JP2014089007A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014089007A
JP2014089007A JP2012239983A JP2012239983A JP2014089007A JP 2014089007 A JP2014089007 A JP 2014089007A JP 2012239983 A JP2012239983 A JP 2012239983A JP 2012239983 A JP2012239983 A JP 2012239983A JP 2014089007 A JP2014089007 A JP 2014089007A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
temperature
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239983A
Other languages
Japanese (ja)
Inventor
Daisuke Toyoda
大介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012239983A priority Critical patent/JP2014089007A/en
Priority to PCT/JP2013/004752 priority patent/WO2014068819A1/en
Publication of JP2014089007A publication Critical patent/JP2014089007A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the possibility that false detection about refrigerant shortage occurs and prevent the time required for determining whether or not the refrigerant is insufficient from being extended in an air conditioner (1) having a refrigerant shortage detection part (40) for detecting the refrigerant shortage in a refrigerant circuit (10).SOLUTION: A refrigerant shortage detection part (40) is provided with: a first determination part (41) which determines whether or not a discharge temperature is equal to or lower than a predetermined value when a compressor (11) is started; and a second determination part (42) which determines that refrigerant shortage occurs when detecting a situation that temperature differences between heat exchangers (13, 15) and surrounding areas of the heat exchangers are equal to or smaller than predetermined values when the discharge temperature is equal to or lower than the predetermined value.

Description

本発明は、空気調和装置に関し、特に、冷媒回路内の冷媒不足を検知する冷媒不足検知部を備えた空気調和装置に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner including a refrigerant shortage detection unit that detects a refrigerant shortage in a refrigerant circuit.

従来、冷媒の漏れなどによる冷媒回路内の冷媒不足(ガス欠)を検知する冷媒不足検知部を備えた空気調和装置が提案されている(例えば、特許文献1,2参照)。   Conventionally, an air conditioner including a refrigerant shortage detection unit that detects refrigerant shortage (gas shortage) in a refrigerant circuit due to refrigerant leakage or the like has been proposed (see, for example, Patent Documents 1 and 2).

特許文献1の空気調和装置では、圧縮機の入力電流が所定値未満であり、かつ室内熱交換器と室内空気との温度差及び室外熱交換器と室外空気との温度差がそれぞれ所定温度未満であると判断したときに、冷媒不足であると判断し、圧縮機を停止するようにしている。   In the air conditioner of Patent Document 1, the input current of the compressor is less than a predetermined value, and the temperature difference between the indoor heat exchanger and the indoor air and the temperature difference between the outdoor heat exchanger and the outdoor air are each less than a predetermined temperature. When it is determined that it is, it is determined that the refrigerant is insufficient, and the compressor is stopped.

また、特許文献2の空気調和装置では、圧縮機の吐出温度が上昇すると同時に吐出圧力が下降したことを検出すると、冷媒不足であると判断し、圧縮機を停止するようにしている。この空気調和装置では、圧縮機を比較的長い時間運転すればケーシング内の温度が上昇し、それに伴って吐出管の温度も上昇するという考え方に基づいて、冷媒不足時の吐出温度上昇を検出するようにしている。   Moreover, in the air conditioning apparatus of patent document 2, if it detects that the discharge temperature fell simultaneously with the discharge temperature of a compressor rising, it will judge that it is insufficient for a refrigerant | coolant and will stop a compressor. In this air conditioner, based on the idea that if the compressor is operated for a relatively long time, the temperature in the casing rises and the temperature of the discharge pipe rises accordingly, the discharge temperature rise when the refrigerant is insufficient is detected. I am doing so.

特開2004−162979号公報JP 2004-162979 A 特開平5−196308号公報JP-A-5-196308

ここで、例えば低外気の暖房運転時に熱交換器に液冷媒が溜まっている寝込み状態で装置を起動するときは、熱交換器と空気との温度差があまり大きくならないことがある。そのため、特許文献1の空気調和装置で熱交換器と周囲の温度差が小さいことを検出しても、実際には寝込み状態であって冷媒不足ではないのに、誤って冷媒不足と検知されるおそれがある。   Here, for example, when the apparatus is started in a sleeping state in which liquid refrigerant is accumulated in the heat exchanger during the heating operation of low outside air, the temperature difference between the heat exchanger and air may not be so large. For this reason, even if it is detected that the temperature difference between the heat exchanger and the ambient temperature is small in the air conditioner of Patent Document 1, it is actually in the stagnation state and is not short of the refrigerant, but it is erroneously detected that the refrigerant is short. There is a fear.

