JP2014086566A - Optical wavelength conversion device - Google Patents

Optical wavelength conversion device Download PDF

Info

Publication number
JP2014086566A
JP2014086566A JP2012234351A JP2012234351A JP2014086566A JP 2014086566 A JP2014086566 A JP 2014086566A JP 2012234351 A JP2012234351 A JP 2012234351A JP 2012234351 A JP2012234351 A JP 2012234351A JP 2014086566 A JP2014086566 A JP 2014086566A
Authority
JP
Japan
Prior art keywords
light
heat conductor
transparent heat
conversion device
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012234351A
Other languages
Japanese (ja)
Inventor
Ji-Hao Liang
吉鎬 梁
Teruo Koike
輝夫 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012234351A priority Critical patent/JP2014086566A/en
Publication of JP2014086566A publication Critical patent/JP2014086566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical wavelength conversion device that efficiently release heat generated from a phosphor.SOLUTION: The optical wavelength conversion device includes: a transparent heat conductor 11; a light reflection layer 14 provided at a bottom part of the transparent heat conductor 11; radiators 17a, 17b on which the transparent heat conductor 11 is mounted through the light reflection layer 14; a phosphor part 13 provided on a surface of the transparent heat conductor 11 facing the light reflection layer 14 and including a phosphor; and a light input part 12 provided on part of the surface of the transparent heat conductor 11.

Description

本発明は、レーザ光を受けて蛍光を発する蛍光体を含んだ光波長変換装置に関する。   The present invention relates to an optical wavelength conversion device including a phosphor that emits fluorescence upon receiving laser light.

レーザダイオードから青色のレーザ光を蛍光体へ入射させ、当該蛍光体から波長が変換された白色光を出射させるように構成された光波長変換装置が知られている。例えば、特許文献1には、半導体発光素子と光透過体との間に光が進行する貫通孔が設けられ、当該貫通孔は半導体発光素子側よりも光透過体側の方が大きくなるようなテーパ形状をなしている半導体発光装置が開示されている。   2. Description of the Related Art There is known an optical wavelength conversion device configured to cause blue laser light from a laser diode to enter a phosphor and emit white light whose wavelength is converted from the phosphor. For example, in Patent Document 1, a through hole through which light travels is provided between a semiconductor light emitting element and a light transmitting body, and the through hole is tapered such that the light transmitting body side is larger than the semiconductor light emitting element side. A semiconductor light emitting device having a shape is disclosed.

特開2008−153617号公報JP 2008-153617 A

蛍光体はレーザ光の波長を変換する際には熱が発生してしまう。また、集光光学系の使用により蛍光体へ入射するレーザ光の光密度(すなわち光強度)が高まり、蛍光体における光励起限度に近づくと、発熱量もより多くなる。さらに、レーザ光の強度が高まることに伴って蛍光体の温度も高くなり、その結果、発光効率が低下してしまう。また、レーザ光の強度が蛍光体の光励起限度を超えると蛍光体部などが破損してしまう。このため、高出力、高輝度な光波長変換装置の実現には放熱性等の点で課題を有していた。   The phosphor generates heat when converting the wavelength of the laser beam. Further, the light density (that is, the light intensity) of the laser light incident on the phosphor increases due to the use of the condensing optical system, and the amount of heat generation increases as the light excitation limit in the phosphor approaches. Furthermore, as the intensity of the laser light increases, the temperature of the phosphor also increases, and as a result, the light emission efficiency decreases. Further, when the intensity of the laser light exceeds the light excitation limit of the phosphor, the phosphor portion and the like are damaged. For this reason, the realization of a high-output, high-brightness optical wavelength converter has problems in terms of heat dissipation and the like.

本発明は上記した点に鑑みてなされたものであり、放熱性に優れ、また発光効率が高く、信頼性に優れた等の高性能な光波長変換装置を提供することを目的としている。   The present invention has been made in view of the above points, and an object of the present invention is to provide a high-performance optical wavelength conversion device having excellent heat dissipation, high luminous efficiency, and excellent reliability.

