JP2014093098A - Manufacturing method of magnetic disk substrate - Google Patents

Manufacturing method of magnetic disk substrate Download PDF

Info

Publication number
JP2014093098A
JP2014093098A JP2012241160A JP2012241160A JP2014093098A JP 2014093098 A JP2014093098 A JP 2014093098A JP 2012241160 A JP2012241160 A JP 2012241160A JP 2012241160 A JP2012241160 A JP 2012241160A JP 2014093098 A JP2014093098 A JP 2014093098A
Authority
JP
Japan
Prior art keywords
substrate
polishing
holding material
polished
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012241160A
Other languages
Japanese (ja)
Other versions
JP6061621B2 (en
Inventor
Tetsushi Yamaguchi
哲史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012241160A priority Critical patent/JP6061621B2/en
Publication of JP2014093098A publication Critical patent/JP2014093098A/en
Application granted granted Critical
Publication of JP6061621B2 publication Critical patent/JP6061621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a magnetic disk substrate capable of decreasing scratches and projection defects after polishing process.SOLUTION: The manufacturing method of a magnetic disk substrate includes a step of polishing a polishing object substrate 3. The polishing process uses a holding member 1, for the polishing object substrate, which contains resin. The polishing object substrate holding member satisfies one of conditions (1) and (2) shown below. The condition (1) is that contents of Al, Mg, and Ti metal ions in the holding member 1 are respectively 10 ppm or less. The condition (2) is that a residual amount of ashing process of the holding member 1 is 0.10 mass% or less.

Description

本発明は、磁気ディスク基板の製造方法及び磁気ディスク基板の研磨方法に関する。   The present invention relates to a method for manufacturing a magnetic disk substrate and a method for polishing a magnetic disk substrate.

近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められており、磁気ヘッドの浮上高さをより低くする技術開発が進められている。高記録密度化のために縮小された単位記録面積から発せられる弱くなった高記録密度磁気信号の検出感度を向上させる必要があるからである。それゆえ、磁気ディスク基板は、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。   In recent years, magnetic disk drives have been reduced in size and increased in capacity, and there has been a demand for higher recording density, and technical development has been advanced to lower the flying height of the magnetic head. This is because it is necessary to improve the detection sensitivity of the weakened high recording density magnetic signal emitted from the unit recording area reduced for increasing the recording density. Therefore, the magnetic disk substrate is improved in smoothness and flatness (reduction of surface roughness, waviness and edge sag) and surface defect reduction (residual grinding) in order to cope with lowering the flying height of the magnetic head and securing the recording area. (Reduction of grains, scratches, protrusions, pits, etc.) is strictly required.

このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、磁気ディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、磁気ディスク基板の研磨、すなわち、磁気ディスク基板用の被研磨基板の研磨は、平面研磨機で行われる。研磨機内の被研磨基板は、被研磨基板保持材で保持される。前記保持材としては、ガラス繊維不織布基材エポキシ樹脂積層板やアラミド繊維基材エポキシ樹脂積層板等が使用されていた。しかし、ガラス繊維不織布強化エポキシ樹脂は、保持材の歯車部が被研磨物の研磨時の負荷により欠けが発生し、ガラス繊維粉による被研磨物表面に傷が発生するという問題があった。そのため、前記保持材としては、アラミド繊維基材エポキシ樹脂積層板が広く使用されている(例えば、特許文献1参照)。アラミド繊維基材エポキシ樹脂積層板には熱硬化性樹脂組成物としてエポキシ樹脂が使用されている(例えば、特許文献2参照)。   In response to such demands, from the viewpoint of achieving both improvement in surface quality and productivity that are smoother and less scratched, a multi-stage polishing method having two or more stages of polishing processes in the method of manufacturing a magnetic disk substrate Is often adopted. In general, polishing of a magnetic disk substrate, that is, polishing of a substrate to be polished for a magnetic disk substrate is performed by a flat polishing machine. The substrate to be polished in the polishing machine is held by the substrate to be polished holding material. As the holding material, a glass fiber nonwoven fabric base epoxy resin laminate, an aramid fiber base epoxy resin laminate, or the like has been used. However, the glass fiber nonwoven fabric reinforced epoxy resin has a problem that the gear portion of the holding material is chipped due to a load during polishing of the object to be polished, and the surface of the object to be polished is damaged by the glass fiber powder. Therefore, an aramid fiber-based epoxy resin laminate is widely used as the holding material (see, for example, Patent Document 1). An epoxy resin is used as the thermosetting resin composition for the aramid fiber-based epoxy resin laminate (see, for example, Patent Document 2).

また、シリコンウエハを研磨する際の被研磨物保持材としてアラミド繊維基材やガラス繊維基材を用いる場合、被研磨物保持材中の金属イオンに起因するイオン性不純物の含有量を300ppm以下とすることで、被研磨物に残存するイオン性不純物の残存量を少なくすることができることが開示されている(特許文献3)。   Further, when an aramid fiber substrate or a glass fiber substrate is used as an object holding material when polishing a silicon wafer, the content of ionic impurities resulting from metal ions in the object holding material is 300 ppm or less. By doing so, it is disclosed that the remaining amount of ionic impurities remaining in the object to be polished can be reduced (Patent Document 3).

一方、半導体ウェハ等の被研磨物を研磨加工する際の保持材の反り量を低減することを目的として、環状オレフィン系重合体樹脂からなる樹脂材を用いて製造した保持材を使用することが提案されている(特許文献4)。   On the other hand, for the purpose of reducing the amount of warping of the holding material when polishing an object to be polished such as a semiconductor wafer, it is possible to use a holding material manufactured using a resin material made of a cyclic olefin polymer resin. It has been proposed (Patent Document 4).

特開2000−167768号公報JP 2000-167768 A 特開2010−174094号公報JP 2010-174094 A 特開2001−9709号公報JP 2001-9709 A 特開2009−274150号公報JP 2009-274150 A

磁気ディスクドライブの大容量化に伴い、基板の表面品質に対する要求特性はさらに厳しくなっており、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面の突起欠陥をよりいっそう低減する必要がある。そこで、本発明は、研磨後の基板表面のスクラッチ及び突起欠陥を低減できる磁気ディスク基板の製造方法を提供する。   As the capacity of magnetic disk drives increases, the required characteristics for the surface quality of the substrate have become more severe. In addition to scratches on the substrate surface after polishing, it is necessary to further reduce protrusion defects on the substrate surface after polishing. is there. Therefore, the present invention provides a method of manufacturing a magnetic disk substrate that can reduce scratches and protrusion defects on the substrate surface after polishing.

本発明は、一態様において、被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、前記研磨が樹脂を含む被研磨基板保持材を用いた研磨であり、前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下である、磁気ディスク基板の製造方法に関する。   In one aspect, the present invention is a method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished, wherein the polishing is polishing using a substrate holding material containing a resin, and Al in the holding material The present invention relates to a method for manufacturing a magnetic disk substrate, wherein the contents of Mg, Mg, and Ti metal ions are each 10 ppm or less in the holding material.

本発明は、一態様において、被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、前記研磨が樹脂を含む被研磨基板保持材を用いた研磨であり、前記保持材の灰化処理後の残渣量が0.10質量%以下である、磁気ディスク基板の製造方法に関する。   In one aspect, the present invention is a method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished, wherein the polishing is polishing using a substrate holding material containing a resin, and the ash of the holding material The present invention relates to a method for manufacturing a magnetic disk substrate, wherein the amount of residue after the crystallization treatment is 0.10% by mass or less.

本発明は、一態様において、被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、前記研磨が樹脂を含む被研磨基板保持材を用いた研磨であり、前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下であり、かつ、前記保持材の灰化処理後の残渣量が0.10質量%以下である、磁気ディスク基板の製造方法に関する。   In one aspect, the present invention is a method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished, wherein the polishing is polishing using a substrate holding material containing a resin, and Al in the holding material A magnetic disk substrate in which the content of Mg, Ti, and Ti metal ions is 10 ppm or less in the holding material, respectively, and the amount of residue after the ashing treatment of the holding material is 0.10 mass% or less It relates to the manufacturing method.

本発明は、一態様において、磁気ディスク基板用の被研磨基板の研磨方法であって、樹脂を含む被研磨基板保持材を用いて研磨機で研磨することを含み、前記被研磨基板保持材が下記(1)及び(2)の少なくとも一方の条件を満たす研磨方法に関する。
(1)前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下。
(2)前記保持材の灰化処理後の残渣量が、0.10質量%以下。
In one aspect, the present invention is a method for polishing a substrate to be polished for a magnetic disk substrate, comprising polishing with a polishing machine using a substrate holding material containing a resin, wherein the substrate holding material to be polished is The present invention relates to a polishing method that satisfies at least one of the following conditions (1) and (2).
(1) The content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively.
(2) The amount of the residue after the ashing treatment of the holding material is 0.10% by mass or less.

本発明にかかる製造方法によれば、研磨後の基板表面のスクラッチ及び突起欠陥を低減できる。その結果、基板品質が向上した磁気ディスク基板、とりわけ、垂直磁気記録方式の磁気ディスク基板を生産性よく製造できるという効果が奏されうる。   According to the manufacturing method of the present invention, scratches and protrusion defects on the substrate surface after polishing can be reduced. As a result, it is possible to produce a magnetic disk substrate with improved substrate quality, particularly a perpendicular magnetic recording type magnetic disk substrate with high productivity.

図1は、比較例として使用したNo.4の被研磨基板保持材で検出された無機粒子(Al/Si/O)のSEM写真の一例である。FIG. 1 is an example of an SEM photograph of inorganic particles (Al / Si / O) detected by a No. 4 polished substrate holding material used as a comparative example. 図2は、比較例として使用したNo.5の被研磨基板保持材で検出された無機粒子(Ti/O)のSEM写真の一例である。FIG. 2 is an example of an SEM photograph of inorganic particles (Ti / O) detected with a No. 5 polished substrate holding material used as a comparative example. 図3は、被研磨基板保持材の一実施形態を示す図である。FIG. 3 is a view showing an embodiment of the substrate holding material to be polished. 図4は、研磨機による研磨を説明する概略図である。FIG. 4 is a schematic diagram for explaining the polishing by the polishing machine.

本発明は、磁気ディスク基板の製造工程における被研磨基板の研磨で一般的に使用されている被研磨基板保持材には無機粒子が含まれており、この無機粒子を低減することにより、前記保持材を用いた研磨後の基板表面のスクラッチ及び突起欠陥を低減することができるという知見に基づく。   In the present invention, the substrate holding material generally used for polishing the substrate to be polished in the manufacturing process of the magnetic disk substrate contains inorganic particles. By reducing the inorganic particles, the holding is performed. This is based on the knowledge that scratches and protrusion defects on the surface of a substrate after polishing using a material can be reduced.