また、特許文献2の空気調和装置では、暖房運転で特に外気温度が低いときに装置を起動する場合、圧縮機のケーシング内に設けられている圧縮機構から吐出される吐出ガスの温度は高くなるものの、ケーシングが冷えていて吐出管の温度がすぐには上昇しないため、冷媒不足と判定するのに要する時間が相当長くなってしまう。また、判定時間を短く設定すると、実際には冷媒不足であるのに吐出管の冷媒ガス温度が上昇しないことになり、冷媒不足ではないと誤検知するおそれがあった。   Moreover, in the air conditioning apparatus of patent document 2, when starting an apparatus especially when outside temperature is low by heating operation, the temperature of the discharge gas discharged from the compression mechanism provided in the casing of the compressor becomes high. However, since the casing is cooled and the temperature of the discharge pipe does not rise immediately, the time required to determine that the refrigerant is insufficient is considerably long. Also, if the determination time is set short, the refrigerant gas temperature in the discharge pipe does not rise even though the refrigerant is actually insufficient, and there is a possibility of erroneous detection that the refrigerant is not insufficient.

本発明は、このような問題点に鑑みてなされたものであり、その目的は、冷媒不足に関する誤検知のおそれを少なくして検知精度を高めるとともに、冷媒不足であるか否かの判定に要する時間が長くなるのも防止することである。   The present invention has been made in view of such problems, and its purpose is to reduce the possibility of erroneous detection related to refrigerant shortage and improve detection accuracy, and to determine whether or not there is a refrigerant shortage. It also prevents the time from becoming longer.

第1の発明は、冷凍サイクルを行う冷媒回路(10)と、該冷媒回路(10)の冷媒不足を検出する冷媒不足検知部(40)とを備えた空気調和装置を前提としている。   1st invention presupposes the air conditioning apparatus provided with the refrigerant circuit (10) which performs a refrigerating cycle, and the refrigerant | coolant shortage detection part (40) which detects the refrigerant | coolant shortage of this refrigerant circuit (10).

そして、この空気調和装置は、上記冷媒不足検知部(40)が、圧縮機(11)の起動時に吐出温度が所定値以下か否かを判別する第1判定部(41)と、吐出温度が所定値以下であると第1判定部(41)で判定されると、冷媒回路(10)の熱交換器(13,15)と該熱交換器(13,15)の周囲との温度差が所定値以下か否かを判別し、該温度差が所定値以下である場合に冷媒不足と判定する第2判定部(42)とを備えていることを特徴としている。   The air conditioner includes a first determination unit (41) in which the refrigerant shortage detection unit (40) determines whether or not the discharge temperature is equal to or lower than a predetermined value when the compressor (11) is started. If it is determined by the first determination unit (41) that it is less than or equal to the predetermined value, the temperature difference between the heat exchanger (13, 15) of the refrigerant circuit (10) and the surroundings of the heat exchanger (13, 15) is A second determination unit (42) that determines whether or not the temperature difference is equal to or less than a predetermined value and determines that the refrigerant is insufficient when the temperature difference is equal to or less than the predetermined value is provided.

この第1の発明では、まず圧縮機(11)の吐出温度が所定値よりも低いかどうかが判別される。これは、例えば低外気の暖房運転時に熱交換器(13,15)に冷媒が溜まっていると、熱交換器(13,15)と周囲の温度差が生じないことがあり、熱交換器(13,15)と周囲の温度差が小さいことだけを検出するようにしても冷媒不足と誤検知するおそれがあるのに対して、寝込み状態での起動時には、熱交換器(13,15)とその周囲の温度差は付かなくても、圧縮機(11)の吐出温度は上昇するからであり、圧縮機(11)の吐出温度が上がっていれば冷媒不足ではないから冷媒不足判定は行われない。逆に言うと、圧縮機(11)の吐出温度が所定温度よりも低いときには冷媒不足の可能性があるので、その条件が満たされている場合は、熱交換器(13,15)と周囲の温度差に基づいて冷媒不足の判定が行われる。その結果、冷媒不足であると検知されると、圧縮機(11)の運転を停止するとよい。   In the first invention, it is first determined whether or not the discharge temperature of the compressor (11) is lower than a predetermined value. This is because, for example, when refrigerant is accumulated in the heat exchanger (13, 15) during low-air heating operation, there may be no difference in temperature between the heat exchanger (13, 15) and the heat exchanger (13, 15). 13 and 15) and the fact that only the small temperature difference between the surroundings is detected, there is a risk of misdetecting that the refrigerant is insufficient, while the heat exchanger (13, 15) and the This is because the discharge temperature of the compressor (11) rises even if there is no temperature difference between the surroundings. If the discharge temperature of the compressor (11) is high, the refrigerant shortage is not judged because the refrigerant is not short. Absent. Conversely, when the discharge temperature of the compressor (11) is lower than the predetermined temperature, there is a possibility that the refrigerant is insufficient. If the condition is satisfied, the heat exchanger (13, 15) and the surroundings A refrigerant shortage determination is made based on the temperature difference. As a result, when it is detected that the refrigerant is insufficient, the operation of the compressor (11) may be stopped.

第2の発明は、第1の発明において、上記第2判定部(42)が、上記冷媒回路(10)に設けられている熱源側熱交換器(15)と利用側熱交換器(13)の両方で、各熱交換器(13,15)とその周囲との温度差が所定値以下か否かを判別するように構成されていることを特徴としている。   According to a second aspect, in the first aspect, the second determination unit (42) includes a heat source side heat exchanger (15) and a use side heat exchanger (13) provided in the refrigerant circuit (10). Both are characterized in that it is configured to determine whether or not the temperature difference between each heat exchanger (13, 15) and its surroundings is equal to or less than a predetermined value.