本発明による光波長変換装置は、透明熱伝導体と、透明熱伝導体の底部に設けられた光反射層と、光反射層を介して透明熱伝導体を載置する放熱体と、光反射層に対向する透明熱伝導体の表面上に設けられかつ蛍光体を含む蛍光体部と、透明熱伝導体の一部の表面上に設けられた光入射部と、を含むことを特徴としている。   An optical wavelength conversion device according to the present invention includes a transparent heat conductor, a light reflection layer provided at the bottom of the transparent heat conductor, a heat radiator on which the transparent heat conductor is placed via the light reflection layer, and a light reflection A phosphor portion provided on the surface of the transparent heat conductor facing the layer and including a phosphor; and a light incident portion provided on a part of the surface of the transparent heat conductor. .

実施例1の光波長変換装置の構造を示す上面図(図1(a))及び断面図(図1(b))である。It is the top view (Drawing 1 (a)) and sectional view (Drawing 1 (b)) showing the structure of the light wavelength converter of Example 1. 実施例1の光波長変換装置を用いた場合の光源装置の概略(図2(a))及び当該装置内における光の進路(図2(b))を示す図である。It is a figure which shows the outline (FIG. 2 (a)) of the light source device at the time of using the optical wavelength converter of Example 1, and the course (FIG.2 (b)) of the light in the said apparatus. 実施例2の光波長変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the optical wavelength converter of Example 2. FIG. 実施例2の光波長変換装置を用いた場合の光源装置内における光の進路を示す図である。It is a figure which shows the course of the light in the light source device at the time of using the optical wavelength converter of Example 2. FIG. 実施例3の光波長変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the optical wavelength converter of Example 3. 実施例4の光波長変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the optical wavelength converter of Example 4.

図1(a)は本発明の実施例1の光波長変換装置10の上面図であり、図1(b)は光波長変換装置10の構造を示す図1(a)の線W−Wに沿った(x軸方向の)断面図である。光波長変換装置10は透明熱伝導体(以下、単に熱伝導体と称する)11を有している。熱伝導体11は平行平板形状を有しているが、後述するように、主面の一方(上面)には凹凸構造が形成されており、主面の他方(底面)には光反射層が設けられている。また、熱伝導体11の側面は当該主面に対して垂直な面として構成されている。熱伝導体11は、例えば、サファイア、窒化ガリウム(GaN)、酸化ガリウム(Ga)、炭化ケイ素(SiC)などの材料から構成されている。なお、熱伝導体11は、透明のみならず、入射光に対して透光性であれば良い。 1A is a top view of the optical wavelength conversion device 10 according to the first embodiment of the present invention, and FIG. 1B is a line WW in FIG. 1A showing the structure of the optical wavelength conversion device 10. FIG. 6 is a cross-sectional view taken along the x-axis direction. The optical wavelength conversion device 10 has a transparent heat conductor (hereinafter simply referred to as a heat conductor) 11. Although the heat conductor 11 has a parallel plate shape, as will be described later, an uneven structure is formed on one (upper surface) of the main surface, and a light reflecting layer is formed on the other (bottom surface) of the main surface. Is provided. Further, the side surface of the heat conductor 11 is configured as a surface perpendicular to the main surface. The heat conductor 11 is made of a material such as sapphire, gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or silicon carbide (SiC). In addition, the heat conductor 11 should just be translucent with respect to not only transparent but incident light.

