to-be-captured objects, such as iron rust microparticles | fine-particles mixed in the water with the following mechanisms.

図4は、等電位点を説明する概念図である。
例えば、水中に混入した微粒子が曲線101aに示すような見かけの表面電位(以下、単に表面電位、電位と称する場合もある)を有する場合、当該微粒子の等電位点とは、表面電位が0Vとなる水素イオン指数(pH)のことである(図4の点101b参照)。そして、図4に示すように、pHが等電位点より小さい場合、水中に混入した微粒子の表面電位はプラスであり、pHが等電位点より大きい場合、表面電位はマイナスである。
なお、図中では、微粒子の等電位点をpH6〜pH8の間に示したが、この値は等電位点を説明するために例示したものであって、あくまでも一例である。第1フィルタ部2で捕捉できる被捕捉物(鉄錆微粒子等)の等電位点がpH6〜pH8に限定されたものであることを示すものではない。
FIG. 4 is a conceptual diagram illustrating equipotential points.
For example, in the case where fine particles mixed in water have an apparent surface potential as indicated by a curve 101a (hereinafter, sometimes simply referred to as surface potential or potential), the equipotential point of the fine particles is a surface potential of 0V. The hydrogen ion exponent (pH) (see point 101b in FIG. 4). As shown in FIG. 4, when the pH is smaller than the equipotential point, the surface potential of the fine particles mixed in water is positive, and when the pH is larger than the equipotential point, the surface potential is negative.
In the figure, the equipotential point of the fine particles is shown between pH 6 and pH 8, but this value is illustrated for explaining the equipotential point and is merely an example. It does not indicate that the equipotential point of an object to be captured (such as iron rust fine particles) that can be captured by the first filter unit 2 is limited to pH 6 to pH 8.

本実施の形態1では、水回路4を流れる水(つまり第1フィルタ部2を流れる水)の水素イオン指数を、中性のpH6〜pH8と想定している。このため、上記の等電位点がpH6よりも小さい材料201(図4の点102b参照)の見かけの表面電位はマイナスであり(図4の曲線102a参照)、等電位点がpH8よりも大きい材料202(図4の点103b参照)の表面電位はプラスである(図4の曲線103a参照)。水回路4を流れる水に鉄錆微粒子が混入した場合、この微粒子表面はプラスかマイナスのいずれかの電位を有する。このため、鉄錆微粒子は、等電位点がpH6よりも小さい材料201又は等電位点がpH8よりも大きい材料202との間に電気的な引力が働いて捕捉されることになる。   In the first embodiment, the hydrogen ion exponent of water flowing through the water circuit 4 (that is, water flowing through the first filter unit 2) is assumed to be neutral pH 6 to pH 8. For this reason, the apparent surface potential of the material 201 (see the point 102b in FIG. 4) whose equipotential point is smaller than pH 6 is negative (see the curve 102a in FIG. 4), and the material whose isopotential point is larger than pH 8. The surface potential at 202 (see point 103b in FIG. 4) is positive (see curve 103a in FIG. 4). When iron rust fine particles are mixed in the water flowing through the water circuit 4, the surface of the fine particles has a positive or negative potential. For this reason, the iron rust fine particles are trapped by an electric attractive force between the material 201 having an equipotential point smaller than pH 6 or the material 202 having an equipotential point larger than pH 8.

鉄錆微粒子は、水回路4を構成する配管や継手部材等の腐食生成物であり、発生状況によって酸化状態、結晶構造及び界面構造等が異なっている。したがって、鉄錆微粒子の発生環境によって、pH6〜pH8の範囲では表面電位がプラスのものも、マイナスのものも発生する可能性がある。しかしながら、本実施の形態1のように、等電位点がpH6よりも小さい材料201及び等電位点がpH8よりも大きい材料202で捕捉材2bを構成することにより、どちらの電位を有する鉄錆微粒子でも捕捉することが可能である。   The iron rust fine particles are corrosion products such as pipes and joint members constituting the water circuit 4, and the oxidation state, the crystal structure, the interface structure, and the like differ depending on the state of occurrence. Therefore, depending on the generation environment of the iron rust fine particles, there is a possibility that both positive and negative surface potentials may be generated in the range of pH 6 to pH 8. However, as in the first embodiment, the capture material 2b is composed of the material 201 having an equipotential point smaller than pH 6 and the material 202 having an equipotential point larger than pH 8, so that the iron rust fine particles having either potential can be obtained. But it can be captured.

なお、第1フィルタ部2で捕捉できる被捕捉物は鉄錆微粒子に限定されるものではない。表面電位を有する微粒子であれば、例えば、金属酸化物/水酸化物、難溶性イオン結晶、表面乖離基のある物質、界面活性剤イオン、及び多価イオン等も、第1フィルタ部2で捕捉可能である。また、捕捉材2bの材料は、上記に示した材料に限定されるものではなく、等電位点の値が上記に従うものであれば、同様に使用することができる。   The captured object that can be captured by the first filter unit 2 is not limited to the iron rust fine particles. In the case of fine particles having a surface potential, for example, metal oxide / hydroxide, sparingly soluble ionic crystals, substances having surface leaving groups, surfactant ions, and multivalent ions are also captured by the first filter unit 2. Is possible. Further, the material of the capturing material 2b is not limited to the above-described materials, and any material can be used as long as the value of the equipotential point conforms to the above.

第2フィルタ部3は、第1フィルタ部2が寿命に達したときに流れてくる鉄錆等微粒子等の被捕捉物を捕捉するものである。この第2フィルタ部3は、例えば、第1フィルタ部2と同様の構成となっている。ここで、上述のように、第1フィルタ部2は、被捕捉物の捕捉に伴って増加する圧力損失の増大量を抑制した構成となっている。このため、第1フィルタ部2が寿命に達しても、第1フィルタ部2での圧力損失の増大(圧力変動)が小さく、第1フィルタ部2が寿命に達したことを検出できないことが懸念される。このため、第2フィルタ部3は、被捕捉物の捕捉に伴って増加する圧力損失の増大量、換言すると、被捕捉物が貯留されていった際の圧力変動が第1フィルタ部2よりも大きくなるように構成されている。つまり、(第1フィルタ部2が被捕捉物の捕捉に伴って増加する圧力損失の増大量)<<(第2フィルタ部3が被捕捉物の捕捉に伴って増加する圧力損失の増大量)となっている。第2フィルタ部3のこの圧力損失の増大量は、捕捉材の充填層高さ、空搭速度、空隙率、捕捉材の代表径等に依存して変わるため、これらの値を適宜設定することにより調整することができる。このような構成にすることで、第1フィルタ部2及び第2フィルタ部3の圧力損失の合計を容易に設定することができ、第1フィルタ部2の寿命を容易に検出することができる。   The second filter unit 3 captures an object to be captured such as fine particles such as iron rust flowing when the first filter unit 2 reaches the end of its life. The second filter unit 3 has the same configuration as that of the first filter unit 2, for example. Here, as described above, the first filter unit 2 has a configuration in which the amount of increase in pressure loss that increases as the captured object is captured is suppressed. For this reason, even if the first filter unit 2 reaches the end of its life, the increase in pressure loss (pressure fluctuation) in the first filter unit 2 is small, and it may not be possible to detect that the first filter unit 2 has reached the end of its life. Is done. For this reason, the second filter unit 3 has an increased amount of pressure loss that increases as the captured object is captured. In other words, the pressure fluctuation when the captured object is stored is greater than that of the first filter unit 2. It is configured to be large. That is, (the increase amount of the pressure loss that the first filter unit 2 increases as the captured object is captured) << (the increase amount of the pressure loss that the second filter unit 3 increases as the captured object is captured) It has become. The amount of increase in the pressure loss of the second filter unit 3 varies depending on the height of the trapped material packed bed, the flying speed, the porosity, the representative diameter of the trapping material, and so on, so that these values should be set as appropriate. Can be adjusted. With this configuration, the total pressure loss of the first filter unit 2 and the second filter unit 3 can be easily set, and the life of the first filter unit 2 can be easily detected.