この第2の発明では、冷媒回路(10)の2つの熱交換器(13,15)の両方について、熱交換器(13,15)とその周囲との温度差に基づいた判定が行われる。   In the second aspect of the invention, determination is performed on both of the two heat exchangers (13, 15) of the refrigerant circuit (10) based on the temperature difference between the heat exchanger (13, 15) and its surroundings.

第3の発明は、第1または第2の発明において、上記冷媒回路(10)に冷媒としてR32が充填されていることを特徴としている。   According to a third invention, in the first or second invention, the refrigerant circuit (10) is filled with R32 as a refrigerant.

本発明によれば、まず圧縮機(11)の吐出温度が所定値よりも低いかどうかを判別することにより、冷媒回路(10)の動作が、熱交換器(13,15)に冷媒が溜まっている寝込み状態からの圧縮機(11)の起動によるものであるかどうかが検知される。そして、寝込み状態である場合は冷媒回路(10)の冷媒は不足していないので、冷媒不足判定は行われない。また、寝込み状態でない場合は冷媒回路(10)の冷媒が不足している可能性があるので、その場合には熱交換器(13,15)と周囲との温度差に基づいて冷媒不足が判定される。したがって、本発明によれば、冷媒不足の判定に関する誤検知を防止できる。また、寝込み状態からの起動時には圧縮機(11)の吐出温度は速く上昇するので、判定動作に要する時間が長くなってしまうのも防止できる。   According to the present invention, first, it is determined whether or not the discharge temperature of the compressor (11) is lower than a predetermined value, so that the refrigerant is accumulated in the heat exchanger (13, 15) in the operation of the refrigerant circuit (10). It is detected whether the compressor (11) is activated from the sleeping state. And when it is a sleep state, since the refrigerant | coolant of a refrigerant circuit (10) is not insufficient, a refrigerant | coolant shortage determination is not performed. If the refrigerant is not in the stagnation state, the refrigerant in the refrigerant circuit (10) may be insufficient. In that case, the lack of refrigerant is determined based on the temperature difference between the heat exchanger (13, 15) and the surroundings. Is done. Therefore, according to the present invention, it is possible to prevent erroneous detection related to the refrigerant shortage determination. Moreover, since the discharge temperature of the compressor (11) rises quickly at the start-up from the sleeping state, it is possible to prevent the time required for the determination operation from becoming long.

上記第2の発明によれば、冷媒回路(10)の2つの熱交換器(13,15)の両方について、熱交換器(13,15)とその周囲との温度差に基づいた判定を行うようにしている。ここで、冷媒回路(10)の冷媒が不足していなければ、一方の熱交換器(13,15)でだけ判定をしても温度差が付くことは検知できるが、この第2の発明によれば、両方の熱交換器(13,15)で温度差を検知することによって、より確実な判定を行うことが可能になる。   According to the second aspect of the invention, determination is performed on both of the two heat exchangers (13, 15) of the refrigerant circuit (10) based on the temperature difference between the heat exchanger (13, 15) and its surroundings. I am doing so. Here, if the refrigerant in the refrigerant circuit (10) is not insufficient, it can be detected that a temperature difference is given even if only one of the heat exchangers (13, 15) is determined. According to this, it is possible to make a more reliable determination by detecting the temperature difference between both heat exchangers (13, 15).

R410Aなどと比べて比熱比の大きなR32では、圧縮機(11)のケーシング内に設けられる圧縮機構から吐出される冷媒の温度上昇が冷媒不足のときでも大きくなり、圧縮機構が損傷しやすくなる。これに対して、上記第3の発明によれば、冷媒の比熱比が原因で冷媒不足のときに損傷しやすくなる圧縮機(11)を効果的に保護することができる。   In R32 having a larger specific heat ratio than R410A or the like, the temperature rise of the refrigerant discharged from the compression mechanism provided in the casing of the compressor (11) becomes large even when the refrigerant is insufficient, and the compression mechanism is easily damaged. On the other hand, according to the third aspect, the compressor (11) that is easily damaged when the refrigerant is insufficient due to the specific heat ratio of the refrigerant can be effectively protected.

図1は、本発明の実施形態に係る空気調和装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. 図2は、冷媒不足検知の制御を示すフローチャートである。FIG. 2 is a flowchart showing control for refrigerant shortage detection.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る空気調和装置(1)の冷媒回路(10)の回路構成図である。この冷媒回路(10)は、圧縮機(11)と四路切換弁(12)と室内熱交換器(利用側熱交換器)(13)と膨張弁(膨張機構)(14)と室外熱交換器(熱源側熱交換器)(15)とが順に接続された閉回路である。この冷媒回路(10)には、冷媒としてR32が充填されている。   Drawing 1 is a circuit lineblock diagram of refrigerant circuit (10) of air harmony device (1) concerning an embodiment of the present invention. This refrigerant circuit (10) is composed of a compressor (11), a four-way selector valve (12), an indoor heat exchanger (use side heat exchanger) (13), an expansion valve (expansion mechanism) (14), and outdoor heat exchange. Is a closed circuit in which a heat exchanger (heat source side heat exchanger) (15) is connected in order. The refrigerant circuit (10) is filled with R32 as a refrigerant.