熱伝導体11の側面11bにはレーザ光が入射する光入射部12が設けられている。光入射部12にはレーザ光の波長に応じた反射防止(AR)コーティングが施されている。熱伝導体11の主面の一方(上面)には蛍光体部13が設けられている。蛍光体部13はレーザ光の波長を変換して蛍光を発する蛍光体を含んでいる。光入射部12から入射したレーザ光は熱伝導体11を経由して蛍光体部13へ入射し、蛍光体によって波長が変換された後に蛍光を発する。   A light incident portion 12 on which laser light is incident is provided on the side surface 11 b of the heat conductor 11. The light incident portion 12 is provided with an antireflection (AR) coating corresponding to the wavelength of the laser light. A phosphor portion 13 is provided on one (upper surface) of the main surface of the heat conductor 11. The phosphor portion 13 includes a phosphor that emits fluorescence by converting the wavelength of the laser light. The laser light incident from the light incident portion 12 is incident on the phosphor portion 13 via the heat conductor 11, and emits fluorescence after the wavelength is converted by the phosphor.

蛍光体は、例えばYAG(イットリウム・アルミニウム・ガーネット)又はLuAG(ルテチウム・アルミニウム・ガーネット)を用いることができ、蛍光体部13の発光面の寸法は、例えば幅0.25mm(y軸方向)、長さ1.0mm(x軸方向)である。熱伝導体11の光屈折率は蛍光体部13の屈折率よりも大きく、例示すれば、熱伝導体11の屈折率は約1.7−3.0であり、蛍光体部13の屈折率は約1.5である。   As the phosphor, for example, YAG (yttrium, aluminum, garnet) or LuAG (lutetium, aluminum, garnet) can be used. The length is 1.0 mm (x-axis direction). The refractive index of the heat conductor 11 is larger than the refractive index of the phosphor portion 13. For example, the refractive index of the heat conductor 11 is about 1.7-3.0. Is about 1.5.

蛍光体部13に対向する熱伝導体11の主面(底面)上には熱伝導性の光反射層14が設けられている。また、光入射部12を除いた熱伝導体11の側面(側面11a及び11b)は光拡散性材料からなる光拡散層15によって覆われている。光反射層14は、例えば銀を含む合金からなり、光拡散層15としては、例えば白色樹脂を用いることができる。蛍光体部13よりも光入射部11に近い側の熱伝導体11の主面(上面)には光拡散体部16が設けられている。光拡散体部16は、例えば光拡散層15と同様の材料から構成される。   A heat conductive light reflection layer 14 is provided on the main surface (bottom surface) of the heat conductor 11 facing the phosphor portion 13. The side surfaces (side surfaces 11a and 11b) of the heat conductor 11 excluding the light incident part 12 are covered with a light diffusion layer 15 made of a light diffusing material. The light reflection layer 14 is made of, for example, an alloy containing silver. As the light diffusion layer 15, for example, a white resin can be used. A light diffuser portion 16 is provided on the main surface (upper surface) of the heat conductor 11 closer to the light incident portion 11 than the phosphor portion 13. The light diffuser 16 is made of the same material as that of the light diffusion layer 15, for example.

図1(a)及び図1(b)に示されているように、熱伝導体11と蛍光体部13との間の接合面13aは凹凸構造を有している。同様に、熱伝導体11と光拡散体部16との接合面16aは接合部13aと凹凸構造を有している。当該凹凸構造は、例えば、熱伝導体11がGaNから構成される場合においては円錐形状又は六角錐形状の構造を有し、熱伝導体11がサファイアから構成される場合においては、例えばPSS(Patterned Sapphire Substrate)と呼ばれるテクスチャ構造を有している。当該テクスチャ構造は、所定の波長(媒体内波長すなわち熱伝導体11内における波長)において光を回折させる効果を有しており、そのサイズは、例えば100nm−10μmである。   As shown in FIGS. 1A and 1B, the joint surface 13a between the heat conductor 11 and the phosphor portion 13 has an uneven structure. Similarly, the joint surface 16a between the heat conductor 11 and the light diffuser portion 16 has a concavo-convex structure with the joint portion 13a. The concavo-convex structure has, for example, a conical or hexagonal pyramidal structure when the heat conductor 11 is made of GaN, and, for example, PSS (Patterned) when the heat conductor 11 is made of sapphire. It has a texture structure called Sapphire Substrate. The texture structure has an effect of diffracting light at a predetermined wavelength (wavelength in the medium, that is, wavelength in the heat conductor 11), and the size thereof is, for example, 100 nm to 10 μm.