また、被捕捉物が貯留される前の状態における第1フィルタ部2、第2フィルタ部3及び圧力損失部6の圧力損失をα、γ及びβとし、寿命に達した状態における第1フィルタ部2及び第2フィルタ部3の圧力損失をα’及びγ’とした場合、第2フィルタ部3は、(α+γ)<β<(α’+γ’)になるよう構成されている。βと(α’+γ’)の差は、(α+γ)とβの差に比べるとはるかに小さいことから、差異の大小を考慮すると、上記の式は、(α+γ)<<β<(α’+γ’)としてもよい。ここで、後述のように、本実施の形態1に係る水熱交換器用フィルタ装置40は、第1フィルタ部2及び第2フィルタ部3の被捕捉物の捕捉に伴って第1フィルタ部2及び第2フィルタ部3の圧力損失が圧力損失部6の圧力損失よりも大きくなると、水熱交換器1の水流路1aに流入する水の主流路が第1フィルタ部2及び第2フィルタ部3を通る流路からバイパス配管7に切り換わり、第1フィルタ部2の寿命を検出する構成となっている。つまり、本実施の形態1に係る水熱交換器用フィルタ装置40は、最大で{β−(α+γ)}となる圧力変動のなかで鉄錆微粒子等の被捕捉物を捕捉する構成となっている。このため、本実施の形態1では、最大で{β−(α+γ)}となる圧力変動によって、水熱交換器1の水流路1aを流れる水の流量が設定値以下に低下して、空気調和機30の構成機器(圧縮機21、水回路のポンプ42等)を停止する制御が行われないよう、{β−(α+γ)}の値を設定している。数値例としては、例えば{β−(α+γ)}を100kPa以下としている。なお、{β−(α+γ)}は、第1フィルタ部2の寿命を検知できる値であれば、小さいほど空気調和機30を安定して運転させることができるので、好ましい。このため、第1フィルタ部2の寿命を検知できる値であれば、{β−(α+γ)}を例えば80kPa以下としてもよいし、{β−(α+γ)}を例えば50kPa以下にできればさらに好ましい。   Further, the first filter part 2 in the state where the life is reached, with the pressure loss of the first filter part 2, the second filter part 3 and the pressure loss part 6 in the state before the captured object is stored as α, γ and β. When the pressure loss of the second and second filter units 3 is α ′ and γ ′, the second filter unit 3 is configured to satisfy (α + γ) <β <(α ′ + γ ′). Since the difference between β and (α ′ + γ ′) is much smaller than the difference between (α + γ) and β, the above equation can be expressed as (α + γ) << β <(α ′ + Γ ′). Here, as described later, the water heat exchanger filter device 40 according to the first embodiment includes the first filter unit 2 and the first filter unit 2 and the second filter unit 3 as they are captured. When the pressure loss of the second filter unit 3 becomes larger than the pressure loss of the pressure loss unit 6, the main flow path of water flowing into the water flow path 1 a of the water heat exchanger 1 causes the first filter section 2 and the second filter section 3 to move. The flow path is switched to the bypass pipe 7 to detect the life of the first filter unit 2. That is, the water heat exchanger filter device 40 according to the first embodiment is configured to capture an object to be captured such as iron rust fine particles in a pressure fluctuation of {β− (α + γ)} at the maximum. . For this reason, in this Embodiment 1, the flow rate of the water which flows through the water flow path 1a of the water heat exchanger 1 falls below a set value by the pressure fluctuation which becomes {β- (α + γ)} at the maximum, and the air conditioning The value of {β− (α + γ)} is set so that control for stopping the components (compressor 21, water circuit pump 42, etc.) of the machine 30 is not performed. As a numerical example, for example, {β− (α + γ)} is set to 100 kPa or less. Note that {β− (α + γ)} is preferably a value that can detect the life of the first filter unit 2, since the air conditioner 30 can be stably operated as the value decreases. For this reason, if it is a value which can detect the lifetime of the 1st filter part 2, {β- (α + γ)} may be set to, for example, 80 kPa or less, and it is further preferable that {β- (α + γ)} can be set to, for example, 50 kPa or less.

なお、本実施の形態1では、第2フィルタ部3を第1フィルタ部2と同様の構成としたが、上記の圧力損失の関係を満たすものであれば、第2フィルタ部3の構成は特に限定されるものではない。例えば、セラミックフィルタ、中空糸フィルタ、高分子フィルタ等を第2フィルタ部3として用いてもよい。   In the first embodiment, the second filter unit 3 has the same configuration as that of the first filter unit 2. However, the configuration of the second filter unit 3 is not particularly limited as long as the above pressure loss relationship is satisfied. It is not limited. For example, a ceramic filter, a hollow fiber filter, a polymer filter, or the like may be used as the second filter unit 3.

また、本実施の形態1では、図2に示すように第1フィルタ部2の容器2aと第2フィルタ部3の容器とが一体に形成されているが、これらを一体に形成する必要は特にない。第1フィルタ部2と第2フィルタ部3とを離して設置しても、つまり、第1フィルタ部2と第2フィルタ部3とを配管で接続しても、同様の機能を発揮することができる。   In the first embodiment, as shown in FIG. 2, the container 2a of the first filter unit 2 and the container of the second filter unit 3 are integrally formed, but it is particularly necessary to form these integrally. Absent. Even if the first filter unit 2 and the second filter unit 3 are installed apart from each other, that is, even if the first filter unit 2 and the second filter unit 3 are connected by piping, the same function can be exhibited. it can.

切換スイッチ5は、第1フィルタ部2の上流側の圧力が所定圧力値以上となった状態ではバイパス配管7内の流路を開き、第1フィルタ部2の上流側の圧力が所定圧力値よりも小さい状態ではバイパス配管7内の流路を閉じるものである。本実施の形態1では、切換スイッチ5として、圧力増加によって弁が開閉する機能をもつ逆止弁を用いている。また、本実施の形態1では、切換スイッチ5が開閉動作する所定圧力を、(第1フィルタ部2及び第2フィルタ部3の圧力損失がα+γとなった状態における第1フィルタ部2の上流側の圧力値)<所定圧力値<(第1フィルタ部2及び第2フィルタ部3の圧力損失がα’+γ’となった状態における第1フィルタ部2の上流側の圧力値)としている。つまり、切換スイッチ5は、α+γ<βとなっており、水熱交換器1の水流路1aに流入する水の主流路が第1フィルタ部2及び第2フィルタ部3を通る状態のときには、バイパス配管7内の流路を閉じる構成となっている。そして、切換スイッチ5は、α’+γ’>βとなり、水熱交換器1の水流路1aに流入する水の主流路がバイパス配管7となる状態になると、バイパス配管7内の流路を開く構成となっている。   The changeover switch 5 opens the flow path in the bypass pipe 7 in a state where the pressure on the upstream side of the first filter unit 2 is equal to or higher than a predetermined pressure value, and the pressure on the upstream side of the first filter unit 2 is higher than the predetermined pressure value. In the small state, the flow path in the bypass pipe 7 is closed. In the first embodiment, a check valve having a function of opening and closing the valve with an increase in pressure is used as the changeover switch 5. In the first embodiment, the predetermined pressure at which the changeover switch 5 opens and closes is set to the upstream side of the first filter unit 2 in a state where the pressure loss of the first filter unit 2 and the second filter unit 3 is α + γ. Pressure value) <predetermined pressure value <(pressure value on the upstream side of the first filter unit 2 when the pressure loss of the first filter unit 2 and the second filter unit 3 is α ′ + γ ′). That is, the changeover switch 5 is α + γ <β, and when the main flow path of the water flowing into the water flow path 1a of the water heat exchanger 1 passes through the first filter part 2 and the second filter part 3, it is bypassed. The flow path in the pipe 7 is closed. When the changeover switch 5 becomes α ′ + γ ′> β and the main flow path of the water flowing into the water flow path 1a of the water heat exchanger 1 becomes the bypass pipe 7, the flow path in the bypass pipe 7 is opened. It has a configuration.

なお、本実施の形態1では、切換スイッチ5として逆止弁を用いているが、切換スイッチ5は逆止弁に限定されるものではない。第1フィルタ部2の上流側の圧力が所定圧力値以上となった状態ではバイパス配管7内の流路を開き、第1フィルタ部2の上流側の圧力が所定圧力値よりも小さい状態ではバイパス配管7内の流路を閉じるものであれば、切換スイッチ5として種々のものを使用することができる。例えば、バイパス配管7に設置された電磁弁と、水熱交換器1と第2フィルタ部3との間の往き配管4aに設置された流量計又は圧力計とで、切換スイッチ5を構成してもよい。流量計又は圧力計が検知する流量変化又は圧力変化に基づいて電磁弁を開閉することにより、逆止弁と同様の機能を果たすことができる。   In the first embodiment, a check valve is used as the changeover switch 5, but the changeover switch 5 is not limited to the check valve. When the pressure on the upstream side of the first filter unit 2 is equal to or higher than the predetermined pressure value, the flow path in the bypass pipe 7 is opened, and when the pressure on the upstream side of the first filter unit 2 is smaller than the predetermined pressure value, the bypass is bypassed. As long as the flow path in the pipe 7 is closed, various switches can be used as the changeover switch 5. For example, the change-over switch 5 is configured by a solenoid valve installed in the bypass pipe 7 and a flow meter or pressure gauge installed in the forward pipe 4 a between the water heat exchanger 1 and the second filter unit 3. Also good. A function similar to a check valve can be achieved by opening and closing the electromagnetic valve based on a flow rate change or pressure change detected by the flow meter or pressure gauge.

交換時期判別センサ8(本発明の報知部に相当)は、バイパス配管7に流れる水の流量が所定流量よりも大きくなったときに、第1フィルタ部2及び第2フィルタ部3の交換を促す報知を行うものである。本実施の形態1に係る交換時期判別センサ8は、切換スイッチ5と信号線9を介して電気的に接続されており、切換スイッチ5が開くと応答して、第1フィルタ部2及び第2フィルタ部3の交換を促す報知を行う構成となっている。つまり、切換スイッチ5が設けられた本実施の形態1では、バイパス配管7に流れる流量が0m/Lよりも大きくなったときに、第1フィルタ部2及び第2フィルタ部3の交換を促す報知を行うものである。 The replacement time determination sensor 8 (corresponding to the notification unit of the present invention) prompts replacement of the first filter unit 2 and the second filter unit 3 when the flow rate of water flowing through the bypass pipe 7 becomes larger than a predetermined flow rate. Information is provided. The replacement time determination sensor 8 according to the first embodiment is electrically connected to the changeover switch 5 via the signal line 9 and responds when the changeover switch 5 is opened in response to the first filter unit 2 and the second filter 2. The notification is made to prompt the replacement of the filter unit 3. In other words, in the first embodiment in which the changeover switch 5 is provided, the first filter unit 2 and the second filter unit 3 are urged to be replaced when the flow rate flowing through the bypass pipe 7 is greater than 0 m 3 / L. Information is provided.

