JP2014088995A - Tube for heat exchanger - Google Patents

Tube for heat exchanger Download PDF

Info

Publication number
JP2014088995A
JP2014088995A JP2012239053A JP2012239053A JP2014088995A JP 2014088995 A JP2014088995 A JP 2014088995A JP 2012239053 A JP2012239053 A JP 2012239053A JP 2012239053 A JP2012239053 A JP 2012239053A JP 2014088995 A JP2014088995 A JP 2014088995A
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger tube
tube
downstream
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239053A
Other languages
Japanese (ja)
Inventor
Kyohei Takimoto
恭平 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2012239053A priority Critical patent/JP2014088995A/en
Publication of JP2014088995A publication Critical patent/JP2014088995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tube for a heat exchanger capable of preventing damage of a tube caused by erosion in a U-turn flow passage part.SOLUTION: The tube for a heat exchanger includes an upstream side linear flow passage part 4A and a downstream side linear flow passage part 4B connecting an inlet part 2 and an outlet part 3 and through which the medium flows, and a U-turn flow passage part 4C for making a U-turn of the medium between the flow passages. An arc-shaped protrusion part 6 protruded in an arc shape toward an inner side of the tube and changing the flow direction of the medium flowing from the upstream side linear flow passage part 4A so as to make it flow into the downstream side linear flow passage part 4B is provided in the U-turn flow passage part 4C.

Description

本発明は、熱交換器用チューブに関する。   The present invention relates to a heat exchanger tube.

従来の熱交換器用チューブとしては、特許文献1および特許文献2に記載のものが知られている。
この従来の熱交換器用チューブは、両外側が出入口を除いてビードで形成され、その中央部に仕切りビードが設けられて媒体がU字状に流れる流路が形成されたチューブ部材を有している。この流路には、流通する媒体を撹拌して放熱性能を向上させるために、内側へ向けて突出される多数の突出部が設けられている。このように形成された2個のチューブ・プレートは、互いに組み付けられてチューブを構成する。
As conventional heat exchanger tubes, those described in Patent Document 1 and Patent Document 2 are known.
This conventional heat exchanger tube has a tube member in which both outer sides are formed by beads except for the entrance and exit, a partition bead is provided at the center, and a flow path through which the medium flows in a U-shape is formed. Yes. The flow path is provided with a number of protrusions protruding inward to stir the circulating medium and improve the heat dissipation performance. The two tube plates formed in this way are assembled together to form a tube.

特開平2−169127号公報JP-A-2-169127 WO1983−04090A1号公報WO 1983-04090 A1

上記従来技術にあっては、Uターン部において局所的に媒体の流速が高まる部位があり、エロージョンが発生すると、材料が薄肉となってチューブに亀裂が発生するなど損傷する場合があるといった問題もある。   In the above prior art, there is a portion where the flow velocity of the medium is locally increased in the U-turn portion, and when erosion occurs, there is a problem that the material becomes thin and the tube may be cracked or the like may be damaged. is there.

本発明は、上記問題に着目してなされたもので、その目的とするところは、エロージョンによるチューブのUターン流路部における破損を防止することができるようにした熱交換器用チューブを提供することにある。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a heat exchanger tube capable of preventing damage to the U-turn flow path portion of the tube due to erosion. It is in.

この目的のため本発明による熱交換器用チューブは、
媒体の入口部と、
媒体の出口部と、
入口部および出口部間をそれぞれ結び、媒体が流通する上流側直線流路部および下流側直線流路部と、上流側直線流路部および下流側直線流路部間で媒体をUターンさせるUターン流路部と、
を備えた熱交換器用チューブにおいて、
Uターン流路部に、弧状形状を有してチューブの内方へ突出し、上流側直線流路部から流出された媒体の流れの方向を変えて下流側直線流路部へ流入させる弧状突出部を設けた、
ことを特徴とする。
For this purpose, the heat exchanger tube according to the invention is
A medium inlet,
A media outlet;
A U-turn is formed between the upstream linear flow channel portion and the downstream linear flow channel portion through which the medium flows, and between the upstream linear flow channel portion and the downstream linear flow channel portion, by connecting the inlet portion and the outlet portion respectively. A turn channel section;
In a heat exchanger tube with
An arc-shaped protrusion that has an arc shape on the U-turn channel and protrudes inward of the tube and changes the flow direction of the medium flowing out from the upstream linear channel to flow into the downstream linear channel Provided,
It is characterized by that.

また、好ましくは、チューブの厚さ方向に、一対の弧状突出部を向い合せに配置する。   Preferably, the pair of arcuate protrusions are arranged facing each other in the thickness direction of the tube.

また、好ましくは、一対の弧状突出部が、互いに同じ位置となるように配置し、弧状突出部同士が連続して対面するようにする。   Preferably, the pair of arcuate protrusions are arranged at the same position so that the arcuate protrusions continuously face each other.

また、好ましくは、一対の弧状突出部は、交互に並列配置する。   Preferably, the pair of arcuate protrusions are alternately arranged in parallel.

また、好ましくは、弧状突出部は、この上流側端部近傍と下流側端部近傍とに、上流側直線流路部と下流側直線流路部とに沿ってこれらを分離する仕切り部に対して広がり角度をもたせた形状とする。   Preferably, the arc-shaped protruding portion is provided in the vicinity of the upstream end portion and the downstream end portion, with respect to the partition portion that separates them along the upstream straight flow passage portion and the downstream straight flow passage portion. The shape has a widening angle.

また、好ましくは、弧状突出部は、上流側直線流路部と下流側直線流路部との中間部位に直線部分を持たせた形状とする。   Preferably, the arcuate protrusion has a shape in which a straight portion is provided at an intermediate portion between the upstream linear flow path portion and the downstream straight flow path portion.

また、好ましくは、上流側直線流路部と下流側直線流路部とのうちの少なくとも一方は、インナ・フィンまたはチューブの内方に突出する突出部を有する。   Preferably, at least one of the upstream linear flow channel portion and the downstream linear flow channel portion has a protruding portion protruding inward of the inner fin or the tube.

また、好ましくは、突出部は、上流側直線流路部と下流側直線流路部とに、これらを分離する仕切り部に対して斜め方向へ向けてそれぞれ配置した複数の斜め方向突出部、あるいはチューブの長手方向に延在する波状突出部で構成する。   Preferably, the projecting portion includes a plurality of oblique projecting portions respectively disposed in the upstream straight flow channel portion and the downstream straight flow channel portion in an oblique direction with respect to the partition portion separating them, or It is comprised by the wavy protrusion part extended in the longitudinal direction of a tube.