熱伝導体11上の凹凸構造に蛍光体部13を接合する方法は、蛍光体部13に含まれる蛍光体によって異なる。シリコンやエポキシなど樹脂系の蛍光体を用いる場合、蛍光体を熱伝導体11の凹凸構造に塗布して接合する。蛍光体を塗布する範囲はマスキングによって決定する。ガラス系の蛍光体を用いる場合は、高温環境下で加圧することによって蛍光体を溶融させて当該凹凸構造に接合する。例えば、温度条件は200℃−500℃、加圧(プレス)条件は5−50kg/cmである。 The method of joining the phosphor portion 13 to the uneven structure on the heat conductor 11 differs depending on the phosphor contained in the phosphor portion 13. When using a resin phosphor such as silicon or epoxy, the phosphor is applied to the uneven structure of the heat conductor 11 and bonded. The area where the phosphor is applied is determined by masking. When a glass-based phosphor is used, the phosphor is melted by pressurization in a high temperature environment and bonded to the uneven structure. For example, the temperature condition is 200 ° C.-500 ° C., and the pressing (pressing) condition is 5-50 kg / cm 2 .

光拡散体部16を構成する光拡散樹脂(例えば白色樹脂)である例えばTiO+シリコン樹脂は、上記の樹脂系の蛍光体を接合する方法と同様の方法を用いて、熱伝導体11上の凹凸構造に接合されることができる。 For example, TiO 2 + silicon resin, which is a light diffusing resin (for example, white resin) constituting the light diffusing portion 16, is formed on the heat conductor 11 by using a method similar to the method for joining the resin phosphors. Can be joined to the concavo-convex structure.

光反射層14の底部には熱拡散性のサブマウント17a及びヒートシンクなどの放熱部材17bからなる放熱体17が設けられている。サブマウント17aは、例えば酸化アルミニウム(Al)又は窒化アルミニウム(AlN)の焼結体などからなり、放熱部材17bは、例えばアルミニウム又は銅などからなる。サブマウント17aは、例えば金・スズ共晶、金・金接合、金バンプ、又は銀ペーストなどの伝熱密着材料を用いて放熱部材17bに接合されている。 At the bottom of the light reflecting layer 14, a heat radiating body 17 including a heat diffusing submount 17 a and a heat radiating member 17 b such as a heat sink is provided. The submount 17a is made of, for example, a sintered body of aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN), and the heat dissipation member 17b is made of, for example, aluminum or copper. The submount 17a is bonded to the heat radiating member 17b using a heat transfer adhesive material such as gold / tin eutectic, gold / gold bonding, gold bump, or silver paste.

上記したように、光波長変換装置10において、蛍光体部13にレーザ光が入射して蛍光を発する際に熱が発生する。熱伝導体11は、約40W/m・K(サファイアの場合)、約300W/m・K(炭化ケイ素の場合)などの高い熱伝導率を有しており、蛍光体部13からの熱伝導を効率よく行う。従って、蛍光体部13から発生した熱は、熱伝導体11、光反射層14、及び放熱体17を介して効率よく放熱される。さらに、熱伝導体11と蛍光体部13との間には凹凸構造が設けられている。従って、熱伝導体11と蛍光体部13との間の接合面積が増加し、蛍光体部13から発生した熱は効率よく熱伝導体11へ伝導される。   As described above, in the light wavelength conversion device 10, heat is generated when the laser beam enters the phosphor portion 13 and emits fluorescence. The heat conductor 11 has a high thermal conductivity such as about 40 W / m · K (in the case of sapphire), about 300 W / m · K (in the case of silicon carbide), and the heat conduction from the phosphor portion 13. To do it efficiently. Therefore, the heat generated from the phosphor portion 13 is efficiently radiated through the heat conductor 11, the light reflection layer 14, and the heat radiator 17. Furthermore, an uneven structure is provided between the heat conductor 11 and the phosphor portion 13. Therefore, the junction area between the heat conductor 11 and the phosphor portion 13 is increased, and the heat generated from the phosphor portion 13 is efficiently conducted to the heat conductor 11.