この冷媒回路(10)において、圧縮機(11)の吐出管は四路切換弁(12)の第1ポート(12a)に接続されている。四路切換弁(12)の第2ポート(12b)は室内熱交換器(13)のガス側端に接続されている。室内熱交換器(13)の液側端は膨張弁(14)を介して室外熱交換器(15)の液側端に接続されている。また、室外熱交換器(15)のガス側端は四路切換弁(12)の第3ポート(12c)に接続され、四路切換弁(12)の第4ポート(12d)は圧縮機(11)の吸入管に接続されている。   In this refrigerant circuit (10), the discharge pipe of the compressor (11) is connected to the first port (12a) of the four-way switching valve (12). The second port (12b) of the four-way selector valve (12) is connected to the gas side end of the indoor heat exchanger (13). The liquid side end of the indoor heat exchanger (13) is connected to the liquid side end of the outdoor heat exchanger (15) via the expansion valve (14). The gas side end of the outdoor heat exchanger (15) is connected to the third port (12c) of the four-way selector valve (12), and the fourth port (12d) of the four-way selector valve (12) is connected to the compressor ( 11) Connected to the suction pipe.

四路切換弁(12)は、各ポート間の接続状態を図1に実線で示すように、第1ポート(12a)と第2ポート(12b)が連通するとともに第3ポート(12c)と第4ポート(12d)が連通する暖房運転時の第1位置と、図1に破線で示すように、第1ポート(12a)と第3ポート(12c)が連通するとともに第2ポート(12b)と第4ポート(12d)が連通する冷房運転時の第2位置とに切り換え可能に構成されている。   The four-way switching valve (12) is connected to the first port (12a) and the second port (12b) and the third port (12c) and the second port as shown in FIG. As shown by the broken line in FIG. 1, the first port (12a) and the third port (12c) communicate with each other and the second port (12b) communicates with the first position during the heating operation in which the four ports (12d) communicate with each other. The fourth port (12d) is configured to be switchable to the second position during the cooling operation in communication.

冷媒回路(10)には、圧縮機(11)の吐出冷媒温度を検出する吐出温度センサ(31)と、室内熱交換器(13)の温度を検出するように室内熱交換器(13)に設けられた室内熱交温度センサ(32)と、室内空気温度を検出する室内温度センサ(33)と、室外熱交換器(15)の温度を検出するように室外熱交換器(15)に設けられた室外熱交温度センサ(34)と、外気温度を検出する室外温度センサ(35)とが設けられている。   The refrigerant circuit (10) includes a discharge temperature sensor (31) that detects the refrigerant temperature discharged from the compressor (11), and an indoor heat exchanger (13) that detects the temperature of the indoor heat exchanger (13). Provided in the outdoor heat exchanger (15) to detect the temperature of the installed indoor heat exchange temperature sensor (32), the indoor temperature sensor (33) that detects the indoor air temperature, and the outdoor heat exchanger (15) The outdoor heat exchanger temperature sensor (34) and an outdoor temperature sensor (35) for detecting the outside air temperature are provided.

この空気調和装置(1)にはコントローラ(40)が設けられている。コントローラ(40)は、上記各センサで検出された値が入力されると、それらの値に基づいて演算を行い、冷媒回路(10)の動作を制御するように構成されている。   The air conditioner (1) is provided with a controller (40). The controller (40) is configured to control the operation of the refrigerant circuit (10) by performing a calculation based on the values detected by the respective sensors when input.

特に、コントローラ(40)は、圧縮機(11)の起動時に吐出温度が所定値以下か否かを判定する第1判定部(41)と、吐出温度が所定値以下である場合に、各熱交換器(13,15)と該熱交換器(13,15)の周囲との温度差が所定値以下か否かを判定し、該温度差が所定値以下である場合に冷媒不足(ガス欠)と判定する第2判定部(42)とを備え、冷媒回路(10)における冷媒不足を検出する冷媒不足検知部として用いられている。   In particular, the controller (40) includes a first determination unit (41) that determines whether or not the discharge temperature is equal to or lower than a predetermined value when the compressor (11) is started. It is determined whether or not the temperature difference between the exchanger (13, 15) and the surroundings of the heat exchanger (13, 15) is equal to or less than a predetermined value. ), And is used as a refrigerant shortage detection unit that detects refrigerant shortage in the refrigerant circuit (10).

−運転動作−
この空気調和装置(1)の運転動作を説明する。
-Driving action-
The operation of the air conditioner (1) will be described.

暖房時は、四路切換弁(12)が第1位置に設定された状態で圧縮機(11)が運転される。圧縮機(11)が起動すると、圧縮機(11)から吐出された高圧の冷媒ガスは室内熱交換器(13)へ流入し、該室内熱交換器(13)で凝縮する。室内熱交換器(13)で凝縮した液冷媒は膨張弁(14)で減圧されて低圧の二相冷媒になる。この低圧の二相冷媒は室外熱交換器(15)で蒸発し、四路切換弁(12)を通って圧縮機(11)に吸入される。   During heating, the compressor (11) is operated with the four-way selector valve (12) set to the first position. When the compressor (11) is started, the high-pressure refrigerant gas discharged from the compressor (11) flows into the indoor heat exchanger (13) and is condensed in the indoor heat exchanger (13). The liquid refrigerant condensed in the indoor heat exchanger (13) is decompressed by the expansion valve (14) to become a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant evaporates in the outdoor heat exchanger (15), and is sucked into the compressor (11) through the four-way switching valve (12).

以上のようにして冷媒回路(10)を冷媒が循環することにより、圧縮行程、凝縮行程、膨張行程及び蒸発行程からなる冷凍サイクルが行われる。そして、室内熱交換器(13)での凝縮行程において加熱された空気が室内に供給される。   As described above, the refrigerant circulates through the refrigerant circuit (10), whereby a refrigeration cycle including a compression stroke, a condensation stroke, an expansion stroke, and an evaporation stroke is performed. And the air heated in the condensation process in an indoor heat exchanger (13) is supplied indoors.

冷房時は、四路切換弁(12)が第2位置に設定された状態で圧縮機(11)が運転される。圧縮機(11)が起動すると、圧縮機(11)から吐出された高圧の冷媒ガスは室外熱交換器(15)へ流入し、該室外熱交換器(15)で凝縮する。室外熱交換器(15)で凝縮した液冷媒は膨張弁(14)で減圧されて低圧の二相冷媒になる。この低圧の二相冷媒は室内熱交換器(13)で蒸発し、四路切換弁(12)を通って圧縮機(11)に吸入される。   During cooling, the compressor (11) is operated with the four-way switching valve (12) set to the second position. When the compressor (11) is started, the high-pressure refrigerant gas discharged from the compressor (11) flows into the outdoor heat exchanger (15) and is condensed in the outdoor heat exchanger (15). The liquid refrigerant condensed in the outdoor heat exchanger (15) is depressurized by the expansion valve (14) to become a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant evaporates in the indoor heat exchanger (13), and is sucked into the compressor (11) through the four-way switching valve (12).

以上のようにして冷媒回路(10)を冷媒が循環することにより、圧縮行程、凝縮行程、膨張行程及び蒸発行程からなる冷凍サイクルが行われる。そして、室内熱交換器(13)での蒸発行程において冷却された空気が室内に供給される。   As described above, the refrigerant circulates through the refrigerant circuit (10), whereby a refrigeration cycle including a compression stroke, a condensation stroke, an expansion stroke, and an evaporation stroke is performed. And the air cooled in the evaporation process in an indoor heat exchanger (13) is supplied indoors.

次に、冷媒不足検知の制御を図2を用いて説明する。   Next, control of refrigerant shortage detection will be described with reference to FIG.

ステップST1では、室温と外気温度との差が第1の所定値A(℃)よりも大きいか、または外気温度が第2の所定値B(℃)よりも小さいかを判別する。この判別結果が「YES」であるとステップST2へ進み、誤検出防止タイマーをスタートさせる。また、ステップST1の判別結果が「NO」であるとステップST3へ進み、冷媒不足(図では「ガス欠」と表示)を判定する動作を行う。つまり、室内と室外の温度差が小さいときや、室外温度が高いときは、ステップST2以降の動作を行わずに冷媒不足が判定される。   In step ST1, it is determined whether the difference between the room temperature and the outside air temperature is larger than a first predetermined value A (° C.) or whether the outside air temperature is smaller than a second predetermined value B (° C.). If this determination is “YES”, the flow proceeds to step ST 2 to start a false detection prevention timer. Further, if the determination result in step ST1 is “NO”, the process proceeds to step ST3, and an operation for determining a refrigerant shortage (indicated as “gas shortage” in the figure) is performed. That is, when the temperature difference between the room and the outdoor is small, or when the outdoor temperature is high, the lack of refrigerant is determined without performing the operations after step ST2.

ステップST4では、ステップST2でスタートさせたタイマーがカウント中かどうかを判別する。タイマーのカウントが終わっているとステップST6へ進み、冷媒不足の判定動作を行わずにこのフローチャートの制御を終了する。一方、上記タイマーがカウント中であればステップST5へ進み、圧縮機(11)の吐出温度が第3の所定値C(℃)よりも低いかどうかと、各熱交換器(13,15)とその周囲の温度差が第4,第5の所定値D,E(℃)よりも小さいかどうかを順に判別する。そして、判別結果が「NO」であればステップST4に戻り、判別結果が「YES」であればステップST7に進む。   In step ST4, it is determined whether or not the timer started in step ST2 is counting. When the count of the timer is over, the process proceeds to step ST6, and the control of this flowchart is terminated without performing the refrigerant shortage determination operation. On the other hand, if the timer is counting, the process proceeds to step ST5, whether or not the discharge temperature of the compressor (11) is lower than the third predetermined value C (° C.), and each heat exchanger (13, 15). It is sequentially determined whether the ambient temperature difference is smaller than the fourth and fifth predetermined values D and E (° C.). If the determination result is “NO”, the process returns to step ST4, and if the determination result is “YES”, the process proceeds to step ST7.