なお、交換時期判別センサ8が第1フィルタ部2及び第2フィルタ部3の交換を促す報知は、特に限定されるものではない。第1フィルタ部2及び第2フィルタ部3が交換時期であることを表示によって報知してもよいし、警告音によって報知してもよい。
また、本実施の形態1では、第1フィルタ部2及び第2フィルタ部3の交換方法について特に言及していないが、例えば次のように開閉バルブを設けることにより、空気調和機30を停止させることなく、第1フィルタ部2及び第2フィルタ部3を交換することができる。詳しくは、バイパス配管7と往き配管4aとの上流側接続位置よりも下流側で、第1フィルタ部2の上流側となる往き配管4aに、開閉バルブを設けるとよい。また、バイパス配管7と往き配管4aとの下流側接続位置よりも上流側で、第2フィルタ部3の下流側となる往き配管4aにも、開閉バルブを設けるとよい。そして、これら開閉バルブを閉じて、第1フィルタ部2及び第2フィルタ部3に水が流れないようにすることで、空気調和機30を停止させることなく、第1フィルタ部2及び第2フィルタ部3を交換することができる。
The notification that the replacement timing determination sensor 8 prompts the replacement of the first filter unit 2 and the second filter unit 3 is not particularly limited. It may be notified by a display that the first filter unit 2 and the second filter unit 3 are in the replacement period, or may be notified by a warning sound.
In the first embodiment, the replacement method of the first filter unit 2 and the second filter unit 3 is not particularly mentioned. For example, the air conditioner 30 is stopped by providing an open / close valve as follows. The first filter unit 2 and the second filter unit 3 can be exchanged without any change. Specifically, an open / close valve may be provided in the forward piping 4a which is downstream of the upstream connection position between the bypass piping 7 and the forward piping 4a and upstream of the first filter unit 2. In addition, an open / close valve may be provided in the forward pipe 4a that is upstream of the downstream connection position between the bypass pipe 7 and the forward pipe 4a and that is downstream of the second filter portion 3. Then, by closing these open / close valves so that water does not flow to the first filter unit 2 and the second filter unit 3, the first filter unit 2 and the second filter can be stopped without stopping the air conditioner 30. Part 3 can be exchanged.

また、交換時期判別センサ8は、上記の構成に限定されるものではない。切換スイッチ5の開動作に連動して第1フィルタ部2及び第2フィルタ部3の交換時期を報知できるものであれば、任意の構成のものを交換時期判別センサ8として用いることができる。   Further, the replacement time determination sensor 8 is not limited to the above configuration. Any configuration that can notify the replacement timing of the first filter portion 2 and the second filter portion 3 in conjunction with the opening operation of the changeover switch 5 can be used as the replacement timing determination sensor 8.

圧力損失部6は、任意の充填材及び流路形状によって、圧力損失βの値が(α+γ)<β<(α’+γ’)になるよう構成されている。つまり、鉄錆微粒子等の被捕捉物が第1フィルタ部2によって捕捉されており、第1フィルタ部2及び第2フィルタ部3の圧力損失が圧力損失βよりも小さい状態では、水回路4内の水は抵抗の少ない第1フィルタ部2及び第2フィルタ部3を主流路として流れる構成となっている。一方、第1フィルタ部2が例えば寿命に達して、鉄錆微粒子等の被捕捉物が第2フィルタ部3に捕捉されるようになり、第1フィルタ部2及び第2フィルタ部3の圧力損失が圧力損失βよりも大きくなると、水回路4内の水は抵抗の少ないバイパス配管7及び圧力損失部6を主流路として流れる構成となっている。このとき、圧力損失部6を第1フィルタ部2と同じ素材で構成すれば、バイパス配管7に切替わった後も鉄錆微粒子等を捕捉できるので、第1フィルタ部2及び第2フィルタ部3を交換するまでの期間も水熱交換器1を保護する効果を得られる。   The pressure loss portion 6 is configured such that the value of the pressure loss β is (α + γ) <β <(α ′ + γ ′) depending on an arbitrary filler and the shape of the flow path. That is, in the state in which the object to be captured such as iron rust fine particles is captured by the first filter unit 2 and the pressure loss of the first filter unit 2 and the second filter unit 3 is smaller than the pressure loss β, This water is configured to flow using the first filter portion 2 and the second filter portion 3 having a low resistance as the main flow path. On the other hand, the first filter unit 2 reaches the end of its life, for example, and the captured object such as iron rust fine particles is captured by the second filter unit 3, and the pressure loss of the first filter unit 2 and the second filter unit 3. Becomes larger than the pressure loss β, the water in the water circuit 4 flows through the bypass pipe 7 and the pressure loss portion 6 having a low resistance as the main flow path. At this time, if the pressure loss part 6 is made of the same material as that of the first filter part 2, iron rust particles and the like can be captured even after switching to the bypass pipe 7, so the first filter part 2 and the second filter part 3. The effect of protecting the water heat exchanger 1 can also be obtained during the period until the replacement.

続いて、上記のように構成された水熱交換器用フィルタ装置40の動作について説明する。
空気調和機30の運転を開始し、水回路4内に水が流れ始めると、水中に混入した鉄粉微粒子等の被捕捉物も水回路4内を流れ始める。このとき、第1フィルタ部2及び第2フィルタ部3には被捕捉物が貯留されていない状態なので、α+γ<βとなっており、切換スイッチ5はバイパス配管7内の流路を閉じた状態となっている。このため、第1フィルタ部2及び第2フィルタ部3を通った水が、水熱交換器1の水流路1aに流入する。
Then, operation | movement of the filter apparatus 40 for water heat exchangers comprised as mentioned above is demonstrated.
When the operation of the air conditioner 30 is started and water begins to flow in the water circuit 4, captured objects such as iron powder particles mixed in the water also start to flow in the water circuit 4. At this time, since the trapped object is not stored in the first filter unit 2 and the second filter unit 3, α + γ <β is satisfied, and the changeover switch 5 closes the flow path in the bypass pipe 7. It has become. For this reason, the water which passed the 1st filter part 2 and the 2nd filter part 3 flows in into the water flow path 1a of the water heat exchanger 1. FIG.

第1フィルタ部2に流入した水に混入した被捕捉物は、水熱交換器1の水流路1aに流入する前に、第1フィルタ部2で捕捉されていく。そして、第1フィルタ部2で被捕捉物が捕捉されていくにつれて、第1フィルタ部2内に被捕捉物が貯留されていき、第1フィルタ部2の圧力損失が増大していく。その後、第1フィルタ部2が寿命に達してその圧力損失がα’になると、被捕捉物は第1フィルタ部2を通過し、第2フィルタ部3に流入し始める。このとき、本実施の形態1では、被捕捉物の捕捉に伴って増加する第1フィルタ部2の圧力損失の増大量を抑制した構成となっている。このため、水熱交換器1の水流路1aを流れる水の流量が設定値以下に低下して、空気調和機30の構成機器(圧縮機21、水回路のポンプ42等)が停止してしまうことはない。   An object to be captured mixed in water flowing into the first filter unit 2 is captured by the first filter unit 2 before flowing into the water flow path 1a of the water heat exchanger 1. As the captured object is captured by the first filter unit 2, the captured object is stored in the first filter unit 2, and the pressure loss of the first filter unit 2 increases. After that, when the first filter unit 2 reaches the end of its life and its pressure loss becomes α ′, the captured object passes through the first filter unit 2 and starts to flow into the second filter unit 3. At this time, in this Embodiment 1, it has the structure which suppressed the increase amount of the pressure loss of the 1st filter part 2 which increases with the capture | acquisition of a to-be-captured object. For this reason, the flow volume of the water which flows through the water flow path 1a of the water heat exchanger 1 falls below a set value, and the components (compressor 21, water circuit pump 42, etc.) of the air conditioner 30 stop. There is nothing.

第2フィルタ部3で被捕捉物が捕捉され始めると、第2フィルタ部3に被捕捉物が貯留されていき、第1フィルタ部2の圧力損失が増大していく。そして、第1フィルタ部2の上流側の圧力が所定圧力値以上になると、切換スイッチ5はバイパス配管7内の流路を開く。これにより、水回路4内を流れる水は、バイパス配管7にも流入することとなる。このとき、第1フィルタ部2及び第2フィルタ部3の圧力損失よりも、バイパス配管7に設けられた圧力損失部6の圧力損失の方が小さいので、水回路4内の水は主にバイパス配管7及び圧力損失部6を流れることとなる(バイパス配管7が主流路となる)。   When an object to be captured begins to be captured by the second filter unit 3, the object to be captured is stored in the second filter unit 3, and the pressure loss of the first filter unit 2 increases. When the pressure on the upstream side of the first filter unit 2 becomes equal to or higher than a predetermined pressure value, the changeover switch 5 opens the flow path in the bypass pipe 7. Thereby, the water flowing in the water circuit 4 also flows into the bypass pipe 7. At this time, since the pressure loss of the pressure loss part 6 provided in the bypass pipe 7 is smaller than the pressure loss of the first filter part 2 and the second filter part 3, the water in the water circuit 4 is mainly bypassed. It will flow through the piping 7 and the pressure loss part 6 (the bypass piping 7 becomes a main flow path).