図2(a)及び図2(b)は、実施例1の光波長変換装置10を用いた場合の光源装置の概略及び当該装置における光の進路を示す図である。図2(a)に示されているように、例えば青色のレーザダイオードLDから出射されたレーザ光はレンズLZによって集光される。集光された光ビームの光軸AXは熱伝導体11の底面及び上面すなわち蛍光体部13の底面及び光反射層14の上面に平行である。レンズLZによって集光された光ビームLBは光入射部12を介して熱伝導体11へ入射する。   FIGS. 2A and 2B are diagrams illustrating an outline of a light source device and a light path in the device when the optical wavelength conversion device 10 according to the first embodiment is used. As shown in FIG. 2A, for example, laser light emitted from a blue laser diode LD is collected by a lens LZ. The optical axis AX of the condensed light beam is parallel to the bottom and top surfaces of the heat conductor 11, that is, the bottom surface of the phosphor portion 13 and the top surface of the light reflecting layer 14. The light beam LB collected by the lens LZ is incident on the heat conductor 11 via the light incident portion 12.

熱伝導体11へ入射した光ビームLBは熱伝導体11内において様々な経路を経て蛍光体部13へ入射する。図2(b)を参照しつつ、熱伝導体11内における光ビームLBの様々な経路について具体的に説明する。   The light beam LB incident on the heat conductor 11 enters the phosphor portion 13 through various paths in the heat conductor 11. The various paths of the light beam LB in the heat conductor 11 will be specifically described with reference to FIG.

[経路P1について]光入射部12から入射し、熱伝導体11と光拡散体部16との接合面16aへ進む光は、接合面16aの凹凸構造によって接合面16aから光反射層14に向かって拡散及び反射される。   [Path P1] Light that enters from the light incident portion 12 and travels to the joint surface 16a between the heat conductor 11 and the light diffuser portion 16 travels from the joint surface 16a to the light reflecting layer 14 due to the uneven structure of the joint surface 16a. Diffused and reflected.

[経路P2について]熱伝導体11と蛍光体部13との接合面13aへ進む光は、その一部が接合面13aの凹凸構造によって接合面13aから光反射層14の向きに拡散及び反射される。残りの光は蛍光体部13内へ拡散されつつ入射し、蛍光体を励起する。   [Path P2] A part of the light traveling to the joint surface 13a between the heat conductor 11 and the phosphor portion 13 is diffused and reflected from the joint surface 13a toward the light reflecting layer 14 by the uneven structure of the joint surface 13a. The The remaining light enters the phosphor portion 13 while being diffused, and excites the phosphor.

[経路P3について]光ビームLBの光軸AXに平行に進む光は、光拡散層15によって側面11aから光入射部12、蛍光体部13、及び光反射層14に向かって拡散及び反射される。   [Regarding Path P3] The light traveling parallel to the optical axis AX of the light beam LB is diffused and reflected by the light diffusion layer 15 from the side surface 11a toward the light incident part 12, the phosphor part 13, and the light reflection layer 14. .

[経路P4について]光軸AXに対して光反射層14の方向に傾斜した経路を経て光反射層14へ進む光は、光反射層14によって反射された後に側面11aへ進み、その後、側面11aにおいて拡散及び反射される。   [Regarding Path P4] Light traveling to the light reflecting layer 14 through a path inclined in the direction of the light reflecting layer 14 with respect to the optical axis AX is reflected by the light reflecting layer 14 and then travels to the side surface 11a. Diffuse and reflect.

