JP2014092086A - 太陽熱発電プラント及び太陽熱蓄熱放熱装置 - Google Patents

太陽熱発電プラント及び太陽熱蓄熱放熱装置 Download PDF

Info

Publication number
JP2014092086A
JP2014092086A JP2012243595A JP2012243595A JP2014092086A JP 2014092086 A JP2014092086 A JP 2014092086A JP 2012243595 A JP2012243595 A JP 2012243595A JP 2012243595 A JP2012243595 A JP 2012243595A JP 2014092086 A JP2014092086 A JP 2014092086A
Authority
JP
Japan
Prior art keywords
heat
steam
water
solar
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012243595A
Other languages
English (en)
Inventor
Nobuyoshi Mishima
信義 三島
Takahiro Abe
天洋 阿部
Toshihiko Sakakura
季彦 坂倉
Naoyuki Nagabuchi
尚之 永渕
Tetsuo Yomo
哲夫 四方
Takahiro Marumoto
隆弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2012243595A priority Critical patent/JP2014092086A/ja
Publication of JP2014092086A publication Critical patent/JP2014092086A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】
太陽熱発電プラントにおけるサイクルを簡素化して建設コストを低減すると共に太陽熱を効果的に蓄熱することが可能な太陽熱発電プラント及び太陽熱蓄熱放熱装置を提供する。
【解決手段】
太陽熱発電プラントは、水/水蒸気を熱媒体として使用し過熱蒸気を生成する太陽熱集熱装置と、太陽熱蓄熱放熱熱媒体として溶融塩又は油を用いた太陽熱蓄熱放熱装置と、水蒸気を熱媒体として用いた蒸気タービン発電設備とから構成され、太陽熱集熱装置の熱媒体に回収した太陽熱を太陽熱蓄熱放熱装置に蓄熱する際に、太陽熱集熱装置の熱媒体が過熱蒸気から飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の温度領域にて複数の太陽熱蓄熱放熱熱媒体タンクに蓄熱する。
【選択図】 図1