一方、切換スイッチ5の上記開動作に連動して、交換時期判別センサ8は、第1フィルタ部2が寿命に達したとして、第1フィルタ部2及び第2フィルタ部3の交換を促す報知を行う。そして、当該報知にしたがって第1フィルタ部2及び第2フィルタ部3が交換されると、第1フィルタ部2及び第2フィルタ部3の圧力損失は小さい状態(これらフィルタ部内に被捕捉物が貯留されていない、初期の状態)となるので、第1フィルタ部2の上流側の圧力が所定圧力値よりも小さくなり、切換スイッチ5はバイパス配管7内の流路を閉じる。これにより、再び、第1フィルタ部2及び第2フィルタ部3を通った水が水熱交換器1の水流路1aに流入する状態となり、水回路4内の被捕捉物は第1フィルタ部2で捕捉され始める。   On the other hand, in conjunction with the opening operation of the changeover switch 5, the replacement timing determination sensor 8 notifies that the first filter unit 2 and the second filter unit 3 are to be replaced, assuming that the first filter unit 2 has reached the end of its life. Do. And if the 1st filter part 2 and the 2nd filter part 3 are replaced | exchanged according to the said alerting | reporting, the pressure loss of the 1st filter part 2 and the 2nd filter part 3 will be in a small state (a thing to be captured is stored in these filter parts). Therefore, the pressure on the upstream side of the first filter portion 2 becomes smaller than a predetermined pressure value, and the changeover switch 5 closes the flow path in the bypass pipe 7. As a result, the water that has passed through the first filter unit 2 and the second filter unit 3 again flows into the water flow path 1a of the water heat exchanger 1, and the object to be captured in the water circuit 4 is in the first filter unit 2. Begin to be captured.

上記の水回路4内の流路変更は、最大で{β−(α+γ)}となる圧力変動のなかで行われることとなる。換言すると、本実施の形態1に係る水熱交換器用フィルタ装置は、最大で{β−(α+γ)}となる圧力変動のなかで鉄錆微粒子等の被捕捉物を捕捉する構成となっている。このとき、本実施の形態1では、上記のように{β−(α+γ)}の値を設定しているので、水熱交換器1の水流路1aを流れる水の流量が設定値以下に低下して、空気調和機30の構成機器(圧縮機21、水回路のポンプ42等)が停止してしまうことはない。   The flow path change in the water circuit 4 is performed in a pressure fluctuation that becomes {β− (α + γ)} at the maximum. In other words, the filter device for a water heat exchanger according to the first embodiment is configured to capture an object to be captured such as iron rust fine particles in a pressure fluctuation that is {β− (α + γ)} at the maximum. . At this time, in Embodiment 1, since the value of {β− (α + γ)} is set as described above, the flow rate of the water flowing through the water flow path 1a of the water heat exchanger 1 is reduced below the set value. Thus, the components of the air conditioner 30 (the compressor 21, the water circuit pump 42, etc.) will not stop.

以上、本実施の形態1のように構成された水熱交換器用フィルタ装置40においては、被捕捉物が貯留されていった際の圧力変動が第1フィルタ部2よりも大きくなるように第2フィルタ部3を構成している。つまり、本実施の形態1に係る水熱交換器用フィルタ装置40は、第1フィルタ部2が寿命となって被捕捉物を捕捉できなくなり、第1フィルタ部2の下流側に設けられた第2フィルタ部3で被捕捉物を捕捉し始めると、第1フィルタ部2及び第2フィルタ部3の圧力変動(圧力損失の増大量)が大きくなる構成となっている。このため、第1フィルタ部2として被捕捉物の捕捉に伴う圧力変動(圧力損失の増大)が小さいフィルタを用いることができる。より詳しくは、第1フィルタ部2として被捕捉物の捕捉に伴う圧力変動(圧力損失の増大)が小さいフィルタを用いても、第2フィルタ部3の圧力変動によって第1フィルタ部の寿命、つまり交換時期を検出することができる。   As described above, in the filter device 40 for a hydrothermal exchanger configured as in the first embodiment, the second pressure variation is greater than that in the first filter unit 2 when the captured object is stored. The filter unit 3 is configured. In other words, in the water heat exchanger filter device 40 according to the first embodiment, the first filter unit 2 has reached the end of its life and cannot capture the captured object, and the second filter unit 40 provided downstream of the first filter unit 2. When the filter unit 3 starts capturing an object to be captured, the pressure fluctuation (increase in pressure loss) of the first filter unit 2 and the second filter unit 3 increases. For this reason, a filter with a small pressure fluctuation (increase in pressure loss) accompanying capture of the captured object can be used as the first filter unit 2. More specifically, even if a filter having a small pressure fluctuation (increase in pressure loss) accompanying the capture of the object to be captured is used as the first filter section 2, the life of the first filter section due to the pressure fluctuation of the second filter section 3, that is, The replacement time can be detected.

このとき、本実施の形態1に係る水熱交換器用フィルタ装置40は、上述のように、第1フィルタ部2、第2フィルタ部3及び圧力損失部6がα+γ<β<α’+γ’の関係となっている。このため、第1フィルタ部2及び第2フィルタ部3の圧力損失が圧力損失部6の圧力損失βよりも大きくなると、水熱交換器1の水流路1aに流入する水の主流路は、第1フィルタ部2及び第2フィルタ部3を通る流路から、圧力損失部6が設けられたバイパス配管7に切り替わる。そして、水熱交換器1の水流路1aに流入する水の主流路がバイパス配管7に切り替わると、交換時期判別センサ8が第1フィルタ部2及び第2フィルタ部3の交換を促す。つまり、本実施の形態1に係る水熱交換器用フィルタ装置40は、圧力変動の限られた小さい条件{最大でもβ−(α+γ)}で、水熱交換器1の水流路1aに流入する水の主流路がバイパス配管に切り替り、第1フィルタ部2が寿命に到達したとして、交換時期判別センサ8が第1フィルタ部2及び第2フィルタ部3の交換を報知することができる。   At this time, in the water heat exchanger filter device 40 according to the first embodiment, as described above, the first filter unit 2, the second filter unit 3, and the pressure loss unit 6 satisfy α + γ <β <α ′ + γ ′. It has become a relationship. For this reason, when the pressure loss of the 1st filter part 2 and the 2nd filter part 3 becomes larger than the pressure loss (beta) of the pressure loss part 6, the main flow path of the water which flows in into the water flow path 1a of the water heat exchanger 1 is the 1st. The flow path passing through the first filter unit 2 and the second filter unit 3 is switched to the bypass pipe 7 provided with the pressure loss unit 6. Then, when the main flow path of water flowing into the water flow path 1 a of the water heat exchanger 1 is switched to the bypass pipe 7, the replacement time determination sensor 8 prompts replacement of the first filter unit 2 and the second filter unit 3. That is, the water heat exchanger filter device 40 according to the first embodiment is configured so that the water flowing into the water flow path 1a of the water heat exchanger 1 under a small condition {β- (α + γ) at most} with limited pressure fluctuation. The main flow channel is switched to the bypass pipe, and the replacement time determination sensor 8 can notify the replacement of the first filter unit 2 and the second filter unit 3 assuming that the first filter unit 2 has reached the end of its life.

したがって、本実施の形態1に係る水熱交換器用フィルタ装置40は、圧力変動を抑制しつつ水熱交換器1の水流路1aに流入する水から鉄錆微粒子等の被捕捉物を捕捉でき、つまり、水熱交換器1の内部を清浄に保つことができ、第1フィルタ部2の交換時期を検出することも容易にできる。   Therefore, the water heat exchanger filter device 40 according to the first embodiment can capture an object to be captured such as iron rust fine particles from the water flowing into the water flow path 1a of the water heat exchanger 1 while suppressing pressure fluctuation, That is, the inside of the water heat exchanger 1 can be kept clean, and the replacement time of the first filter unit 2 can be easily detected.

なお、本実施の形態1では、中性の水(pH6〜pH8)が水回路4を流れるものとして、水熱交換器用フィルタ装置40を説明したが、水熱交換器用フィルタ装置40が中性の水からしか被捕捉物を捕捉できないと限定するものではない。水回路4を流れる水の水素イオン指数がpHA〜pHB(Aは0以上の任意の整数、BはA以上で14以下の任意の整数)の場合、第1フィルタ部2に充填する捕捉材2bとして、等電位点がpHAよりも小さい材料の中から選定された少なくとも1つの材料と、等電位点がpHBよりも大きい材料の中から選定された少なくとも1つの材料とを用いればよい。つまり、薬剤投入等によって、水回路4を流れる水のpHが中性ではなく酸性やアルカリ性であった場合、水回路4を流れる水のpHを考慮して、捕捉材2bの材料を選定すればよい。例えば、水回路4を流れる水のpHがpH8〜pH10の範囲にあれば、等電位点がpH8.0より小さい材料の中から選定された少なくとも1つの材料と、pH10より大きい材料の中から選定された少なくとも1つの材料とを捕捉材2bとすることで、上記と同様の効果を得ることができる。   In the first embodiment, the water heat exchanger filter device 40 has been described on the assumption that neutral water (pH 6 to pH 8) flows through the water circuit 4, but the water heat exchanger filter device 40 is neutral. It is not limited that an object to be captured can be captured only from water. When the hydrogen ion exponent of the water flowing through the water circuit 4 is pHA to pHB (A is an arbitrary integer of 0 or more, and B is an arbitrary integer of A or more and 14 or less), the trapping material 2b filled in the first filter unit 2 As described above, at least one material selected from materials having an equipotential point smaller than pHA and at least one material selected from materials having an equipotential point larger than pHB may be used. That is, when the pH of the water flowing through the water circuit 4 is not neutral but acidic or alkaline due to chemical injection or the like, the material of the trapping material 2b is selected in consideration of the pH of the water flowing through the water circuit 4. Good. For example, if the pH of the water flowing through the water circuit 4 is in the range of pH 8 to pH 10, it is selected from at least one material selected from materials whose equipotential points are lower than pH 8.0 and materials higher than pH 10 By using the captured at least one material as the capturing material 2b, the same effect as described above can be obtained.