[経路P5について]光軸AXに対して光反射層14の方向に経路P4よりも大きく傾斜した経路を経て光反射層14へ進む光は、光ビームLBは光反射層14によって反射された後に蛍光体部13へ進み、経路P2と同様の経路を経る。   [Regarding Path P5] After the light beam LB is reflected by the light reflecting layer 14, the light traveling to the light reflecting layer 14 through the path inclined more than the path P4 in the direction of the light reflecting layer 14 with respect to the optical axis AX. Proceeding to the phosphor part 13 and going through the same path as the path P2.

図示していないが、拡散及び反射を繰り返した後に、光入射部12が設けられた熱伝導体11の側面11bへ進む光など、実際には無数の光の経路が存在する。従って、熱伝導体11内に入射した光ビームLBは、熱伝導体11を経て、光波長変換装置10内の側面11a、側面11b、光反射層14の上面、接合面13a、及び接合面16aなどの面において多重反射、内部反射、及び拡散反射を繰り返して蛍光体部13へ入射する。   Although not shown, there are actually innumerable light paths such as light traveling to the side surface 11b of the heat conductor 11 provided with the light incident part 12 after repeated diffusion and reflection. Therefore, the light beam LB incident on the heat conductor 11 passes through the heat conductor 11, and the side surface 11a, the side surface 11b, the upper surface of the light reflection layer 14, the bonding surface 13a, and the bonding surface 16a in the light wavelength conversion device 10. The light is incident on the phosphor portion 13 by repeatedly performing multiple reflection, internal reflection, and diffuse reflection.

上記したように、熱伝導体11へ入射した光ビームLBは、光波長変換装置10内において拡散及び反射された後に蛍光体部13へ入射する。熱伝導体11の光屈折率は蛍光体部13の光屈折率よりも高いため、熱伝導体11から蛍光体部13へ入射した光は、蛍光体部13の底部に平行な方向に向かって屈折する。従って、当該屈折した光は蛍光体部13内の蛍光体粒子に衝突(入射)する確率が高くなる。さらに、接合面13aの凹凸構造はレーザ光の熱伝導体11における波長に対して回折効果を有するテクスチャ構造であり、また、100nm−10mのサイズで形成されているため、蛍光体部13へ入射する光は接合面13aにおいて回折し、拡散性の高いより均一な光となる。従って、蛍光品質の高い蛍光が発せられる。また、レーザダイオードLDからのレーザ光が蛍光体部13から直接出射されることが大きく低減される。   As described above, the light beam LB incident on the heat conductor 11 is diffused and reflected in the optical wavelength conversion device 10 and then enters the phosphor portion 13. Since the light refractive index of the heat conductor 11 is higher than the light refractive index of the phosphor portion 13, the light incident on the phosphor portion 13 from the heat conductor 11 is directed in a direction parallel to the bottom of the phosphor portion 13. Refract. Therefore, the probability that the refracted light collides (incides) with the phosphor particles in the phosphor portion 13 increases. Further, the uneven structure of the joint surface 13a is a texture structure having a diffraction effect with respect to the wavelength of the laser light in the heat conductor 11, and is formed with a size of 100 nm-10 m, so that it enters the phosphor portion 13. The diffracted light is diffracted at the bonding surface 13a and becomes more uniform light with high diffusibility. Therefore, fluorescence with high fluorescence quality is emitted. Further, the direct emission of the laser light from the laser diode LD from the phosphor portion 13 is greatly reduced.

上記したように、本実施例においては、蛍光体部13と光反射層14とが熱伝導体11の互いに対向する主面上に設けられているので、蛍光体からの熱が熱伝導体11を経て放熱体17によって効率よく放熱される。従って、高出力のレーザ光を使用した場合であっても放熱性に優れ、高性能かつ発光効率の高い光波長変換装置を提供することができる。また、小型化しても放熱性に優れている。   As described above, in the present embodiment, since the phosphor portion 13 and the light reflection layer 14 are provided on the main surfaces of the heat conductor 11 facing each other, the heat from the phosphor is the heat conductor 11. Then, the heat radiating body 17 efficiently radiates heat. Therefore, even when high-power laser light is used, it is possible to provide an optical wavelength conversion device that has excellent heat dissipation, high performance, and high light emission efficiency. Moreover, even if it reduces in size, it is excellent in heat dissipation.