本発明の製造方法によって研磨後の基板表面のスクラッチ及び突起欠陥を低減できる理由の詳細は明らかではないが以下のように推定される。被研磨基板の研磨で被研磨基板保持材として一般的に使用されているアラミド繊維基材エポキシ樹脂積層板には熱硬化性樹脂組成物としてエポキシ樹脂が使用されている。これらエポキシ樹脂には被研磨基板保持材としての強度を上げるためにカオリンクレー、酸化チタン、タルク等の無機充填剤が使用されている(例えば特許文献2を参照)。磁気ディスク基板用の被研磨基板をこれらの被研磨物保持材の貫通孔に嵌め込んで研磨を実施すると、前記被研磨物保持材はその表面および歯車部が少しずつ磨耗する。前記被研磨基板保持材の摩耗により、含有されていた無機充填剤が研磨剤や研磨パッドに混入する。今回、磁気ディスク基板表面の突起欠陥原因の詳細解析により、特定の無機充填剤用いた場合、又は、灰化処理後の残渣として観測される無機充填剤量が一定量以上となった場合に、砥粒或いは磁気ディスク基板の削りかす由来の突起欠陥以外にこれらの無機充填剤が磁気ディスク基板表面に付着し、その結果、スクラッチ及び突起欠陥の原因になっていることが見出された。被研磨基板保持材として使用される無機充填剤の中でも、特にAl、Mg、及びTi金属イオンを含有する無機充填剤が、被研磨基板としてNi−Pメッキされたアルミニウム合金基板やガラス基板等の磁気ディスク基板に吸着、残留しやすい。作用機作の詳細は不明であるが、無機充填剤表面に存在するAl、Mg、及びTi金属イオンが前記被研磨基板表面と特に強い相互作用を持ち、少量であっても、被研磨基板表面への吸着が促進され残留し、突起欠陥の増加につながったり、スクラッチの原因となったりするものと考えられる。また、灰化処理後の残渣として観測される無機充填剤量が一定量を超える場合においても、砥粒に比べて前記被研磨基板表面と相互作用が強く、研磨後の基板表面に残留しやすくなり、突起欠陥やスクラッチの増加の原因となるものと考えられる。したがって、被研磨物保持材中の、Al、Mg、及びTi金属イオンを含有する無機充填剤の添加量をそれぞれ10ppm以下とすること、又は、無機充填剤の含有量自体を灰化処理後の残渣量として0.10質量%以下とすることにより、研磨後の基板表面のスクラッチ及び突起欠陥が低減されると考えられる。但し、本発明はこれらのメカニズムに限定して解釈されなくてもよい。   Although the details of the reason why scratches and protrusion defects on the substrate surface after polishing can be reduced by the manufacturing method of the present invention are not clear, it is estimated as follows. An epoxy resin is used as a thermosetting resin composition in an aramid fiber-based epoxy resin laminate generally used as a substrate holding material for polishing a substrate to be polished. In these epoxy resins, inorganic fillers such as kaolin clay, titanium oxide and talc are used in order to increase the strength as a substrate holding material to be polished (see, for example, Patent Document 2). When a substrate to be polished for a magnetic disk substrate is fitted into the through-holes of these objects to be polished and polished, the surface of the object to be polished and the gear portion are gradually worn. Due to the abrasion of the substrate holding material to be polished, the contained inorganic filler is mixed into the polishing agent and the polishing pad. This time, by detailed analysis of the cause of protrusion defects on the magnetic disk substrate surface, when using a specific inorganic filler, or when the amount of inorganic filler observed as a residue after ashing treatment exceeds a certain amount, It has been found that these inorganic fillers adhere to the surface of the magnetic disk substrate in addition to the abrasive defects or protrusion defects derived from the shavings of the magnetic disk substrate, resulting in scratches and protrusion defects. Among inorganic fillers used as a substrate holding material to be polished, in particular, inorganic fillers containing Al, Mg, and Ti metal ions are Ni-P plated aluminum alloy substrates or glass substrates as substrates to be polished. It tends to stick to and remain on the magnetic disk substrate. Although details of the mechanism of operation are unknown, Al, Mg, and Ti metal ions present on the surface of the inorganic filler have a particularly strong interaction with the surface of the substrate to be polished, and even if the amount is small, the surface of the substrate to be polished Adsorption to the surface is promoted and remains, leading to an increase in protrusion defects and scratching. In addition, even when the amount of inorganic filler observed as a residue after ashing treatment exceeds a certain amount, the interaction with the surface of the substrate to be polished is stronger than that of abrasive grains, and it tends to remain on the substrate surface after polishing. Therefore, it is considered that it becomes a cause of protrusion defects and an increase in scratches. Therefore, the amount of the inorganic filler containing Al, Mg, and Ti metal ions in the workpiece holding material is set to 10 ppm or less, respectively, or the content of the inorganic filler itself after the ashing treatment By setting the amount of the residue to 0.10% by mass or less, it is considered that scratches and protrusion defects on the substrate surface after polishing are reduced. However, the present invention is not limited to these mechanisms.

本明細書において「スクラッチ」とは、研磨後の基板上に発生する線状の傷のことをいう。また、本明細書において、「突起欠陥」は、粗研磨工程後及び仕上げ研磨後の残留砥粒、砥粒付着、及び砥粒突き刺さりを含む。基板表面の突起欠陥は、例えば、研磨後に得られる基板表面の顕微鏡観察、走査型電子顕微鏡観察等、表面欠陥検査装置により評価することができ、具体的には実施例に記載した方法で評価できる。   In this specification, “scratch” refers to a linear scratch generated on a polished substrate. Further, in the present specification, “protrusion defect” includes residual abrasive grains, abrasive grain adhesion, and abrasive grain sticking after the rough polishing step and after the final polishing. The protrusion defect on the substrate surface can be evaluated by a surface defect inspection apparatus such as microscopic observation or scanning electron microscope observation of the substrate surface obtained after polishing, and can be specifically evaluated by the method described in the examples. .

[被研磨基板保持材]
本明細書において、「被研磨基板保持材」は、被研磨基板を研磨機(研磨装置)で研磨するために用いられるものをいう。被研磨基板保持材の形状は、従来の研磨機及び/又は今後開発される研磨機、及び、被研磨基板の大きさに適合したものを適宜選択できる。被研磨基板保持材は、限定されない一又は複数の実施形態において、駆動用のギアを周囲に形成した円板に被研磨基板保持用の貫通穴を1個又は複数個有する構造、或いは、単なる円板に、被研磨基板保持用の貫通穴を1個又は複数個有する構造である。被研磨基板保持材の限定されないその他の一実施形態を図3で説明する。被研磨基板保持材1は、全体として円板状をなす平坦な板状をなし、外周部が歯車状に構成されていると共に、内側に、被研磨基板を収容保持するための1個又は複数の円形の貫通穴2が形成されている。本実施形態の被研磨基板保持材を用いた研磨は、限定されない一又は複数の実施形態において、以下のように行われる。すなわち、前記貫通穴に被研磨基板をはめ込んだ前記被研磨基板保持材を研磨機に装着し、前記被研磨基板の研磨対象面に研磨液組成物を供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かすことにより行われる。研磨機を用いた研磨の限定されない一実施形態を図4で説明する。被研磨基板保持材1に保持された被研磨基板3を定盤5に配置された研磨パッド4で挟み込み、研磨液組成物が供給され、定盤5及び/又は被研磨保持材1が回転することで平面研磨が行われる。
[Polished substrate holding material]
In this specification, the “substrate to be polished” refers to a material used for polishing a substrate to be polished by a polishing machine (polishing apparatus). The shape of the substrate holding material to be polished can be appropriately selected from a conventional polishing machine and / or a polishing machine to be developed in the future and a size suitable for the size of the substrate to be polished. In one or a plurality of non-limiting embodiments, the substrate holding material to be polished has a structure in which one or a plurality of through holes for holding the substrate to be polished are provided on a disc having a driving gear formed around it, or a simple circle. The plate has one or more through holes for holding the substrate to be polished. Another embodiment of the substrate holding material to be polished that is not limited will be described with reference to FIG. The substrate holding material 1 to be polished is a flat plate having a disk shape as a whole, the outer peripheral portion is configured in a gear shape, and one or a plurality for accommodating and holding the substrate to be polished inside. A circular through hole 2 is formed. Polishing using the to-be-polished substrate holding material of the present embodiment is performed as follows in one or a plurality of non-limiting embodiments. That is, the substrate holding material with the substrate to be polished fitted in the through hole is attached to a polishing machine, a polishing liquid composition is supplied to the surface to be polished of the substrate to be polished, and a polishing pad is provided on the surface to be polished This is performed by moving the polishing pad and / or the substrate holding material to be polished in contact with each other. One non-limiting embodiment of polishing using a polishing machine is illustrated in FIG. The substrate 3 to be polished held by the substrate holding material 1 to be polished is sandwiched between the polishing pads 4 arranged on the surface plate 5, the polishing liquid composition is supplied, and the surface plate 5 and / or the material to be polished 1 rotate. Thus, surface polishing is performed.

被研磨基板保持材は、研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、無機粒子の添加量および/または無機粒子に含まれるAl、Mg、及びTiの金属イオンの含有量をスクラッチ及び突起欠陥の原因とならない範囲に設定することが好ましい。   The substrate holding material to be polished scratches the added amount of inorganic particles and / or the content of metal ions of Al, Mg, and Ti contained in the inorganic particles from the viewpoint of reducing scratches and protrusion defects on the polished substrate surface. And it is preferable to set in the range which does not cause a projection defect.

〔金属イオンの含有量〕
被研磨基板保持材は、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、一又は複数の実施形態において、前記保持材におけるAl、Mg、及びTiの金属イオンの含有量が、それぞれ、10ppm以下であって、好ましくは8ppm以下、より好ましくは6ppm以下、さらに好ましくは4ppm以下、さらにより好ましくは2ppm以下である。なお、前記金属イオンは、被研磨基板保持材に含有されていなくてもよい。一又は複数の実施形態において、前記金属イオンがこれらの範囲であると、被研磨基板保持材中の無機粒子の含有量が研磨後の基板表面のスクラッチ及び突起欠陥を低減できる程度に少ないとみなすことができる。なお、本明細書において、前記金属イオンの含有量は、灰化処理後の残渣に対する誘導結合プラズマ発光分光法(ICP−AES)で分析及び算出される値をいい、具体的には実施例に記載の方法で求められる値をいう。
[Metal ion content]
From the viewpoint of reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished, in one or a plurality of embodiments, the substrate holding material to be polished is Al, Mg in the holding material. The content of metal ions of Ti and Ti is 10 ppm or less, preferably 8 ppm or less, more preferably 6 ppm or less, still more preferably 4 ppm or less, and even more preferably 2 ppm or less. The metal ions may not be contained in the substrate holding material to be polished. In one or a plurality of embodiments, if the metal ions are within these ranges, the content of inorganic particles in the substrate holding material to be polished is considered to be small enough to reduce scratches and protrusion defects on the substrate surface after polishing. be able to. In the present specification, the content of the metal ions refers to a value analyzed and calculated by inductively coupled plasma emission spectroscopy (ICP-AES) for the residue after the ashing treatment, and specifically in the examples. The value obtained by the described method.