また、例えば、捕捉したい被捕捉物の表面電位が明確であって、被捕捉物がプラス又はマイナスの片方の電位をもっている場合、その反対電位を持つ捕捉材2bのみ用いても、上記と同様の効果を得ることができる。   In addition, for example, when the surface potential of an object to be captured is clear and the object to be captured has a positive or negative potential, the same as above even when only the capturing material 2b having the opposite potential is used. An effect can be obtained.

また、本実施の形態1では特に言及しなかったが、第1フィルタ部2の入口側に、異物混入を防止するためのストレーナ(メッシュ状の濾過器)を取付けてもよい。ストレーナを取付けると、鉄錆を含むサイズの大きい異物を取り除くことができるため、第1フィルタ部2の寿命を延命することができる。   Although not particularly mentioned in the first embodiment, a strainer (mesh filter) may be attached to the inlet side of the first filter unit 2 to prevent foreign matter from entering. When the strainer is attached, large foreign matters including iron rust can be removed, so that the life of the first filter portion 2 can be extended.

また、本実施の形態1では、等電位点がpH6よりも小さい材料201と、等電位点がpH8よりも大きい材料202とは、網目状の仕切り203で仕切られて、容器2a内に充填されていた。しかしながら、これに限らず、等電位点がpH6よりも小さい材料201と、等電位点がpH8よりも大きい材料202とを、仕切り203を設けずに容器2a内に充填してもよい。このように第1フィルタ部2を構成しても、等電位点がpH6よりも小さい材料201又は等電位点がpH8よりも大きい材料202で被捕捉物を捕捉することができる。仕切り203を設けることにより、等電位点がpH6よりも小さい材料201と、等電位点がpH8よりも大きい材料202とが互いの電位を打ち消し合うことを防止できるため、すなわち、仕切り203を設けることによってこれらの材料による被捕捉物の捕捉効果をより発揮させることができるため、本実施の形態1では第1フィルタ部2に仕切り203を設けている。   In Embodiment 1, the material 201 having an equipotential point smaller than pH 6 and the material 202 having an equipotential point larger than pH 8 are partitioned by a mesh-like partition 203 and filled in the container 2a. It was. However, the present invention is not limited thereto, and the material 201 having an equipotential point smaller than pH 6 and the material 202 having an equipotential point larger than pH 8 may be filled in the container 2a without providing the partition 203. Even if the first filter unit 2 is configured in this manner, the object to be captured can be captured by the material 201 having an equipotential point smaller than pH 6 or the material 202 having an equipotential point larger than pH 8. By providing the partition 203, it is possible to prevent the material 201 having an equipotential point smaller than pH 6 and the material 202 having an equipotential point larger than pH 8 from canceling each other's potential, that is, providing the partition 203. Therefore, in this Embodiment 1, the partition 203 is provided in the 1st filter part 2, since the capture effect of the to-be-captured object by these materials can be exhibited more.

また、本実施の形態1ではバイパス配管7に切換スイッチ5を設けたが、切換スイッチ5は、本発明を実施するための必須の構成というわけではない。切換スイッチ5を設けなくとも本発明を実施することはできる。この場合、第1フィルタ部2及び第2フィルタ部3の圧力損失がバイパス配管7に設けられた圧力損失部6の圧力損失よりも小さい場合、水熱交換器1の水流路1aに流入する水の大部分は、主流路となる第1フィルタ部2及び第2フィルタ部3を通ることとなる。また、第1フィルタ部2及び第2フィルタ部3の圧力損失がバイパス配管7に設けられた圧力損失部6の圧力損失よりも大きい場合、水熱交換器1の水流路1aに流入する水の大部分は、主流路となるバイパス配管7を通ることとなる。このため、切換スイッチ5を設けなくとも、上記と同様の効果を得ることができる。
なお、このような場合、交換時期判別センサ8に流量計を備えさせるとよい。そして、当該流量計でバイパス配管7に流れる水の流量を測定し、バイパス配管7に流れる水の流量が所定流量よりも大きくなったときに、第1フィルタ部2及び第2フィルタ部3の交換を促す報知を行ってもよい。また、流量計の代わりに圧力計を交換時期判別センサ8に備えさせ、当該圧力計の計測圧力からバイパス配管7に流れる水の流量を測定し、バイパス配管7に流れる水の流量が所定流量よりも大きくなったときに、第1フィルタ部2及び第2フィルタ部3の交換を促す報知を行ってもよい。
ここで、切換スイッチ5を設けていない場合、第1フィルタ部2及び第2フィルタ部3が主流路となっているときでも、若干の水がバイパス配管7の圧力損失部6に流れることとなる。つまり、しかしながら、切換スイッチ5を設けていない場合、第1フィルタ部2及び第2フィルタ部3が主流路となっているときでも、若干の被捕捉物が圧力損失部6に貯留されていくこととなる。しかしながら、切換スイッチ5を設けることにより、第1フィルタ部2及び第2フィルタ部3が主流路となっている条件では、バイパス配管7に設けられた圧力損失部6に被捕捉物が流入することを防止でき、被捕捉物の寿命を延ばすことができるため、本実施の形態では、バイパス配管7に切換スイッチ5を設けている。
Further, although the changeover switch 5 is provided in the bypass pipe 7 in the first embodiment, the changeover switch 5 is not an indispensable configuration for carrying out the present invention. The present invention can be carried out without providing the changeover switch 5. In this case, when the pressure loss of the first filter unit 2 and the second filter unit 3 is smaller than the pressure loss of the pressure loss unit 6 provided in the bypass pipe 7, the water flowing into the water flow path 1 a of the water heat exchanger 1. Most of this will pass the 1st filter part 2 and the 2nd filter part 3 used as a main flow path. Moreover, when the pressure loss of the 1st filter part 2 and the 2nd filter part 3 is larger than the pressure loss of the pressure loss part 6 provided in the bypass piping 7, the water which flows into the water flow path 1a of the water heat exchanger 1 is shown. Most of them pass through the bypass pipe 7 serving as the main flow path. For this reason, even if the changeover switch 5 is not provided, the same effect as described above can be obtained.
In such a case, the replacement timing determination sensor 8 may be provided with a flow meter. Then, the flow rate of the water flowing through the bypass pipe 7 is measured with the flow meter, and when the flow rate of the water flowing through the bypass pipe 7 becomes larger than a predetermined flow rate, the first filter unit 2 and the second filter unit 3 are replaced. You may perform the notification which prompts. Further, a pressure gauge is provided in the replacement timing determination sensor 8 instead of the flow meter, the flow rate of water flowing to the bypass pipe 7 is measured from the measured pressure of the pressure gauge, and the flow rate of water flowing to the bypass pipe 7 is greater than a predetermined flow rate. May be notified when the first filter unit 2 and the second filter unit 3 are exchanged.
Here, when the changeover switch 5 is not provided, even when the first filter portion 2 and the second filter portion 3 are the main flow paths, some water flows into the pressure loss portion 6 of the bypass pipe 7. . That is, however, when the changeover switch 5 is not provided, even when the first filter portion 2 and the second filter portion 3 are the main flow paths, some trapped objects are stored in the pressure loss portion 6. It becomes. However, by providing the change-over switch 5, the trapped material flows into the pressure loss part 6 provided in the bypass pipe 7 under the condition that the first filter part 2 and the second filter part 3 are the main flow paths. In the present embodiment, the changeover switch 5 is provided in the bypass pipe 7 because the life of the captured object can be extended.

また、本実施の形態1では、ビル用及び工場用の空気調和機30に水熱交換器用フィルタ装置40を設ける例について説明したが、水熱交換器用フィルタ装置40は、ビル用及び工場用の空気調和機30のみに利用可能というわけではない。水熱交換器を備えた冷凍サイクル装置であれば、例えば家庭用空気調和機及びヒートポンプ式給湯機等、種々の冷凍サイクル装置に用いることができる。ただし、ビル用及び工場用の空気調和機30は、家庭用空気調和機及びヒートポンプ式給湯機に比べ、水回路4に流れる水の量が大容量となり、第1フィルタ部2での処理量も大きくなる。このため、第1フィルタ部2を小型化できる本実施の形態1に係る水熱交換器用フィルタ装置40は、ビル用及び工場用の空気調和機30に特に有用である。   Moreover, although the example which provides the filter apparatus 40 for water heat exchangers in the air conditioner 30 for buildings and factories was demonstrated in this Embodiment 1, the filter device 40 for water heat exchangers is for buildings and factories. It cannot be used only for the air conditioner 30. If it is a refrigeration cycle apparatus provided with the water heat exchanger, it can be used for various refrigeration cycle apparatuses, such as a domestic air conditioner and a heat pump type hot water heater. However, the air conditioner 30 for buildings and factories has a larger amount of water flowing through the water circuit 4 than the air conditioner for home use and the heat pump type water heater, and the amount of treatment in the first filter unit 2 is also large. growing. For this reason, the filter apparatus 40 for water heat exchangers according to the first embodiment that can reduce the size of the first filter unit 2 is particularly useful for the air conditioner 30 for buildings and factories.

実施の形態2.
実施の形態1で示した水熱交換器用フィルタ装置40に、次のような洗浄回路を設けてもよい。なお、本実施の形態2で特に記述しない構成については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
The following cleaning circuit may be provided in the water heat exchanger filter device 40 shown in the first embodiment. Note that a configuration not particularly described in the second embodiment is the same as that of the first embodiment, and the same function and configuration are described using the same reference numerals.

図5は、本発明の実施の形態2に係る水熱交換器用フィルタ装置を示す構成図である。
本実施の形態2に係る水熱交換器用フィルタ装置40は、実施の形態1で示した水熱交換器用フィルタ装置40に、洗浄回路50と、2つの開閉バルブ13を追加したものである。
FIG. 5 is a configuration diagram showing a filter device for a water heat exchanger according to Embodiment 2 of the present invention.
The water heat exchanger filter device 40 according to the second embodiment is obtained by adding a cleaning circuit 50 and two on-off valves 13 to the water heat exchanger filter device 40 shown in the first embodiment.