Description

本発明は、太陽熱発電プラント及び太陽熱蓄熱放熱装置に関する。
太陽熱発電プラントは、日射の変動時にも安定した運転ができ、夜間・雨天などにも発電できるようにするために、一般的に蓄熱装置が設けられている。
例えば、特許文献1では、太陽熱集熱装置で高温になった熱媒体を蒸気発生用熱交換器に供給して高温の熱媒体と蒸気タービンからの給水との熱交換により蒸気タービンに供給する蒸気を発生させるようにするとともに、蓄熱時には、太陽熱集熱装置で高温になった熱媒体を、分流させて蓄熱装置用熱交換器に供給して、蓄熱装置からの低温の蓄熱材と熱交換して蓄熱装置に蓄熱し、また、放熱時には、蒸気発生用熱交換器において給水との熱交換で低温となった太陽熱集熱装置に供給する熱媒体を、分流させて蓄熱装置用熱交換器に供給し、蓄熱装置からの高温の蓄熱材と熱交換して高温の熱媒体として蒸気発生用熱交換器に供給し蒸気を発生させるようにしている。
また、特許文献2では、太陽熱蓄熱装置として低温蓄熱タンク、中温蓄熱タンク及び高温蓄熱タンクを設け、また、太陽熱集熱装置としてトラフ型太陽熱集熱装置とタワー型太陽熱集熱装置を設けている。そして、低温蓄熱タンクに収容された熱媒体をトラフ型太陽熱集熱装置に供給し、トラフ型集熱装置において第一の温度まで加熱した中温熱媒体を中温蓄熱タンクに収容し、中温蓄熱タンクに収容された熱媒体をタワー型太陽熱集熱装置に供給し、タワー型太陽熱集熱装置において第二の温度まで加熱した高温熱媒体を高温蓄熱タンクに収容している。そして、高温蓄熱タンクから高温熱媒体を蒸気生成用の熱交換器に加熱媒体として供給し、熱交換器で発生した蒸気を蒸気タービンに供給して発電するようにしている。また、蒸気発生用の熱交換器で熱交換して低温となった熱媒体を低温蓄熱タンクに戻すように構成されている。
特開2012−37217号公報(図5) 米国特許公報第7296410号(図3)
特許文献1では、太陽熱を回収する熱媒体と、太陽熱を蓄熱する熱媒体(蓄熱材)と、蒸気タービンを回転させる熱媒体の3種類の熱媒体がそれぞれ分離独立して存在し、それぞれ独自の熱媒体サイクル構成を成している。例えば、太陽熱を回収する熱媒体(一次熱媒体)として太陽熱回収用の高温仕様向けに作られた熱媒体油が用いられ、また、太陽熱エネルギを蓄熱する熱媒体(二次熱媒体)として溶融塩が用いられ、また、蒸気タービン熱サイクルの熱媒体(三次熱媒体)として水/水蒸気が用いられる。このように、従来の太陽熱発電プラントでは、一次熱媒体・油サイクルと、二次熱媒体・溶融塩サイクルと、三次熱媒体・水蒸気サイクルの3サイクルが必要となり、太陽熱発電プラントのシステムが複雑化し、太陽熱発電プラントの建設コストが増加する要因となる。
また、特許文献2においても、太陽熱を回収し蓄熱する熱媒体サイクルと、蒸気タービン熱サイクルが別々の熱媒体にて構成されており、機器構成が複雑化して太陽熱発電プラントの建設コストが増加する要因となる。また、運用の複雑化も懸念される。
本発明の目的は、太陽熱発電プラントにおけるサイクルを簡素化して建設コストを低減すると共に太陽熱を効果的に蓄熱することが可能な太陽熱発電プラント及び太陽熱蓄熱放熱装置を提供することにある。
本発明の太陽熱発電プラントは、水/水蒸気を熱媒体として使用し過熱蒸気を生成する太陽熱集熱装置と、太陽熱蓄熱放熱熱媒体として溶融塩又は油を用いた太陽熱蓄熱放熱装置と、水蒸気を熱媒体として用いた蒸気タービン発電設備とから構成され、太陽熱集熱装置の熱媒体に回収した太陽熱を太陽熱蓄熱放熱装置に蓄熱する際に、太陽熱集熱装置の熱媒体が過熱蒸気から飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の温度領域にて複数の太陽熱蓄熱放熱熱媒体タンクに蓄熱するようにしたことを特徴とする。
本発明によれば、太陽熱集熱装置の熱媒体と蒸気タービン発電設備の熱媒体が同じになるので、太陽熱発電プラントにおけるサイクルを簡素化して建設コストを低減することが可能となる。また、太陽熱集熱装置で太陽熱を回収した熱媒体(水蒸気)から効果的に太陽熱を蓄熱することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例の中型太陽熱発電プラントの全体構成図。 図1の中型太陽熱発電プラントにおける太陽熱蓄熱放熱装置の詳細な構成図。 図1の中型太陽熱発電プラントにおける蓄熱運転を説明する図。 図1の中型太陽熱発電プラントの蓄熱運転における高温・低温蓄熱媒体移動位置を説明する図。 図1の中型太陽熱発電プラントにおける放熱運転を説明する図。 図1の中型太陽熱発電プラントの放熱運転における高温・低温放熱媒体移動位置を説明する図。 本発明の他の一実施例の小型太陽熱発電プラントの全体構成図。 図5の小型太陽熱発電プラントにおける太陽熱蓄熱放熱装置の詳細な構成図。 本発明の実施例に用いられる飽和蒸気復水器の構成例を説明する図。 本発明の実施例に適用される太陽熱マネイジメントの概念を説明する図。
以下、本発明の実施例を説明する。
本発明の実施例の太陽熱発電プラントは、太陽からの熱を昼間集熱して、その熱で蒸気を発生させ蒸気タービン発電機を回転させて発電すると同時に、その熱の一部を昼間に蓄熱して、夜間でも、蓄熱した太陽熱エネルギを放熱して、その熱で蒸気を発生させ蒸気タービン発電機を回し発電できるようにしている。すなわち、従来の太陽熱発電プラントで一般的に採用されている一次、二次及び三次熱媒体の分離独立したサイクルのように多くの熱媒体サイクルを設置しないで、太陽熱を回収する、また、太陽熱蓄熱放熱装置からの放熱を回収する熱媒体として油ではなく水/水蒸気、つまり、蒸気タービンを回す水蒸気と同じ熱媒体を採用して熱媒体を統合化し、簡素化した熱媒体サイクルとしている。つまり、熱媒体として水/水蒸気を使い太陽熱を集熱する太陽熱集熱熱媒体サイクル(一次熱媒体サイクル部)と、集熱した太陽熱を溶融塩または高温熱媒体油を使い蓄熱または放熱する二次熱媒体サイクル部と、水/水蒸気を熱媒体とする蒸気タービンの水蒸気サイクル(蒸気タービンサイクル/三次熱媒体サイクル部)の三つのサイクル部における、一次熱媒体サイクル部と三次熱媒体サイクル部において使用する熱媒体を水/水蒸気(一次熱媒体=三次熱媒体。以下、本発明の実施例では纏めて一次熱媒体という。)に統一し、両サイクル部を合体(連結)させて熱媒体サイクルの簡素化合理化を行っている。
また、本発明の実施例の太陽熱発電プラントは、言い換えれば、太陽熱集熱装置を、汽力発電プラントのボイラに対応するものとして用い、太陽熱集熱熱媒体サイクルと蒸気タービンサイクルとを連結して一つのサイクル(合体サイクル)とし、さらに、太陽熱集熱熱媒体サイクルに対応する側(太陽熱集熱装置)から蒸気タービンサイクルに対応する側(蒸気タービン発電設備)への途中、及び、蒸気タービンサイクルに対応する側から太陽熱集熱熱媒体サイクルに対応する側への途中で、一次熱媒体を分岐させて、太陽熱蓄熱放熱装置の熱媒体と熱交換を行うように構成している。そして、太陽熱蓄熱放熱装置の熱媒体との熱交換で冷却されて水となった、合体サイクルの一次熱媒体を、蒸気タービンサイクルに対応する側の復水・給水系、例えば、脱気器へ流入させるようにしている。
また、本発明の実施例の太陽熱発電プラントでは、昼間、直達日射量が高い時に、水/水蒸気(一次熱媒体)に太陽熱を回収する太陽熱集熱装置の構成として、給水から飽和蒸気の生成と、飽和蒸気から過熱蒸気の生成の二段階で太陽熱を回収するようにしている。すなわち、地上に設置されたトラフ型またはフレネル型太陽熱回収装置(蒸発器)により蒸気タービンサイクルからの給水を加熱して飽和蒸気を生成し、タワー型太陽熱回収装置(蒸発器)により飽和蒸気を加熱して過熱蒸気を生成するようにしている。
太陽熱集熱装置で生成した過熱蒸気は、一部が蒸気タービンサイクル側に供給され、蒸気タービン発電機を回し発電を行い、同時に残りが太陽熱蓄熱放熱装置側に供給される。本発明の実施例の太陽熱発電プラントでは、太陽熱を回収する、また、太陽熱蓄熱放熱装置からの放熱を回収する熱媒体が、蒸気タービンサイクルの熱媒体と同じ水/水蒸気であることに着目し、太陽熱を効率的に蓄熱し放熱する新たな熱媒体サイクルを構成している。
すなわち、太陽熱の蓄熱については、太陽熱蓄熱放熱装置側に送られた過熱蒸気(一次熱媒体)が、二次熱媒体である溶融塩または油と熱交換されて溶融塩または油に蓄熱される。本発明では、太陽熱集熱装置の熱媒体が過熱蒸気から飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の温度領域にて複数の太陽熱蓄熱放熱熱媒体タンクに蓄熱するものである。本発明の実施例では、蒸気熱交換器、飽和蒸気復水器、飽和水熱交換器を備え、蒸気熱交換器において過熱蒸気から飽和蒸気への過程で蒸気の顕熱の熱エネルギを回収し、飽和蒸気復水器において飽和蒸気から飽和水への過程で凝縮潜熱の熱エネルギを回収し、飽和水熱交換器において飽和水から飽和温度よりも低温の水への過程で水の顕熱の熱エネルギを回収している。そして、蒸気熱交換器、飽和蒸気復水器、飽和水熱交換器において、それぞれ高温、中温、低温の三つの温度領域に加熱昇温された二次熱媒体は、高温蓄熱放熱タンク、中温蓄熱放熱タンク、低温蓄熱放熱タンクのそれぞれに収容され、太陽熱蓄熱放熱装置が、太陽熱を複数の温度領域で蓄熱するように構成されている。そして、飽和水熱交換器を出た冷却された水(一次熱媒体)は、上述したように、蒸気タービンサイクルに対応する側の復水・給水系の脱気器へ流入させるようにしている。
また、太陽熱蓄熱放熱装置からの放熱については、蒸気タービンサイクルに対応する側の復水・給水系の給水ポンプから送水された給水を太陽熱蓄熱放熱装置の二次熱媒体と熱交換させて最終的に過熱蒸気を生成させ、蒸気タービンに供給する。本発明の実施例では、飽和水熱交換器、飽和水蒸発器、蒸気熱交換器を備え、飽和水熱交換器において蒸気タービンサイクルの対応する側からの給水を飽和水温度近傍まで加熱昇温し、飽和水蒸発器において飽和水(液相)から飽和蒸気(気相)に相変化させ、蒸気熱交換器において飽和蒸気を過熱蒸気に過熱昇温させ、そして、過熱蒸気を蒸気タービンに供給する。飽和水熱交換器、飽和水蒸発器、蒸気熱交換器には、それぞれの加熱媒体として、低温蓄熱放熱タンク、中温蓄熱放熱タンク、高温蓄熱放熱タンクにそれぞれ収容されている二次熱媒体が供給され、それぞれの二次熱媒体に昼間蓄熱された熱エネルギが利用されるようにしている。
さらに、本発明の実施例の太陽熱発電プラントは、二次熱媒体(太陽熱蓄熱放熱熱媒体)として溶融塩を採用した場合、溶融塩の温度低下による固化防止熱として太陽熱を利用した溶融塩固化防止装置を備えている。
以下、図面を用いて実施例を詳細に説明する。
図1〜図4b、図7及び図8を用いて、本発明の実施例1を説明する。本実施例は、主に、太陽熱エネルギのみで昼間のみならず夜間でも発電できる、太陽熱蓄熱放熱装置を備えた中型太陽熱発電プラントである。なお、ここで言う中型とは太陽熱発電プラントの公称出力が約50MWe級〜250MWe級程度を意味している。この出力を若干下回る場合や若干上回る場合の太陽熱発電プラントにも本実施例を適用できる。
図1に本実施例の中型太陽熱発電プラント全体構成を示す。