また、好ましくは、弧状突出部は、上流側直進流路部および下流側直進流路部を分ける仕切り部の下流側端部を、内方に跨ぐように配置する。   Preferably, the arcuate protrusion is disposed so as to straddle the downstream end of the partition that separates the upstream straight flow path and the downstream straight flow path inward.

また、好ましくは、チューブ内を流通する媒体が冷却水であり、熱交換器用チューブは、冷却水とチューブの外側を流通する圧縮空気とが熱交換して圧縮空気を冷却する水冷式チャージ・エア・クーラのチューブとする。   Preferably, the medium flowing through the tube is cooling water, and the heat exchanger tube is a water-cooled charge air that cools the compressed air by exchanging heat between the cooling water and the compressed air flowing outside the tube.・ Use a cooler tube.

本発明の熱交換器用チューブにあっては、エロージョンによるチューブのUターン流路部の破損を防止することができる。   In the heat exchanger tube of the present invention, damage to the U-turn flow path portion of the tube due to erosion can be prevented.

また、チューブの厚さ方向に、一対の弧状突出部を向い合せに配置したので、弧状突出部を有する半分割のチューブ・プレート同士を組み付けることで容易かつ安価にチューブを製造することができる。   Further, since the pair of arcuate protrusions are disposed facing each other in the thickness direction of the tube, the tube can be manufactured easily and inexpensively by assembling the half-divided tube plates having the arcuate protrusions.

また、一対の弧状突出部を、互いに同じ位置となるように配置し、弧状突出部同士が連続して対面するようにしたので、弧状突出部を有する半分割のチューブ・プレート同士を組み付けることで容易かつ安価にチューブを製造することができる。また、媒体をスムーズに流すことでその流通抵抗も抑制して放熱効果を向上させ、さらにエロージョンによるUターン流路部の破損をも抑制することができる。   Also, since the pair of arcuate protrusions are arranged at the same position, and the arcuate protrusions are continuously facing each other, by assembling the half-divided tube plates having the arcuate protrusions A tube can be manufactured easily and inexpensively. In addition, by smoothly flowing the medium, the flow resistance can be suppressed to improve the heat dissipation effect, and further damage to the U-turn flow path portion due to erosion can be suppressed.

また、一対の弧状突出部を、交互に並列配置するようにしたので、Uターン流通路において媒体の流れをよりスムーズに徐々に方向転換させてUターンさせることができ、流通抵抗を抑制して放熱効果を向上させ、さらにエロージョンによるUターン流路部の破損をも抑制することができるようになる。   In addition, since the pair of arc-shaped protrusions are alternately arranged in parallel, the medium flow can be gradually and gradually changed in the U-turn flow passage to make a U-turn, thereby suppressing the flow resistance. The heat dissipation effect can be improved, and damage to the U-turn channel due to erosion can be suppressed.

また、弧状突出部を、この上流側端部近傍と下流側端部近傍とに、上流側直線流路部と下流側直線流路部とに沿ってこれらを分離する仕切り部に対して広がり角度をもたせた形状としたので、Uターン流通路における媒体の流れをよりスムーズに徐々に方向転換させることができ、その場合媒体が高速になるのを抑制してエロージョンの発生を抑えることができる。   In addition, the arc-shaped protruding portion extends in the vicinity of the upstream end portion and the downstream end portion, and spreads with respect to the partition portion that separates them along the upstream linear flow passage portion and the downstream linear flow passage portion. Therefore, the flow of the medium in the U-turn flow path can be gradually and smoothly changed, and in that case, the medium can be prevented from becoming high speed and the occurrence of erosion can be suppressed.

また、弧状突出部を、上流側直線流路部と下流側直線流路部との中間部位に直線部分を持たせた形状としたので、媒体の流れをスムーズに流しながら徐々に方向転換できるようになり、またこのとき、Uターン流路部のチューブ長手方向の長さを短くコンパクトに抑えることができる。   In addition, since the arc-shaped protruding portion has a shape having a straight portion at an intermediate portion between the upstream linear flow passage portion and the downstream straight flow passage portion, the direction of the medium can be gradually changed while smoothly flowing the medium. Further, at this time, the length of the U-turn flow path portion in the tube longitudinal direction can be shortened to be compact.

また、上流側直線流路部と下流側直線流路部とのうちの少なくとも一方に、インナ・フィンまたはチューブの内方に突出する突出部を設けたので、媒体が流れる場合の流通抵抗を抑制し、かつ媒体が突出部に沿って流れることで放熱性能を向上させることできる。   In addition, at least one of the upstream straight flow path and the downstream straight flow path is provided with a protrusion that protrudes inwardly of the inner fin or tube, thereby suppressing the flow resistance when the medium flows. In addition, the heat dissipation performance can be improved by allowing the medium to flow along the protruding portion.

また、突出部を、斜め方向突出部または波状突出部で構成したので、媒体が波状突出部に沿ってチューブの長手方向に対して斜め方向または波状に流れるので、従来技術のように多数のディンプルを設けた場合に比べて、媒体の流通抵抗を小さくしながら放熱性能を向上させることができる。   In addition, since the projecting portion is constituted by an oblique projecting portion or a corrugated projecting portion, the medium flows obliquely or corrugated with respect to the longitudinal direction of the tube along the corrugated projecting portion. Compared with the case of providing the heat dissipation performance can be improved while reducing the flow resistance of the medium.

また、弧状突出部が、上流側直進流路部および下流側直進流路部を分ける仕切り部の下流側端部を、内方に跨ぐように配置したので、直進流路部間の流れがスムーズに行われ、流通抵抗を抑制することができる。   In addition, since the arc-shaped protruding portion is arranged so as to straddle the downstream end portion of the partition portion that separates the upstream straight flow passage portion and the downstream straight flow passage portion, the flow between the straight flow passage portions is smooth. The flow resistance can be suppressed.

また、チューブ内を流通する媒体を冷却水としてこの冷却水とチューブの外側を流通する圧縮空気とが熱交換して圧縮空気を冷却するようにしたので、水冷式チャージ・エア・クーラのチューブに最適である。   In addition, since the medium circulating in the tube is used as cooling water, heat is exchanged between this cooling water and the compressed air flowing outside the tube to cool the compressed air, so that the tube of the water-cooled charge air cooler is used. Is optimal.