洗浄回路50は、洗浄タンク10、循環ポンプ11及び洗浄配管12を備えている。洗浄配管12は、一端が第1フィルタ部2の上流側に接続され、他端が第2フィルタ部3の下流側に接続されたものである。洗浄タンク10は、洗浄配管12に設けられ、該洗浄タンク10に投入された洗浄剤を貯留するものである。循環ポンプ11は、洗浄配管12に設けられ、洗浄タンク10に貯留された洗浄剤を洗浄配管12、第1フィルタ部2及び第2フィルタ部3に循環させるものである。   The cleaning circuit 50 includes a cleaning tank 10, a circulation pump 11, and a cleaning pipe 12. The cleaning pipe 12 has one end connected to the upstream side of the first filter unit 2 and the other end connected to the downstream side of the second filter unit 3. The cleaning tank 10 is provided in the cleaning pipe 12 and stores the cleaning agent put into the cleaning tank 10. The circulation pump 11 is provided in the cleaning pipe 12, and circulates the cleaning agent stored in the cleaning tank 10 through the cleaning pipe 12, the first filter unit 2, and the second filter unit 3.

このような洗浄回路50を水熱交換器用フィルタ装置40に設けることにより、第1フィルタ部2及び第2フィルタ部3に流入した洗浄剤によって、第1フィルタ部2及び第2フィルタ部3に貯留した鉄錆微粒子等の被捕捉物を洗浄除去することができる。このため、第1フィルタ部2及び第2フィルタ部3の寿命を延ばすことができる。なお、除去された被捕捉物は、洗浄剤に溶解する。   By providing such a cleaning circuit 50 in the water heat exchanger filter device 40, the cleaning agent 50 is stored in the first filter unit 2 and the second filter unit 3 by the cleaning agent flowing into the first filter unit 2 and the second filter unit 3. The captured object such as the iron rust fine particles can be washed away. For this reason, the lifetime of the 1st filter part 2 and the 2nd filter part 3 can be extended. The removed object to be captured is dissolved in the cleaning agent.

2つの開閉バルブ13の内の一方は、バイパス配管7と往き配管4aとの上流側接続位置よりも下流側で、第1フィルタ部2の上流側となる往き配管4aに設けられている。また、2つの開閉バルブ13の内の他方は、バイパス配管7と往き配管4aとの下流側接続位置よりも上流側で、第2フィルタ部3の下流側となる往き配管4aに設けられている。   One of the two on-off valves 13 is provided in the forward piping 4a that is downstream of the upstream connection position of the bypass piping 7 and the forward piping 4a and upstream of the first filter portion 2. The other of the two on-off valves 13 is provided on the forward piping 4a which is upstream of the downstream connection position between the bypass piping 7 and the forward piping 4a and downstream of the second filter portion 3. .

これら開閉バルブ13を閉じて、第1フィルタ部2及び第2フィルタ部3に水が流れないようにすることで、空気調和機30を停止させることなく、第1フィルタ部2及び第2フィルタ部3を交換することができる。   By closing these on-off valves 13 and preventing water from flowing into the first filter unit 2 and the second filter unit 3, the first filter unit 2 and the second filter unit can be stopped without stopping the air conditioner 30. 3 can be exchanged.

1 水熱交換器、1a 水流路、1b 冷媒流路、2 第1フィルタ部、2a 容器、2b 捕捉材、3 第2フィルタ部、4 水回路、4a 往き配管、4b 戻り配管、5 切換スイッチ、6 圧力損失部、7 バイパス配管、8 交換時期判別センサ、9 信号線、10 洗浄タンク、11 循環ポンプ、12 洗浄配管、13 開閉バルブ、20 冷媒回路、21 圧縮機、22 空気熱交換器、22a ファン、23 減圧装置、30 空気調和機、40 水熱交換器用フィルタ装置、41 室内機、42 ポンプ、50 洗浄回路、101a 水中に混入した微粒子の表面電位、101b 水中に混入した微粒子の等電位点、102a 等電位点がpH6より小さい材料201の表面電位、102b 等電位点がpH6より小さい材料201の等電位点、103a 等電位点がpH8より大きい材料202の表面電位、103b 等電位点がpH8より大きい材料202の等電位点、201 等電位点がpH6より小さい材料、202 等電位点がpH8より大きい材料、203 仕切り。   DESCRIPTION OF SYMBOLS 1 Water heat exchanger, 1a Water flow path, 1b Refrigerant flow path, 2nd filter part, 2a container, 2b capture material, 3rd filter part, 4 Water circuit, 4a Outward piping, 4b Return piping, 5 Changeover switch, 6 Pressure loss section, 7 Bypass piping, 8 Replacement time determination sensor, 9 Signal line, 10 Washing tank, 11 Circulation pump, 12 Washing piping, 13 Open / close valve, 20 Refrigerant circuit, 21 Compressor, 22 Air heat exchanger, 22a Fan, 23 Pressure reducing device, 30 Air conditioner, 40 Water heat exchanger filter device, 41 Indoor unit, 42 Pump, 50 Cleaning circuit, 101a Surface potential of fine particles mixed in water, 101b Equipotential point of fine particles mixed in water 102a, the surface potential of the material 201 having an equipotential point less than pH 6, and 102b, the equipotential point of the material 201 having an equipotential point less than pH 6. 103a Surface potential of material 202 with an equipotential point greater than pH 8, 103b Isopotential point of material 202 with an equipotential point greater than pH 8, 201 Material with an equipotential point less than pH 6, 202 Material with an equipotential point greater than pH 8, 203 partition.

Claims (12)