〔灰化処理後の残渣量〕
被研磨基板保持材は、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、一又は複数の実施形態において、前記保持材の灰化処理後の残渣量(以下、「灰化残渣量」ともいう。)が、0.10質量%以下であって、好ましくは0.09質量%以下、より好ましくは0.08質量%以下、さらに好ましくは0.07質量%以下である。なお、前記灰化残渣量は、0.00質量%であってもよい。一又は複数の実施形態において、灰化残渣量がこれらの範囲であると、被研磨基板保持材中の無機粒子の含有量が研磨後の基板表面のスクラッチ及び突起欠陥を低減できる程度に少ないとみなすことができる。なお、本明細書において、灰化残渣量は、熱処理による灰化処理前後の質量変化で求められる値をいい、具体的には実施例に記載の方法で求められる値をいう。
[Amount of residue after ashing]
In one or a plurality of embodiments, the substrate holding material to be polished is an ashing treatment of the holding material from the viewpoint of reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished. The amount of residual residue (hereinafter also referred to as “ashing residue amount”) is 0.10% by mass or less, preferably 0.09% by mass or less, more preferably 0.08% by mass or less, and still more preferably. Is 0.07 mass% or less. The ashing residue amount may be 0.00% by mass. In one or a plurality of embodiments, when the amount of ashing residue is within these ranges, the content of inorganic particles in the substrate holding material to be polished is small enough to reduce scratches and protrusion defects on the substrate surface after polishing. Can be considered. In the present specification, the amount of ashing residue refers to a value obtained by mass change before and after ashing treatment by heat treatment, and specifically refers to a value obtained by the method described in Examples.

〔灰化処理後の蛍光X線分析〕
被研磨基板保持材は、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、一又は複数の実施形態において、前記保持材の灰化処理後の残渣に対して蛍光X線(XRF)定性分析を行った場合に、Al、Mg、及びTiのすべてが実質的に検出されない保持材であることが好ましい。「蛍光X線定性分析で実質的に検出されない」とは、実施例に記載の条件で蛍光X線定性分析を行う場合に検出されないことをいう。一又は複数の実施形態において、蛍光X線(XRF)定性分析で、Al、Mg、及びTiのすべてが実質的に検出されない場合には、被研磨基板保持材中の無機粒子の含有量が研磨後の基板表面のスクラッチ及び突起欠陥を低減できる程度に少ないとみなすことができる。
[Fluorescence X-ray analysis after ashing]
In one or a plurality of embodiments, the substrate holding material to be polished is an ashing treatment of the holding material from the viewpoint of reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished. When a fluorescent X-ray (XRF) qualitative analysis is performed on the subsequent residue, it is preferable that Al, Mg, and Ti are substantially non-detectable holding materials. “Substantially not detected by fluorescent X-ray qualitative analysis” means that it is not detected when fluorescent X-ray qualitative analysis is performed under the conditions described in Examples. In one or a plurality of embodiments, when all of Al, Mg, and Ti are not substantially detected by X-ray fluorescence (XRF) qualitative analysis, the content of inorganic particles in the substrate holding material to be polished is polished. It can be considered that there are few scratches and protrusion defects on the subsequent substrate surface.

〔無機粒子観察〕
被研磨基板保持材は、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、一又は複数の実施形態において、前記保持材の灰化処理後の残渣に対して走査型電子顕微鏡(SEM)観察による無機粒子検出を行った場合に、Al、Mg、又はTiを含む無機粒子が実質的に検出されない保持材であることが好ましい。「走査型電子顕微鏡観察による無機粒子検出で実質的に検出されない」とは、実施例に記載の条件で走査型電子顕微鏡観察を行う場合に検出されないことをいう。一又は複数の実施形態において、走査型電子顕微鏡観察による無機粒子検出で、Al、Mg、及びTiのすべてが実質的に検出されない場合には、被研磨基板保持材中の無機粒子の含有量が研磨後の基板表面のスクラッチ及び突起欠陥を低減できる程度に少ないとみなすことができる。
[Inorganic particle observation]
In one or a plurality of embodiments, the substrate holding material to be polished is an ashing treatment of the holding material from the viewpoint of reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished. In the case where inorganic particles are detected by observation with a scanning electron microscope (SEM) with respect to the subsequent residue, a holding material from which inorganic particles containing Al, Mg, or Ti are not substantially detected is preferable. “Substantially not detected by inorganic particle detection by scanning electron microscope observation” means that it is not detected when scanning electron microscope observation is performed under the conditions described in the examples. In one or a plurality of embodiments, when all of Al, Mg, and Ti are not substantially detected by inorganic particle detection by scanning electron microscope observation, the content of the inorganic particles in the substrate holding material to be polished is It can be considered that there are few scratches and protrusion defects on the substrate surface after polishing.

〔曲げ弾性率〕
被研磨基板保持材は、耐摩耗性向上の観点、及び、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、一又は複数の実施形態において、前記保持材の曲げ弾性率が2000MPa以上であり、好ましくは2300MPa以上、さらに好ましくは2500MPa以上、よりさらに好ましくは2700MPa以上であり、被研磨基板保持材の加工性、研磨操作性の観点から、25000MPa以下であり、好ましくは10000MPa以下、さらに好ましくは5000MPa以下、よりさらに好ましくは3500MPa以下である。なお、本明細書において、曲げ弾性率強度は、引張圧縮試験機で測定される値をいい、具体的には実施例に記載の方法で求められる値をいう。
(Bending elastic modulus)
One or more embodiments of the substrate holding material to be polished are from the viewpoint of improving wear resistance and reducing scratches and protrusion defects on the surface of the substrate after polishing due to inorganic particles in the substrate holding material to be polished. In the above, the flexural modulus of the holding material is 2000 MPa or more, preferably 2300 MPa or more, more preferably 2500 MPa or more, still more preferably 2700 MPa or more, from the viewpoint of workability and polishing operability of the substrate holding material to be polished. 25000 MPa or less, preferably 10,000 MPa or less, more preferably 5000 MPa or less, and still more preferably 3500 MPa or less. In addition, in this specification, a bending elastic modulus strength says the value measured with a tension compression testing machine, and specifically says the value calculated | required by the method as described in an Example.

〔被研磨基板保持材の材質〕
被研磨基板保持材は、無機粒子を低減する観点、及び、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、樹脂を含むことが好ましい。樹脂を含む被研磨基板保持材は、限定されない一又は複数の実施形態として、樹脂材料から製造された若しくはされ得るもの、樹脂からなるもの、樹脂フィルムの積層板、樹脂からなるフィルムの積層板、表面が樹脂であるもの、又は、被研磨基板や研磨機や研磨パッド等の他の部品と接触する部分が樹脂で構成されるものが挙げられる。無機粒子を低減する観点、及び、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、樹脂フィルムの積層板が好ましい。
[Material of substrate holding material to be polished]
The substrate holding material to be polished preferably contains a resin from the viewpoint of reducing inorganic particles, and from the viewpoint of reducing scratches and protrusion defects on the polished substrate surface due to the inorganic particles in the substrate holding material to be polished. . The polished substrate holding material containing a resin is one or a plurality of embodiments that are not limited, and are manufactured or can be made of a resin material, a resin, a resin film laminate, a resin film laminate, Examples thereof include those whose surface is a resin, or those whose portions that come into contact with other parts such as a substrate to be polished, a polishing machine, and a polishing pad are made of resin. From the viewpoint of reducing inorganic particles and from the viewpoint of reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished, a laminate of resin film is preferable.

前記樹脂は、限定されない一又は複数の実施形態として、アラミド繊維基材エポキシ樹脂等の樹脂繊維強化樹脂、ポリフェニレンサルファイド、ポリアセタール樹脂、ポリカーボネート、及び、環状オレフィン系(共)重合体樹脂が挙げられる。耐食性、耐摩耗性の観点からは、アラミド繊維基材エポキシ樹脂等の樹脂繊維強化樹脂、ポリフェニレンサルファイド、ポリアセタール樹脂、及び、環状オレフィン系(共)重合体樹脂ポリカーボネートが好ましく、保持材の平坦性向上、研磨抵抗低減の観点から、環状オレフィン系(共)重合体樹脂が好ましい。   Examples of the resin include, but are not limited to, resin fiber reinforced resins such as an aramid fiber base epoxy resin, polyphenylene sulfide, polyacetal resin, polycarbonate, and cyclic olefin-based (co) polymer resin. From the viewpoint of corrosion resistance and wear resistance, resin fiber reinforced resins such as aramid fiber base epoxy resin, polyphenylene sulfide, polyacetal resin, and cyclic olefin-based (co) polymer resin polycarbonate are preferable, and the flatness of the holding material is improved. From the viewpoint of reducing polishing resistance, a cyclic olefin-based (co) polymer resin is preferred.

〔環状オレフィン系(共)重合体樹脂を含む被研磨基板保持材〕
環状オレフィン系(共)重合体樹脂を含む被研磨基板保持材は、限定されない一又は複数の実施形態として、環状オレフィン系(共)重合体樹脂からなる樹脂フィルムが複数枚重ねられ、該樹脂フィルム同士が熱融着により接着された基材を裁断又は打ち抜きして製造された若しくはされ得るものである。この実施形態に関し、特許文献4の開示を参照できる。
[Polished substrate holding material containing cyclic olefin (co) polymer resin]
A polished substrate holding material containing a cyclic olefin-based (co) polymer resin includes, as one or more embodiments without limitation, a plurality of resin films made of a cyclic olefin-based (co) polymer resin, and the resin film It is manufactured or can be produced by cutting or punching substrates bonded together by heat fusion. Regarding this embodiment, the disclosure of Patent Document 4 can be referred to.

前記環状オレフィン系(共)重合体樹脂からなる樹脂フィルム(環状オレフィンコポリマー(COC)樹脂フィルム)は、環状オレフィンに由来する構造単位を含む重合体又は共重合体からなるフィルムである。限定されない一又は複数の実施形態として、特開2007−113018号公報に記載されているものが使用できる。このようなCOC樹脂フィルムとして、例えば「トパス」(TOPAS 商標;ポリプラスチックス株式会社)、「アートン」(ARTON 商標;ジェイ・エス・アール株式会社)などが挙げられる。前記COC樹脂フィルムの厚みは、COC樹脂フィルムの厚みや積層枚数を適宜選択して、目的とする基材の厚みになるように組み合わせ重ねることができる。例えば、厚み0.8mmの基材を得る場合には、厚み0.2mmのCOC樹脂フィルムを4枚重ねてもよいし、厚み0.4mmのCOC樹脂フィルムを2枚重ねてもよいし、厚み0.3mmのCOC樹脂フィルムを2枚と厚み0.2mmのCOC樹脂フィルムを1枚とを重ねてもよい。また、厚み0.8mmの1枚のCOC樹脂フィルムとしてもよい。   The resin film (cyclic olefin copolymer (COC) resin film) made of the cyclic olefin-based (co) polymer resin is a film made of a polymer or a copolymer containing a structural unit derived from a cyclic olefin. As one or a plurality of embodiments that are not limited, those described in Japanese Patent Application Laid-Open No. 2007-1113018 can be used. Examples of such a COC resin film include “TOPAS” (TOPAS trademark; Polyplastics Co., Ltd.), “ARTON” (ARTON trademark; JS.R. Co., Ltd.), and the like. The thickness of the COC resin film can be combined and laminated so that the thickness of the COC resin film and the number of laminated layers can be appropriately selected and the target substrate thickness can be obtained. For example, when obtaining a substrate having a thickness of 0.8 mm, four COC resin films having a thickness of 0.2 mm may be stacked, two COC resin films having a thickness of 0.4 mm may be stacked, Two sheets of 0.3 mm COC resin film and one sheet of 0.2 mm thick COC resin film may be stacked. Moreover, it is good also as one COC resin film of thickness 0.8mm.