本発明の実施例1に係るに係る熱交換器用チューブの断面図である。It is sectional drawing of the tube for heat exchangers which concerns on Example 1 of this invention. 本発明の実施例2に係るに係る熱交換器用チューブの断面図である。It is sectional drawing of the tube for heat exchangers which concerns on Example 2 of this invention. 本発明の実施例2に係るに係る熱交換器用チューブの上流側および下流側の直線流路部の断面図である。It is sectional drawing of the linear flow path part of the upstream and downstream of the tube for heat exchangers concerning Example 2 of this invention.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

まず、実施例1の熱交換器用チューブの全体構成を説明する。
図1に示すように、実施例1の熱交換器用チューブ1は、本実施例では、内燃機関エンジンに付属され、吸入空気を圧縮するチャージャ(ターボ・チャージャやスーパー・チャージャ)の圧縮空気をエンジンの冷却水で冷却する水冷式チャージ・エア・クーラに用いられる。
なお、冷却水は、本発明の媒体に相当する。
First, the overall configuration of the heat exchanger tube of Example 1 will be described.
As shown in FIG. 1, the heat exchanger tube 1 of the first embodiment is attached to the internal combustion engine in this embodiment, and the compressed air of a charger (turbocharger or supercharger) that compresses intake air is used as the engine. It is used for a water-cooled charge air cooler that is cooled with cooling water.
The cooling water corresponds to the medium of the present invention.

熱交換器用チューブ1は、半割のチューブ・プレートを互いに組み付けることで構成される。
チューブ1は、入口部2と出口部3とを除き、その外周に沿って、その厚さ方向(高さ方向)内方に向けて突出した外周リブ部1aが設けられている。
また、チューブ1の一端側に配置した入口部2と出口部3の間からチューブの長手方向(図1の左右方向)に向けて、チューブ1の幅方向(図1の上下方向)
の中央位置で、チューブ1の他端側で、後で説明するUターン流路部4C付近まで仕切りリブ部(仕切り部に相当)1bが延在されて、チューブ1を幅方向に2つの領域、すなわち上流側直線流路部4Aと、下流側直線流路部4Bとに区分する。
The heat exchanger tube 1 is configured by assembling half of the tube plates together.
The tube 1 is provided with an outer peripheral rib portion 1a that protrudes inward in the thickness direction (height direction) along the outer periphery thereof except for the inlet portion 2 and the outlet portion 3.
In addition, the width direction of the tube 1 (vertical direction in FIG. 1) extends from between the inlet portion 2 and the outlet portion 3 arranged on one end side of the tube 1 in the longitudinal direction of the tube (left and right direction in FIG. 1).
At the other end of the tube 1, a partition rib portion (corresponding to a partition portion) 1 b extends to the vicinity of a U-turn flow path portion 4 C described later on the other end side of the tube 1, so that the tube 1 is divided into two regions in the width direction. That is, it is divided into an upstream straight flow path portion 4A and a downstream straight flow path portion 4B.

上流側直線流路部4Aの下流側端と下流側直線流路部4Bの上流側端とは、チューブ1の他端側でUターン流路部4Cにて連通される。
一方、入口部2と出口部3とは、チューブ1の幅方向に並べて設けられ、これらの貫通孔を介して媒体であるエンジンの冷却水が出入りすることができるようにしてある。入口部2は上流側直進通路4Aの上流側端に、また出口部3は下流側直進流路部4Bの下流側端にそれぞれ連続するように接続される。
The downstream end of the upstream linear flow path portion 4A and the upstream end of the downstream linear flow path portion 4B are communicated with each other on the other end side of the tube 1 through a U-turn flow path portion 4C.
On the other hand, the inlet portion 2 and the outlet portion 3 are provided side by side in the width direction of the tube 1 so that engine coolant, which is a medium, can enter and exit through these through holes. The inlet 2 is connected to the upstream end of the upstream straight passage 4A, and the outlet 3 is connected to the downstream end of the downstream straight flow passage 4B.

上流側直進通路4Aには、図1の上側の外周リブ部1aと仕切りリブ部1bとの間には、厚さ方向内側(図1に対して手前側)に突出する多数の斜め方向突出部5aが設けられる。斜め方向突出部5aは、チューブ1の長手方向に沿って、幅方向(図1の上下方向)に2列に並べられ、仕切りリブ部1bに対して斜め方向(下流側部分が仕切りリブ部1b側へ向く方向)に配置される。
同様に、下流側直進通路4Bには、図1の下側の外周リブ部1aと仕切りリブ部1bとの間に形成され、これらのリブ部1a、1b間に厚さ方向に突出する多数の斜め方向突出部5bが設けられる。斜め方向突出部5bは、上流側直進通路4Aの斜め方向突出部5aと同様に、チューブ1の長手方向に沿って、幅方向に2列に並べられ、仕切りリブ部1bに対して斜め方向(下流側部分が仕切りリブ部1b側へ向く方向)に配置される。
なお、斜め方向突出部5a、5bは、本発明の突出部に相当する。
In the upstream straight passage 4A, a large number of oblique projecting portions projecting inward in the thickness direction (front side with respect to FIG. 1) between the upper outer peripheral rib portion 1a and the partition rib portion 1b in FIG. 5a is provided. The oblique projections 5a are arranged in two rows along the longitudinal direction of the tube 1 in the width direction (vertical direction in FIG. 1), and obliquely with respect to the partition rib portion 1b (the downstream portion is the partition rib portion 1b). (Direction to the side).
Similarly, the downstream straight passage 4B is formed between the lower peripheral rib portion 1a and the partition rib portion 1b on the lower side of FIG. 1, and a large number of ribs 1a and 1b project in the thickness direction. An oblique protrusion 5b is provided. The oblique projecting portions 5b are arranged in two rows in the width direction along the longitudinal direction of the tube 1 in the same manner as the oblique projecting portions 5a of the upstream straight passage 4A, and obliquely ( The downstream portion is disposed in the direction toward the partition rib portion 1b.
The oblique projecting portions 5a and 5b correspond to the projecting portions of the present invention.