さらに、熱伝導体11における蛍光体部13に対向しない表面(側面)に光入射部12が設けられており、光入射部12に近い熱伝導体11の上面に光拡散体部16が設けられているため、蛍光体部13へ直接入射する光を抑制することができる。従って、レーザ光が蛍光体部13から直接出射されることが防止され、いわゆるアイセーフ効果の高い光波長変換装置を提供することができる。   Further, the light incident portion 12 is provided on the surface (side surface) of the heat conductor 11 that does not face the phosphor portion 13, and the light diffuser portion 16 is provided on the upper surface of the heat conductor 11 close to the light incident portion 12. Therefore, the light directly incident on the phosphor portion 13 can be suppressed. Therefore, it is possible to prevent the laser light from being directly emitted from the phosphor portion 13 and to provide a light wavelength conversion device with a high so-called eye-safe effect.

また、光反射層14、光拡散層15、及び光拡散体部16を設け、熱伝導体11と蛍光体部13との間に屈折率差及びその接合面13aに凹凸構造を設けているため、レーザ光は多重反射、内部反射、及び拡散反射する。従って、均一な蛍光を発することが可能となり、蛍光品質を損なう原因であるスペックルノイズなどを抑制する効果が高い。   Further, since the light reflecting layer 14, the light diffusing layer 15, and the light diffusing portion 16 are provided and the refractive index difference is provided between the heat conductor 11 and the phosphor portion 13, and the concavo-convex structure is provided on the joint surface 13a thereof. The laser light undergoes multiple reflection, internal reflection, and diffuse reflection. Therefore, uniform fluorescence can be emitted, and the effect of suppressing speckle noise, which is a cause of impairing the fluorescence quality, is high.

なお、本実施例においては、熱伝導体が平行平板形状を有している場合について説明したが、他の形状を有していても良い。例えば、熱伝導体の主面(すなわち上面及び底面)は互いに傾斜した傾斜面又は曲面であっても良い。図1(a)及び図1(b)においては、熱伝導体の上面全体に凹凸構造が形成されている場合を示したが、当該凹凸構造は熱伝導体の一部に設けられていても良い。例えば、平行平板形状を有する熱伝導体の上面の一部に蛍光体部が設けられ、その一部すなわち熱伝導体と蛍光体部との接合面のみに凹凸構造が形成されていてもよい。熱伝導体と蛍光体部との接合面及び熱伝導体と光拡散体部との接合面が凹凸構造を有している場合について説明したが、当該接合面は凹凸構造を有しない平坦面であっても一定の拡散効果を得ることができる。光入射部が熱伝導体の側面に設けられている場合について説明したが、光入射部は熱伝導体の任意の表面上に設けられることができる。また、光入射部には反射防止コーティングが施されなくても良い。   In the present embodiment, the case where the heat conductor has a parallel plate shape has been described. However, the heat conductor may have another shape. For example, the main surfaces (that is, the upper surface and the bottom surface) of the heat conductor may be inclined surfaces or curved surfaces that are inclined to each other. In FIGS. 1A and 1B, the case where the concavo-convex structure is formed on the entire top surface of the heat conductor is shown, but the concavo-convex structure may be provided on a part of the heat conductor. good. For example, the phosphor portion may be provided on a part of the upper surface of the heat conductor having a parallel plate shape, and the concavo-convex structure may be formed only on a part of the heat conductor, that is, the joint surface between the heat conductor and the phosphor portion. The case where the bonding surface between the heat conductor and the phosphor portion and the bonding surface between the heat conductor and the light diffusing portion have a concavo-convex structure has been described, but the bonding surface is a flat surface having no concavo-convex structure. Even if it is, a certain diffusion effect can be obtained. Although the case where the light incident part is provided on the side surface of the heat conductor has been described, the light incident part may be provided on any surface of the heat conductor. Further, the light incident part may not be provided with an antireflection coating.