[被研磨基板保持材の製造方法]
被研磨基板保持材の製造方法は、限定されない一又は複数の実施形態として、基材を裁断又は打ち抜きする製造方法が挙げられる。前記基材は、無機粒子を低減する観点、及び、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、好ましくは樹脂を含む基材、より好ましくは前述したCOC樹脂を含む基材を任意の厚さに成型することによって得られる。また、さらに好ましくは樹脂フィルムを複数枚重ね、該樹脂フィルム同士を熱融着により接着することによって得られ、さらにより好ましくはCOC樹脂フィルムを複数枚重ね、該COC樹脂フィルム同士を熱融着により接着することによって得られる。前記基材は、無機粒子を低減する観点、及び、被研磨基板保持材中の無機粒子に起因する研磨後の基板表面のスクラッチ及び突起欠陥を低減する観点から、無機充填剤を含まずに製造することが好ましい。
[Production Method of Polished Substrate Holding Material]
The manufacturing method of a to-be-polished substrate holding material includes a manufacturing method in which a base material is cut or punched as one or a plurality of non-limiting embodiments. From the viewpoint of reducing inorganic particles, and from the viewpoint of reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished, the substrate preferably includes a resin, More preferably, it is obtained by molding a substrate containing the above-described COC resin to an arbitrary thickness. More preferably, it is obtained by laminating a plurality of resin films and bonding the resin films by heat fusion, and even more preferably, laminating a plurality of COC resin films, and heat-bonding the COC resin films to each other. Obtained by gluing. The base material is manufactured without an inorganic filler from the viewpoint of reducing inorganic particles and reducing scratches and protrusion defects on the substrate surface after polishing caused by inorganic particles in the substrate holding material to be polished. It is preferable to do.

[磁気ディスク基板の製造方法]
一般に、磁気ディスク基板は、精研削工程を経たガラス基板や、Ni−Pメッキ工程を経たアルミニウム合金基板を、粗研磨工程、仕上げ研磨工程を経て研磨され、記録部形成工程を経て製造される。また、前記研磨の各工程の間にはリンス工程、洗浄工程が含まれることがある。本発明は、一又は複数の実施形態として、本明細書の開示にかかる被研磨基板保持材を用いた研磨工程を含む磁気ディスク基板の製造方法に関する。「本明細書の開示にかかる被研磨基板保持材を用いた研磨工程」は、粗研磨工程であってもよく、仕上げ研磨工程であってもよく、両研磨工程であってもよい。本発明の磁気ディスク基板の製造方法は、一又は複数の実施形態として、従来の磁気ディスク基板の製造方法における研磨工程において、本明細書の開示にかかる被研磨基板保持材を用いる製造方法である。
[Method of manufacturing magnetic disk substrate]
In general, a magnetic disk substrate is manufactured through a recording portion forming process by polishing a glass substrate that has undergone a fine grinding process or an aluminum alloy substrate that has undergone a Ni-P plating process through a rough polishing process and a final polishing process. In addition, a rinsing step and a cleaning step may be included between the polishing steps. The present invention, as one or a plurality of embodiments, relates to a method of manufacturing a magnetic disk substrate including a polishing step using a substrate holding material to be polished according to the disclosure of this specification. The “polishing process using the substrate holding material to be polished according to the disclosure of the present specification” may be a rough polishing process, a final polishing process, or both polishing processes. A method for manufacturing a magnetic disk substrate according to the present invention is a method for using a substrate holding material to be polished according to the disclosure of the present specification in a polishing step in a conventional method for manufacturing a magnetic disk substrate, as one or a plurality of embodiments. .

本発明の磁気ディスク基板の製造方法は、限定されない一又は複数の実施形態として、下記(1)〜(3)の工程を有し、下記工程(1)及び(3)の少なくとも一方の被研磨基板保持材として本明細書の開示にかかる被研磨基板保持材を用いる磁気ディスク基板の製造方法である。
(1)被研磨基板保持材に被研磨基板を保持させて研磨機に配置し、研磨液組成物Aを前記被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
(2)工程(1)で得られた基板を洗浄する工程。
(3)被研磨基板保持材に工程(2)で得られた基板を保持させて研磨機に配置し、シリカ粒子及び水を含有する研磨液組成物Bを前記基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
The method for manufacturing a magnetic disk substrate of the present invention includes the following steps (1) to (3) as one or a plurality of non-limiting embodiments, and at least one of the following steps (1) and (3) to be polished: This is a method of manufacturing a magnetic disk substrate using the substrate holding material to be polished according to the disclosure of this specification as the substrate holding material.
(1) A substrate to be polished is held on a substrate to be polished and placed in a polishing machine, the polishing composition A is supplied to the surface to be polished of the substrate to be polished, and a polishing pad is brought into contact with the surface to be polished And polishing the polishing target surface by moving the polishing pad and / or the substrate holding material to be polished.
(2) A step of cleaning the substrate obtained in step (1).
(3) The substrate obtained in the step (2) is held on the substrate holding material to be polished and placed in a polishing machine, and the polishing composition B containing silica particles and water is supplied to the surface to be polished of the substrate. A step of bringing a polishing pad into contact with the surface to be polished and polishing the surface to be polished by moving the polishing pad and / or the substrate holding material to be polished.

[被研磨基板]
本発明の磁気ディスク基板の製造方法における被研磨基板は、磁気ディスク基板又は磁気ディスク基板に用いられる基板であり、例えば、Ni−Pメッキされたアルミニウム合金基板や、珪酸ガラス、アルミノ珪酸ガラス、結晶化ガラス、強化ガラス等のガラス基板が挙げられる。上記被研磨基板の形状には特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状であればよい。中でも、ディスク状の被研磨基板が適している。ディスク状の被研磨基板の場合、その外径は例えば2〜95mm程度であり、その厚みは例えば0.5〜2mm程度である。
[Polished substrate]
The substrate to be polished in the method for producing a magnetic disk substrate of the present invention is a magnetic disk substrate or a substrate used for a magnetic disk substrate. For example, a Ni-P plated aluminum alloy substrate, silicate glass, aluminosilicate glass, crystal Examples thereof include glass substrates such as vitrified glass and tempered glass. There is no restriction | limiting in particular in the shape of the said to-be-polished substrate, For example, what is necessary is just the shape which has planar parts, such as a disk shape, plate shape, slab shape, prism shape, and the shape which has curved surface parts, such as a lens. Of these, a disk-shaped substrate to be polished is suitable. In the case of a disk-shaped substrate to be polished, the outer diameter is, for example, about 2 to 95 mm, and the thickness is, for example, about 0.5 to 2 mm.

[研磨機]
本発明の磁気ディスク基板の製造方法で使用されうる研磨機としては、特に限定されず、磁気ディスク基板研磨用の従来知られている及び今後開発される研磨機が使用できる。
[Polishing machine]
The polishing machine that can be used in the method for manufacturing a magnetic disk substrate of the present invention is not particularly limited, and conventionally known and future developed polishing machines for polishing a magnetic disk substrate can be used.

[研磨パッド]
本発明の磁気ディスク基板の製造方法で使用されうる研磨パッドとしては、特に制限はなく、従来知られている及び今後開発される研磨パッドが使用できる。例えば、スエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ、又はこれらを積層した二層タイプ等の研磨パッドを使用することができるが、研磨速度向上の観点から、スエードタイプの研磨パッドが好ましい。また、研磨パッドの平均気孔径は、研磨速度向上の観点、基板表面の面質向上の観点から、10〜100μmが好ましく、15〜80μmがより好ましく、15〜40μmがさらに好ましい。
[Polishing pad]
The polishing pad that can be used in the method of manufacturing a magnetic disk substrate of the present invention is not particularly limited, and conventionally known and later developed polishing pads can be used. For example, a polishing pad such as a suede type, a nonwoven fabric type, a polyurethane closed-cell foam type, or a two-layer type in which these are laminated can be used, but a suede type polishing pad is preferable from the viewpoint of improving the polishing rate. The average pore diameter of the polishing pad is preferably 10 to 100 μm, more preferably 15 to 80 μm, and still more preferably 15 to 40 μm from the viewpoint of improving the polishing rate and improving the surface quality of the substrate surface.

[研磨液組成物]
本発明の磁気ディスク基板の製造方法で使用されうる研磨液組成物としては、特に限定されず、磁気ディスク基板研磨用の従来知られている及び今後開発される研磨液組成物が使用できる。一又は複数の実施形態において、研磨液組成としては、特開2010−167553、特開2011−131346に開示されるものが挙げられる。また、研磨液組成物A及び研磨液組成物Bは、同じであっても異なっていてもよい。
[Polishing liquid composition]
The polishing liquid composition that can be used in the method for producing a magnetic disk substrate of the present invention is not particularly limited, and conventionally known and later developed polishing liquid compositions for polishing a magnetic disk substrate can be used. In one or more embodiments, examples of the polishing liquid composition include those disclosed in JP2010-167553A and JP2011-131346A. Moreover, the polishing liquid composition A and the polishing liquid composition B may be the same or different.

[研磨条件]
本発明の磁気ディスク基板の製造方法における研磨条件も、特に制限はなく、従来知られている及び今後開発される研磨条件を採用できる。
[Polishing conditions]
The polishing conditions in the method for producing a magnetic disk substrate of the present invention are not particularly limited, and conventionally known and future developed polishing conditions can be employed.

本発明の磁気ディスク基板の製造方法によれば、研磨後の基板表面のスクラッチ及び突起欠陥が低減された磁気ディスク基板が製造できるため、高度の表面平滑性が要求される垂直磁気記録方式の磁気ディスク基板の研磨に好適に用いることができる。   According to the method for manufacturing a magnetic disk substrate of the present invention, a magnetic disk substrate with reduced scratches and protrusion defects on the polished substrate surface can be manufactured. Therefore, the magnetic field of the perpendicular magnetic recording system that requires high surface smoothness is required. It can be suitably used for polishing a disk substrate.

[研磨方法]
本発明は、その他の態様として、磁気ディスク基板の研磨方法であって、本明細書の開示にかかる被研磨基板保持材を用いて被研磨基板を研磨することを含む研磨方法に関する。本発明の磁気ディスク基板の研磨方法は、限定されない一又は複数の実施形態として、下記(1)〜(3)の工程を有し、下記工程(1)及び(3)の少なくとも一方の被研磨基板保持材として本明細書の開示にかかる被研磨基板保持材を用いる磁気ディスク基板の研磨方法である。
(1)被研磨基板保持材に被研磨基板を保持させて研磨機に配置し、研磨液組成物Aを前記被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
(2)工程(1)で得られた基板を洗浄する工程。
(3)被研磨基板保持材に工程(2)で得られた基板を保持させて研磨機に配置し、砥粒及び水を含有する研磨液組成物Bを前記基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
[Polishing method]
In another aspect, the present invention relates to a method for polishing a magnetic disk substrate, which includes polishing a substrate to be polished using the substrate holding material to be polished according to the disclosure of this specification. The magnetic disk substrate polishing method of the present invention includes the following steps (1) to (3) as one or a plurality of non-limiting embodiments, and at least one of the following steps (1) and (3) to be polished. This is a method for polishing a magnetic disk substrate using the substrate holding material to be polished according to the disclosure of this specification as the substrate holding material.
(1) A substrate to be polished is held on a substrate to be polished and placed in a polishing machine, the polishing composition A is supplied to the surface to be polished of the substrate to be polished, and a polishing pad is brought into contact with the surface to be polished And polishing the polishing target surface by moving the polishing pad and / or the substrate holding material to be polished.
(2) A step of cleaning the substrate obtained in step (1).
(3) The substrate obtained in the step (2) is held on the substrate holding material to be polished and placed in a polishing machine, and the polishing composition B containing abrasive grains and water is supplied to the surface to be polished of the substrate. A step of bringing a polishing pad into contact with the surface to be polished and polishing the surface to be polished by moving the polishing pad and / or the substrate holding material to be polished.