ステップST7では冷媒不足移行判定を行うためのタイマーをスタートさせる。ステップST8ではこのタイマーがタイムアップするかどうかが判別され、タイムアップしなければステップST10でステップST5と同じ判別動作を行い、タイムアップになればステップST9で冷媒不足判定へ移行する。   In step ST7, a timer for performing the refrigerant shortage transition determination is started. In step ST8, it is determined whether or not the timer is up. If the time is not up, the same discriminating operation as in step ST5 is performed in step ST10. If the time is up, the process proceeds to refrigerant shortage determination in step ST9.

このように、本実施形態では、ステップST5,10において、まず圧縮機(11)の吐出温度が所定値C(℃)よりも低いかどうかを判別するようにしている。これは、例えば低外気の暖房運転時に熱交換器(13,15)に冷媒が溜まっていると、熱交換器(13,15)と周囲の温度差が生じないことがあり、熱交換器(13,15)と周囲の温度差が小さいことだけを検出するようにしても冷媒不足と誤検知するおそれがあるからである。そして、寝込み状態での起動時には、熱交換器(13,15)とその周囲の温度差は付かなくても、圧縮機(11)の吐出温度は上昇するので、圧縮機(11)の吐出温度が上がっていれば冷媒不足ではないから冷媒不足判定は行わない。逆に言うと、圧縮機(11)の吐出温度が所定温度よりも低いときには冷媒不足の可能性があるので、その条件が満たされている場合は、熱交換器(13,15)と周囲の温度差に基づいて冷媒不足を検知する。   As described above, in this embodiment, in Steps ST5 and ST10, it is first determined whether or not the discharge temperature of the compressor (11) is lower than the predetermined value C (° C.). This is because, for example, when refrigerant is accumulated in the heat exchanger (13, 15) during low-air heating operation, there may be no difference in temperature between the heat exchanger (13, 15) and the heat exchanger (13, 15). This is because there is a possibility that a refrigerant shortage may be erroneously detected even if only the fact that the temperature difference between 13 and 15) and the surrounding temperature is small is detected. When starting up in the sleep state, the discharge temperature of the compressor (11) rises even if there is no temperature difference between the heat exchanger (13, 15) and its surroundings, so the discharge temperature of the compressor (11) If it is raised, it is not a refrigerant shortage, and therefore a refrigerant shortage determination is not performed. Conversely, when the discharge temperature of the compressor (11) is lower than the predetermined temperature, there is a possibility that the refrigerant is insufficient. If the condition is satisfied, the heat exchanger (13, 15) and the surroundings The refrigerant shortage is detected based on the temperature difference.

その結果、冷媒不足であると検知されると、圧縮機(11)の運転が停止する。   As a result, when it is detected that the refrigerant is insufficient, the operation of the compressor (11) is stopped.

−実施形態の効果−
本実施形態によれば、上述のように、まず圧縮機(11)の吐出温度が所定値よりも低いかどうかを判別することにより、冷媒回路(10)の動作が、熱交換器(13,15)に冷媒が溜まっている寝込み状態からの圧縮機(11)の起動によるものであるかどうかが検知される。そして、寝込み状態である場合は冷媒回路(10)の冷媒は不足していないので冷媒不足判定は行わず、寝込み状態でない場合には冷媒回路(10)の冷媒が不足している可能性があるので、熱交換器(13,15)と周囲との温度差に基づいて冷媒不足が判定される。したがって、本実施形態によれば、寝込み状態からの起動時であっても、冷媒不足の判定に関する誤検知を防止できる。また、寝込み状態からの起動時には圧縮機(11)の吐出温度は速く上昇するので、判定動作に要する時間が長くなってしまうのも防止できる。
-Effect of the embodiment-
According to this embodiment, as described above, first, it is determined whether or not the discharge temperature of the compressor (11) is lower than a predetermined value, whereby the operation of the refrigerant circuit (10) is performed by the heat exchanger (13, It is detected whether or not the compressor (11) is started from a sleeping state where refrigerant is accumulated in 15). If the refrigerant circuit (10) is in the stagnation state, the refrigerant in the refrigerant circuit (10) is not insufficient, so the refrigerant shortage determination is not performed. If the refrigerant is not in the stagnation state, the refrigerant in the refrigerant circuit (10) may be insufficient. Therefore, the refrigerant shortage is determined based on the temperature difference between the heat exchanger (13, 15) and the surroundings. Therefore, according to the present embodiment, it is possible to prevent erroneous detection related to the determination of the refrigerant shortage even at the time of startup from the sleeping state. Moreover, since the discharge temperature of the compressor (11) rises quickly at the start-up from the sleeping state, it is possible to prevent the time required for the determination operation from becoming long.

さらに、本実施形態では、冷媒回路(10)の2つの熱交換器(13,15)の両方について、熱交換器(13,15)とその周囲との温度差に基づいた判定を行うようにしており、このことによって、より確実な判定を行うことが可能になる。   Furthermore, in the present embodiment, determination is made on both of the two heat exchangers (13, 15) of the refrigerant circuit (10) based on the temperature difference between the heat exchanger (13, 15) and its surroundings. This makes it possible to make a more reliable determination.

また、R410Aなどと比べて比熱比の大きなR32では、圧縮機(11)のケーシング内に設けられる圧縮機構から吐出される冷媒の温度上昇が冷媒不足のときでも大きくなり、圧縮機構が損傷しやすくなる。これに対して、本実施形態によれば、冷媒の比熱比が原因で冷媒不足のときに損傷しやすくなる圧縮機(11)を、効果的に保護することができる。   Further, in R32 having a larger specific heat ratio than R410A or the like, the temperature rise of the refrigerant discharged from the compression mechanism provided in the casing of the compressor (11) becomes large even when the refrigerant is insufficient, and the compression mechanism is easily damaged. Become. On the other hand, according to this embodiment, the compressor (11) that is easily damaged when the refrigerant is insufficient due to the specific heat ratio of the refrigerant can be effectively protected.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

例えば、上記実施形態では、第2判定部(42)により、室外熱交換器(15)と室内熱交換器(13)の両方について、熱交換器(13,15)とその周囲の温度差を検知するようにしているが、室外熱交換器(15)と室内熱交換器(13)の一方で上記温度差を検知するようにしてもよい。   For example, in the above embodiment, the second determination unit (42) calculates the temperature difference between the heat exchanger (13, 15) and its surroundings for both the outdoor heat exchanger (15) and the indoor heat exchanger (13). The temperature difference may be detected by one of the outdoor heat exchanger (15) and the indoor heat exchanger (13).

また、冷媒不足の判定は暖房運転時に限らず、冷房運転時に行ってもよい。   In addition, the determination of the refrigerant shortage may be performed not only during the heating operation but also during the cooling operation.

さらに、上記実施形態では冷媒回路(10)の冷媒をR32にしているが、他の冷媒を用いる場合であっても本発明を適用することは可能である。   Furthermore, although the refrigerant of the refrigerant circuit (10) is R32 in the above embodiment, the present invention can be applied even when another refrigerant is used.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷媒回路内の冷媒不足を検知する冷媒不足検知部を備えた空気調和装置について有用である。   As described above, the present invention is useful for an air conditioner including a refrigerant shortage detection unit that detects a refrigerant shortage in a refrigerant circuit.

1 空気調和装置
10 冷媒回路
11 圧縮機
13 室内熱交換器(利用側熱交換器)
15 室外熱交換器(熱源側熱交換器)
40 コントローラ(冷媒不足検知部)
41 第1判定部
42 第2判定部
1 Air conditioner
10 Refrigerant circuit
11 Compressor
13 Indoor heat exchanger (use side heat exchanger)
15 Outdoor heat exchanger (heat source side heat exchanger)
40 Controller (Refrigerant shortage detector)
41 1st judgment part
42 Second judgment part

Claims (3)

冷凍サイクルを行う冷媒回路(10)と、該冷媒回路(10)の冷媒不足を検出する冷媒不足検知部(40)とを備えた空気調和装置であって、
上記冷媒不足検知部(40)は、
圧縮機(11)の起動時に吐出温度が所定値以下か否かを判別する第1判定部(41)と、
吐出温度が所定値以下であると第1判定部(41)で判定されると、冷媒回路(10)の熱交換器(13,15)と該熱交換器(13,15)の周囲との温度差が所定値以下か否かを判別し、該温度差が所定値以下である場合に冷媒不足と判定する第2判定部(42)と、
を備えていることを特徴とする空気調和装置。
An air conditioner including a refrigerant circuit (10) that performs a refrigeration cycle, and a refrigerant shortage detection unit (40) that detects refrigerant shortage of the refrigerant circuit (10),
The refrigerant shortage detection unit (40)
A first determination unit (41) for determining whether the discharge temperature is equal to or lower than a predetermined value when the compressor (11) is started;
When the first determination unit (41) determines that the discharge temperature is equal to or lower than the predetermined value, the heat exchanger (13, 15) of the refrigerant circuit (10) and the surroundings of the heat exchanger (13, 15) A second determination unit (42) that determines whether or not the temperature difference is equal to or less than a predetermined value, and determines that the refrigerant is insufficient when the temperature difference is equal to or less than the predetermined value;
An air conditioner comprising:
請求項1において、
上記第2判定部(42)は、上記冷媒回路(10)に設けられている熱源側熱交換器(15)と利用側熱交換器(13)の両方で、各熱交換器(13,15)とその周囲との温度差が所定値以下か否かを判別するように構成されていることを特徴とする空気調和装置。
In claim 1,
The second determination unit (42) includes the heat exchanger (13, 15) in both the heat source side heat exchanger (15) and the use side heat exchanger (13) provided in the refrigerant circuit (10). ) And its surroundings are configured to determine whether or not the temperature difference is equal to or less than a predetermined value.
請求項1または2において、
上記冷媒回路(10)には、冷媒としてR32が充填されていることを特徴とする空気調和装置。
In claim 1 or 2,
The air conditioner characterized in that the refrigerant circuit (10) is filled with R32 as a refrigerant.
JP2012239983A 2012-10-31 2012-10-31 Air conditioner Pending JP2014089007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012239983A JP2014089007A (en) 2012-10-31 2012-10-31 Air conditioner
PCT/JP2013/004752 WO2014068819A1 (en) 2012-10-31 2013-08-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239983A JP2014089007A (en) 2012-10-31 2012-10-31 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014089007A true JP2014089007A (en) 2014-05-15

Family

ID=50626777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239983A Pending JP2014089007A (en) 2012-10-31 2012-10-31 Air conditioner

Country Status (2)

Country Link
JP (1) JP2014089007A (en)
WO (1) WO2014068819A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556226A (en) * 2018-11-01 2019-04-02 珠海格力电器股份有限公司 Method, device and unit for determining content of refrigerant
CN111397168A (en) * 2020-03-24 2020-07-10 珠海格力电器股份有限公司 Control method and device of air conditioning system, control equipment, medium and air conditioning system
CN111928448A (en) * 2020-07-20 2020-11-13 四川虹美智能科技有限公司 Refrigerant leakage dual-mode judgment method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596028B (en) * 2014-12-26 2017-09-29 宁波奥克斯电气股份有限公司 The method whether frequency-changeable compressor of domestic multi-connection machine dallies is judged when heating
CN106556103B (en) * 2016-10-21 2018-12-18 珠海格力电器股份有限公司 Control method and device for fluorine deficiency protection of air conditioner
CN109489284A (en) * 2018-11-21 2019-03-19 齐力制冷***(深圳)有限公司 A kind of Vending Machine refrigeration module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128765A (en) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd Compressor protective controller for air conditioner
JP2000105033A (en) * 1998-09-28 2000-04-11 Daikin Ind Ltd Air conditioner
JP2000154954A (en) * 1998-11-20 2000-06-06 Fujitsu General Ltd Control method of air conditioner
JP2004162979A (en) * 2002-11-12 2004-06-10 Daikin Ind Ltd Air conditioner
JP2008267761A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128765A (en) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd Compressor protective controller for air conditioner
JP2000105033A (en) * 1998-09-28 2000-04-11 Daikin Ind Ltd Air conditioner
JP2000154954A (en) * 1998-11-20 2000-06-06 Fujitsu General Ltd Control method of air conditioner
JP2004162979A (en) * 2002-11-12 2004-06-10 Daikin Ind Ltd Air conditioner
JP2008267761A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556226A (en) * 2018-11-01 2019-04-02 珠海格力电器股份有限公司 Method, device and unit for determining content of refrigerant
CN109556226B (en) * 2018-11-01 2020-01-03 珠海格力电器股份有限公司 Method, device and unit for determining content of refrigerant
CN111397168A (en) * 2020-03-24 2020-07-10 珠海格力电器股份有限公司 Control method and device of air conditioning system, control equipment, medium and air conditioning system
CN111397168B (en) * 2020-03-24 2021-12-24 珠海格力电器股份有限公司 Control method and device of air conditioning system, control equipment, medium and air conditioning system
CN111928448A (en) * 2020-07-20 2020-11-13 四川虹美智能科技有限公司 Refrigerant leakage dual-mode judgment method and device

Also Published As

Publication number Publication date
WO2014068819A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6428717B2 (en) Refrigeration system
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
WO2014068819A1 (en) Air conditioner
JP6861897B2 (en) Refrigeration cycle equipment
JP6444577B1 (en) Air conditioner
WO2019053880A1 (en) Refrigeration air conditioner
US20180073786A1 (en) Air-conditioning apparatus
EP3404345B1 (en) Refrigeration cycle device
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
EP3591311B1 (en) Refrigeration cycle device
JP2006250440A (en) Air conditioning system
AU2013275605B2 (en) Refrigerating Device
JP3541798B2 (en) Refrigeration equipment
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
JP2002147905A (en) Refrigerating plant
JP2002147904A (en) Method for detecting frost formation on heat exchanger
WO2020105515A1 (en) Refrigerant cycle device, refrigerant amount determination system, and refrigerant amount determination method
JP2017227356A (en) Freezer and actuation determination method of pressure switch
JP2008190757A (en) Refrigeration system
JP2018009768A (en) Refrigeration system
JP2010139122A (en) Air conditioner
JP2018141587A (en) air conditioner
JP2017067397A (en) Refrigerator
JP2007212077A (en) Air-conditioner
JP2016156569A (en) Freezer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311