本実施例の中型太陽熱発電プラントは、主に、太陽熱集熱装置、蒸気タービン発電設備、太陽熱蓄熱放熱装置から構成されている。太陽熱集熱装置と蒸気タービン発電設備を流れる熱媒体(一次熱媒体=三次熱媒体)としては、水/水蒸気が用いられている。また、一次熱媒体と熱交換して太陽熱を蓄熱または放熱する太陽熱蓄熱放熱装置の蓄熱放熱熱媒体(二次熱媒体)としては、一般的に実用化されている、硝酸ナトリウムや硝酸カリウムなどの溶融塩や高温熱媒体油(例えば、JX日鉱日石エネルギー株式会社の商品名「ハイサーム」など)が用いられる。
太陽熱集熱装置は、主な構成として、地上に設置されたトラフ型またはフレネル型太陽熱回収装置である太陽熱1次蒸発器142と太陽熱2次蒸発器144、タワー型太陽熱回収装置であるタワー型過熱集熱器21とタワー型再熱集熱器25を備えている。太陽熱1次蒸発器142と太陽熱2次蒸発器144には、それぞれ、太陽熱1次蒸発器集熱管143、太陽熱2次蒸発器集熱管145が設けられている。タワー型過熱集熱器21とタワー型再熱集熱器25は、地上に設置されたヘリオスタット(平面鏡)23を用いて太陽光を集光している。
蒸気タービン発電設備は、主な構成として、高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3、蒸気タービン発電機4を備え、また、低圧蒸気タービン復水器10,復水ポンプ13,低圧給水加熱器14,脱気器15,給水ポンプ(太陽熱集熱装置給水ポンプ)16,高圧給水加熱器17などから構成される復水・給水系を備えている。低圧蒸気タービン復水器10には復水器冷却水配管11が取り付けられている。また、低圧給水加熱器14には低圧蒸気タービン3から低圧給水加熱器抽気管30を介して抽気蒸気が供給され、脱気器15には中圧蒸気タービン2から脱気器抽気管29を介して抽気蒸気が供給され、高圧給水加熱器17には中圧蒸気タービン2から高圧給水加熱器抽気管28を介した抽気蒸気と低温再熱抽気管27を介して高圧蒸気タービン1の排気蒸気が供給されている。これらの抽気加熱は一例であり、これに限定されるものではない。
太陽熱蓄熱放熱装置は、主な構成として、蒸気熱交換器33、飽和蒸気復水器34、飽和水熱交換器35、飽和水蒸発器38、低温蓄熱放熱タンク52、中温蓄熱放熱タンク53、高温蓄熱放熱タンク56を備えている。
次に、太陽熱集熱装置、蒸気タービン発電設備、太陽熱蓄熱放熱装置における各熱媒体の流れを説明しながら、太陽熱集熱装置、蒸気タービン発電設備、太陽熱蓄熱放熱装置の構成を説明する。
図1に示すように、高圧給水加熱器17を出た給水は、高圧給水加熱器出口給水管45を通過した後、汽水分離器貯水タンク入口弁51を通過して、汽水分離器貯水タンク入口管47にて汽水分離器貯水タンク18に流入される。汽水分離器貯水タンク18を出た太陽熱集熱装置給水は太陽熱蒸発器循環ポンプ20にて昇圧され、太陽熱1次蒸発器142に送られる。太陽熱1次蒸発器142で部分蒸発した給水は太陽熱1次蒸発器集熱管143を通過して、太陽熱2次蒸発器144に送水されさらに加熱される。太陽熱2次蒸発器144で蒸発した汽水混合流体は太陽熱2次蒸発器集熱管145を通過して、汽水分離器19に流下する。ここで、汽水混合流体は飽和蒸気と飽和水ドレンに分離され、飽和水ドレンは分離器貯水タンク18に落下して貯まる。一方、飽和蒸気はタワー型過熱器集熱装置入口配管8にて、タワー型過熱集熱器21に送られ加熱され、過熱蒸気になる。このように、本実施例では、飽和蒸気の生成と過熱蒸気の生成を複数段階に分けて行っている。タワー型過熱集熱器21に送る前に一次熱媒体を飽和蒸気としておくことにより、タワー型過熱集熱器21として大型のタワー型太陽熱回収装置を設ける必要がない。
タワー型過熱集熱器21で生成した過熱蒸気は、タワー型過熱器集熱器出口配管5を介して、主蒸気切り替え弁6側と、蓄熱運転時蒸気熱交換器入口弁41側に分けられる。
昼間、蒸気タービンを駆動して発電を行う際には、主蒸気切り替え弁6を開き、太陽熱集熱装置で生成した過熱蒸気を蒸気タービン発電設備側に供給する。主蒸気切り替え弁6を通過した過熱蒸気は、高圧蒸気タービン入口配管7を介して高圧蒸気タービン1に供給され仕事を行う。高圧蒸気タービン1を駆動した蒸気は、タワー型再熱集熱器入口配管24を通過してタワー型再熱集熱器25にて再熱されて蒸気温度が再度上昇する。再熱蒸気は、高温再熱配管26を介して中圧蒸気タービン2に供給され、中圧蒸気タービン2を駆動した後の蒸気は、低圧蒸気タービン3に供給され仕事を行う。高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3に連結された蒸気タービン発電機4はこれらの蒸気タービンにより回転し発電を行う。低圧蒸気タービン3を駆動した蒸気は低圧蒸気タービン排気管9を通過して低圧蒸気タービン復水器10に入り復水に戻される。図1では復水器の冷却方式として復水器冷却水を使用する例を示したが、空冷復水器を用いても良い。復水器出口復水配管12を通過した復水は復水ポンプ13にて昇圧され低圧給水加熱器14にて加熱された後、脱気器15に送られる。脱気器15には、後述する飽和水熱交換器出口弁36を出た温水を、蓄熱運転時脱気器ドレン回収管44にて回収するようにしている。また、脱気器15から給水は、太陽熱集熱装置給水ポンプ(蒸気タービン給水ポンプ)16により再び太陽熱集熱装置側へ送られる。
一方、昼間、太陽熱を蓄熱する際には、蓄熱運転時蒸気熱交換器入口弁41を開き、太陽熱集熱装置で回収して発生させた過熱蒸気の一部を分流させて太陽熱蓄熱放熱装置側に供給する。蓄熱運転時蒸気熱交換器入口弁41を通過した過熱蒸気は、蓄熱運転時蒸気熱交換器入口連絡配管43と蓄熱運転時蒸気熱交換器入口弁32を通過して蒸気熱交換器33に流下していく。蒸気熱交換器33において過熱蒸気と後述の高温蓄熱放熱タンク56に収容されている高温蓄熱用の溶融塩と熱交換を行う。蒸気熱交換器33で熱交換されて過熱蒸気は飽和蒸気となり、蒸気熱交換器33から飽和蒸気復水器34に流入する。飽和蒸気復水器34において飽和蒸気と後述の中温蓄熱放熱タンク53に収容されている中温蓄熱用の溶融塩と熱交換を行う。飽和蒸気は、飽和蒸気復水器34にて冷却されて飽和水に、すなわち、気体から液体へ相変化し飽和ドレンになって飽和水熱交換器35に流入する。飽和水熱交換器35において飽和水と後述の低温蓄熱放熱タンク52に収容されている低温蓄熱用の熱媒体油と熱交換を行う。飽和水は、飽和水熱交換器35にて飽和温度より低温の水に冷却され、飽和水熱交換器出口弁36を通過して、復水・給水系の給水加熱器の上流(本実施例では脱気器15)に回収される。このように本実施例では、太陽熱集熱装置で生成された過熱蒸気が飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の温度領域(本実施例では高温、中温、低温の3領域)にて複数の太陽熱蓄熱放熱熱媒体タンクに蓄熱されている。
放熱運転における熱媒体の流れの概要を説明する。高圧給水加熱器出口給水管45を出た給水は、放熱運転時給水管46を通過して放熱運転時飽和水熱交換器入口弁37を流下して、飽和水熱交換器35に流入する。飽和水熱交換器35において給水と後述の低温蓄熱放熱タンク52に収容されている蓄熱した熱媒体油と熱交換を行う。給水は、飽和水熱交換器35にて、吸水ポンプ16で昇圧された圧力の飽和水温度近傍まで加熱され、飽和水蒸発器38に流入する。飽和水蒸発器38において飽和水と後述の中温蓄熱放熱タンク53に収容されている蓄熱した溶融塩と熱交換を行う。飽和水は、飽和水蒸発器38において加熱されて飽和蒸気となり、蒸気熱交換器33に流入する。蒸気熱交換器33において飽和蒸気と後述の高温蓄熱放熱タンク56に収容されている蓄熱した溶融塩と熱交換を行う。飽和蒸気は、蒸気熱交換器33において過熱されて過熱蒸気となり、放熱運転時蒸気熱交換器出口弁40、放熱運転時蒸気熱交換器出口連絡配管42及び放熱運転時高圧蒸気タービン入口配管合流弁107を通過して高圧蒸気タービン入口配管7に合流して、高圧蒸気タービン1に供給される。
次に、太陽熱蓄熱放熱装置の詳細について、図2〜図4aを用いて説明する。
蓄熱運転側の構成と放熱運転側の構成に分けて説明する。先ず、蓄熱運転側の構成について図2、図3a及び図3bを用いて説明する。
本実施例の太陽熱蓄熱放熱装置における蓄熱運転側の構成は、蒸気熱交換器33、飽和蒸気復水器34、飽和水熱交換器35、高温蓄熱放熱タンク56、中温蓄熱放熱タンク53、低温蓄熱放熱タンク52を備え、蒸気熱交換器33、飽和蒸気復水器34、飽和水熱交換器35においてそれぞれ高温、中温、低温の三つの温度領域に加熱昇温された二次熱媒体は、高温蓄熱放熱タンク56、中温蓄熱放熱タンク53、低温蓄熱放熱タンク52のそれぞれに収容され、太陽熱を複数の温度領域で蓄熱するように構成されている。
蒸気熱交換器33は、太陽熱集熱装置及び蒸気タービン発電設備の一次熱媒体(水蒸気)と高温蓄熱放熱タンク56に収容されている溶融塩との熱交換を行う。図3bに示すように、高温蓄熱放熱タンク56の下部に低温の高温蓄熱用の溶融塩がある。低温の溶融塩は、高温蓄熱放熱タンク溶融塩取り出し管88から高温蓄熱放熱タンク溶融塩移送ポンプ59にて取り出され昇圧されて溶融塩配管64を介して蒸気熱交換器33に送られる。一方、蒸気熱交換器33内の蒸気熱交換器加熱管48には蓄熱運転時蒸気熱交換器入口弁32を通過した過熱蒸気が流れる。低温の溶融塩は、蒸気熱交換器33内の蒸気熱交換器加熱管48を介して過熱蒸気により加熱され昇温し、溶融塩配管65、高温蓄熱放熱タンク溶融塩戻管91を通過して、高温蓄熱放熱タンク56の上部に送られ貯められる。一方、蒸気熱交換器33において過熱蒸気から飽和蒸気となった一次熱媒体は、蒸気熱交換器加熱管48から蒸気熱交換器−飽和蒸気復水器連絡管78を通過し、飽和蒸気復水器入口圧力調整弁79を介して飽和蒸気復水器34の蒸気噴霧母管80に送られる。
飽和蒸気復水器34は、蒸気熱交換器33からの飽和蒸気と中温蓄熱放熱タンク53に収容されている溶融塩との熱交換を行う。図3bに示すように、中温蓄熱放熱タンク53の下部に低温の中温蓄熱用の溶融塩がある。低温の溶融塩は、中温蓄熱放熱タンク溶融塩取り出し管87から中温蓄熱放熱タンク溶融塩移送ポンプ58にて取り出され昇圧されて溶融塩配管62を介して飽和蒸気復水器34内の飽和蒸気復水器冷却管132に送られる。低温溶融塩は、飽和蒸気復水器34において飽和蒸気復水器冷却管132を介して飽和蒸気の潜熱にて加熱され昇温し、飽和蒸気復水器冷却管132から溶融塩配管63、中温蓄熱放熱タンク溶融塩戻管90を通過して、中温蓄熱放熱タンク53の上部に送られ貯められる。一方、飽和蒸気は、蒸気噴霧母管80に取り付けられた飽和蒸気噴出ノズル81から飽和蒸気復水器34内に噴出される。飽和蒸気は飽和蒸気復水器34において冷却されて飽和水(ドレン)となり、飽和蒸気復水器−飽和水熱交換器連絡管82を通過し、飽和蒸気復水器水位調整弁83を介して飽和水熱交換器35内の飽和水熱交換器加熱管84に送られる。なお、飽和蒸気復水器34の構成の詳細については図7を用いて後述する。
飽和水熱交換器35は、飽和蒸気復水器34からの飽和水と低温蓄熱放熱タンク52に収容されている熱媒体油との熱交換を行う。図3bに示すように、低温蓄熱放熱タンク52の下部に低温の熱媒体油がある。低温の熱媒体油は、低温蓄熱放熱タンク油取り出し管86から低温蓄熱放熱タンク油移送ポンプ57にて取り出され昇圧されて油配管60を介して飽和水熱交換器35に送られる。一方、飽和水は飽和水熱交換器35内の飽和水熱交換器加熱管84内を流れる。低温熱媒体油は、飽和水熱交換器35において飽和水熱交換器加熱管84を介して飽和水の顕熱にて加熱され昇温し、油配管61、低温蓄熱放熱タンク熱媒体油戻管89を通過して、低温蓄熱放熱タンク52の上部に送られ貯められる。一方、飽和水熱交換器35において飽和温度よりも低温になった水(一次熱媒体)は、飽和水熱交換器出口管85、飽和水熱交換器出口弁36及び蓄熱運転時脱気器ドレン回収管44を通過して脱気器15に送られる。
本実施例では、図3bに示すように、各温度領域に対応して設けられた蓄熱放熱タンク(低温蓄熱放熱タンク52、中温蓄熱放熱タンク53、高温蓄熱放熱タンク56)は、一つのタンク内に断熱部材を配置し、上部側に熱交換で蓄熱した高温の蓄熱媒体を収容し、下部側に熱交換で放熱した低温の蓄熱媒体を収容するようにして、設備を簡素化している。蓄熱運転開始時、冷温蓄熱媒体は各タンクの下部に位置し、各油移送ポンプで取り出され、蓄熱運転終了時は各タンクの上部に位置する。なお、設備コストが上昇するが、各蓄熱放熱タンクを二つのタンクに分けて、蓄熱した高温の蓄熱媒体を収容するタンクと、放熱した冷温の蓄熱媒来を収容するタンクとに分けて構成しても良い。この場合、一つの蓄熱放熱タンクに見られる断熱部材を伝達する熱の移動がないので熱エネルギロスを小さくすることができる。
次に、放熱運転側の構成について図2、図4a及び図4bを用いて説明する。本実施例では、蓄熱が三つの温度領域で行われていることから、放熱も三つの温度領域に対応して複数段階に分けて放熱による過熱蒸気の生成を行っている。本実施例の太陽熱蓄熱放熱装置における放熱運転側の構成は、飽和蒸気復水器34に代えて飽和水蒸発器38が用いられ、その他は、蓄熱運転側の構成が共用されている。蓄熱運転側と機器を共用することは必須ではないが設備コストの観点からは共用化するのが望ましい。
放熱運転側の構成としての飽和水熱交換器35は、低温蓄熱放熱タンク52の熱媒体油と蒸気タービン発電設備の復水・給水系からの給水との熱交換を行う。低温蓄熱放熱タンク52の上部に位置する高温の熱媒体油は、放熱運転時高温熱媒体油取り出し管92から取り出されて低温蓄熱放熱タンク油取り出し管86に合流し、低温蓄熱放熱タンク油移送ポンプ57にて昇圧されて油配管60を介して飽和水熱交換器35に送られる。一方、蒸気タービン発電設備の復水・給水系の給水ポンプ(太陽熱集熱装置給水ポンプ)16からの給水は、放熱運転時給水管46、放熱運転時飽和水熱交換器入口弁37を通過して飽和水熱交換器35内の放熱運転時予熱管130内を流れる。高温の熱媒体油は、飽和水熱交換器35において放熱運転時予熱管130を介して給水を飽和水温度近傍まで加熱する。加熱された給水(飽和水)は飽和水熱交換器−飽和水蒸発器ドラム連絡管102を通過して飽和水蒸発器ドラム103に送られる。一方、高温の熱媒体油は、飽和水熱交換器35において冷却されて低温となり、油配管61、放熱運転時高温熱媒体油戻り管95を通過して低温蓄熱放熱タンク52の下部に送られ貯められる。
飽和水蒸発器38は、中温蓄熱放熱タンク53の溶融塩と飽和温度近傍まで加熱された給水(飽和水)との熱交換を行う。中温蓄熱放熱タンク53の上部に位置する蓄熱した中温蓄熱用の溶融塩(中温溶融塩)は、放熱運転時中温溶融塩取り出し管93から取り出されて中温蓄熱放熱タンク溶融塩取り出し管87に合流し、中温蓄熱放熱タンク溶融塩移送ポンプ58にて昇圧されて溶融塩配管62を介して飽和水蒸発器38に送られる。一方、飽和水蒸発器ドラム103に送られた飽和水は飽和水蒸発器38内の飽和水蒸発器管104内を自然循環力により流れる。中温溶融塩は、飽和水蒸発器38において飽和水蒸発器管104を介して飽和水を加熱する。加熱された飽和水は蒸気となり飽和水蒸気器ドラム103から飽和蒸気として取り出され、飽和蒸気管105を通過して蒸気熱交換器33内の放熱運転時過熱管131に送られる。一方、中温溶融塩は、飽和水蒸発器38において冷却されて低温となり、溶融塩配管63、放熱運転時中温溶融塩戻り管96を通過して中温蓄熱放熱タンク53の下部に送られ貯められる。
蒸気熱交換器33は、高温蓄熱放熱タンク56の溶融塩と飽和蒸気との熱交換を行う。高温蓄熱放熱タンク56の上部に位置する蓄熱した高温蓄熱用の溶融塩(高温溶融塩)は、放熱運転時高温溶融塩取り出し管94から取り出されて高温蓄熱放熱タンク溶融塩取り出し管88に合流し、高温蓄熱放熱タンク溶融塩移送ポンプ59にて昇圧されて溶融塩配管64を介して蒸気熱交換器33に送られる。一方、飽和水蒸気器ドラム103から取り出された飽和蒸気は、蒸気熱交換器33内の放熱運転時過熱管131内を流れる。高温溶融塩は、蒸気熱交換器33において放熱運転時過熱管131を介して飽和蒸気を過熱する。過熱蒸気は、放熱運転時過熱管131から放熱運転時蒸気熱交換器出口弁40を通過し、最終的に高圧蒸気タービン1に送られる。一方、高温溶融塩は、蒸気熱交換器33において冷却されて低温となり、溶融塩配管65、放熱運転時高温溶融塩戻り管97を通過して高温蓄熱放熱タンク56の下部に送られ貯められる。
図4bに放熱運転時における各蓄熱放熱タンク内の蓄熱媒体の運転時期毎の位置を示す。放熱運転開始時、高温の蓄熱媒体は各蓄熱放熱タンクの上部に位置し、各油移送ポンプで取り出され、放熱運転終了時は各蓄熱放熱タンクの下部に位置する。
本実施例では、高温及び中温蓄熱放熱タンクの蓄熱媒体として、一般的に実証され使用されている溶融塩が用いられているが、低温蓄熱放熱タンクの蓄熱媒体と同じように、高温熱媒体油を用いても良い。
また、本実施例のように蓄熱媒体として溶融塩を用いる場合、溶融塩はある融点(溶融塩の構成成分によるが一般的に約230℃)以下になると固体になる性質を持っているので、溶融塩の固化防止対策を施すのが好ましい。すなわち、溶融塩に太陽熱エネルギを与えられない夜間やプラント停止時、その温度が溶融塩の融点温度を下回ると、溶融塩が液体から固体に固化し太陽熱蓄熱放熱装置のタンクや配管内での流動が阻害されるおそれがある。従って、溶融塩が溶融温度以下に冷却されて固化するのを防止するために、溶融塩を加温して常に溶融塩の溶融融点以上の温度を保つ加温システムを設けておくことが望ましい。加温システムを実現するために溶融塩の加温に使う水蒸気を発生させる補助ボイラまたは電気加熱器を設けても良いが、設備費と運転コストが増加し、また、補助ボイラを設置すると、そのボイラ燃料費用の増加と、化石燃料を燃やすことによる、二酸化炭素の排気や、有害酸化物の新たな排気をもたらす。そこで、本実施例では、溶融塩が融点(例えば230℃)を下回らないように、加温の熱媒体として高温熱媒体油を使用し、太陽熱にて高温熱媒体油を加熱して蓄熱しておき、その熱を使って高温及び中温蓄熱放熱タンク内の各溶融塩をそれぞれ加温するようにしている。図2を用いて本実施例における蓄熱加温システムを詳細に説明する。
太陽熱集熱装置で発生した過熱蒸気の一部が蓄熱運転時蒸気熱交換器入口連絡配管43から分岐した熱媒体油タンク加熱管77、熱媒体油タンク入口弁73を通過して高温熱媒体油タンク66側に供給される。熱媒体油タンク入口弁73を通過した過熱蒸気は、高温熱媒体油タンク66内に設けられた熱媒体油タンク加熱器74内を流れ、熱媒体油タンク加熱器74を介して高温熱媒体油タンク66内に貯められた熱媒体油を加熱して、その温度を上げる。熱媒体油タンク加熱器74で冷却されて低温となった蒸気は、熱媒体油タンク加熱蒸気出口弁75を通過して脱気器15に回収される。
高温熱媒体油タンク66に蓄熱された高温熱媒体油は、熱媒体油移送ポンプ入口弁67を通過して、油移送ポンプ68にて昇圧され、油移送ポンプ出口弁69を抜けて、中温蓄熱放熱タンク側熱媒体油分配弁70を出て中温蓄熱放熱タンク53内に設置された加熱器54に送られ、低温の溶融塩を加熱し中温蓄熱用の溶融塩が固化するのを防ぐ。加熱器54で低温の溶融塩と熱交換して冷却された冷温の熱媒体油は中温蓄熱放熱タンク油戻弁76を通過して、高温熱媒体油タンク66に回収される。
また、油移送ポンプ出口弁69を通過した高温熱媒体油の一部は、高温蓄熱放熱タンク側熱媒体油分配弁71を出て高温蓄熱放熱タンク56内に設置された加熱器55に送られ低温の溶融塩を加熱し高温蓄熱用の溶融塩が固化するのを防ぐ。加熱器55で低温の溶融塩と熱交換して冷却された冷温の熱媒体油は高温蓄熱放熱タンク油戻弁72を通過して、高温熱媒体油タンク66に回収される。
なお、高温熱媒体油タンク66についても、本実施例では、図3bや図4bに示すように、一つのタンク内に断熱部材を配置し、上部側に熱交換で蓄熱した高温の蓄熱媒体を収容し、下部側に熱交換で放熱した低温の蓄熱媒体を収容するようにしている。高温熱媒体油タンク66を二つのタンクに分けて構成しても良いことは、上述した蓄熱放熱タンクと同様である。
本実施例によれば、太陽熱回収の一次熱媒体と蒸気タービン駆動の三次熱媒体とを共通の熱媒体としているので、熱媒体サイクルが簡素化され、設備の簡素化と設備コストの低減が可能となる。さらに一次熱媒体として用いている水/水蒸気の状態に応じて太陽熱を蓄熱しているので、太陽熱を効率的に蓄熱することが可能となる。
さらに、本実施例では、太陽熱回収の一次熱媒体として、高温仕様の特殊な熱媒体油を使用しないで、油に比較して粘性の低い一般的なボイラ給水と同じ水/水蒸気を用いているので、太陽熱集熱装置への一次熱媒体の供給を行う給水ポンプの必要動力を節減することができる。その結果、太陽熱発電プラントの所内動力を低減することが可能となる。また、太陽熱集熱装置は膨大な設備全体となるが、その設備全体に熱媒体油を分布配置させると、熱媒体配管のリークによる火災のリスクが高まる。本実施例のように一次熱媒体として水/水蒸気を用いればその心配が無い。
図5及び図6を用いて、本発明の実施例2を説明する。本実施例は、主に、太陽熱エネルギのみで昼間のみならず夜間でも発電できる、太陽熱蓄熱放熱装置を備えた小型太陽熱発電プラントである。なお、ここで言う小型とは太陽熱発電プラントの公称出力が約1MWe級〜50MWe級程度を意味している。この出力を若干下回る場合や若干上回る場合の太陽熱発電プラントにも本実施例を適用できる。
図5に本実施例の小型太陽熱発電プラント全体構成を示す。本実施例の小型太陽熱発電プラント全体構成は、基本的には実施例1の中型太陽熱熱発電プラント全体構成と同等である。図1の実施例1の中型太陽熱発電プラントと同じ構成については同じ符号を付しており、それらの詳細な説明は省略する。
本実施例では、実施例1と異なり、蒸気タービン発電設備の蒸気タービンが小型蒸気タービン120だけで構成されている。このような小型蒸気タービン発電設備では、実施例1における高圧給水加熱器17が設けられておらず、比較的高温の給水を太陽熱集熱装置側に送ることができないので、太陽熱集熱装置側に太陽熱予熱器140を設けている。また、小型太陽熱発電プラントであるので、太陽熱集熱装置として、比較的大型設備となるタワー型太陽熱回収装置を用いず、トラフ型またはフレネル型太陽熱回収装置を用いている。また、太陽熱蓄熱放熱装置の熱媒体についは、固化防止のための加温システムがいらない熱媒体油を、各温度領域の蓄熱を行う熱媒体に用いている。
本実施例の小型太陽熱発電プラントも、主に、太陽熱集熱装置、蒸気タービン発電設備、太陽熱蓄熱放熱装置から構成され、太陽熱集熱装置と蒸気タービン発電設備を流れる熱媒体として、それらを共通化(一次熱媒体=三次熱媒体)して、水/水蒸気を用いている。
蒸気タービン発電設備は、主な構成として、小型蒸気タービン120、小型蒸気タービン発電機121を備え、また、小型復水器123,小型復水ポンプ124,小型低圧給水加熱器125,小型脱気器126,給水ポンプ(小型太陽熱集熱装置給水ポンプ)128などから構成される復水・給水系を備えている。小型復水器123は、小型蒸気タービン排気管122を流れてきた排気蒸気を、空冷式で凝縮させている。また、小型低圧給水加熱器125と小型脱気器126には小型蒸気タービン120からそれぞれ低圧給水加熱器抽気管30と脱気器抽気管29を介して抽気蒸気が供給されている。これらの抽気加熱は一例であり、これに限定されるものではない。また、蓄熱運転時に太陽熱蓄熱放熱装置から排出される飽和温度よりも低温となった水は、本実施例では小型脱気器126に戻される。
太陽熱集熱装置は、主な構成として、地上に設置されたトラフ型またはフレネル型太陽熱回収装置である太陽熱予熱器140、太陽熱1次蒸発器142、太陽熱過熱器148を備え、太陽熱1次蒸発器142に太陽熱飽和蒸気ドラム146を取り付けている。太陽熱予熱器140、太陽熱1次蒸発器142、太陽熱過熱器148には、それぞれ、太陽熱予熱器集熱管141、太陽熱1次蒸発器集熱管143、太陽熱過熱器集熱管149が設けられている。上述したように、小型蒸気タービンの場合、小型脱気器126での給水加温しかできないので、小型太陽熱集熱装置給水ポンプ128から送られてきた給水を太陽熱で加温するために、太陽熱予熱器140を設けている。太陽熱予熱器140を出た給水は、太陽熱予熱器集熱管141を通過して太陽熱1次蒸発器141に流入して多くは飽和蒸気となり、飽和蒸気を含む一次熱媒体は太陽熱1次蒸発器集熱管143を通過して太陽熱飽和蒸気ドラム146に投入される。ここで飽和蒸気と飽和水に汽水分離され、飽和水は太陽熱蒸発器循環ポンプ20で再循環され、多くの飽和蒸気は太陽熱過熱器148に導入されて過熱され、過熱蒸気となる。発生した過熱蒸気は、太陽熱過熱蒸気集熱管149を通過して太陽熱過熱器出口管150内を流れ主蒸気切り替え弁6の入口管まで送られる。
太陽熱蓄熱放熱装置は、基本的に実施例1と同じ構成であり、主に異なる点は、高温蓄熱放熱タンク301、中温蓄熱放熱タンク302、低温蓄熱放熱タンク303に収容される熱媒体として油が用いられ、また、熱媒体固化防止のための加温システムが設けられていないということである。
昼間発電を行う場合、主蒸気切り替え弁6を開き、小型蒸気タービン120へ過熱蒸気を供給する。蓄熱を行う場合には、蒸気熱交換器側分岐弁41を開き太陽熱蓄熱放熱装置側へ過熱蒸気を供給する。その他、蓄熱・放熱の各運転については、基本的に実施例1と同様であり詳細な説明は省略する。
本実施例でも基本的に実施例1と同様な効果が得られる。
次に、図7を用いて実施例1と2に共通して設置される飽和蒸気復水器の構成例を説明する。
蒸気熱交換器33を出た飽和蒸気は、飽和蒸気復水器入口圧力調整弁79で圧力を減圧され蒸気噴霧母管80内を流れて飽和蒸気復水器34の底部に設置された多数の飽和蒸気噴出ノズル81から飽和蒸気復水器34の底部に細かい気泡状態で噴霧される。噴出ノズル81の多数の細かい噴霧ノズル穴401を通過した飽和蒸気を、中温蓄熱放熱タンク53から送られた低温の中温蓄熱用の熱媒体を飽和蒸気復水器冷却管132の中に流して冷却して飽和水に変える。飽和蒸気復水器34の中で増加してくる飽和水は飽和蒸気復水器水位調整弁83を通過して飽和水熱交換器35に排出される。中温蓄熱放熱タンク溶融塩取り出し管87にて取り出された低温の溶融塩は、溶融塩移送ポンプ入口弁405を通過して中温蓄熱放熱タンク溶融塩移送ポンプ58により昇圧され溶融塩移送ポンプ出口逆止弁406と溶融塩移送ポンプ出口弁407を通過して飽和蒸気復水器冷却管132に入り、飽和蒸気を冷却する。加熱され中温となった溶融塩は中温蓄熱放熱タンク溶融塩戻管90を通過して中温蓄熱放熱タンク53の上部に戻される。飽和蒸気復水器34を運転している間、飽和蒸気復水器水位計403の検出信号により、飽和蒸気復水器34の水位は飽和蒸気復水器水位調整弁83にて一定制御される。蒸気噴霧母管圧力計402の検出信号により飽和蒸気復水器入口圧力調整弁79は飽和蒸気噴霧圧力を一定制御する。
次に、図8を用いて本発明の太陽熱発電プラントに適用される太陽熱マネイジメントの一例を説明する。
図8は実施例1の太陽熱発電プラントに適用される太陽熱マネイジメントの概念を示す。この太陽熱マネイジメントにより、昼間に発電を行うと共に、蓄熱運転を実施し、その熱エネルギで夕方や早朝や夜間等の必要な太陽熱強度が得られない時間帯に、太陽熱で発電することができる。
本発明の主要な観点を纏めると次の通りである。
(1)熱媒体(一次熱媒体:水/水蒸気)を共通化して太陽熱集熱サイクル(太陽熱集熱熱媒体サイクル)と蒸気タービンサイクル(蒸気タービン水蒸気サイクル)とを連結して一つのサイクル(合体サイクル)とし、太陽熱集熱サイクルに対応する側(太陽熱集熱装置)から蒸気タービンサイクルに対応する側(蒸気タービン発電設備)への途中、及び/又は、蒸気タービンサイクルに対応する側から太陽熱集熱サイクルに対応する側への途中で、一次熱媒体を分岐させて、太陽熱蓄熱放熱装置の熱媒体(二次熱媒体)と熱交換を行う。
(2)(1)において、太陽熱蓄熱放熱装置の熱媒体との熱交換で冷却されて水となった、合体サイクルの一次熱媒体を、蒸気タービンサイクルに対応する側の復水・給水系の高圧給水加熱器の上流、例えば、脱気器へ流入させる(高圧給水加熱器がない場合には脱気器に流入させる。)。
(3)(1)または(2)において、水/水蒸気(一次熱媒体)に太陽熱を回収する太陽熱集熱装置の構成として、少なくとも、給水から飽和蒸気の生成と、飽和蒸気から過熱蒸気の生成の二段階で太陽熱を回収する。
(4)太陽熱集熱装置の熱媒体として水/水蒸気を用いて太陽熱により過熱蒸気を生成し、太陽熱集熱装置の熱媒体が過熱蒸気から飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の異なる温度領域にて太陽熱蓄装置の熱媒体である溶融塩または油と熱交換して太陽熱を蓄熱する。
(5)(4)において、蒸気熱交換器、飽和蒸気復水器、飽和水熱交換器を備え、蒸気熱交換器において過熱蒸気から飽和蒸気への過程で蒸気の顕熱の熱エネルギを回収し、飽和蒸気復水器において飽和蒸気から飽和水への過程で凝縮潜熱の熱エネルギを回収し、飽和水熱交換器において飽和水から飽和温度よりも低温の水への過程で水の顕熱の熱エネルギを回収する。
(6)(5)において、さらに飽和水蒸発器を備え、飽和水熱交換器において蒸気タービンサイクルからの給水を飽和水温度近傍まで加熱昇温し、飽和水蒸発器において飽和水(液相)から飽和蒸気(気相)に相変化させ、蒸気熱交換器において飽和蒸気を過熱蒸気に過熱昇温させ、過熱蒸気を蒸気タービンに供給する。飽和水熱交換器、飽和水蒸発器、蒸気熱交換器には、それぞれの加熱媒体として、太陽熱蓄熱の際に、蒸気熱交換器、飽和蒸気復水器、飽和水熱交換器で複数の温度領域に蓄熱した熱媒体が供給される。
(7)太陽熱蓄熱放熱装置の二次熱媒体(太陽熱蓄熱放熱熱媒体)として溶融塩を採用した場合、太陽熱を利用した溶融塩固化防止装置を備える。
また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。
1:高圧蒸気タービン、2:中圧蒸気タービン、3:低圧蒸気タービン、4:蒸気タービン発電機、5:タワー型過熱器集熱器出口配管(太陽熱集熱装置出口主蒸気管)、6:主蒸気切り替え弁、7:高圧蒸気タービン入口配管、8:タワー型過熱器集熱器入口配管、9:低圧蒸気タービン排気管、10: 低圧蒸気タービン復水器、11:復水器冷却水配管、12:復水器出口復水配管、13:復水ポンプ、14:低圧給水加熱器、15:脱気器、16:太陽熱集熱装置給水ポンプ、17:高圧給水加熱器、18:汽水分離器貯水タンク、19:汽水分離器、20:太陽熱蒸発器循環ポンプ、21:タワー型過熱集熱器、23:ヘリオスタット(平面鏡)、24:タワー型再熱集熱器入口配管、25:タワー型再熱集熱器、26:高温再熱配管、27:低温再熱抽気管、28:高圧給水加熱器抽気管、29:脱気器抽気管、30:低圧給水加熱器抽気管、32:蓄熱運転時蒸気熱交換器入口弁、33:蒸気熱交換器、34:飽和蒸気復水器、35:飽和水熱交換器、36:飽和水熱交換器出口弁、37:放熱運転時飽和水熱交換器入口弁、38:飽和水蒸発器、40:放熱運転時蒸気熱交換器出口弁、41:蓄熱運転時蒸気熱交換器入口弁、42:放熱運転時蒸気熱交換器出口連絡配管、43:蓄熱運転時蒸気熱交換器入口連絡配管、44:蓄熱運転時脱気器ドレン回収管、45:高圧給水加熱器出口給水管、46:放熱運転時給水管、47:汽水分離器貯水タンク入口管、48:蒸気熱交換器加熱管、51:汽水分離器貯水タンク入口弁、52:低温蓄熱放熱タンク、53:中温蓄熱放熱タンク、54:加熱器、55:加熱器、56:高温蓄熱放熱タンク、57:低温蓄熱放熱タンク油移送ポンプ、58:中温蓄熱放熱タンク溶融塩移送ポンプ、59:高温蓄熱放熱タンク溶融塩移送ポンプ、60:油配管、61:油配管、62:溶融塩配管、63:溶融塩配管、64:溶融塩配管、65:溶融塩配管、66:熱媒体油タンク、67:熱媒体油移送ポンプ入口弁、68:油移送ポンプ、69:油移送ポンプ出口弁、70:中温蓄熱放熱タンク側熱媒体油分配弁、71:高温蓄熱放熱タンク側熱媒体油分配弁、72:高温蓄熱放熱タンク油戻弁、73:熱媒体油タンク入口弁、74:熱媒体油タンク加熱器、75:熱媒体油タンク加熱蒸気出口弁、76:中温蓄熱放熱タンク油戻弁、77:熱媒体油タンク加熱管、78:蒸気熱交換器−飽和蒸気復水器連絡管、79:飽和蒸気復水器入口圧力調整弁、80:蒸気噴霧母管、81:蒸気噴霧ノズル、82:飽和蒸気復水器−飽和水熱交換器連絡管、83:飽和蒸気復水器水位調整弁、84:飽和水熱交換器加熱管、85:飽和水熱交換器出口管、86:低温蓄熱放熱タンク油取り出し管、87:中温蓄熱放熱タンク溶融塩取り出し管、88:高温蓄熱放熱タンク溶融塩取り出し管、89:低温蓄熱放熱タンク熱媒体油戻管、90:中温蓄熱放熱タンク溶融塩戻管、91:高温蓄熱放熱タンク溶融塩戻管、92:放熱運転時高温熱媒体油取り出し管、93:放熱運転時中温溶融塩取り出し管、94:放熱運転時高温溶融塩取り出し管、95:放熱運転時高温熱媒体油戻り管、96:放熱運転時中温溶融塩戻り管、97:放熱運転時高温溶融塩戻り管、102:飽和水熱交換器−飽和水蒸発器ドラム連絡管、103:飽和水蒸発器ドラム、104:飽和水蒸発器管、105:飽和蒸気管、107:放熱運転時高圧蒸気タービン入口配管合流弁、120:小型蒸気タービン、121:小型蒸気タービン発電機、122:小型蒸気タービン排気管、123:小型復水器、124:小型復水ポンプ、125:小型低圧給水加熱器、126:小型脱気器、128:小型太陽熱集熱装置給水ポンプ、130:放熱運転時予熱管、131:放熱運転時過熱管、132: 飽和蒸気復水器冷却管、140:太陽熱予熱器、141:太陽熱予熱器集熱管、142:太陽熱1次蒸発器、143:太陽熱1次蒸発器集熱管、144:太陽熱2次蒸発器、145:太陽熱2次蒸発器集熱管、146:太陽熱飽和蒸気ドラム、147:太陽熱飽和蒸気管、148:太陽熱過熱器、149:太陽熱過熱器集熱管、150:太陽熱過熱器出口管(太陽熱集熱装置出口主蒸気管)、301:高温蓄熱放熱タンク、302:中温蓄熱放熱タンク、303:低温蓄熱放熱タンク、401:噴霧ノズル穴、402:蒸気噴霧母管圧力計、403:飽和蒸気復水器水位計、405:溶融塩移送ポンプ入口弁、406:溶融塩移送ポンプ出口逆止弁、407:溶融塩移送ポンプ出口弁。

Claims (15)

  1. 太陽熱集熱装置と、蒸気タービン発電設備と、太陽熱蓄熱放熱装置とを備え、
    前記太陽熱集熱装置を構成するサイクルの熱媒体と前記蒸気タービン発電設備を構成するサイクルの熱媒体として共に水/水蒸気を用い、前記太陽熱集熱装置のサイクルと前記蒸気タービン発電設備のサイクルとを連結して一つのサイクルとし、
    前記太陽熱集熱装置から前記蒸気タービン発電設備へ前記水蒸気が流れる途中、及び/又は、前記蒸気タービン発電設備から太陽熱集熱装置へ前記水が流れる途中で、前記水/水蒸気を分岐させて、前記水/水蒸気と前記太陽熱蓄熱放熱装置の熱媒体と熱交換を行い前記太陽熱蓄熱放熱装置における蓄熱または放熱を行い、
    前記太陽熱集熱装置からの水蒸気が前記太陽熱蓄熱放熱装置の熱媒体との熱交換で冷却されて水となった熱媒体を、前記蒸気タービン発電設備の復水・給水系における給水加熱部の上流へ流入させるようにしたことを特徴とする太陽熱発電プラント。
  2. 請求項1において、前記蒸気タービン発電設備の復水・給水系における給水加熱部の上流は、脱気器であることを特徴とする太陽熱発電プラント。
  3. 請求項1において、前記太陽熱集熱装置は、水から飽和蒸気の生成と、前記飽和蒸気から過熱蒸気の生成により太陽熱を回収することを特徴とする太陽熱発電プラント。
  4. 請求項1において、前記太陽熱蓄熱放熱装置は、前記太陽熱集熱装置の熱媒体に回収した太陽熱を前記太陽熱蓄熱放熱装置の熱媒体に蓄熱する際に、前記太陽熱集熱装置の熱媒体が過熱蒸気から飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の異なる温度領域にて前記太陽熱蓄熱蓄熱装置の熱媒体に蓄熱されるように、前記太陽熱集熱装置からの熱媒体と前記太陽熱蓄熱放熱装置の熱媒体の熱交換を行う熱交換器を複数有することを特徴とする太陽熱発電プラント。
  5. 請求項4において、前記太陽熱蓄熱放熱装置は、前記熱交換器として、蒸気熱交換器、飽和蒸気復水器、飽和水熱交換器を備え、前記蒸気熱交換器において過熱蒸気から飽和蒸気への過程で蒸気の顕熱の熱エネルギを回収し、前記飽和蒸気復水器において飽和蒸気から飽和水への過程で凝縮潜熱の熱エネルギを回収し、前記飽和水熱交換器において飽和水から飽和温度よりも低温の水への過程で水の顕熱の熱エネルギを回収することを特徴とする太陽熱発電プラント。
  6. 請求項5において、前記蒸気熱交換器、前記飽和蒸気復水器、前記飽和水熱交換器で熱交換し蓄熱した前記太陽熱蓄熱放熱装置の熱媒体は、それぞれ高温蓄熱放熱タンク、中温蓄熱放熱タンク、低温蓄熱放熱タンクに収容することを特徴とする太陽熱発電プラント。
  7. 請求項6において、前記太陽熱蓄熱放熱装置は、飽和水蒸発器を備え、前記飽和水熱交換器において蒸気タービン発電設備からの給水を飽和水温度近傍まで加熱昇温し、前記飽和水蒸発器において飽和水から飽和蒸気に相変化させ、前記蒸気熱交換器において飽和蒸気を過熱蒸気に過熱昇温させ、過熱蒸気を前記蒸気タービン発電設備に供給するようにし、前記飽和水熱交換器、前記飽和水蒸発器、前記蒸気熱交換器には、それぞれの加熱媒体として、前記低温蓄熱放熱タンク、前記中温蓄熱放熱タンク、前記高温蓄熱放熱タンクに収容されている熱媒体を供給することを特徴とする太陽熱発電プラント。
  8. 請求項1において、前記太陽熱蓄熱放熱装置の熱媒体として溶融塩が用いられ、油媒体に蓄熱した太陽熱を利用し前記溶融塩を収容するタンク内の溶融塩を加熱する加温システムを有することを特徴とする太陽熱発電プラント。
  9. 水/水蒸気を一次熱媒体として使用し過熱蒸気を生成する太陽熱集熱装置と、前記太陽熱集熱装置で発生した過熱蒸気を蒸気タービンに導入し発電を行う蒸気タービン発電設備を有する太陽熱発電プラントに設けられる太陽熱蓄熱放熱装置であって、
    前記太陽熱蓄熱装置は、前記太陽熱集熱装置の一次熱媒体に回収した太陽熱を前記太陽熱蓄熱放熱装置の二次熱媒体に蓄熱する際に、前記太陽熱集熱装置の一次熱媒体が過熱蒸気から飽和温度よりも低温の水に至る過程で水/水蒸気の状態に応じて複数の異なる温度領域にて前記二次熱媒体に蓄熱されるように、前記一次熱媒体と前記二次熱媒体の熱交換を行う熱交換器を複数有することを特徴とする太陽熱蓄熱放熱装置。
  10. 請求項9において、前記熱交換器は、前記一次熱媒体の顕熱により前記二次熱媒体の加熱を行う熱交換器と、前記一次熱媒体の凝縮潜熱により前記二次熱媒体の加熱を行う熱交換器と有することを特徴とする太陽熱蓄熱放熱装置。
  11. 請求項10において、前記一次熱媒体の顕熱により前記二次熱媒体の加熱を行う熱交換器は、加熱管を有し、前記加熱管内に前記一次熱媒体を流し、前記加熱管外に前記二次熱媒体を流して熱交換を行い、前記一次熱媒体の凝縮潜熱により前記二次熱媒体の加熱を行う熱交換器は、冷却管を有し、前記冷却管内に前記二次熱媒体を流し、前記冷却管外に前記一次熱媒体を流して熱交換を行うことを特徴とする太陽熱蓄熱放熱装置。
  12. 請求項9において、前記熱交換器として、蒸気熱交換器、飽和蒸気復水器、飽和水熱交換器を備え、前記蒸気熱交換器において過熱蒸気から飽和蒸気への過程で蒸気の顕熱の熱エネルギを回収し、前記飽和蒸気復水器において飽和蒸気から飽和水への過程で凝縮潜熱の熱エネルギを回収し、前記飽和水熱交換器において飽和水から飽和温度よりも低温の水への過程で水の顕熱の熱エネルギを回収し、高温蓄熱放熱タンク、中温蓄熱放熱タンク、低温蓄熱放熱タンクを備え、前記蒸気熱交換器、前記飽和蒸気復水器、前記飽和水熱交換器で熱交換し蓄熱した前記二次熱媒体は、それぞれ前記高温蓄熱放熱タンク、前記中温蓄熱放熱タンク、前記低温蓄熱放熱タンクに収容することを特徴とする太陽熱蓄熱放熱装置。
  13. 請求項12において、
    飽和水蒸発器を備え、前記飽和水熱交換器において前記蒸気タービン発電設備からの給水を飽和水温度近傍まで加熱昇温し、前記飽和水蒸発器において飽和水から飽和蒸気に相変化させ、前記蒸気熱交換器において飽和蒸気を過熱蒸気に過熱昇温し、
    前記蒸気熱交換器は、加熱管と過熱管を有し、前記加熱管内に前記一次熱媒体を流し前記加熱管外に前記二次熱媒体を流して過熱蒸気の顕熱の熱エネルギを回収し、前記過熱管内に前記一次熱媒体を流し前記過熱管外に前記二次熱媒体を流して飽和蒸気を過熱昇温し、
    前記飽和蒸気復水器は、冷却管を有し、前記冷却管内に前記二次熱媒体を流し前記冷却管外に前記一次熱媒体を流して前記飽和蒸気の凝縮潜熱の熱エネルギを回収し、
    前記飽和水蒸発器は、蒸発器管を有し、前記蒸発器管内に前記一次熱媒体を流し前記蒸発器管外に前記二次熱媒体を流して飽和水を飽和蒸気に相変化させ、
    前記飽和水熱交換器は、加熱管と予熱管を有し、前記加熱管内に前記一次熱媒体を流し前記加熱管外に前記二次熱媒体を流して飽和水の顕熱の熱エネルギを回収し、前記予熱管内に前記一次熱媒体を流し前記予熱管外に前記二次熱媒体を流して給水を加熱昇温し、
    前記予熱管、前記蒸発器管、前記過熱管には、それぞれ前記低温蓄熱放熱タンク、前記中温蓄熱放熱タンク、前記高温蓄熱放熱タンクに収容されている蓄熱した前記二次熱媒体を供給することを特徴とする太陽熱蓄熱放熱装置。
  14. 請求項12において、前記飽和蒸気復水器は、飽和蒸気を飽和蒸気復水器内に気泡状で噴出させ、気泡状態の微小な飽和蒸気を冷却して飽和水に戻しその潜熱を二次熱媒体に吸収させるようにしたことを特徴とする太陽熱蓄熱放熱装置。
  15. 請求項14において、前記飽和蒸気復水器は、飽和蒸気復水器入口圧力調整弁と、飽和蒸気復水器水位調整弁とを備え、前記飽和蒸気復水器内への飽和蒸気噴出圧力を前記飽和蒸気噴出圧力調整弁で制御し、前記飽和蒸気復水器内の水位を前記飽和蒸気復水器水位調整弁で制御することを特徴とする太陽熱蓄熱放熱装置。
JP2012243595A 2012-11-05 2012-11-05 太陽熱発電プラント及び太陽熱蓄熱放熱装置 Pending JP2014092086A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243595A JP2014092086A (ja) 2012-11-05 2012-11-05 太陽熱発電プラント及び太陽熱蓄熱放熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243595A JP2014092086A (ja) 2012-11-05 2012-11-05 太陽熱発電プラント及び太陽熱蓄熱放熱装置

Publications (1)

Publication Number Publication Date
JP2014092086A true JP2014092086A (ja) 2014-05-19

Family

ID=50936366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243595A Pending JP2014092086A (ja) 2012-11-05 2012-11-05 太陽熱発電プラント及び太陽熱蓄熱放熱装置

Country Status (1)

Country Link
JP (1) JP2014092086A (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104632559A (zh) * 2014-12-10 2015-05-20 清华大学 一种以co2为工质的太阳能发电方法及发电***
WO2016017323A1 (ja) * 2014-07-29 2016-02-04 東洋エンジニアリング株式会社 太陽熱集熱装置
EP3032099A1 (en) 2014-12-11 2016-06-15 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system
JP2016142272A (ja) * 2015-02-04 2016-08-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 電気エネルギー蓄積および放出システム
JP2016166705A (ja) * 2015-03-10 2016-09-15 三菱日立パワーシステムズ株式会社 太陽熱蓄熱装置
CN106089340A (zh) * 2016-07-26 2016-11-09 康达新能源设备股份有限公司 槽式太阳能导热油与熔盐混合热发电***
WO2016181709A1 (ja) * 2015-05-14 2016-11-17 東洋エンジニアリング株式会社 太陽熱集熱装置
EP3112679A1 (en) 2015-06-30 2017-01-04 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system and solar thermal power generation method
CN107100807A (zh) * 2017-04-14 2017-08-29 南京航空航天大学 直接接触换热塔式太阳能热发电站***及其工作方法
JP2017525933A (ja) * 2014-08-22 2017-09-07 中盈▲長▼江国▲際▼新能源投▲資▼有限公司 太陽エネルギ水加熱補助蓄熱装置および太陽エネルギ水加熱補助蓄熱装置から形成される発電所ボイラ太陽エネルギ水加熱供給システム
JP2017537253A (ja) * 2014-10-21 2017-12-14 ブライト エナジー ストレージ テクノロジーズ,エルエルピーBright Energy Storage Technologies,LLP 温度勾配制御技術を含むコンクリートおよび管の高温熱交換およびエネルギー貯蔵(txes)
CN107587984A (zh) * 2017-10-16 2018-01-16 河北工程大学 一种基于可再生能源的冷热电联供***
CN108317577A (zh) * 2018-03-26 2018-07-24 常州绿资环保设备有限公司 余汽、余热回收再利用***
JPWO2017078134A1 (ja) * 2015-11-04 2018-08-30 三菱日立パワーシステムズ株式会社 太陽熱集熱システムおよびその運転方法
CN108798806A (zh) * 2018-06-05 2018-11-13 国电龙源节能技术有限公司 适用于深度调峰发电的复合储取热***及方法
CN110185591A (zh) * 2019-07-05 2019-08-30 河北道荣新能源科技有限公司 一种用于农业产业园的光热发电供能***
WO2019188517A1 (ja) * 2018-03-29 2019-10-03 愛知製鋼株式会社 太陽熱発電システム
CN110886631A (zh) * 2018-09-07 2020-03-17 上海明华电力技术工程有限公司 一种光热嵌入式火电调峰***和方法
CN111140296A (zh) * 2020-02-25 2020-05-12 中国电力工程顾问集团华东电力设计院有限公司 一种火电机组熔盐梯级储放能调峰***及方法
CN111189041A (zh) * 2020-02-12 2020-05-22 浙江大学 一种电蓄热式过热蒸汽***及其方法
CN111219893A (zh) * 2019-12-30 2020-06-02 赫普能源环境科技股份有限公司 电站锅炉耦合光热熔盐集热加热***和方法
WO2020116167A1 (ja) * 2018-12-07 2020-06-11 愛知製鋼株式会社 太陽熱発電システム
WO2020116168A1 (ja) * 2018-12-07 2020-06-11 愛知製鋼株式会社 太陽熱発電システム
WO2020158941A1 (ja) * 2019-02-01 2020-08-06 三菱日立パワーシステムズ株式会社 蓄熱装置、発電プラントおよびファストカットバック時の運転制御方法
JP2021008872A (ja) * 2019-07-03 2021-01-28 本田技研工業株式会社 熱サイクルシステム
JP2021008871A (ja) * 2019-07-03 2021-01-28 本田技研工業株式会社 熱サイクルシステム
CN112532178A (zh) * 2020-12-18 2021-03-19 内蒙古工业大学 太阳能板相变液冷复合散热装置
CN114135918A (zh) * 2021-11-12 2022-03-04 杭州华源前线能源设备有限公司 一种单罐斜温层蓄热熔融盐供热***
CN114382559A (zh) * 2022-01-26 2022-04-22 斯玛特储能技术有限公司 一种双介质储热型调峰热力发电***及储释热方法
US20220390099A1 (en) * 2022-08-16 2022-12-08 Haibiao Wang Solar thermodynamic power generator
JP7349593B1 (ja) 2023-01-18 2023-09-22 Jfeプロジェクトワン株式会社 溶融塩の循環装置及び循環方法
JP7364819B1 (ja) 2023-01-18 2023-10-18 Jfeプロジェクトワン株式会社 溶融塩の循環装置及び循環方法
WO2023221244A1 (zh) * 2022-05-18 2023-11-23 西安热工研究院有限公司 切缸机组熔融盐蒸汽储热的运行***和方法
WO2024037027A1 (zh) * 2022-08-17 2024-02-22 西安热工研究院有限公司 能量梯级利用的光煤互补汽轮机***及发电***

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739038B2 (en) 2014-07-29 2020-08-11 Toyo Engineering Corporation Solar heat collecting device
CN106461271A (zh) * 2014-07-29 2017-02-22 东洋工程株式会社 太阳能集热装置
WO2016017323A1 (ja) * 2014-07-29 2016-02-04 東洋エンジニアリング株式会社 太陽熱集熱装置
JP2017525933A (ja) * 2014-08-22 2017-09-07 中盈▲長▼江国▲際▼新能源投▲資▼有限公司 太陽エネルギ水加熱補助蓄熱装置および太陽エネルギ水加熱補助蓄熱装置から形成される発電所ボイラ太陽エネルギ水加熱供給システム
JP2017537253A (ja) * 2014-10-21 2017-12-14 ブライト エナジー ストレージ テクノロジーズ,エルエルピーBright Energy Storage Technologies,LLP 温度勾配制御技術を含むコンクリートおよび管の高温熱交換およびエネルギー貯蔵(txes)
CN104632559A (zh) * 2014-12-10 2015-05-20 清华大学 一种以co2为工质的太阳能发电方法及发电***
US9957954B2 (en) 2014-12-11 2018-05-01 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system
EP3032099A1 (en) 2014-12-11 2016-06-15 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system
JP2016142272A (ja) * 2015-02-04 2016-08-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 電気エネルギー蓄積および放出システム
JP2016166705A (ja) * 2015-03-10 2016-09-15 三菱日立パワーシステムズ株式会社 太陽熱蓄熱装置
US10480827B2 (en) 2015-05-14 2019-11-19 Toyo Engineering Corporation Solar heat collector
WO2016181709A1 (ja) * 2015-05-14 2016-11-17 東洋エンジニアリング株式会社 太陽熱集熱装置
EP3112679A1 (en) 2015-06-30 2017-01-04 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system and solar thermal power generation method
US10247174B2 (en) 2015-06-30 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system and solar thermal power generation method
JPWO2017078134A1 (ja) * 2015-11-04 2018-08-30 三菱日立パワーシステムズ株式会社 太陽熱集熱システムおよびその運転方法
ES2681143R1 (es) * 2015-11-04 2018-09-21 Mitsubishi Hitachi Power Systems, Ltd. Sistema de captación de calor solar y método de funcionamiento del mismo
US10775079B2 (en) 2015-11-04 2020-09-15 Mitsubishi Hitachi Power Systems, Ltd. Solar heat collection system and operation method thereof
CN106089340A (zh) * 2016-07-26 2016-11-09 康达新能源设备股份有限公司 槽式太阳能导热油与熔盐混合热发电***
CN107100807A (zh) * 2017-04-14 2017-08-29 南京航空航天大学 直接接触换热塔式太阳能热发电站***及其工作方法
CN107587984A (zh) * 2017-10-16 2018-01-16 河北工程大学 一种基于可再生能源的冷热电联供***
CN107587984B (zh) * 2017-10-16 2024-04-16 河北工程大学 一种基于可再生能源的冷热电联供***
CN108317577A (zh) * 2018-03-26 2018-07-24 常州绿资环保设备有限公司 余汽、余热回收再利用***
WO2019188517A1 (ja) * 2018-03-29 2019-10-03 愛知製鋼株式会社 太陽熱発電システム
JP2019173699A (ja) * 2018-03-29 2019-10-10 愛知製鋼株式会社 太陽熱発電システム
CN108798806A (zh) * 2018-06-05 2018-11-13 国电龙源节能技术有限公司 适用于深度调峰发电的复合储取热***及方法
CN110886631A (zh) * 2018-09-07 2020-03-17 上海明华电力技术工程有限公司 一种光热嵌入式火电调峰***和方法
CN110886631B (zh) * 2018-09-07 2024-05-17 上海明华电力科技有限公司 一种光热嵌入式火电调峰***和方法
WO2020116167A1 (ja) * 2018-12-07 2020-06-11 愛知製鋼株式会社 太陽熱発電システム
WO2020116168A1 (ja) * 2018-12-07 2020-06-11 愛知製鋼株式会社 太陽熱発電システム
JP2020090943A (ja) * 2018-12-07 2020-06-11 愛知製鋼株式会社 太陽熱発電システム
WO2020158941A1 (ja) * 2019-02-01 2020-08-06 三菱日立パワーシステムズ株式会社 蓄熱装置、発電プラントおよびファストカットバック時の運転制御方法
JP7058247B2 (ja) 2019-07-03 2022-04-21 本田技研工業株式会社 熱サイクルシステム
JP2021008872A (ja) * 2019-07-03 2021-01-28 本田技研工業株式会社 熱サイクルシステム
JP2021008871A (ja) * 2019-07-03 2021-01-28 本田技研工業株式会社 熱サイクルシステム
JP7057323B2 (ja) 2019-07-03 2022-04-19 本田技研工業株式会社 熱サイクルシステム
CN110185591A (zh) * 2019-07-05 2019-08-30 河北道荣新能源科技有限公司 一种用于农业产业园的光热发电供能***
CN111219893A (zh) * 2019-12-30 2020-06-02 赫普能源环境科技股份有限公司 电站锅炉耦合光热熔盐集热加热***和方法
CN111189041A (zh) * 2020-02-12 2020-05-22 浙江大学 一种电蓄热式过热蒸汽***及其方法
CN111140296A (zh) * 2020-02-25 2020-05-12 中国电力工程顾问集团华东电力设计院有限公司 一种火电机组熔盐梯级储放能调峰***及方法
CN111140296B (zh) * 2020-02-25 2024-02-06 中国电力工程顾问集团华东电力设计院有限公司 一种火电机组熔盐梯级储放能调峰***及方法
CN112532178A (zh) * 2020-12-18 2021-03-19 内蒙古工业大学 太阳能板相变液冷复合散热装置
CN114135918A (zh) * 2021-11-12 2022-03-04 杭州华源前线能源设备有限公司 一种单罐斜温层蓄热熔融盐供热***
CN114382559A (zh) * 2022-01-26 2022-04-22 斯玛特储能技术有限公司 一种双介质储热型调峰热力发电***及储释热方法
WO2023221244A1 (zh) * 2022-05-18 2023-11-23 西安热工研究院有限公司 切缸机组熔融盐蒸汽储热的运行***和方法
US20220390099A1 (en) * 2022-08-16 2022-12-08 Haibiao Wang Solar thermodynamic power generator
US11619379B2 (en) * 2022-08-16 2023-04-04 Regen Technologies Pte. Ltd. Solar thermodynamic power generator
WO2024037027A1 (zh) * 2022-08-17 2024-02-22 西安热工研究院有限公司 能量梯级利用的光煤互补汽轮机***及发电***
JP7349593B1 (ja) 2023-01-18 2023-09-22 Jfeプロジェクトワン株式会社 溶融塩の循環装置及び循環方法
JP7364819B1 (ja) 2023-01-18 2023-10-18 Jfeプロジェクトワン株式会社 溶融塩の循環装置及び循環方法

Similar Documents

Publication Publication Date Title
JP2014092086A (ja) 太陽熱発電プラント及び太陽熱蓄熱放熱装置
JP6340473B2 (ja) 太陽エネルギ及びバイオマスエネルギ一体型発電最適化結合システム
US9683788B2 (en) Steam heat storage system
EP2647841B1 (en) Solar thermal power system
EP2718565B1 (en) Solar thermal power plant
CN102859190A (zh) 太阳能热力发电设备
US20130111902A1 (en) Solar power system and method of operating a solar power system
CN103912464A (zh) 太阳能光热与bigcc集成的联合发电***
CN103477033A (zh) 用于从聚光太阳能设备产生过热蒸汽的方法和设备
CN102828925B (zh) 一种二元工质塔式太阳能发电***
EP2861908B1 (en) Method for modifying a solar thermal power plant operating on conventional oil based technology into a hybrid solar thermal power plant and such a hybrid solar thermal power plant
CA2879491A1 (en) Thermal heat storage system
CN103742373A (zh) 一种采用超临界水吸热器和熔盐蓄热的塔式太阳能热发电站
CN107939623A (zh) 带熔融盐储热的太阳能水工质塔式热发电装置
WO2019087657A1 (ja) 太陽熱発電システム
JP2017180843A (ja) 蒸気発生システム
EP2757259B1 (en) Solar Thermal Power System
CN204003297U (zh) 太阳能光热与bigcc集成的联合发电***
EP2871359B1 (en) Auxiliary steam supply system in solar power plants
EP2834476B1 (en) A solar thermal power plant and a method for operating a solar thermal power plant
CN202811236U (zh) 一种用于塔式太阳能的双工质发电***
KR102096691B1 (ko) 탑형 태양광 집중 설비의 보일러 내 건조를 방지하기 위한 방법 및 장치
JP6600605B2 (ja) 太陽熱発電システム及び太陽熱発電方法
CN204344386U (zh) 用于存储来自日射的热量的***、用于生成电能的***
EP3093488A1 (en) Thermal solar power plant comprising a heat storage assembly and corresponding method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141218