一方、Uターン流路部4Cは、外側弧状突出部6aと、この内側の内側弧状突出部6bと、一対の外側部分突出部6cと、一対の内側部分突出部6dと、が設けられる。
外側弧状突出部6aは、チューブ1の他端側の外周リブ部1aのすぐ内側に設けられて厚さ方向内側へ突出され、厚さ方向上方からみて、直線部分6a1と、この両端部から仕切りリブ部1bに対して仕切りリブ部1b側の部分が広がるようにそれぞれ広がり角度を有する弧状部分6a2と、を備える。広がった両端部は、上流側直線流路部4Aの最下流側の斜め方向突出部5aの外側下流端部と、下流側直線流路部4Bの最上流側の斜め方向突出部5bの外側上流端部と、を跨ぐように配置される。
On the other hand, the U-turn channel portion 4C is provided with an outer arcuate protrusion 6a, an inner arcuate protrusion 6b on the inner side, a pair of outer partial protrusions 6c, and a pair of inner partial protrusions 6d.
The outer arc-shaped protruding portion 6a is provided immediately inside the outer peripheral rib portion 1a on the other end side of the tube 1 and protrudes inward in the thickness direction. When viewed from above in the thickness direction, the outer arc-shaped protruding portion 6a is partitioned from the straight portion 6a1 and the both ends. Arc-shaped portions 6a2 each having an expanding angle so that a portion on the partition rib portion 1b side expands with respect to the rib portion 1b. The expanded both ends are the outer downstream end of the most downstream oblique projection 5a of the upstream linear flow passage 4A and the outer upstream of the oblique projection 5b on the most upstream side of the downstream linear flow passage 4B. It arrange | positions so that an edge part may be straddled.

内側弧状突出部6bは、仕切りリブ部1bの下流側端に対面するように、外側弧状突出部6aの上流側に配置されて厚さ方向内側へ突出され、厚さ方向上方からみて、直線部分6b1と、この両端部から仕切りリブ部1bに対して仕切りリブ部1b側の部分が広がるようにそれぞれ広がり角度を有する弧状部分6b2と、を備える。広がった両端部は、仕切りリブ部1bの下流側端部を跨ぎ、上流側直線流路部4Aの最下流側の斜め方向突出部5aの内側下流端部と、下流側直線流路部4Bの最上流側の斜め方向突出部5bの内側上流端部と、に沿うようにしてある。   The inner arc-shaped projecting portion 6b is disposed on the upstream side of the outer arc-shaped projecting portion 6a so as to face the downstream end of the partition rib portion 1b and projects inward in the thickness direction. 6b1 and arc-shaped portions 6b2 each having an expansion angle so that a portion on the partition rib portion 1b side expands from both ends with respect to the partition rib portion 1b. The spread both end portions straddle the downstream end of the partition rib portion 1b, and the inner downstream end of the most downstream obliquely protruding portion 5a of the upstream linear flow passage 4A and the downstream straight flow passage 4B. And the inner upstream end of the obliquely protruding portion 5b on the most upstream side.

外側部分突出部6cは、外側弧状突出部6aの弧状部分6a2の外側位置でハ字状に斜め方向へそれぞれ直線状に伸びるように配置されている。
内側突出部6dは、外側弧状突出部6aの弧状部分6a2と内側弧状突出部6bの弧状部分6b2との間でハ字状に斜め方向へそれぞれ直線状に伸びるように配置されている。
なお、外側部分突出部6cおよび内側部分突出部6dは、直線状に代えて弧状に形成してもよい。
The outer portion protrusions 6c are arranged so as to extend linearly in a diagonal shape in a C shape at positions outside the arcuate portion 6a2 of the outer arcuate protrusion 6a.
The inner projecting portion 6d is disposed so as to extend linearly in an oblique direction between the arc-shaped portion 6a2 of the outer arc-shaped projecting portion 6a and the arc-shaped portion 6b2 of the inner arc-shaped projecting portion 6b.
In addition, the outer part protrusion part 6c and the inner part protrusion part 6d may be formed in an arc instead of a straight line.

外側弧状突出部6aと、この内側の内側弧状突出部6bと、一対の外側部分突出部6cと、一対の内側部分突出部6dとは、全体で弧状突出部6を構成し、冷却水の流入方向と流出方向を180度方向転換させるようにそれらの曲率が設定されている。   The outer arcuate protrusion 6a, the inner inner arcuate protrusion 6b, the pair of outer part protrusions 6c, and the pair of inner part protrusions 6d constitute an arcuate protrusion 6 as a whole, and the inflow of cooling water Their curvature is set so that the direction and the outflow direction are changed by 180 degrees.

図示しないが、鏡面反射させた像の形状および位置となる波状突出部や弧状突出部6を有する別のチューブ・プレートがさらに成形、用意される。
そうして、図1の形状のチューブ・プレートと上記別のチューブ・プレートとが、組み付けられる。この組み付け状態では、両チューブ・プレートの斜め方向突出部同士および弧状突出部同士は、同じ位置で互いに対面した状態となる。
この状態で、両チューブ・プレートは、これらの斜め方向突出部同士、弧状突出部同士外周リブ部同士、仕切りリブ部同士がロウ付け等で固着されることで、チューブ1が得られる。
Although not shown, another tube plate having a wave-like protrusion and an arc-like protrusion 6 having the shape and position of the mirror-reflected image is further formed and prepared.
Thus, the tube plate having the shape shown in FIG. 1 and the other tube plate are assembled. In this assembled state, the oblique projections and the arcuate projections of both the tube plates face each other at the same position.
In this state, the tube plates 1 are obtained by fixing both the oblique projections, the arcuate projections, the outer peripheral ribs, and the partition ribs by brazing or the like.

上記のように構成された熱交換器用チューブでは、入口部2から流入された冷却水は、上流側直線流路部4A内を斜め方向突出部5aでコントロールされながら、これらに沿ったり分かれたり合流したりして流れ、Uターン流路部4Cへ流入する。   In the heat exchanger tube configured as described above, the cooling water flowing in from the inlet 2 is separated or merged along the upstream linear flow path 4A while being controlled by the oblique protrusion 5a. And flows into the U-turn flow path section 4C.

Uターン流路部6Cでは、上流側直線流路部4Aから流出した冷却水が、外側弧状突出部6aと、内側弧状突出部6bと、外側部分突出部6cと、内側部分突出部6dとからなる弧状突出部で徐々に流れ方向が変えられて180度方向転換した後、下流側直進通路4Bに流入する。このように、弧状突出部6では、冷却水の流方向が徐々に変化して行くので、エロージョンによるUターン流出路部4Cが損傷するのが避けられる。   In the U-turn channel portion 6C, the cooling water flowing out from the upstream linear channel portion 4A flows from the outer arc-shaped projection portion 6a, the inner arc-shaped projection portion 6b, the outer partial projection portion 6c, and the inner partial projection portion 6d. The flow direction is gradually changed by the arcuate projecting portion and the direction is changed by 180 degrees, and then flows into the downstream straight passage 4B. Thus, in the arc-shaped protrusion 6, the flow direction of the cooling water gradually changes, so that it is possible to avoid damage to the U-turn outflow passage 4C due to erosion.