冷媒と水とが熱交換する水熱交換器の水流路の入口側に設けられ、水中の被捕捉物を捕捉する第1フィルタ部と、
前記水熱交換器の水流路の入口側であって、前記第1フィルタ部よりも下流側に設けられるものであり、前記第1フィルタ部を通過した被捕捉物を捕捉する第2フィルタ部と、
一端が前記第1フィルタ部の上流側に接続され、他端が前記第2フィルタ部と前記水熱交換器との間に接続されるバイパス配管と、
該バイパス配管に設けられる圧力損失部と、
前記バイパス配管に設けられ、前記バイパス配管に流れる流量が所定流量よりも大きくなったときに、前記第1フィルタ部及び前記第2フィルタ部の交換を促す報知部と、
を備え、
前記第2フィルタ部は、被捕捉物が貯留されていった際の圧力変動が前記第1フィルタ部よりも大きなものであり、
被捕捉物が貯留される前の状態における前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部の圧力損失をα、γ及びβとし、寿命に達した状態における前記第1フィルタ部及び前記第2フィルタ部の圧力損失をα’及びγ’とした場合、
(α+γ)<β<(α’+γ’)となるように、前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部を構成していることを特徴とする水熱交換器用フィルタ装置。
A first filter unit that is provided on the inlet side of the water flow path of the water heat exchanger that exchanges heat between the refrigerant and water;
A second filter part that is provided on the inlet side of the water flow path of the water heat exchanger and downstream of the first filter part, and that captures an object to be captured that has passed through the first filter part; ,
A bypass pipe having one end connected to the upstream side of the first filter part and the other end connected between the second filter part and the water heat exchanger;
A pressure loss portion provided in the bypass pipe;
An informing unit that is provided in the bypass pipe and prompts the replacement of the first filter unit and the second filter unit when a flow rate flowing through the bypass pipe is larger than a predetermined flow rate;
With
The second filter part has a larger pressure fluctuation than the first filter part when a captured object is stored.
The first filter unit, the second filter unit, and the pressure loss unit in a state before the object to be captured is stored as α, γ, and β, and the first filter unit in a state where the life has been reached and When the pressure loss of the second filter part is α ′ and γ ′,
The filter device for a water heat exchanger, wherein the first filter unit, the second filter unit, and the pressure loss unit are configured so that (α + γ) <β <(α ′ + γ ′).
前記第1フィルタ部は、容器内に前記被捕捉物を捕捉する捕捉材を充填したものであり、
該第1フィルタ部に流れる水の水素イオン指数をpHA〜pHBとした場合、
等電位点がpHAよりも小さい材料及びpHBよりも大きい材料の中から選定された少なくとも1つの材料を、前記捕捉材として前記容器に充填していることを特徴とする請求項1に記載の水熱交換器用フィルタ装置。
The first filter part is filled with a capturing material for capturing the captured object in a container,
When the hydrogen ion exponent of the water flowing through the first filter part is pHA to pHB,
The water according to claim 1, wherein at least one material selected from a material having an equipotential point smaller than pHA and a material larger than pHB is filled in the container as the capturing material. Filter device for heat exchanger.
等電位点がpHAよりも小さい材料の中から選定された少なくとも1つの材料と、等電位点がpHBよりも大きい材料の中から選定された少なくとも1つの材料とを、前記捕捉材として前記容器に充填していることを特徴とする請求項2に記載の水熱交換器用フィルタ装置。   At least one material selected from materials having an equipotential point smaller than pHA and at least one material selected from materials having an equipotential point larger than pHB are used as the capture material in the container. The filter device for a water heat exchanger according to claim 2, wherein the filter device is filled. 等電位点がpHAよりも小さい材料の中から選定された少なくとも1つの材料と、等電位点がpHBよりも大きい材料の中から選定された少なくとも1つの材料とは、網目状の仕切りで仕切られて、前記容器内に充填されていることを特徴とする請求項3に記載の水熱交換器用フィルタ装置。   At least one material selected from materials having an equipotential point smaller than pHA and at least one material selected from materials having an equipotential point larger than pHB are separated by a mesh-like partition. The water heat exchanger filter device according to claim 3, wherein the container is filled. 該第1フィルタ部に流れる水の水素イオン指数はpH6〜pH8であり、
等電位点がpH6よりも小さい材料は、前記捕捉材は、α−Al(OH)、Sb、MnO、SiO、SnO(含水)、TiO(メンブレン活性層)、TiO(天然ルチル)、WO、UO−U(天然)、U、V、NaAlSi、亜塩素酸、イライト、カオリナイト、ベントナイト、白雲母、Na−パリゴルスカイト、葉ろう石、絹雲母、GaAl(合成)、Mg(OH)Si10、SiC、β−SiC、TiN、HCaNb10、燐灰石、水酸燐灰石(天然)、フッ素燐灰石、ZrP、輝銅鉱、方鉛鉱、閃亜鉛鉱、灰重石、ガラス、水和セルロース、三酢酸セルロース、ポリアミド、ポリエチレン、ポリメタクリル酸メチル、ポリフッ化エチレン、テフロン(登録商標)、ポリウレタン、カルボキシ化ポリスチレン、及びナイロン12から選定され、
等電位点がpH8よりも大きい材料は、BeO(含水)、Cd(OH)、CdO、Co(OH)、Cu(OH)、CuO、La(含水)、Pb(OH)、MgO、Mg(OH)、Mn(OH)、NiO、Ni(OH)、PtO、PuO、Y(含水)、ZnO、方解石、蛍石、及びメラミンホルムアルデヒドの中から選定されたことを特徴とする請求項2〜請求項4のいずれか一項に記載の水熱交換器用フィルタ装置。
The hydrogen ion exponent of the water flowing through the first filter part is pH 6 to pH 8,
The material whose isopotential point is smaller than pH 6 is that the trapping material is α-Al (OH) 3 , Sb 2 O 5 , MnO 2 , SiO 2 , SnO 2 (hydrous), TiO 2 (membrane active layer), TiO 2 (natural rutile), WO 3, UO 2 -U 3 O 3 ( natural), U 3 O 3, V 3 O 8, NaAlSi 3 O 8, chlorite, illite, kaolinite, bentonite, muscovite, Na -Palygorskite, granite, sericite, GaAl 3 O 4 (synthesis), Mg 3 (OH) 2 Si 4 O 10 , SiC, β-SiC, TiN, HCa 2 Nb 3 O 10 , apatite, hydroxyapatite hydroxide ( natural), fluorapatite, ZrP 2 O 7, chalcocite, galena, sphalerite, scheelite, glass, cellulose hydrate, cellulose triacetate, polyamide, polyethylene, polymethacrylic acid methylate , Polyfluoroethylene, Teflon (registered trademark), is selected polyurethane, carboxylated polystyrene, and nylon 12,
Materials having an equipotential point greater than pH 8 are BeO (hydrous), Cd (OH) 2 , CdO, Co (OH) 2 , Cu (OH) 2 , CuO, La 2 O 3 (hydrous), Pb (OH) 2 , MgO, Mg (OH) 2 , Mn (OH) 2 , NiO, Ni (OH) 2 , PtO 2 , PuO 2 , Y 2 O 3 (hydrous), ZnO, calcite, fluorite, and melamine formaldehyde The filter device for a water heat exchanger according to any one of claims 2 to 4, wherein the filter device is selected from the following.
前記バイパス配管に、前記第1フィルタ部の上流側の圧力が所定圧力値以上になった状態では前記バイパス配管内の流路を開き、前記第1フィルタ部の上流側の圧力が所定圧力値よりも小さい状態では前記バイパス配管内の流路を閉じる切換スイッチを備えたことを特徴とする請求項1〜請求項5のいずれか一項に記載の水熱交換器用フィルタ装置。   In the state where the pressure on the upstream side of the first filter unit is equal to or higher than a predetermined pressure value in the bypass pipe, the flow path in the bypass pipe is opened, and the pressure on the upstream side of the first filter unit is higher than the predetermined pressure value. 6. The water heat exchanger filter device according to claim 1, further comprising a changeover switch that closes a flow path in the bypass pipe in a small state. 前記報知部は、
前記切換スイッチと電気的に接続されており、
前記切換スイッチが前記バイパス配管内の流路を開いた状態になった際、前記第1フィルタ部が寿命に達したことを報知することを特徴とする請求項6に記載の水熱交換器用フィルタ装置。
The notification unit
Electrically connected to the changeover switch,
The water heat exchanger filter according to claim 6, wherein when the changeover switch is in a state in which a flow path in the bypass pipe is opened, it is notified that the first filter unit has reached the end of its life. apparatus.
前記所定圧力値は、
前記第1フィルタ部及び前記第2フィルタ部の圧力損失がα+γとなった状態における前記第1フィルタ部の上流側の圧力値<前記所定圧力値<前記第1フィルタ部及び前記第2フィルタ部の圧力損失がα’+γ’となった状態における前記第1フィルタ部の上流側の圧力値
であることを特徴とする請求項6又は請求項7に記載の水熱交換器用フィルタ装置。
The predetermined pressure value is
Pressure value on the upstream side of the first filter unit in a state where the pressure loss of the first filter unit and the second filter unit is α + γ <the predetermined pressure value <the first filter unit and the second filter unit 8. The filter device for a water heat exchanger according to claim 6, wherein the pressure value is an upstream pressure value of the first filter portion in a state where the pressure loss is α ′ + γ ′.
一端が前記第1フィルタ部の上流側に接続され、他端が前記第2フィルタ部の下流側に接続された洗浄配管と、
前記洗浄配管に設けられ、洗浄剤を貯留する洗浄タンクと、
前記洗浄配管に設けられ、前記洗浄タンクに貯留された洗浄剤を前記洗浄配管、前記第1フィルタ部及び前記第2フィルタ部に循環させる循環ポンプと、
を備えたことを特徴とする請求項1〜請求項8のいずれか一項に記載の水熱交換器用フィルタ装置。
A cleaning pipe having one end connected to the upstream side of the first filter part and the other end connected to the downstream side of the second filter part;
A cleaning tank provided in the cleaning pipe and storing a cleaning agent;
A circulation pump that is provided in the cleaning pipe and circulates the cleaning agent stored in the cleaning tank to the cleaning pipe, the first filter unit, and the second filter unit;
The filter device for a water heat exchanger according to any one of claims 1 to 8, wherein the filter device is provided.
圧縮機、空気熱交換器、減圧装置、及び前記水熱交換器の冷媒流路が接続され、冷媒が循環する冷媒回路と、
前記水熱交換器の水流路に水を流す水回路と、
を備え、
前記水熱交換器の水流路の入口側に請求項1〜請求項9のいずれか一項に記載の水熱交換器用フィルタ装置を備えたことを特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, an air heat exchanger, a decompression device, and a refrigerant flow path of the water heat exchanger are connected, and the refrigerant circulates;
A water circuit for flowing water through the water flow path of the water heat exchanger;
With
A refrigeration cycle apparatus comprising the water heat exchanger filter device according to any one of claims 1 to 9 on an inlet side of a water flow path of the water heat exchanger.
前記水回路が複数の室内機に接続され、
前記水熱交換器において冷媒と熱交換した水を前記室内機に供給し、該室内機が設置された空調空間を空気調和するビル用又は工場用の空気調和機であることを特徴とする請求項10に記載の冷凍サイクル装置。
The water circuit is connected to a plurality of indoor units;
The water heat exchanger is a building or factory air conditioner that supplies water that has been heat exchanged with a refrigerant to the indoor unit, and that air-conditions the air-conditioned space in which the indoor unit is installed. Item 11. The refrigeration cycle apparatus according to Item 10.
冷媒と水とが熱交換する水熱交換器の水流路の入口側に設けられ、水中の被捕捉物を捕捉する第1フィルタ部と、
前記水熱交換器の水流路の入口側であって、前記第1フィルタ部よりも下流側に設けられるものであり、前記第1フィルタ部を通過した被捕捉物を捕捉する第2フィルタ部と、
一端が前記第1フィルタ部の上流側に接続され、他端が前記第2フィルタ部と前記水熱交換器との間に接続されるバイパス配管と、
該バイパス配管に設けられる圧力損失部と、
前記バイパス配管に設けられ、前記バイパス配管に流れる流量が所定流量よりも大きくなったときに、前記第1フィルタ部及び前記第2フィルタ部の交換を促す報知部と、
を備え、
前記第2フィルタ部は、被捕捉物が貯留されていった際の圧力変動が前記第1フィルタ部よりも大きなものであり、
被捕捉物が貯留される前の状態における前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部の圧力損失をα、γ及びβとし、寿命に達した状態における前記第1フィルタ部及び前記第2フィルタ部の圧力損失をα’及びγ’とした場合、
(α+γ)<β<(α’+γ’)となるように、前記第1フィルタ部、前記第2フィルタ部及び前記圧力損失部を構成し、
所定量の被捕捉物が前記第1フィルタ部に貯留されるまでは、前記第1フィルタ部及び前記第2フィルタ部を通った水を前記水熱交換器の水流路に流入させ、
前記第1フィルタ部が寿命となって前記第2フィルタ部が被捕捉物を捕捉し、前記第1フィルタ部及び前記第2フィルタ部の圧力損失が前記圧力損失部の圧力損失よりも大きくなると、前記バイパス配管を通った水を前記水熱交換器の水流路に流入させ、前記第1フィルタ部及び前記第2フィルタ部の交換を促す報知を行うことを特徴とする水熱交換器への被捕捉物の付着抑制方法。
A first filter unit that is provided on the inlet side of the water flow path of the water heat exchanger that exchanges heat between the refrigerant and water;
A second filter part that is provided on the inlet side of the water flow path of the water heat exchanger and downstream of the first filter part, and that captures an object to be captured that has passed through the first filter part; ,
A bypass pipe having one end connected to the upstream side of the first filter part and the other end connected between the second filter part and the water heat exchanger;
A pressure loss portion provided in the bypass pipe;
An informing unit that is provided in the bypass pipe and prompts the replacement of the first filter unit and the second filter unit when a flow rate flowing through the bypass pipe is larger than a predetermined flow rate;
With
The second filter part has a larger pressure fluctuation than the first filter part when a captured object is stored.
The first filter unit, the second filter unit, and the pressure loss unit in a state before the object to be captured is stored as α, γ, and β, and the first filter unit in a state where the life has been reached and When the pressure loss of the second filter part is α ′ and γ ′,
The first filter unit, the second filter unit, and the pressure loss unit are configured so that (α + γ) <β <(α ′ + γ ′).
Until a predetermined amount of an object to be captured is stored in the first filter part, water that has passed through the first filter part and the second filter part is allowed to flow into the water flow path of the water heat exchanger,
When the first filter part becomes a lifetime and the second filter part captures an object to be captured, and the pressure loss of the first filter part and the second filter part is larger than the pressure loss of the pressure loss part, Water passed through the bypass pipe is caused to flow into the water flow path of the water heat exchanger, and notification is made to prompt replacement of the first filter part and the second filter part. A method for suppressing the adhesion of trapped substances.
JP2012245396A 2012-11-07 2012-11-07 Water heat exchanger filter device, refrigeration cycle device provided with this water heat exchanger filter device, and method for suppressing the adherence of captured objects to the water heat exchanger Expired - Fee Related JP5836915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012245396A JP5836915B2 (en) 2012-11-07 2012-11-07 Water heat exchanger filter device, refrigeration cycle device provided with this water heat exchanger filter device, and method for suppressing the adherence of captured objects to the water heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245396A JP5836915B2 (en) 2012-11-07 2012-11-07 Water heat exchanger filter device, refrigeration cycle device provided with this water heat exchanger filter device, and method for suppressing the adherence of captured objects to the water heat exchanger