本発明の研磨方法における被研磨基板、研磨パッド、研磨液組成物、研磨機及び研磨条件については、上述の本発明の磁気ディスク基板の製造方法と同様とすることができる。   The substrate to be polished, the polishing pad, the polishing composition, the polishing machine, and the polishing conditions in the polishing method of the present invention can be the same as those of the above-described magnetic disk substrate manufacturing method of the present invention.

本発明の研磨方法を使用することにより、研磨後の基板表面のスクラッチ及び突起欠陥が低減された磁気ディスク基板を製造できるという効果が奏されうる。   By using the polishing method of the present invention, it is possible to produce a magnetic disk substrate in which scratches and protrusion defects on the polished substrate surface are reduced.

本発明はさらに以下の一又は複数の実施形態に関する。   The present invention further relates to one or more of the following embodiments.

<1> 被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、
前記研磨が、樹脂を含む被研磨基板保持材を用いた研磨であり、
前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下である、磁気ディスク基板の製造方法。
<2> 被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、
前記研磨が、樹脂を含む被研磨基板保持材を用いた研磨であり、
前記保持材の灰化処理後の残渣量が、0.10質量%以下である、磁気ディスク基板の製造方法。
<3> 被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、
前記研磨が、樹脂を含む被研磨基板保持材を用いた研磨であり、
前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下であり、かつ、
前記保持材の灰化処理後の残渣量が、0.10質量%以下である、磁気ディスク基板の製造方法。
<1> A method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished,
The polishing is polishing using a substrate holding material containing a resin,
The method for manufacturing a magnetic disk substrate, wherein the content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively.
<2> A method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished,
The polishing is polishing using a substrate holding material containing a resin,
The method for producing a magnetic disk substrate, wherein the amount of residue after the ashing treatment of the holding material is 0.10% by mass or less.
<3> A method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished,
The polishing is polishing using a substrate holding material containing a resin,
The content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively, and
The method for producing a magnetic disk substrate, wherein the amount of residue after the ashing treatment of the holding material is 0.10% by mass or less.

<4> 前記保持材におけるAl、Mg、及びTiの金属イオンの含有量が、それぞれ、10ppm以下であって、好ましくは8ppm以下、より好ましくは6ppm以下、さらに好ましくは4ppm以下、さらにより好ましくは2ppm以下である、<1>から<3>のいずれかに記載の磁気ディスク基板の製造方法。
<5> 前記保持材の灰化処理後の残渣量が、0.10質量%以下であって、好ましくは0.09質量%以下、より好ましくは0.08質量%以下、さらに好ましくは0.07質量%以下である、<1>から<4>のいずれかに記載の磁気ディスク基板の製造方法。
<6> 前記保持材の曲げ弾性率が2000MPa以上である、<1>から<5>のいずれかに記載の磁気ディスク基板の製造方法。
<7> 前記保持材の曲げ弾性率が2300MPa以上、好ましくは2500MPa以上、より好ましくは2700MPa以上であり、及び/又は、25000MPa以下であり、好ましくは10000MPa以下、さらに好ましくは5000MPa以下、よりさらに好ましくは3500MPa以下である、<1>から<6>のいずれかに記載の磁気ディスク基板の製造方法。
<8> 樹脂を含む被研磨基板保持材が、樹脂材料から製造された若しくはされ得るもの、樹脂からなるもの、樹脂フィルムの積層板、樹脂からなるフィルムの積層板、表面が樹脂であるもの、及び、被研磨基板や研磨機や研磨パッド等の他の部品と接触する部分が樹脂で構成されるものからなる群から選択される、<1>から<7>のいずれかに記載の磁気ディスク基板の製造方法。
<9> 前記樹脂が、アラミド繊維基材エポキシ樹脂等の樹脂繊維強化樹脂、ポリフェニレンサルファイド、ポリアセタール樹脂、ポリカーボネート、及び、環状オレフィン系(共)重合体樹脂からなる群から選択される、<1>から<8>のいずれかに記載の磁気ディスク基板の製造方法。
<10> 前記樹脂が、環状オレフィン系重合体樹脂である、<1>から<9>のいずれかに記載の磁気ディスク基板の製造方法。
<11> 前記環状オレフィン系(共)重合体樹脂が、環状オレフィンに由来する構造単位を含む重合体又は共重合体である、<9>又は<10>に記載の磁気ディスク基板の製造方法。
<12> 前記保持材が、灰化処理後の残渣に対して蛍光X線定性分析を行った場合に、Al、Mg、及びTiのすべてが実質的に検出されない保持材である、<1>から<11>のいずれかに記載の磁気ディスク基板の製造方法。
<13> 前記保持材が、灰化処理後の残渣に対して走査型電子顕微鏡観察による無機粒子検出を行った場合に、Al、Mg、又はTiを含む無機粒子が実質的に検出されない保持材である、<1>から<12>のいずれかに記載の磁気ディスク基板の製造方法。
<14> 前記被研磨基板が、Ni−Pメッキされたアルミニウム合金基板又はガラス基板である、<1>から<13>のいずれかに記載の磁気ディスク基板の製造方法。
<15> 前記研磨をする工程が、粗研磨工程、仕上げ研磨工程、又は両研磨工程である、<1>から<14>のいずれかに記載の磁気ディスク基板の製造方法。
<16> 下記(1)〜(3)の工程を有し、下記工程(1)及び(3)の少なくとも一方の研磨の工程が、前記研磨をする工程である、<1>から<15>のいずれかに記載の磁気ディスク基板の製造方法。
(1)被研磨基板保持材に被研磨基板を保持させて研磨機に配置し、研磨液組成物Aを前記被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
(2)工程(1)で得られた基板を洗浄する工程。
(3)被研磨基板保持材に工程(2)で得られた基板を保持させて研磨機に配置し、シリカ粒子及び水を含有する研磨液組成物Bを前記基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
<17> 樹脂を含む被研磨基板保持材を用いて被研磨基板を研磨することを含み、前記被研磨基板保持材が、下記(1)及び(2)の少なくとも一方の条件を満たす、磁気ディスク基板の研磨方法。
(1)前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下。
(2)前記保持材の灰化処理後の残渣量が、0.10質量%以下。
<18> 下記(1)〜(3)の工程を有し、下記工程(1)及び(3)の少なくとも一方の研磨が、前記研磨である、<17>記載の磁気ディスク基板の研磨方法。
(1)被研磨基板保持材に被研磨基板を保持させて研磨機に配置し、研磨液組成物Aを前記被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
(2)工程(1)で得られた基板を洗浄する工程。
(3)被研磨基板保持材に工程(2)で得られた基板を保持させて研磨機に配置し、砥粒及び水を含有する研磨液組成物Bを前記基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板保持材を動かして前記研磨対象面を研磨する工程。
<19> 前記保持材におけるAl、Mg、及びTiの金属イオンの含有量が、それぞれ、10ppm以下であって、好ましくは8ppm以下、より好ましくは6ppm以下、さらに好ましくは4ppm以下、さらにより好ましくは2ppm以下である、<17>又は<18>に記載の磁気ディスク基板の研磨方法。
<20> 前記保持材の灰化処理後の残渣量が、0.10質量%以下であって、好ましくは0.09質量%以下、より好ましくは0.08質量%以下、さらに好ましくは0.07質量%以下である、<17>から<19>のいずれかに記載の磁気ディスク基板の研磨方法。
<21> 前記保持材の曲げ弾性率が2000MPa以上である、<17>から<20>のいずれかに記載の磁気ディスク基板の研磨方法。
<22> 前記保持材の曲げ弾性率が2300MPa以上、好ましくは2500MPa以上、より好ましくは2700MPa以上であり、及び/又は、25000MPa以下であり、好ましくは10000MPa以下、さらに好ましくは5000MPa以下、よりさらに好ましくは3500MPa以下である、<17>から<21>のいずれかに記載の磁気ディスク基板の研磨方法。
<23> 樹脂を含む被研磨基板保持材が、樹脂材料から製造された若しくはされ得るもの、樹脂からなるもの、樹脂フィルムの積層板、樹脂からなるフィルムの積層板、表面が樹脂であるもの、及び、被研磨基板や研磨機や研磨パッド等の他の部品と接触する部分が樹脂で構成されるものからなる群から選択される、<17>から<22>のいずれかに記載の磁気ディスク基板の研磨方法。
<24> 前記樹脂が、アラミド繊維基材エポキシ樹脂等の樹脂繊維強化樹脂、ポリフェニレンサルファイド、ポリアセタール樹脂、ポリカーボネート、及び、環状オレフィン系(共)重合体樹脂からなる群から選択される、<17>から<23>のいずれかに記載の磁気ディスク基板の研磨方法。
<25> 前記樹脂が、環状オレフィン系重合体樹脂である、<17>から<24>のいずれかに記載の磁気ディスク基板の研磨方法。
<26> 前記環状オレフィン系(共)重合体樹脂が、環状オレフィンに由来する構造単位を含む重合体又は共重合体である、<24>又は<25>に記載の磁気ディスク基板の研磨方法。
<27> 前記保持材が、灰化処理後の残渣に対して蛍光X線定性分析を行った場合に、Al、Mg、及びTiのすべてが実質的に検出されない保持材である、<17>から<26>のいずれかに記載の磁気ディスク基板の研磨方法。
<28> 前記保持材が、灰化処理後の残渣に対して走査型電子顕微鏡観察による無機粒子検出を行った場合に、Al、Mg、又はTiを含む無機粒子が実質的に検出されない保持材である、<17>から<27>のいずれかに記載の磁気ディスク基板の研磨方法。
<29> 前記被研磨基板が、Ni−Pメッキされたアルミニウム合金基板又はガラス基板である、<17>から<28>のいずれかに記載の磁気ディスク基板の研磨方法。
<4> The content of metal ions of Al, Mg, and Ti in the holding material is 10 ppm or less, preferably 8 ppm or less, more preferably 6 ppm or less, still more preferably 4 ppm or less, and even more preferably. The method for producing a magnetic disk substrate according to any one of <1> to <3>, which is 2 ppm or less.
<5> The amount of the residue after the ashing treatment of the holding material is 0.10% by mass or less, preferably 0.09% by mass or less, more preferably 0.08% by mass or less, and still more preferably 0.8. The method for producing a magnetic disk substrate according to any one of <1> to <4>, which is 07% by mass or less.
<6> The method for manufacturing a magnetic disk substrate according to any one of <1> to <5>, wherein the holding member has a flexural modulus of 2000 MPa or more.
<7> The bending elastic modulus of the holding material is 2300 MPa or more, preferably 2500 MPa or more, more preferably 2700 MPa or more, and / or 25000 MPa or less, preferably 10,000 MPa or less, more preferably 5000 MPa or less, and still more preferably. Is 3500 MPa or less, The manufacturing method of the magnetic disk substrate according to any one of <1> to <6>.
<8> A polished substrate holding material containing a resin is manufactured or can be made of a resin material, a resin, a resin film laminate, a resin film laminate, a resin whose surface is a resin, And the magnetic disk according to any one of <1> to <7>, wherein a portion that comes into contact with another part such as a substrate to be polished, a polishing machine, or a polishing pad is selected from the group consisting of a resin. A method for manufacturing a substrate.
<9> The resin is selected from the group consisting of a resin fiber reinforced resin such as an aramid fiber base epoxy resin, polyphenylene sulfide, polyacetal resin, polycarbonate, and cyclic olefin-based (co) polymer resin. <1> To <8>. A method of manufacturing a magnetic disk substrate according to any one of <8>.
<10> The method for producing a magnetic disk substrate according to any one of <1> to <9>, wherein the resin is a cyclic olefin polymer resin.
<11> The method for producing a magnetic disk substrate according to <9> or <10>, wherein the cyclic olefin-based (co) polymer resin is a polymer or copolymer containing a structural unit derived from a cyclic olefin.
<12> The holding material is a holding material in which all of Al, Mg, and Ti are not substantially detected when a fluorescent X-ray qualitative analysis is performed on the residue after the ashing treatment. <1> To <11>. A method for manufacturing a magnetic disk substrate according to any one of <11> to <11>.
<13> The holding material in which inorganic particles containing Al, Mg, or Ti are not substantially detected when inorganic particles are detected by observation with a scanning electron microscope with respect to the residue after ashing. The method for manufacturing a magnetic disk substrate according to any one of <1> to <12>.
<14> The method for manufacturing a magnetic disk substrate according to any one of <1> to <13>, wherein the substrate to be polished is an aluminum alloy substrate or a glass substrate plated with Ni—P.
<15> The method for manufacturing a magnetic disk substrate according to any one of <1> to <14>, wherein the polishing step is a rough polishing step, a final polishing step, or a double polishing step.
<16> The following steps (1) to (3) are included, and at least one of the following steps (1) and (3) is a step of polishing: <1> to <15> A method for producing a magnetic disk substrate according to any one of the above.
(1) A substrate to be polished is held on a substrate to be polished and placed in a polishing machine, the polishing composition A is supplied to the surface to be polished of the substrate to be polished, and a polishing pad is brought into contact with the surface to be polished And polishing the polishing target surface by moving the polishing pad and / or the substrate holding material to be polished.
(2) A step of cleaning the substrate obtained in step (1).
(3) The substrate obtained in the step (2) is held on the substrate holding material to be polished and placed in a polishing machine, and the polishing composition B containing silica particles and water is supplied to the surface to be polished of the substrate. A step of bringing a polishing pad into contact with the surface to be polished and polishing the surface to be polished by moving the polishing pad and / or the substrate holding material to be polished.
<17> A magnetic disk comprising polishing a substrate to be polished using a substrate holding material containing resin, wherein the substrate holding material satisfies at least one of the following conditions (1) and (2): A method for polishing a substrate.
(1) The content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively.
(2) The amount of the residue after the ashing treatment of the holding material is 0.10% by mass or less.
<18> The method for polishing a magnetic disk substrate according to <17>, comprising the following steps (1) to (3), wherein at least one of the following steps (1) and (3) is the polishing.
(1) A substrate to be polished is held on a substrate to be polished and placed in a polishing machine, the polishing composition A is supplied to the surface to be polished of the substrate to be polished, and a polishing pad is brought into contact with the surface to be polished And polishing the polishing target surface by moving the polishing pad and / or the substrate holding material to be polished.
(2) A step of cleaning the substrate obtained in step (1).
(3) The substrate obtained in the step (2) is held on the substrate holding material to be polished and placed in a polishing machine, and the polishing composition B containing abrasive grains and water is supplied to the surface to be polished of the substrate. A step of bringing a polishing pad into contact with the surface to be polished and polishing the surface to be polished by moving the polishing pad and / or the substrate holding material to be polished.
<19> The content of metal ions of Al, Mg, and Ti in the holding material is 10 ppm or less, preferably 8 ppm or less, more preferably 6 ppm or less, still more preferably 4 ppm or less, and even more preferably. The method for polishing a magnetic disk substrate according to <17> or <18>, which is 2 ppm or less.
<20> The amount of the residue after the ashing treatment of the holding material is 0.10% by mass or less, preferably 0.09% by mass or less, more preferably 0.08% by mass or less, and still more preferably 0.8. The method for polishing a magnetic disk substrate according to any one of <17> to <19>, which is 07% by mass or less.
<21> The method for polishing a magnetic disk substrate according to any one of <17> to <20>, wherein the holding material has a flexural modulus of 2000 MPa or more.
<22> The bending elastic modulus of the holding material is 2300 MPa or more, preferably 2500 MPa or more, more preferably 2700 MPa or more, and / or 25000 MPa or less, preferably 10,000 MPa or less, more preferably 5000 MPa or less, and even more preferably. The method for polishing a magnetic disk substrate according to any one of <17> to <21>, wherein is 3500 MPa or less.
<23> A polished substrate holding material containing a resin is manufactured or can be manufactured from a resin material, a resin film, a resin film laminate, a resin film laminate, a resin whose surface is a resin, And the magnetic disk according to any one of <17> to <22>, wherein a portion in contact with a substrate to be polished, a polishing machine, a polishing pad, or the like is selected from the group consisting of a resin. A method for polishing a substrate.
<24> The resin is selected from the group consisting of resin fiber reinforced resins such as an aramid fiber base epoxy resin, polyphenylene sulfide, polyacetal resin, polycarbonate, and cyclic olefin-based (co) polymer resin. <17> To <23>. The method for polishing a magnetic disk substrate according to any one of the above.
<25> The method for polishing a magnetic disk substrate according to any one of <17> to <24>, wherein the resin is a cyclic olefin polymer resin.
<26> The method for polishing a magnetic disk substrate according to <24> or <25>, wherein the cyclic olefin-based (co) polymer resin is a polymer or copolymer containing a structural unit derived from a cyclic olefin.
<27> The holding material is a holding material in which all of Al, Mg, and Ti are not substantially detected when a fluorescent X-ray qualitative analysis is performed on the residue after the ashing treatment. <17> To <26>. The method for polishing a magnetic disk substrate according to any one of the above items.
<28> The holding material in which inorganic particles containing Al, Mg, or Ti are not substantially detected when the inorganic material is detected by observation with a scanning electron microscope with respect to the residue after the ashing treatment. The method for polishing a magnetic disk substrate according to any one of <17> to <27>.
<29> The method for polishing a magnetic disk substrate according to any one of <17> to <28>, wherein the substrate to be polished is an aluminum alloy substrate or a glass substrate plated with Ni—P.

以下、実施例により本発明をさらに詳細に説明するが、これらは例示的なものであって、本発明はこれら実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these are illustrations, Comprising: This invention is not restrict | limited to these Examples.

表1に示す材質の被研磨基板保持材(No.1〜No.8)を使用して被研磨基板を研磨し、研磨後の基板表面の表面欠陥数、付着物、耐摩耗性を評価した(実施例1〜3、比較例1〜5)。研磨条件、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。   The polished substrate holding material (No. 1 to No. 8) of the material shown in Table 1 was used to polish the substrate to be polished, and the number of surface defects, deposits and abrasion resistance on the polished substrate surface were evaluated. (Examples 1-3, Comparative Examples 1-5). Polishing conditions, measuring methods for each parameter, polishing conditions (polishing method) and evaluation methods are as follows.

1.被研磨基板保持材
被研磨基板保持材として、表1に示すNo.1からNo.8の材質の被研磨基板保持材を使用した。これらの保持材について、灰化処理を施し、灰化後残渣に対して蛍光X線(XRF)定性分析、誘導結合プラズマ発光分光法(ICP−AES)、及び、走査型電子顕微鏡観察とエネルギー分散型X線分析法(SEM−EDS)を用いて無機元素分析(Al、Mg、及びTi)及び無機粒子の検出を行った。また、保持材の曲げ弾性率も測定した。それらの条件は以下のとおりである。No.1〜No.3の被研磨基板保持材は、環状オレフィン系重合体製であって、特許文献4に開示の方法に準じて製造されたものである。No.4〜No.8の被研磨基板保持材は、従来の被研磨基板の保持材として使用されていたものであって、それぞれ、以下の市販品を用いた。
No.4、5、7:相模PCI社製
No.6:シー・アール・ティー社製
No.8:富士ベークライト社製
1. Polished substrate holding material As the polished substrate holding material, the polished substrate holding material of No. 1 to No. 8 shown in Table 1 was used. These holding materials are subjected to ashing treatment, and the X-ray fluorescence (XRF) qualitative analysis, inductively coupled plasma emission spectroscopy (ICP-AES), and scanning electron microscope observation and energy dispersion are performed on the residue after ashing. Inorganic elemental analysis (Al, Mg, and Ti) and detection of inorganic particles were performed using a type X-ray analysis method (SEM-EDS). The bending elastic modulus of the holding material was also measured. Those conditions are as follows. The to-be-polished substrate holding materials of No. 1 to No. 3 are made of a cyclic olefin polymer and manufactured according to the method disclosed in Patent Document 4. The polished substrate holding materials of No. 4 to No. 8 were used as holding materials for conventional polished substrates, and the following commercially available products were used.
No. 4, 5, 7: Sagami PCI
No.6: Made by CRT
No.8: Fuji Bakelite

[灰化条件]
所定の大きさにカットした保持材片を超純水にて洗浄、乾燥後、約5gを磁性るつぼに入れ、電気炉に入れた。550℃、1時間加熱し、保持材を灰化し、灰化残渣を得た。灰化処理の残渣量は下記式により算出した。
灰化残渣量=(熱処理後の質量/熱処理前の質量)x100
[Ashing condition]
The holding material piece cut to a predetermined size was washed with ultrapure water and dried, and then about 5 g was placed in a magnetic crucible and placed in an electric furnace. It heated at 550 degreeC for 1 hour, the holding material was incinerated, and the incineration residue was obtained. The amount of residue in ashing was calculated by the following formula.
Ashing residue amount = (mass after heat treatment / mass before heat treatment) × 100

[蛍光X線(XRF)定性分析条件]
測定装置:蛍光X線分析装置 ZSX100e(リガク社製)
評価:前期灰化処理にて得た灰化残渣を蛍光X線分析装置(ターゲット:ロジウム管球・管電圧:50kV・管電流50mA)にて定性分析を行った。
[Fluorescent X-ray (XRF) qualitative analysis conditions]
Measuring device: X-ray fluorescence analyzer ZSX100e (manufactured by Rigaku Corporation)
Evaluation: The ashing residue obtained in the previous ashing treatment was subjected to qualitative analysis using a fluorescent X-ray analyzer (target: rhodium bulb, tube voltage: 50 kV, tube current 50 mA).

[誘導結合プラズマ発光分光法(ICP−AES)条件]
測定装置:誘導結合プラズマ発光分析装置 SPS5520(エスアイアイ・ナノテクノロジー社製)
評価:所定の大きさにカットした基板保持材に硫酸を加え、灰化した後、アルカリ溶融を実施した。融解処理にて得た試料に塩酸を加え溶解したものを測定試料とし、誘導結合プラズマ発光分析装置にてAl、Mg、Ti元素含有量の測定を行った。なお、No.8の被研磨保持材は、XRF定性分析にてMgが多量に検出されたため、ICP−AESによるMgの分析は行わなかった。
[Inductively coupled plasma emission spectroscopy (ICP-AES) conditions]
Measuring device: Inductively coupled plasma emission spectrometer SPS5520 (manufactured by SII Nanotechnology)
Evaluation: Sulfuric acid was added to the substrate holding material cut to a predetermined size to make it ash, and then alkali melting was performed. A sample obtained by melting and adding hydrochloric acid to a sample was used as a measurement sample, and the contents of Al, Mg, and Ti elements were measured with an inductively coupled plasma emission spectrometer. The No. 8 polished holding material was not analyzed for Mg by ICP-AES because a large amount of Mg was detected by XRF qualitative analysis.

[走査型電子顕微鏡観察とエネルギー分散型X線分析法(SEM−EDS)条件]
測定装置:走査型電子顕微鏡 S−4800(日立ハイテク社製)
測定装置:エネルギー分散型X線分析 EMAX EX−350(堀場製作所社製)
評価:前記XRF定性分析で行った灰化条件にて灰化した試料を超純水に分散させ、メンブレンフィルター(K020A025A:アドバンテック東洋社製)を用いてろ過を実施した。フィルターを乾燥後、観察用試料台に固定し、オスミウム蒸着を実施し、観察を実施した。フィルター上の残渣を無作為に50点選択し、走査型電子顕微鏡(加速電圧:10kV)にて観察、エネルギー分散型X線分析により元素の同定を実施した。No.4で検出された無機粒子(Al/Si/O)のSEM写真の一例を図1に示す。また、No.5で検出された無機粒子(Ti/O)のSEM写真の一例を図2に示す。
[Scanning electron microscope observation and energy dispersive X-ray analysis (SEM-EDS) conditions]
Measuring device: Scanning electron microscope S-4800 (manufactured by Hitachi High-Tech)
Measuring device: Energy dispersive X-ray analysis EMAX EX-350 (manufactured by Horiba Ltd.)
Evaluation: The sample incinerated under the incineration conditions performed in the XRF qualitative analysis was dispersed in ultrapure water, and filtered using a membrane filter (K020A025A: manufactured by Advantech Toyo Co., Ltd.). After drying the filter, the filter was fixed on an observation sample stage, osmium vapor deposition was performed, and observation was performed. Residues on the filter were randomly selected at 50 points, observed with a scanning electron microscope (acceleration voltage: 10 kV), and element identification was performed by energy dispersive X-ray analysis. An example of an SEM photograph of inorganic particles (Al / Si / O) detected in No. 4 is shown in FIG. An example of an SEM photograph of inorganic particles (Ti / O) detected in No. 5 is shown in FIG.

[曲げ弾性率]
測定装置:オートグラフ AG−100KNX(島津製作所製)
評価:所定の大きさにカットした試験片をオートグラフにて測定を実施し、JIS K7171に従い、曲げ弾性率の算出を実施した。
[Bending elastic modulus]
Measuring device: Autograph AG-100KNX (manufactured by Shimadzu Corporation)
Evaluation: A test piece cut to a predetermined size was measured with an autograph, and bending elastic modulus was calculated according to JIS K7171.

2.研磨
下記被研磨基板及び研磨液組成物、並びに、前記No.1からNo.8の被研磨基板保持材を用いて、下記の条件で研磨を行った(実施例1〜3、比較例1〜5)。
2. Polishing Polishing was performed under the following conditions using the following substrate to be polished, the polishing liquid composition, and the substrate holding material to be polished from No. 1 to No. 8 (Examples 1 to 3, Comparative Examples 1 to 3). 5).

[被研磨基板]
被研磨基板は、Ni−Pメッキされたアルミニウム合金基板を予めアルミナ研磨剤を含有する研磨液組成物で粗研磨した基板を用いた。なお、この被研磨基板は、厚み1.27mm、直径95mm(中心部直径25mmの穴あきドーナツ型)であり、AFM(Digital Instrument Nano Scope IIIa Multi Mode AFM)により測定した中心線平均粗さRaが1nm、長波長うねり(波長0.4〜2mm)の振幅は2nmであった。
[Polished substrate]
As the substrate to be polished, a substrate obtained by rough polishing an aluminum alloy substrate plated with Ni-P in advance with a polishing composition containing an alumina abrasive was used. The substrate to be polished has a thickness of 1.27 mm and a diameter of 95 mm (a holed donut shape having a central portion diameter of 25 mm), and has a center line average roughness Ra measured by AFM (Digital Instrument Nano Scope IIIa Multi Mode AFM). The amplitude of 1 nm long wave waviness (wavelength 0.4-2 mm) was 2 nm.

[研磨液組成物の調製]
研磨液組成物は、超純水に硫酸、1H−ベンゾトリアゾール、アミノエチルエタノールアミン、過酸化水素を加え、更にコロイドシリカ(平均粒子径:25nm)を加えて調整した。この際、研磨液組成物中の硫酸濃度を0.5質量%、1H−ベンゾトリアゾール濃度を0.1質量%、アミノエチルエタノールアミンを0.05質量%、過酸化水素濃度を0.4質量%とした。また、コロイドシリカの含有量は5質量%とした。
[Preparation of polishing composition]
The polishing composition was prepared by adding sulfuric acid, 1H-benzotriazole, aminoethylethanolamine, and hydrogen peroxide to ultrapure water, and further adding colloidal silica (average particle size: 25 nm). At this time, the sulfuric acid concentration in the polishing composition was 0.5% by mass, the 1H-benzotriazole concentration was 0.1% by mass, aminoethylethanolamine was 0.05% by mass, and the hydrogen peroxide concentration was 0.4% by mass. %. The content of colloidal silica was 5% by mass.

[研磨条件]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み1.04mm、平均気孔径20μm(フジボウ社製)
定盤回転数:35rpm
研磨荷重:10kPa(設定値)
研磨液供給量:100mL/分(0.076mL/(cm2・分))
研磨時間:6分(研磨量:45mg/枚)
投入した基板の枚数:10枚(両面研磨)
リンス条件:
定盤回転数:20rpm
研磨荷重:2.5kPa
イオン交換水供給量:2L/分で15秒間
[Polishing conditions]
Polishing machine: Double-side polishing machine (9B-type double-side polishing machine, manufactured by Speed Fam Co., Ltd.)
Polishing pad: Suede type (foam layer: polyurethane elastomer), thickness 1.04mm, average pore diameter 20μm (Fujibow)
Plate rotation speed: 35 rpm
Polishing load: 10 kPa (setting value)
Polishing liquid supply amount: 100 mL / min (0.076 mL / (cm 2 · min))
Polishing time: 6 minutes (polishing amount: 45 mg / sheet)
Number of substrates loaded: 10 (double-side polishing)
Rinse conditions:
Plate rotation speed: 20 rpm
Polishing load: 2.5 kPa
Ion exchange water supply rate: 15 seconds at 2 L / min

[洗浄条件]
研磨後の基板を、下記条件で洗浄した。
1) 基板を超純水中に浸漬し、超音波照射(950kHz)を1分間行う。
2) 超音波照射後の基板を洗浄ブラシがセットされたスクラブ洗浄ユニットに移送し洗浄する。
[Cleaning conditions]
The substrate after polishing was washed under the following conditions.
1) The substrate is immersed in ultrapure water and subjected to ultrasonic irradiation (950 kHz) for 1 minute.
2) The substrate after ultrasonic irradiation is transferred to a scrub cleaning unit on which a cleaning brush is set and cleaned.

3.評価方法
前記研磨について、研磨抵抗、研磨後の基板表面欠陥(スクラッチ及び突起欠陥)、及び研磨後の保持材の耐摩耗性を評価した。
3. Evaluation Method About the polishing, polishing resistance, substrate surface defects after polishing (scratches and protrusion defects), and abrasion resistance of the holding material after polishing were evaluated.

[研磨抵抗]
測定装置:リモートI/O R1M-GH(エム・システム技研社製)
評価:測定装置を研磨機のインバーターに接続し、モーター電流を測定した。研磨荷重10kPaにおけるモーター電流の平均値を算出した。その結果を表2に示す。
[Polishing resistance]
Measuring device: Remote I / O R1M-GH (M system Giken)
Evaluation: The measuring device was connected to the inverter of the polishing machine, and the motor current was measured. The average value of the motor current at the polishing load of 10 kPa was calculated. The results are shown in Table 2.

[表面欠陥(スクラッチ及び突起欠陥)の評価]
測定機器:Candela OSA7100(KLA Tencor社製)
評価:前記条件で研磨及び洗浄を行った基板のうち、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射してスクラッチ数(個)及び突起欠陥数(個)を測定した。その4枚の基板の各々両面にあるスクラッチ数(個)及び突起欠陥数(個)の合計を8で除して、基板面当たりのスクラッチ数及び突起欠陥数を算出した。それらの結果を、表2に、比較例1を100とした相対値として示す。
[Evaluation of surface defects (scratches and protrusion defects)]
Measuring instrument: Candela OSA7100 (manufactured by KLA Tencor)
Evaluation: Of the substrates polished and cleaned under the above conditions, four were selected at random, and each substrate was irradiated with a laser at 10,000 rpm to measure the number of scratches (numbers) and the number of protrusion defects (numbers). did. The total of the number of scratches (number) and the number of protrusion defects (number) on both surfaces of each of the four substrates was divided by 8 to calculate the number of scratches and the number of protrusion defects per substrate surface. The results are shown in Table 2 as relative values with Comparative Example 1 taken as 100.

[突起欠陥(付着物)の解析]
測定装置:走査型電子顕微鏡 S−4800(日立ハイテク社製)
測定装置:エネルギー分散型X線分析 EMAX EX−350(堀場製作所社製)
評価:前記条件にて検出した突起欠陥のうち、無作為に20点を選択し、Candela OSA7100にてマーキングを実施した。その20点を走査型電子顕微鏡(加速電圧:10kV)にて観察、エネルギー分散型X線分析により元素の同定を実施した。
[Analysis of protrusion defects (attachments)]
Measuring device: Scanning electron microscope S-4800 (manufactured by Hitachi High-Tech)
Measuring device: Energy dispersive X-ray analysis EMAX EX-350 (manufactured by Horiba Ltd.)
Evaluation: Of the protrusion defects detected under the above conditions, 20 points were randomly selected, and marking was performed with Candela OSA7100. The 20 points were observed with a scanning electron microscope (acceleration voltage: 10 kV), and the elements were identified by energy dispersive X-ray analysis.

[耐摩耗性]
研磨後に各保持材を取り出し、光学顕微鏡により前記保持材の歯車部の磨耗量を目視観察し、下記の基準で評価した。評価点B以上であれば使用可能である。
A: 欠け、磨耗がほとんどなし
B: 欠け、磨耗が若干あり
C: 欠け、磨耗が著しい
[Abrasion resistance]
Each grinding | polishing material was taken out after grinding | polishing, the amount of abrasion of the gear part of the said retaining material was visually observed with the optical microscope, and the following reference | standard evaluated. If it is more than evaluation point B, it can be used.
A: Almost no chipping or wear B: Some chipping or wear C: Significant chipping or wear

表1及び2に示す通り、No.1〜No.3の被研磨基板保持材を用いた実施例1〜3では、No.4〜No.8の被研磨基板保持材を用いた比較例1〜5に比べ、研磨後の表面欠陥数が低減された。また、実施例1〜3の突起欠陥である付着物中にはAl、Mg、Tiに由来する無機粒子は含まれていなかったが、比較例1〜5の付着物中にはAl、Mg、Tiに由来する無機粒子が検出された。また、実施例1〜3の研磨時の研磨抵抗は、比較例1〜5の研磨時の研磨抵抗に比べて低かった。   As shown in Tables 1 and 2, in Examples 1 to 3 using No. 1 to No. 3 polished substrate holding materials, Comparative Example 1 using No. 4 to No. 8 polished substrate holding materials Compared with ˜5, the number of surface defects after polishing was reduced. Moreover, although the inorganic particle derived from Al, Mg, and Ti was not contained in the deposit which is the projection defect of Examples 1-3, Al, Mg, Inorganic particles derived from Ti were detected. Moreover, the grinding | polishing resistance at the time of grinding | polishing of Examples 1-3 was low compared with the grinding | polishing resistance at the time of grinding | polishing of Comparative Examples 1-5.

本発明の磁気ディスクの製造方法は、例えば、高記録密度の磁気ディスク基板の製造に好適に用いることができる。   The method for producing a magnetic disk of the present invention can be suitably used for producing a magnetic disk substrate having a high recording density, for example.

1:基研磨基板保持材
2:貫通孔
3:被研磨基板
4:研磨パッド
5:定盤
1: Base polishing substrate holding material 2: Through hole 3: Polished substrate 4: Polishing pad 5: Surface plate

Claims (9)

被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、
前記研磨が、樹脂を含む被研磨基板保持材を用いた研磨であり、
前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下である、磁気ディスク基板の製造方法。
A method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished,
The polishing is polishing using a substrate holding material containing a resin,
The method for manufacturing a magnetic disk substrate, wherein the content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively.
被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、
前記研磨が、樹脂を含む被研磨基板保持材を用いた研磨であり、
前記保持材の灰化処理後の残渣量が、0.10質量%以下である、磁気ディスク基板の製造方法。
A method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished,
The polishing is polishing using a substrate holding material containing a resin,
The method for producing a magnetic disk substrate, wherein the amount of residue after the ashing treatment of the holding material is 0.10% by mass or less.
被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法であって、
前記研磨が、樹脂を含む被研磨基板保持材を用いた研磨であり、
前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下であり、かつ、
前記保持材の灰化処理後の残渣量が、0.10質量%以下である、磁気ディスク基板の製造方法。
A method of manufacturing a magnetic disk substrate including a step of polishing a substrate to be polished,
The polishing is polishing using a substrate holding material containing a resin,
The content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively, and
The method for producing a magnetic disk substrate, wherein the amount of residue after the ashing treatment of the holding material is 0.10% by mass or less.
前記保持材の曲げ弾性率が2000MPa以上である、請求項1から3のいずれかに記載の磁気ディスク基板の製造方法。 The method for manufacturing a magnetic disk substrate according to claim 1, wherein the holding member has a flexural modulus of 2000 MPa or more. 前記樹脂が、環状オレフィン系重合体樹脂である、請求項1から4のいずれかに記載の磁気ディスク基板の製造方法。 The method for manufacturing a magnetic disk substrate according to claim 1, wherein the resin is a cyclic olefin polymer resin. 前記保持材が、灰化処理後の残渣に対して蛍光X線定性分析を行った場合に、Al、Mg、及びTiのすべてが実質的に検出されない保持材である、請求項1から5のいずれかに記載の磁気ディスク基板の製造方法。 The holding material is a holding material in which all of Al, Mg, and Ti are not substantially detected when a fluorescent X-ray qualitative analysis is performed on the residue after ashing treatment. The manufacturing method of the magnetic disc board | substrate in any one. 前記保持材が、灰化処理後の残渣に対して走査型電子顕微鏡観察による無機粒子検出を行った場合に、Al、Mg、又はTiを含む無機粒子が実質的に検出されない保持材である、請求項1から6のいずれかに記載の磁気ディスク基板の製造方法。 The holding material is a holding material in which inorganic particles containing Al, Mg, or Ti are not substantially detected when inorganic particles are detected by observation with a scanning electron microscope on the residue after the ashing treatment. A method for manufacturing a magnetic disk substrate according to claim 1. 前記被研磨基板が、Ni−Pメッキされたアルミニウム合金基板又はガラス基板である、請求項1から7のいずれかに記載の磁気ディスク基板の製造方法。 The method for manufacturing a magnetic disk substrate according to claim 1, wherein the substrate to be polished is an aluminum alloy substrate or a glass substrate plated with Ni—P. 磁気ディスク基板の研磨方法であって、樹脂を含む被研磨基板保持材を用いて被研磨基板を研磨することを含み、前記被研磨基板保持材が、下記(1)及び(2)の少なくとも一方の条件を満たす、研磨方法。
(1)前記保持材におけるAl、Mg、及びTi金属イオンの含有量が、保持材中に、それぞれ、10ppm以下。
(2)前記保持材の灰化処理後の残渣量が、0.10質量%以下。
A method of polishing a magnetic disk substrate, comprising polishing a substrate to be polished using a substrate holding material containing a resin, wherein the substrate holding material is at least one of the following (1) and (2): A polishing method that satisfies the following conditions.
(1) The content of Al, Mg, and Ti metal ions in the holding material is 10 ppm or less in the holding material, respectively.
(2) The amount of the residue after the ashing treatment of the holding material is 0.10% by mass or less.
JP2012241160A 2012-10-31 2012-10-31 Manufacturing method of magnetic disk substrate Active JP6061621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012241160A JP6061621B2 (en) 2012-10-31 2012-10-31 Manufacturing method of magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012241160A JP6061621B2 (en) 2012-10-31 2012-10-31 Manufacturing method of magnetic disk substrate

Publications (2)

Publication Number Publication Date
JP2014093098A true JP2014093098A (en) 2014-05-19
JP6061621B2 JP6061621B2 (en) 2017-01-18

Family

ID=50937072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012241160A Active JP6061621B2 (en) 2012-10-31 2012-10-31 Manufacturing method of magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP6061621B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170556A1 (en) * 2014-05-08 2015-11-12 冨士ベークライト株式会社 Polishing carrier and method for manufacturing same
JP2016087767A (en) * 2014-11-10 2016-05-23 Kbセーレン株式会社 Material for holding object to be polished
JP2016087751A (en) * 2014-11-06 2016-05-23 Kbセーレン株式会社 Material for holding object to be polished
JP2016097462A (en) * 2014-11-20 2016-05-30 Kbセーレン株式会社 Material for holding article to be polished
JP2016132059A (en) * 2015-01-19 2016-07-25 Kbセーレン株式会社 Polishing object holding material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009709A (en) * 1999-06-25 2001-01-16 Shin Kobe Electric Mach Co Ltd Polishing workpiece holding member
US6439984B1 (en) * 1998-09-16 2002-08-27 Entegris, Inc. Molded non-abrasive substrate carrier for use in polishing operations
JP2008080443A (en) * 2006-09-27 2008-04-10 Covalent Materials Corp Single-side polishing device
JP2009274150A (en) * 2008-05-13 2009-11-26 Kawamura Sangyo Kk Method of manufacturing substrate for polishing object holding material, and substrate for polishing object holding material
JP2010274472A (en) * 2009-05-27 2010-12-09 Teijin Dupont Films Japan Ltd Biaxially oriented laminated polyester film and magnetic recording medium
JP2011006518A (en) * 2009-06-23 2011-01-13 Polyplastics Co Cellulose fiber-reinforced cyclic olefin-based resin composition, and molded article formed by molding this resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6439984B1 (en) * 1998-09-16 2002-08-27 Entegris, Inc. Molded non-abrasive substrate carrier for use in polishing operations
JP2001009709A (en) * 1999-06-25 2001-01-16 Shin Kobe Electric Mach Co Ltd Polishing workpiece holding member
JP2008080443A (en) * 2006-09-27 2008-04-10 Covalent Materials Corp Single-side polishing device
JP2009274150A (en) * 2008-05-13 2009-11-26 Kawamura Sangyo Kk Method of manufacturing substrate for polishing object holding material, and substrate for polishing object holding material
JP2010274472A (en) * 2009-05-27 2010-12-09 Teijin Dupont Films Japan Ltd Biaxially oriented laminated polyester film and magnetic recording medium
JP2011006518A (en) * 2009-06-23 2011-01-13 Polyplastics Co Cellulose fiber-reinforced cyclic olefin-based resin composition, and molded article formed by molding this resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170556A1 (en) * 2014-05-08 2015-11-12 冨士ベークライト株式会社 Polishing carrier and method for manufacturing same
JP2016087751A (en) * 2014-11-06 2016-05-23 Kbセーレン株式会社 Material for holding object to be polished
JP2016087767A (en) * 2014-11-10 2016-05-23 Kbセーレン株式会社 Material for holding object to be polished
JP2016097462A (en) * 2014-11-20 2016-05-30 Kbセーレン株式会社 Material for holding article to be polished
JP2016132059A (en) * 2015-01-19 2016-07-25 Kbセーレン株式会社 Polishing object holding material

Also Published As

Publication number Publication date
JP6061621B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
CN102992600B (en) The manufacture method of chemcor glass goods
US8328602B2 (en) Glass substrate for information recording medium and method for manufacturing the same, and magnetic recording medium
JP6061621B2 (en) Manufacturing method of magnetic disk substrate
US20120244388A1 (en) Glass substrate for information recording media, process for its production, and magnetic recording medium
JP6574537B2 (en) Non-magnetic substrate for magnetic disk and magnetic disk
JP2006167817A (en) Polishing liquid composition for glass substrate
JP5373511B2 (en) Manufacturing method of glass substrate for magnetic disk, glass substrate for magnetic disk, and magnetic disk
CN102473423B (en) The manufacture method of glass substrate for disc
JP4198607B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2010102819A (en) Magnetic disk substrate and magnetic disk
JP2012027976A (en) Method for manufacturing glass substrate for magnetic recording medium
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
JP2005225713A (en) Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2010238298A (en) Method for manufacturing glass substrate for magnetic disk
JP5084495B2 (en) Manufacturing method of glass substrate for magnetic disk, glass substrate for magnetic disk and magnetic disk
JP2010073243A (en) Method for manufacturing glass substrate for magnetic disk
JP2010238303A (en) Method for manufacturing glass substrate for magnetic disk
JP6034580B2 (en) Manufacturing method of glass substrate for HDD
JP4577296B2 (en) Reproduction method of non-metallic substrate for magnetic recording medium
US20130192304A1 (en) Manufacturing Method for Glass Substrate for Information Recording Medium
CN104798132B (en) The manufacturing method of HDD glass substrate and its manufacturing method and information recording carrier
JP2014175023A (en) Method for manufacturing glass substrate for magnetic recording medium
JP6015259B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of magnetic disk
CN102473425A (en) Producing glass substrate for magnetic disk
WO2013099083A1 (en) Method for manufacturing glass substrate for hdd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R151 Written notification of patent or utility model registration

Ref document number: 6061621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250