弧状突出部6を流出した冷却水は、下流側直進通路4Bに流入するが、下流側直進通路4Bでは、冷却水が斜め方向突出部5bに沿ったり分かれたり合流したりして流れ、出口部3から排出される。   The cooling water that has flowed out of the arcuate protrusion 6 flows into the downstream straight passage 4B, but in the downstream straight passage 4B, the cooling water flows along the oblique protrusion 5b, separates or merges, and exits. Discharged from 3.

一方、このチューブの外側を、ターボ・チャージャあるいはスーパー・チャージャで圧縮されて高温になって圧縮空気が流れるようにしてある。この高温の圧縮空気は、チューブを通るとき、チューブ内を流通する冷却水と熱交換を行って冷却される。
この冷却された空気には、その下流側で燃料が吹き込まれて、この混合気がエンジンの燃焼室で燃焼される。
On the other hand, the outside of the tube is compressed by a turbocharger or a supercharger so that the temperature becomes high and compressed air flows. When this hot compressed air passes through the tube, it is cooled by exchanging heat with the cooling water flowing through the tube.
Fuel is blown into the cooled air on the downstream side, and the air-fuel mixture is burned in the combustion chamber of the engine.

以上で説明したように、実施例1の熱交換器用チューブにあっては、Uターン流路部4Cに設けた外側弧状突出部6aと、内側弧状突出部6bと、外側部分突出部6cと、内側部分突出部6dとからなる弧状突出部6で、冷却水の流れ方向が徐々に変えられて180度方向転換するようにしたので、従来技術のように冷却水が急激に方向変換してエロージョンの発生を招き、Uターン流路部4Cの壁等を損傷させるのを防止することができる。   As described above, in the heat exchanger tube of the first embodiment, the outer arc-shaped protrusion 6a, the inner arc-shaped protrusion 6b, the outer partial protrusion 6c provided in the U-turn flow path section 4C, With the arc-shaped protrusion 6 consisting of the inner part protrusion 6d, the flow direction of the cooling water is gradually changed to change the direction by 180 degrees, so that the cooling water suddenly changes its direction and erosion as in the prior art. Can be prevented, and damage to the wall and the like of the U-turn channel 4C can be prevented.

また、それぞれのチューブ・プレートの弧状突出部6は厚さ方向に対向させられて配置されるので、これらをろう付けで固着すれば、弧状突出部6の強度が高まる。また、弧状突出部6を有する半分割のチューブ・プレート同士を組み付けることが容易かつ安価にチューブを製造することができる。この場合、対向する弧状突出部6が互いに同位置にあって連続して対面させられるようにすれば、強度を高めることが可能となる   In addition, since the arcuate protrusions 6 of the respective tube plates are arranged to face each other in the thickness direction, the strength of the arcuate protrusions 6 is increased by fixing them by brazing. Further, it is possible to manufacture the tube easily and inexpensively by assembling the half-divided tube plates having the arcuate protrusions 6. In this case, if the opposing arcuate protrusions 6 are in the same position and face each other continuously, the strength can be increased.

また、弧状突出部6の外側弧状突出部6aと内側弧状突出部6bとは、それぞれ両端部分である弧状部分6a2、6b2が、仕切りリブ部6bに対して広がり角度を持つ形状とされているので、上流側直線流路部4Aから流出した冷却水をスムーズにUターン流路部4Cに導き入れることができ、またUターン流路部4Cから流出する冷却水を下流側直進通路4Bにスムーズに導くことができるので、流通抵抗を減らすことが可能となる。   Further, the outer arc-shaped projecting portion 6a and the inner arc-shaped projecting portion 6b of the arc-shaped projecting portion 6 are formed so that the arc-shaped portions 6a2 and 6b2 which are both end portions have a spreading angle with respect to the partition rib portion 6b. The cooling water flowing out from the upstream straight flow path portion 4A can be smoothly introduced into the U-turn flow path portion 4C, and the cooling water flowing out from the U-turn flow path portion 4C can be smoothly passed to the downstream straight passage 4B. Since it can guide, distribution resistance can be reduced.

また、弧状突出部6の外側弧状突出部6aと内側弧状突出部6bとは、これらの中間部位に直線状部分6a1、6b1をそれぞれ有する形状とされているので、冷却水の流れをスムーズに流しながら徐々に方向転換できるようになり、またこのとき、Uターン流路部4Cのチューブ長手方向の長さを短くコンパクトに抑えることができる。   Further, the outer arc-shaped projecting portion 6a and the inner arc-shaped projecting portion 6b of the arc-shaped projecting portion 6 are formed so as to have straight portions 6a1 and 6b1 at intermediate portions thereof, so that the flow of the cooling water flows smoothly. However, at this time, the length of the U-turn flow path portion 4C in the tube longitudinal direction can be shortened and kept compact.

次に、他の実施例について説明する。この他の実施例の説明にあたっては、前記実施例1と同様の構成部分については図示を省略し、もしくは同一の符号を付けてその説明を省略し、相違点についてのみ説明する。   Next, another embodiment will be described. In the description of the other embodiments, the same components as those of the first embodiment are not shown, or the same reference numerals are given and the description thereof is omitted, and only the differences are described.