Publications (2)

Publication Number Publication Date
JP2014094323A true JP2014094323A (en) 2014-05-22
JP5836915B2 JP5836915B2 (en) 2015-12-24

Family

ID=50937899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245396A Expired - Fee Related JP5836915B2 (en) 2012-11-07 2012-11-07 Water heat exchanger filter device, refrigeration cycle device provided with this water heat exchanger filter device, and method for suppressing the adherence of captured objects to the water heat exchanger

Country Status (1)

Country Link
JP (1) JP5836915B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003616A (en) * 2014-06-17 2016-01-12 京三電機株式会社 Fuel filter abnormality detection device
JP2016072296A (en) * 2014-09-26 2016-05-09 株式会社Screenホールディングス Processing liquid supply device and filter deterioration detection method
JP2019160561A (en) * 2018-03-13 2019-09-19 大阪瓦斯株式会社 Fuel cell system
CN113631518A (en) * 2018-12-29 2021-11-09 普里斯蒂南有限责任公司 System for purifying water by recrystallization and heat exchange device for realising same (variants)
DE112018007470B4 (en) 2018-04-13 2023-02-02 Mitsubishi Electric Corporation Water circulating circuit system of air conditioning/refrigerating heaters with particulate trapping unit installed therein
WO2024057849A1 (en) * 2022-09-15 2024-03-21 株式会社村田製作所 Filtration material and method for producing multilayer ceramic capacitor using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370861A (en) * 1989-08-11 1991-03-26 Fukui Katsuo Filter device
JPH04225810A (en) * 1990-04-10 1992-08-14 Rolls Royce Plc Device and method for filtrating fluid
JPH07308661A (en) * 1994-05-18 1995-11-28 Janome Sewing Mach Co Ltd Cleaning filter device for bathtub water
JPH08257564A (en) * 1995-03-22 1996-10-08 Nippondenso Co Ltd Alkaline ionic water maker
JPH11201689A (en) * 1998-01-09 1999-07-30 Showa Kk Corrosion-proofing method for heat exchange medium circulating device
JP2000157437A (en) * 1998-11-25 2000-06-13 Matsushita Electric Works Ltd Purifying device for bath tub water
JP2005283037A (en) * 2004-03-30 2005-10-13 Kimura Kohki Co Ltd Water heat source heat pump type air conditioner
JP2007501118A (en) * 2003-08-01 2007-01-25 ステリス インク Filter assembly for reprocessing equipment
JP2008100191A (en) * 2006-10-20 2008-05-01 Sanyo Electric Co Ltd Scale removal system
US20090194485A1 (en) * 2008-02-06 2009-08-06 Snecma Detecting the clogging of a fluid filter
JP2011200818A (en) * 2010-03-26 2011-10-13 Namura Denki Kogyo Kk Filter for cleaning and cleaning method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370861A (en) * 1989-08-11 1991-03-26 Fukui Katsuo Filter device
JPH04225810A (en) * 1990-04-10 1992-08-14 Rolls Royce Plc Device and method for filtrating fluid
JPH07308661A (en) * 1994-05-18 1995-11-28 Janome Sewing Mach Co Ltd Cleaning filter device for bathtub water
JPH08257564A (en) * 1995-03-22 1996-10-08 Nippondenso Co Ltd Alkaline ionic water maker
JPH11201689A (en) * 1998-01-09 1999-07-30 Showa Kk Corrosion-proofing method for heat exchange medium circulating device
JP2000157437A (en) * 1998-11-25 2000-06-13 Matsushita Electric Works Ltd Purifying device for bath tub water
JP2007501118A (en) * 2003-08-01 2007-01-25 ステリス インク Filter assembly for reprocessing equipment
JP2005283037A (en) * 2004-03-30 2005-10-13 Kimura Kohki Co Ltd Water heat source heat pump type air conditioner
JP2008100191A (en) * 2006-10-20 2008-05-01 Sanyo Electric Co Ltd Scale removal system
US20090194485A1 (en) * 2008-02-06 2009-08-06 Snecma Detecting the clogging of a fluid filter
JP2011200818A (en) * 2010-03-26 2011-10-13 Namura Denki Kogyo Kk Filter for cleaning and cleaning method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003616A (en) * 2014-06-17 2016-01-12 京三電機株式会社 Fuel filter abnormality detection device
CN105275690A (en) * 2014-06-17 2016-01-27 京三电机株式会社 Fuel-filter abnormality detection device
US9926899B2 (en) 2014-06-17 2018-03-27 Kyosan Denki Co., Ltd. Fuel-filter abnormality detection device
JP2016072296A (en) * 2014-09-26 2016-05-09 株式会社Screenホールディングス Processing liquid supply device and filter deterioration detection method
JP2019160561A (en) * 2018-03-13 2019-09-19 大阪瓦斯株式会社 Fuel cell system
JP7033964B2 (en) 2018-03-13 2022-03-11 大阪瓦斯株式会社 Fuel cell system
DE112018007470B4 (en) 2018-04-13 2023-02-02 Mitsubishi Electric Corporation Water circulating circuit system of air conditioning/refrigerating heaters with particulate trapping unit installed therein
CN113631518A (en) * 2018-12-29 2021-11-09 普里斯蒂南有限责任公司 System for purifying water by recrystallization and heat exchange device for realising same (variants)
CN113631518B (en) * 2018-12-29 2023-04-11 普里斯蒂南有限责任公司 Recrystallization water treatment system and heat exchange device for realizing same
WO2024057849A1 (en) * 2022-09-15 2024-03-21 株式会社村田製作所 Filtration material and method for producing multilayer ceramic capacitor using same

Also Published As

Publication number Publication date
JP5836915B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5836915B2 (en) Water heat exchanger filter device, refrigeration cycle device provided with this water heat exchanger filter device, and method for suppressing the adherence of captured objects to the water heat exchanger
US9849415B2 (en) Filter media construction with nanofiber and carbon web
EP4023949B1 (en) Switchable filtration system
RU2390367C2 (en) Filter of turbine air intake
WO2018198397A1 (en) Air conditioner
WO2011027343A1 (en) A water generation unit and system and method of water supply production and management in vehicles
US20180169562A1 (en) Capture and removal of targeted gas
CN102100993A (en) Filter bag and laminated filter media
Bulejko et al. Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: A comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data
JP2005249336A (en) Air-conditioner
JP4335775B2 (en) Strainer dirt clogging detection system
KR102173504B1 (en) Two stage air dryer system
JPH10300286A (en) Sludge capturing device, manufacture thereof and refrigerating air-conditioning apparatus equipped with sludge capturing device
IL266241B1 (en) Bypass for high demand periods for water purification system
US20020121470A1 (en) Composite media for ion processing
US20230079403A1 (en) Aerosol Purifier for HVAC System
JP6280842B2 (en) Oil separator
CN115807981A (en) Aerosol purifier for HVAC systems
CN111426107B (en) Air conditioning unit and impurity removal method thereof
CN104527376A (en) Excavator and air cleaning unit for excavator cab
JP3647636B2 (en) Method for purifying circulating cold / hot water for air conditioning and purification device and purification device used therefor
JP2012184866A (en) Refrigeration cycle device
JP2008256285A (en) Air conditioning device
JP2006207959A (en) Refrigeration air conditioner
CN109631209B (en) Direct refrigerating air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees