JP2014091852A - Gallium nitride target - Google Patents

Gallium nitride target Download PDF

Info

Publication number
JP2014091852A
JP2014091852A JP2012242638A JP2012242638A JP2014091852A JP 2014091852 A JP2014091852 A JP 2014091852A JP 2012242638 A JP2012242638 A JP 2012242638A JP 2012242638 A JP2012242638 A JP 2012242638A JP 2014091852 A JP2014091852 A JP 2014091852A
Authority
JP
Japan
Prior art keywords
gallium nitride
gallium
target
metal
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242638A
Other languages
Japanese (ja)
Other versions
JP5974831B2 (en
Inventor
Ryo Kikuchi
僚 菊池
Keitaro Matsumaru
慶太郎 松丸
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012242638A priority Critical patent/JP5974831B2/en
Publication of JP2014091852A publication Critical patent/JP2014091852A/en
Application granted granted Critical
Publication of JP5974831B2 publication Critical patent/JP5974831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target of gallium nitride in which a joint portion is not peeled off even if sputtering is performed at high temperature.SOLUTION: This invention provides a gallium nitride target in which a gallium nitride molding as a target material and a metallic component are joined together through a joint layer, wherein the joint layer is a conductive resin including 20-60 vol% of a metal not reacting with gallium.

Description

本発明は、スパッタリング法により窒化ガリウム薄膜を製造する際に使う窒化ガリウムターゲットに関するものである。詳しくは、高温でスパッタを行っても金属部材との接合部分が剥がれない窒化ガリウムターゲットに関するものである。   The present invention relates to a gallium nitride target used when manufacturing a gallium nitride thin film by a sputtering method. Specifically, the present invention relates to a gallium nitride target in which a joint portion with a metal member is not peeled even when sputtering is performed at a high temperature.

窒化ガリウムは、青色発光ダイオード(LED)の発光層や青色レーザーダイオード(LD)の原料として注目され、近年では薄膜や基板の形態にて白色LEDや青色LDなどの様々な用途に用いられており、また将来的にはパワーデバイスなどの用途の材料としても注目されている。   Gallium nitride is attracting attention as a light emitting layer for blue light emitting diodes (LEDs) and a raw material for blue laser diodes (LDs). In the future, it is also attracting attention as a material for applications such as power devices.

窒化ガリウム薄膜の作製法としてはスパッタ法が挙げられるが、窒化ガリウムは焼結しにくいので通常の焼成では密度が50%までしか向上しないため、ターゲットとして使用するには不向きであった。窒化ガリウムの密度を向上させる方法として、窒化ガリウム焼結体に金属ガリウムを含浸させた成形体が提案されているが(例えば、特許文献1参照)、ガリウムは融点が30℃程度と低いので、基板を加熱してスパッタすると、ターゲット材も加熱され、ターゲット材からガリウムが析出し、金属部材との接合部にあるInハンダと反応して接合力が弱くなり、ターゲット材と金属部材の接合が剥がれてしまうという問題があった。   As a method for producing a gallium nitride thin film, a sputtering method can be mentioned. However, since gallium nitride is difficult to sinter, the density is improved only to 50% by ordinary firing, so that it is not suitable for use as a target. As a method for improving the density of gallium nitride, a molded body in which a gallium nitride sintered body is impregnated with metal gallium has been proposed (see, for example, Patent Document 1), but gallium has a low melting point of about 30 ° C. When the substrate is heated and sputtered, the target material is also heated, gallium is precipitated from the target material, reacts with In solder at the joint with the metal member, and the bonding force becomes weak, and the target material and the metal member are bonded. There was a problem of peeling off.

ターゲット材と金属部材との接合性を改善する方法として、接合層の一部に合成樹脂からなる層を形成させる方法がある(例えば、特許文献2参照)。しかし、熱伝導性を保つためには合成樹脂層は全面積の10%以下にする必要があり、金属部材との接合部分の大部分は熱伝導性のあるハンダ層であるので、金属ガリウムが混在した窒化ガリウムターゲットを高温でスパッタした場合、金属ガリウムによりハンダ層が侵食され、接合界面が剥がれてしまう。   As a method for improving the bondability between the target material and the metal member, there is a method in which a layer made of a synthetic resin is formed on a part of the bonding layer (see, for example, Patent Document 2). However, in order to maintain thermal conductivity, the synthetic resin layer needs to be 10% or less of the total area, and most of the joint portion with the metal member is a thermally conductive solder layer. When the mixed gallium nitride target is sputtered at a high temperature, the solder layer is eroded by the metal gallium and the bonding interface is peeled off.

また、ターゲット材と金属部材の接合性を改善する例として、ハンダ層に熱伝導性樹脂からなる層を形成させる方法が提案されているが(例えば、特許文献3参照)、熱伝導性樹脂としてはAgフィラーとエポキシ樹脂からなる樹脂しか具体的に開示されておらず、Agはガリウムと反応してしまうため、窒化ガリウムターゲットには適さない。   As an example of improving the bondability between the target material and the metal member, a method of forming a layer made of a heat conductive resin on the solder layer has been proposed (see, for example, Patent Document 3). Only a resin composed of an Ag filler and an epoxy resin is specifically disclosed, and Ag reacts with gallium, so that it is not suitable for a gallium nitride target.

特開2012−144805号公報JP 2012-144805 A 特開平10−317133号公報JP-A-10-317133 特開2000−160334号公報JP 2000-160334 A

本発明の目的は、窒化ガリウム成形物と金属部材とを接合層を介して接合した窒化ガリウムターゲットにおいて、前記接合層にガリウムと反応しない金属及び導電性の樹脂からなる層を形成することで、高温でスパッタを行っても接合部分が剥がれない窒化ガリウムターゲットを提供することである。   An object of the present invention is to form a layer made of a metal that does not react with gallium and a conductive resin in a gallium nitride target in which a gallium nitride molded product and a metal member are bonded via a bonding layer. The object is to provide a gallium nitride target in which the bonded portion does not peel off even when sputtering is performed at a high temperature.

窒化ガリウムターゲットにおいて、ターゲット材と金属部材とを融点の低いIn系ハンダを接合層としてロウ付けする方法が一般的であるが、ガリウムは融点が約30℃のため、基板を加熱して窒化ガリウムターゲットをスパッタすると、ターゲット表面にガリウムが析出する場合がある。ガリウムは多くの金属を侵食する性質があるので、ガリウムがIn系ハンダと反応して接合部の接着性が低下し、ターゲット材と金属部材の接合が剥がれてしまうことがある。   In a gallium nitride target, a method in which a target material and a metal member are brazed with In solder having a low melting point as a bonding layer is generally used. However, since gallium has a melting point of about 30 ° C., the substrate is heated to gallium nitride. When the target is sputtered, gallium may be deposited on the target surface. Since gallium has the property of eroding many metals, gallium reacts with In-based solder and adhesion of the joint portion is lowered, and the bond between the target material and the metal member may be peeled off.

そこで本発明者らは、ターゲット材である窒化ガリウム成形物と金属部材とをガリウムと反応しない金属を含む導電性樹脂を介して接合することにより、高温でスパッタを行っても、ターゲット材と金属部材が剥がれないことを見出した。   Therefore, the present inventors joined the target gallium nitride molded product and the metal member through a conductive resin containing a metal that does not react with gallium, so that the target material and the metal can be sputtered at high temperatures. The member was found not to peel off.

すなわち、本発明は、ターゲット材である窒化ガリウム成形物と金属部材とを接合層を介して接合した窒化ガリウムターゲットであって、前記接合層がガリウムと反応しない金属を20〜60vol%含む導電性樹脂であることを特徴とする窒化ガリウムターゲットである。   That is, the present invention is a gallium nitride target obtained by bonding a gallium nitride molded product as a target material and a metal member via a bonding layer, and the bonding layer includes 20 to 60 vol% of a metal that does not react with gallium. The gallium nitride target is a resin.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の窒化ガリウムターゲットは、ターゲット材である窒化ガリウム成形物と金属部材とを接合層を介して接合した窒化ガリウムターゲットである。成形物とは、成形、焼成など様々な方法で粉末を固めたものを含む成形物を指す。本発明において、窒化ガリウム成形物とは窒化ガリウムを主成分とする焼結体、窒化ガリウム焼結体に金属ガリウムを含浸させた成形体などが挙げられる。窒化ガリウム焼結体に金属ガリウムを含浸させた成形体では、金属ガリウムが窒化ガリウム焼結体の空隙に存在しているため、スパッタ中にターゲット材からガリウムが析出するという事態が起こりやすく、特に本発明が好適に利用されうる。   The gallium nitride target of the present invention is a gallium nitride target in which a gallium nitride molded product as a target material and a metal member are bonded via a bonding layer. The molded product refers to a molded product including those obtained by solidifying powder by various methods such as molding and baking. In the present invention, the gallium nitride molded product includes a sintered body containing gallium nitride as a main component, a molded body obtained by impregnating a gallium nitride sintered body with metal gallium, and the like. In a molded body in which metal gallium is impregnated into a gallium nitride sintered body, since the metal gallium is present in the voids of the gallium nitride sintered body, a situation in which gallium is likely to precipitate from the target material during sputtering is particularly likely. The present invention can be suitably used.

本発明において、接合層に用いられるガリウムと反応しない金属を含む導電性樹脂とは、タングステン、タンタルをフィラーとするエポキシ樹脂、ウレタン樹脂、ポリエステル樹脂などが挙げられる。熱伝導率が高いことからタングステンをフィラーとする樹脂を用いることが好ましい。   In the present invention, examples of the conductive resin containing a metal that does not react with gallium used for the bonding layer include tungsten, an epoxy resin containing tantalum as a filler, a urethane resin, and a polyester resin. It is preferable to use a resin containing tungsten as a filler because of its high thermal conductivity.

また、ガリウムと反応しない金属は樹脂に対して、20〜60vol%含まれていることを特徴とし、30〜50vol%含まれていることが好ましい。20vol%未満であると、熱伝導率が不十分となることがあり、60vol%を超えると接着性が低下し、加熱した際に接合が剥がれてしまう場合がある。   Further, the metal that does not react with gallium is contained in an amount of 20 to 60% by volume, and preferably 30 to 50% by volume, based on the resin. If it is less than 20 vol%, the thermal conductivity may be insufficient, and if it exceeds 60 vol%, the adhesiveness may be lowered and the bond may be peeled off when heated.

導電性樹脂の熱伝導率は1W/mK以上であることが好ましい。熱伝導率が1W/mK未満であると、熱伝導が不十分となってターゲット材の温度が急激に上昇してしまい、破損するおそれがある。熱伝導率は、例えばJIS R 1611に記載されているレーザーフラッシュ法により測定できる。   The heat conductivity of the conductive resin is preferably 1 W / mK or more. If the thermal conductivity is less than 1 W / mK, the thermal conductivity becomes insufficient and the temperature of the target material rises rapidly, which may cause damage. The thermal conductivity can be measured by, for example, a laser flash method described in JIS R 1611.

本発明によれば、窒化ガリウム成形物と金属部材とをガリウムと反応しない金属を含む導電性樹脂を介して接合することにより、高温で成膜を行っても窒化ガリウム成形物と接合部が剥がれない窒化ガリウムターゲットを製造することが可能である。   According to the present invention, by bonding a gallium nitride molded product and a metal member via a conductive resin containing a metal that does not react with gallium, the gallium nitride molded product and the joint are peeled even when film formation is performed at a high temperature. It is possible to produce a non-gallium nitride target.

以下、本発明の実施例をもって説明するが、本発明はこれに限定されるものではない。なお、窒化ガリウムと金属ガリウムが混在した成形物の詳細な製造方法については特許文献1を参照のこと。   Examples of the present invention will be described below, but the present invention is not limited thereto. Refer to Patent Document 1 for a detailed manufacturing method of a molded product in which gallium nitride and metal gallium are mixed.

(実施例1)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に、60vol%のエポキシ樹脂と40vol%のタングステンフィラーをよく混合した導電性樹脂(熱伝導率2W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
Example 1
Conductive resin (heat) in which 60 vol% epoxy resin and 40 vol% tungsten filler are well mixed with a molded product (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) mixed with gallium nitride and metal gallium. A conductivity of 2 W / mK) was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材との接合性を調べたところ、強固に結びついており剥がれなかった。   When the produced gallium nitride target was heated at 200 ° C. for 2 hours and the bonding property between the heated molded product and the metal member was examined, the gallium nitride target was firmly bonded and did not peel off.

(実施例2)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に、60vol%のウレタン樹脂と40vol%のタングステンフィラーをよく混合した導電性樹脂(熱伝導率2W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
(Example 2)
Conductive resin (heat) in which 60 vol% urethane resin and 40 vol% tungsten filler are well mixed with a molded product (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) mixed with gallium nitride and metal gallium. A conductivity of 2 W / mK) was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材との接合性を調べたところ、強固に結びついており剥がれなかった。   When the produced gallium nitride target was heated at 200 ° C. for 2 hours and the bonding property between the heated molded product and the metal member was examined, the gallium nitride target was firmly bonded and did not peel off.

(実施例3)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に、70vol%のエポキシ樹脂と30vol%のタングステンフィラーをよく混合した導電性樹脂(熱伝導率1.5W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
(Example 3)
Conductive resin (heat) in which a mixture of gallium nitride and metal gallium (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) is well mixed with 70 vol% epoxy resin and 30 vol% tungsten filler. A conductivity of 1.5 W / mK) was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材との接合性を調べたところ、強固に結びついており剥がれなかった。
(実施例4)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に、45vol%のエポキシ樹脂と55vol%のタングステンフィラーをよく混合した導電性樹脂(熱伝導率4.5W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
When the produced gallium nitride target was heated at 200 ° C. for 2 hours and the bonding property between the heated molded product and the metal member was examined, the gallium nitride target was firmly bonded and did not peel off.
(Example 4)
Conductive resin (heat) in which 45 vol% epoxy resin and 55 vol% tungsten filler are well mixed in a molded product containing gallium nitride and metal gallium (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ). Conductivity 4.5 W / mK) was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材との接合性を調べたところ、強固に結びついており剥がれなかった。   When the produced gallium nitride target was heated at 200 ° C. for 2 hours and the bonding property between the heated molded product and the metal member was examined, the gallium nitride target was firmly bonded and did not peel off.

(比較例1)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に1000nmのCu薄膜を形成し、Inハンダ(熱伝導率81.6W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
(Comparative Example 1)
A 1000 nm Cu thin film is formed on a molded product (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) containing gallium nitride and metal gallium, and In solder (thermal conductivity 81.6 W / mK) is used. It was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材の接合性を調べたところ、加熱後は基板と成型物は容易に動き、剥がれた。   The produced gallium nitride target was heated at 200 ° C. for 2 hours, and the bondability between the heated molded product and the metal member was examined. After the heating, the substrate and the molded product easily moved and peeled off.

(比較例2)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に、70vol%のエポキシ樹脂と30vol%のAgフィラーをよく混合した導電性樹脂(熱伝導率4W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
(Comparative Example 2)
Conductive resin (heat) in which a mixture of gallium nitride and metal gallium (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) is well mixed with 70 vol% epoxy resin and 30 vol% Ag filler. Conductivity 4 W / mK) was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材との接合性を調べたところ、加熱後は基板と成型物は容易に動き、剥がれた。   The produced gallium nitride target was heated at 200 ° C. for 2 hours, and the bondability between the heated molded product and the metal member was examined. After the heating, the substrate and the molded product easily moved and peeled off.

(比較例3)
窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)に、30vol%のエポキシ樹脂と70vol%のタングステンフィラーをよく混合した導電性樹脂(熱伝導率9W/mK)を全面に塗布し、Cu製バッキングプレートと接合した。
(Comparative Example 3)
Conductive resin (heat) in which 30 vol% epoxy resin and 70 vol% tungsten filler are well mixed with a molded product (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) mixed with gallium nitride and metal gallium. A conductivity of 9 W / mK) was applied to the entire surface and joined to a Cu backing plate.

作製した窒化ガリウムターゲットを200℃で2時間加熱し、加熱後の成形物と金属部材との接合性を調べたところ、接合層が剥離し、基板と成型物は剥がれた。   When the produced gallium nitride target was heated at 200 ° C. for 2 hours and the bonding property between the heated molded product and the metal member was examined, the bonding layer was peeled off, and the substrate and the molded product were peeled off.

Claims (2)

ターゲット材である窒化ガリウム成形物と金属部材とを接合層を介して接合した窒化ガリウムターゲットであって、前記接合層がガリウムと反応しない金属を20〜60vol%含む導電性樹脂であることを特徴とする窒化ガリウムターゲット。   A gallium nitride target obtained by bonding a gallium nitride molded product as a target material and a metal member through a bonding layer, wherein the bonding layer is a conductive resin containing 20 to 60 vol% of a metal that does not react with gallium. A gallium nitride target. ガリウムと反応しない金属がタングステンであることを特徴とする請求項1記載の窒化ガリウムターゲット。   The gallium nitride target according to claim 1, wherein the metal that does not react with gallium is tungsten.
JP2012242638A 2012-11-02 2012-11-02 Gallium nitride target Active JP5974831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242638A JP5974831B2 (en) 2012-11-02 2012-11-02 Gallium nitride target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242638A JP5974831B2 (en) 2012-11-02 2012-11-02 Gallium nitride target

Publications (2)

Publication Number Publication Date
JP2014091852A true JP2014091852A (en) 2014-05-19
JP5974831B2 JP5974831B2 (en) 2016-08-23

Family

ID=50936174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242638A Active JP5974831B2 (en) 2012-11-02 2012-11-02 Gallium nitride target

Country Status (1)

Country Link
JP (1) JP5974831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009577A1 (en) * 2014-07-18 2016-01-21 キヤノンアネルバ株式会社 Method for forming nitride semiconductor layer and method for manufacturing semiconductor device
JP2021181595A (en) * 2020-05-18 2021-11-25 東京エレクトロン株式会社 Composite target, manufacturing method of composite target, formation method of nitride semiconductor film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172424A (en) * 1997-12-12 1999-06-29 Minolta Co Ltd Production of gallium compound
US20100038240A1 (en) * 2005-06-22 2010-02-18 W. C. Heraeus Gmbh Powder-Fiber Adhesive
JP2012144805A (en) * 2010-12-21 2012-08-02 Tosoh Corp Gallium nitride molded article and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172424A (en) * 1997-12-12 1999-06-29 Minolta Co Ltd Production of gallium compound
US20100038240A1 (en) * 2005-06-22 2010-02-18 W. C. Heraeus Gmbh Powder-Fiber Adhesive
JP2012144805A (en) * 2010-12-21 2012-08-02 Tosoh Corp Gallium nitride molded article and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009577A1 (en) * 2014-07-18 2016-01-21 キヤノンアネルバ株式会社 Method for forming nitride semiconductor layer and method for manufacturing semiconductor device
KR20160020401A (en) * 2014-07-18 2016-02-23 캐논 아네르바 가부시키가이샤 Film forming method of nitride semiconductor layer and manufacturing method of semiconductor device
JP6001194B2 (en) * 2014-07-18 2016-10-05 キヤノンアネルバ株式会社 Method for forming nitride semiconductor layer and method for manufacturing semiconductor device
KR101687595B1 (en) * 2014-07-18 2016-12-19 캐논 아네르바 가부시키가이샤 Film forming method of nitride semiconductor layer and manufacturing method of semiconductor device
TWI567214B (en) * 2014-07-18 2017-01-21 Canon Anelva Corp A method for forming a nitride semiconductor layer, and a method of manufacturing the semiconductor device
JP2021181595A (en) * 2020-05-18 2021-11-25 東京エレクトロン株式会社 Composite target, manufacturing method of composite target, formation method of nitride semiconductor film
JP7302791B2 (en) 2020-05-18 2023-07-04 東京エレクトロン株式会社 Composite target, method for manufacturing composite target, and method for forming nitride semiconductor film

Also Published As

Publication number Publication date
JP5974831B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
TW201110145A (en) Method for producing conductive material, conductive material obtained by the same method, electronic device containing the conductive material, and light-emitting device
TWI526261B (en) Composite material substrate for led luminescent element, method for manufacturing the same and led luminescent element
TW201508870A (en) Method of jointed body, and method of producing substrate for power module
TWI569914B (en) Jointed body and power module substrate
TWI540772B (en) Cladding material for holding substrate of led light-emitting device and manufacturing method for same
TW201226579A (en) Metal thermal interface material and heat dissipation device
JP6584399B2 (en) Composite and production method thereof
TW201117415A (en) Wafer for mounting LED, method for producing the same and LED-mounted structure using the wafer
TWI404477B (en) Method for forming circuit patterns on surface of substrate
JP2016515763A (en) Joining partner joining method using isothermal solidification reaction to form IN-BI-AG joining layer and corresponding arrangement of plural joining partners
JP5974831B2 (en) Gallium nitride target
TW201605766A (en) Method of producing bonded body, method of producing power module substrate
TW201544588A (en) Aluminum-diamond composite, and heat dissipating component using same
US20180200840A1 (en) Low-Temperature Bonding With Spaced Nanorods And Eutectic Alloys
CN107408616A (en) Method for producing light-emitting device
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
TWI463710B (en) Mrthod for bonding heat-conducting substraye and metal layer
TWI687522B (en) Semiconductor package and its manufacturing method
JP2014091851A (en) Gallium nitride target and method of producing the same
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JP2010199578A (en) Semiconductor device
TW201017837A (en) Metal thermal interface materials and packaged semiconductors comprising the materials
JP5082613B2 (en) LED element and manufacturing method thereof
JP6756189B2 (en) Manufacturing method for power module board with heat sink and power module board with heat sink
JP2008034721A (en) Thermoelectric power generation element, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5974831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151