実施例2の熱交換器用チューブは、Uターン流路部4Cの弧状突出部6の構造が実施例1のものと異なる。
すなわち、実施例2では、ハ字状をした実施例1の内側突出部6dに代えて、図2に示すように、外側弧状突出部6aおよび内側弧状突出部6bの間に、これらと同様の、直線状部分6d1と、この両端部からこの両端部から仕切りリブ部1bに対して仕切りリブ部1b側の部分が広がるようにそれぞれ広がり角度を有する弧状部分6d2と、を備える。この
広がった両端部は、上流側直線流路部4Aの最下流側の斜め方向突出部5aの外側下流端部と、下流側直線流路部4Bの最上流側の斜め方向突出部5bの外側上流端部と、とに沿うように配置される。
その他の構成は、実施例1と同様である。
The tube for the heat exchanger according to the second embodiment is different from that according to the first embodiment in the structure of the arc-shaped protrusion 6 of the U-turn flow path portion 4C.
That is, in the second embodiment, instead of the inner projecting portion 6d of the first embodiment having a letter C shape, as shown in FIG. 2, between the outer arc-shaped projecting portion 6a and the inner arc-shaped projecting portion 6b, the same as these. The linear portion 6d1 and the arc-shaped portion 6d2 each having an expansion angle so that a portion on the partition rib portion 1b side extends from the both end portions to the partition rib portion 1b from the both end portions. The widened end portions are the outer downstream end of the most downstream oblique projection 5a of the upstream linear flow passage 4A and the outermost oblique projection 5b of the most upstream linear flow passage 4B. Arranged along the upstream end.
Other configurations are the same as those of the first embodiment.

実施例2の熱交換器用チューブ1にあっても、実施例1と同様の作用、同様の効果を有する。
ただし、内側突出部6dを弧状に形成した分、チューブ長手方向の寸法は若干長くなるものの、Uターン流路部4Cでの冷却水の流方向のコントロールがより効くようになり、流通抵抗をさらに減らしエロージョンによるUターン流路部4Cの損傷をさらに確実に防止することが可能となる。
Even in the heat exchanger tube 1 of the second embodiment, the same operation and the same effect as the first embodiment are obtained.
However, although the length in the tube longitudinal direction is slightly longer due to the formation of the inner protrusion 6d in an arc shape, the control of the flow direction of the cooling water in the U-turn flow path 4C becomes more effective, further increasing the flow resistance. It is possible to more reliably prevent damage to the U-turn flow path portion 4C due to the reduced erosion.

実施例3の熱交換器用チューブは、実施例1および実施例2の上流側直線流路部4Aおよび下流側直線流路部4Bにそれぞれも設けた斜め方向突出部5a、5bに代えて、2本ずつの波状突出部5c、5d、5e、5fを設けて、外周リブ部1a、仕切りリブ部1bとの間にそれぞれ3本の流路4A1、4A2、4A3、4B1、4B2、4B3を形成している。   The tube for the heat exchanger of Example 3 is replaced with the oblique protrusions 5a and 5b provided in the upstream linear flow path part 4A and the downstream linear flow path part 4B of Example 1 and Example 2, respectively. Three wavy protrusions 5c, 5d, 5e, 5f are provided, and three flow paths 4A1, 4A2, 4A3, 4B1, 4B2, 4B3 are formed between the outer peripheral rib 1a and the partition rib 1b, respectively. ing.

図3では同図中も右側部分の図示を省略したが、この部分は実施例1または実施例1と同様の弧状突出部6を設けたUターン流路部4Cを接続する。
その他の構成は、実施例1と同様である。
このような構成の半割したチューブ・プレートは、これと鏡面反射させた形状の別の半割チューブ・プレートと組み付け、ろう材で固着してチューブ・プレート1を得る。
In FIG. 3, the right side portion is not shown in FIG. 3, but this portion is connected to the U-turn flow path portion 4 </ b> C provided with the arcuate protruding portion 6 similar to the first embodiment or the first embodiment.
Other configurations are the same as those of the first embodiment.
The halved tube plate having such a configuration is assembled with another half tube plate having a mirror-reflected shape, and fixed with a brazing material to obtain the tube plate 1.

実施例3の熱交換器用チューブも、実施例1、実施例2と同様の作用・効果を得ることができるが、上流側直線流路部4Aおよび下流側直線流路部4Bには波状突出部5c、5d、5e、5fを設けたので、冷却水の流通抵抗を減少させて放熱特性を向上させることができる。   The heat exchanger tube according to the third embodiment can also obtain the same operations and effects as those of the first and second embodiments. However, the upstream straight flow path portion 4A and the downstream straight flow path portion 4B have wavy protrusions. Since 5c, 5d, 5e, and 5f are provided, the flow resistance of the cooling water can be reduced and the heat dissipation characteristics can be improved.

以上、本発明を上記実施例に基づき説明してきたが、本発明は上記実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。   As described above, the present invention has been described based on the above-described embodiments. However, the present invention is not limited to the above-described embodiments, and even when there is a design change or the like without departing from the gist of the present invention, it is included in the present invention.

たとえば、上記実施例1では、斜め方向突出部5a、5bや波状突出部5c、5d、5e、5fを上流側直線流路部4Aおよび下流側直線流路部4Bの両方に設けたが、いずれか一方にのみ設けるようにしてもよい。
また、波状突出部5a、5b、5c、5dに代えて、インナ・フィンを用いて媒体を導くようにしてもよい。
For example, in the first embodiment, the oblique protrusions 5a, 5b and the wavy protrusions 5c, 5d, 5e, 5f are provided in both the upstream linear flow path portion 4A and the downstream straight flow path portion 4B. You may make it provide only in either.
Further, instead of the wavy projections 5a, 5b, 5c, 5d, the medium may be guided using inner fins.

また、実施例3において波状突出部5a、5b、5c、5dは、半割チューブ・プレートの両方に同じものを用いてこれらを組み付けるようにしてもよい。この場合、波状突出部5a、5b、5c、5dは一部だけが対面し他の部位は対面しなくなり、実施例3の場合より流通抵抗が増加するものの、同じ半割チューブ・プレートを用いるので製造費を安くすることができる。   In the third embodiment, the corrugated protrusions 5a, 5b, 5c, and 5d may be assembled by using the same one for both the half tube plate. In this case, only a part of the wavy protrusions 5a, 5b, 5c, and 5d face each other and the other parts do not face each other, and although the flow resistance is increased as compared with the case of Example 3, the same half tube plate is used. Manufacturing costs can be reduced.

また、本発明の熱交換器のチューブは、水冷式チャージ・エア・クーラに用いたが、これに限られず、他の熱交換器に用いるようにしてもよい。この場合、媒体は冷却水以外の媒体でもよい。   Moreover, although the tube of the heat exchanger of this invention was used for the water-cooling type charge air cooler, it is not restricted to this, You may make it use for another heat exchanger. In this case, the medium may be a medium other than the cooling water.

1 チューブ
1a 外周リブ部
1b 仕切りリブ部
2 入口部
3 出口部
4A 上流側直線流路部
4B 下流側直線流路部
4C Uターン流路部
5a、5b 斜め方向突出部
5c、5d、5e、5f 波状突出部
6 弧状突出部
6a 外側弧状突出部(弧状突出部)
6b 内側弧状突出部(弧状突出部)
6c 外側部分突出部(弧状突出部)
6d 内側部分突出部(弧状突出部)
6a1、6b1、6d1 直線状部分
6a2、6b2、6d2 弧状部分
1 tube
1a Outer rib
1b Partition rib
2 Entrance
3 Exit
4A Upstream straight flow path
4B Downstream straight flow path
4C U-turn channel
5a, 5b Diagonal protrusion
5c, 5d, 5e, 5f Corrugated protrusion 6 Arc-shaped protrusion
6a Outer arc-shaped protrusion (arc-shaped protrusion)
6b Inner arc-shaped protrusion (arc-shaped protrusion)
6c Outer part protrusion (arc-shaped protrusion)
6d Inner part protrusion (arc-shaped protrusion)
6a1, 6b1, 6d1 Linear part
6a2, 6b2, 6d2 Arc part

Claims (10)

媒体の入口部と、
前記媒体の出口部と、
前記入口部および前記出口部間をそれぞれ結び、前記媒体が流通する上流側直線流路部および下流側直線流路部と、前記上流側直線流路部および前記下流側直線流路部間で前記媒体をUターンさせるUターン流路部と、
を備えた熱交換器用チューブにおいて、
前記Uターン流路部に、弧状形状を有して前記チューブの内方へ突出し、前記上流側直線流路部から流出された前記媒体の流れの方向を変えて前記下流側直線流路部へ流入させる弧状突出部を設けた、
ことを特徴とする熱交換器用チューブ。
A medium inlet,
An outlet portion of the medium;
The inlet portion and the outlet portion are respectively connected, and the upstream straight flow passage portion and the downstream straight flow passage portion through which the medium flows, and the upstream straight flow passage portion and the downstream straight flow passage portion between the upstream straight flow passage portion and the downstream straight flow passage portion. A U-turn flow path section for U-turning the medium;
In a heat exchanger tube with
The U-turn channel portion has an arc shape and protrudes inward of the tube, and changes the flow direction of the medium flowing out from the upstream linear channel portion to the downstream linear channel portion. Provided arc-shaped protrusions to flow in,
This is a heat exchanger tube.
請求項1に記載の熱交換器用チューブにおいて、
前記弧状突出部は、前記チューブの厚さ方向に、向い合せに配置した一対の弧状突出部である、
ことを特徴とする熱交換器用チューブ。
In the heat exchanger tube according to claim 1,
The arcuate protrusions are a pair of arcuate protrusions disposed facing each other in the thickness direction of the tube.
This is a heat exchanger tube.
請求項2に記載の熱交換器用チューブにおいて、
前記一対の弧状突出部は、互いに同じ位置となるように配置し、前記弧状突出部同士が連続して対面するようにした、
ことを特徴とする熱交換器用チューブ。
The heat exchanger tube according to claim 2,
The pair of arcuate protrusions are arranged to be at the same position so that the arcuate protrusions face each other continuously.
This is a heat exchanger tube.
請求項2に記載の熱交換器用チューブにおいて、
前記一対の弧状突出部は、交互に並列配置するようにした、
ことを特徴とする熱交換器用チューブ。
The heat exchanger tube according to claim 2,
The pair of arcuate protrusions are alternately arranged in parallel.
This is a heat exchanger tube.
請求項1乃至4のいずれか1項に記載の熱交換器用チューブにおいて、
前記弧状突出部は、該上流側端部近傍と下流側端部近傍とに、前記上流側直線流路部と前記下流側直線流路部とに沿ってこれらの直線流路部を分離する仕切り部に対して広がり角度をもたせた形状を有する、
ことを特徴とする熱交換器用チューブ。
In the heat exchanger tube according to any one of claims 1 to 4,
The arcuate protrusion is a partition that separates these straight flow path portions in the vicinity of the upstream end portion and the downstream end portion along the upstream straight flow path portion and the downstream straight flow path portion. It has a shape with a spread angle with respect to the part,
This is a heat exchanger tube.
請求項1乃至5のいずれか1項に記載の熱交換器用チューブにおいて、
前記弧状突出部は、前記上流側直線流路部と前記下流側直線流路部との中間部位に直線部分を持たせた形状とした、
ことを特徴とする熱交換器用チューブ。
In the heat exchanger tube according to any one of claims 1 to 5,
The arcuate protrusion has a shape having a straight portion at an intermediate portion between the upstream linear flow path portion and the downstream straight flow path portion.
This is a heat exchanger tube.
請求項1乃至6のいずれか1項に記載の熱交換器用チューブにおいて、
前記上流側直線流路部と前記下流側直線流路部とのうちの少なくとも一方は、インナ・フィンまたはチューブの内方に突出する突出部を有する、
ことを特徴とする熱交換器用チューブ。
In the heat exchanger tube according to any one of claims 1 to 6,
At least one of the upstream linear flow channel portion and the downstream linear flow channel portion has a protruding portion that protrudes inward of the inner fin or the tube,
This is a heat exchanger tube.
請求項7に記載の熱交換器用チューブにおいて、
前記突出部は、前記上流側直線流路部と前記下流側直線流路部とに、これらの直線流路部を分離する仕切り部に対して斜め方向へ向けてそれぞれ配置した複数の斜め方向突出部、あるいはチューブの長手方向に延在する波状突出部である、
ことを特徴とする熱交換器用チューブ。
The heat exchanger tube according to claim 7,
The protrusions are a plurality of oblique protrusions arranged on the upstream linear flow channel portion and the downstream linear flow channel portion in an oblique direction with respect to the partition portion separating the linear flow channel portions. Or a wavy protrusion extending in the longitudinal direction of the tube,
This is a heat exchanger tube.
請求項1乃至8のいずれか1項に記載の熱交換器用チューブにおいて、
前記弧状突出部は、前記上流側直進流路部および前記下流側直進流路部を分ける仕切り部の下流側端部を、内方に跨ぐように配置した、
ことを特徴とする熱交換器用チューブ。
In the heat exchanger tube according to any one of claims 1 to 8,
The arcuate protrusion is disposed so as to straddle the downstream end of the partition part that divides the upstream straight flow path part and the downstream straight flow path part,
This is a heat exchanger tube.
請求項1乃至9のいずれか1項に記載の熱交換器用チューブにおいて、
前記チューブ内を流通する媒体が冷却水であり、
前記熱交換器用チューブは、冷却水と前記チューブの外側を流通する圧縮空気とが熱交換して該圧縮空気を冷却する水冷式チャージ・エア・クーラのチューブである、
ことを特徴とする熱交換器用チューブ。
In the heat exchanger tube according to any one of claims 1 to 9,
The medium circulating in the tube is cooling water,
The heat exchanger tube is a tube of a water-cooled charge air cooler in which cooling water and compressed air flowing outside the tube exchange heat to cool the compressed air.
This is a heat exchanger tube.
JP2012239053A 2012-10-30 2012-10-30 Tube for heat exchanger Pending JP2014088995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239053A JP2014088995A (en) 2012-10-30 2012-10-30 Tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239053A JP2014088995A (en) 2012-10-30 2012-10-30 Tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2014088995A true JP2014088995A (en) 2014-05-15

Family

ID=50791035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239053A Pending JP2014088995A (en) 2012-10-30 2012-10-30 Tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP2014088995A (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287792A (en) * 1985-10-14 1987-04-22 Nippon Denso Co Ltd Lamination type heat exchanger
JPS6320157A (en) * 1986-07-14 1988-01-27 Toyo Radiator Kk Brazing method for header plate of inter-cooler
JPH01101081U (en) * 1987-12-23 1989-07-06
JPH01169963U (en) * 1988-01-22 1989-11-30
JPH0674602A (en) * 1992-08-31 1994-03-18 Mitsubishi Heavy Ind Ltd Laminated heat exchanger
JPH0674601A (en) * 1992-08-31 1994-03-18 Mitsubishi Heavy Ind Ltd Laminated type heat exchanger
JPH0674606A (en) * 1992-08-27 1994-03-18 Mitsubishi Heavy Ind Ltd Laminated heat exchanger
JPH06123582A (en) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd Stacked type heat exchanger
JPH07502334A (en) * 1991-12-23 1995-03-09 フオード モーター カンパニー heat exchanger structure
JPH07318283A (en) * 1994-05-25 1995-12-08 Showa Alum Corp Laminated heat exchanger
JPH0894274A (en) * 1994-09-28 1996-04-12 Showa Alum Corp Accumulated type heat exchanger
JPH0933187A (en) * 1995-07-19 1997-02-07 Showa Alum Corp Laminated heat exchanger
JP2001133192A (en) * 1999-11-09 2001-05-18 Showa Alum Corp Heat exchanger
WO2009013802A1 (en) * 2007-07-23 2009-01-29 Tokyo Roki Co. Ltd. Plate laminate type heat exchanger
JP2009103360A (en) * 2007-10-23 2009-05-14 Tokyo Roki Co Ltd Plate laminated heat exchanger
US20090260786A1 (en) * 2008-04-17 2009-10-22 Dana Canada Corporation U-flow heat exchanger
JP2011220643A (en) * 2010-04-13 2011-11-04 Tokyo Roki Co Ltd Oil cooler

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287792A (en) * 1985-10-14 1987-04-22 Nippon Denso Co Ltd Lamination type heat exchanger
JPS6320157A (en) * 1986-07-14 1988-01-27 Toyo Radiator Kk Brazing method for header plate of inter-cooler
JPH01101081U (en) * 1987-12-23 1989-07-06
JPH01169963U (en) * 1988-01-22 1989-11-30
JPH07502334A (en) * 1991-12-23 1995-03-09 フオード モーター カンパニー heat exchanger structure
JPH0674606A (en) * 1992-08-27 1994-03-18 Mitsubishi Heavy Ind Ltd Laminated heat exchanger
JPH0674602A (en) * 1992-08-31 1994-03-18 Mitsubishi Heavy Ind Ltd Laminated heat exchanger
JPH0674601A (en) * 1992-08-31 1994-03-18 Mitsubishi Heavy Ind Ltd Laminated type heat exchanger
JPH06123582A (en) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd Stacked type heat exchanger
JPH07318283A (en) * 1994-05-25 1995-12-08 Showa Alum Corp Laminated heat exchanger
JPH0894274A (en) * 1994-09-28 1996-04-12 Showa Alum Corp Accumulated type heat exchanger
JPH0933187A (en) * 1995-07-19 1997-02-07 Showa Alum Corp Laminated heat exchanger
JP2001133192A (en) * 1999-11-09 2001-05-18 Showa Alum Corp Heat exchanger
WO2009013802A1 (en) * 2007-07-23 2009-01-29 Tokyo Roki Co. Ltd. Plate laminate type heat exchanger
JP2009103360A (en) * 2007-10-23 2009-05-14 Tokyo Roki Co Ltd Plate laminated heat exchanger
US20090260786A1 (en) * 2008-04-17 2009-10-22 Dana Canada Corporation U-flow heat exchanger
JP2011220643A (en) * 2010-04-13 2011-11-04 Tokyo Roki Co Ltd Oil cooler

Similar Documents

Publication Publication Date Title
US9951995B2 (en) Heat exchanger with self-retaining bypass seal
WO2014069175A1 (en) Heat exchanger tube
JP6184946B2 (en) Heat exchanger plate with bypass area
US20150241142A1 (en) Heat Exchanger Insert
US10962306B2 (en) Shaped leading edge of cast plate fin heat exchanger
JP4164799B2 (en) EGR cooler
CN103988042A (en) Plate for heat exchanger and heat exchanger equipped with the plate
KR20140118878A (en) Air to air heat exchanger
JP2007051576A (en) Egr cooler
US10222126B2 (en) Condensation heat exchanger having dummy pipe
JP2015526627A (en) Heat exchangers, especially air supply coolers for automobile engines
JP6548324B2 (en) Heat exchanger inner fins
CN103930742A (en) Heat exchanger and corresponding flat tube and plate
JP6104107B2 (en) Heat exchanger
JP2020012621A (en) Heat exchanger
JP2013213424A (en) Exhaust gas heat exchanger
KR20090103405A (en) EGR cooler for automobile
JP6577282B2 (en) Heat exchanger
JP2014088995A (en) Tube for heat exchanger
JP6197190B2 (en) Tube for heat exchanger
JP6706713B1 (en) Heat exchanger
JP2016200071A (en) EGR gas cooler
US8245767B2 (en) Heat transmission unit for an internal combustion engine
JP2008190786A (en) Plate-type heat exchanger
KR20120060251A (en) Integrated heat exchanger having sub-radiator and watercool charge air cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201