上記したように、実施例1においては、蛍光体部が熱伝導体を介して光反射層に対向するように設けられ、光反射層の底部に放熱体が設けられ、熱伝導体の一部の表面上に光入射部が設けられている構成を有している。従って、放熱性能に優れ、アイセーフ効果及び蛍光品質が高く、高発光効率等の光波長変換装置を提供することができる。また、信頼性の高い高性能の光波長変換装置を提供することができる。   As described above, in Example 1, the phosphor portion is provided so as to face the light reflecting layer through the heat conductor, and the heat radiator is provided at the bottom of the light reflecting layer, and a part of the heat conductor is provided. The light incident portion is provided on the surface. Therefore, it is possible to provide an optical wavelength conversion device having excellent heat dissipation performance, high eye-safe effect and high fluorescence quality, and high luminous efficiency. In addition, a highly reliable high-performance optical wavelength conversion device can be provided.

図3は、本発明の実施例2の光波長変換装置の構造を示す断面図である。光波長変換装置20は、熱伝導体21(側面21aを含む)、光入射部22、蛍光体部23、光反射層24、光拡散層25、光拡散体部26、及び放熱体27(サブマウント27a及び放熱部材27b)を有している。光波長変換装置20の光入射部22に対向する熱伝導体21の側面21aは、熱伝導体21の底面(光反射層24との接合面)に対して傾斜した傾斜面として構成されている。   FIG. 3 is a cross-sectional view illustrating the structure of the optical wavelength conversion device according to the second embodiment of the present invention. The light wavelength conversion device 20 includes a heat conductor 21 (including a side surface 21a), a light incident part 22, a phosphor part 23, a light reflection layer 24, a light diffusion layer 25, a light diffuser part 26, and a heat radiator 27 (sub It has a mount 27a and a heat dissipation member 27b). The side surface 21 a of the heat conductor 21 that faces the light incident portion 22 of the light wavelength conversion device 20 is configured as an inclined surface that is inclined with respect to the bottom surface (bonding surface with the light reflection layer 24) of the heat conductor 21. .

より詳細には、側面21aは、蛍光体部23の底面と側面21aとがなす角が鋭角となるように構成されている。以下においては、便宜上、蛍光体部23の底面上の点を点A、当該底面と側面21aとの交点を点B、側面21aと熱伝導体21の底面との交点を点C、熱伝導体21の底面上の点を点Dとして説明する。図3に示されているように、側面21aは、線ABと線BCとがなす内角である角ABC(内角θ)が鋭角(0<θ<90°)となるように構成されている。従って、線BCと線CDとがなす内角である角BCD(内角180−θ)は鈍角となる。   More specifically, the side surface 21a is configured such that the angle formed by the bottom surface of the phosphor portion 23 and the side surface 21a is an acute angle. In the following, for convenience, a point on the bottom surface of the phosphor portion 23 is a point A, an intersection point between the bottom surface and the side surface 21a is a point B, an intersection point between the side surface 21a and the bottom surface of the heat conductor 21 is a point C, and a heat conductor. A point on the bottom surface of 21 will be described as a point D. As shown in FIG. 3, the side surface 21a is configured such that an angle ABC (inner angle θ), which is an inner angle formed by the line AB and the line BC, is an acute angle (0 <θ <90 °). Accordingly, an angle BCD (inner angle 180-θ) that is an inner angle formed by the line BC and the line CD is an obtuse angle.

図4は、実施例2の光波長変換装置20を用いた場合の光源装置における光の進路を示す図である。実施例1と同様に、光ビームLBは、光入射部22を介して熱伝導体21へ入射し、熱伝導体21内において様々な経路を経て蛍光体部23へ入射する。図4に示されているように、本実施例においては、熱伝導体21と光拡散体部26との接合面へ進む光(経路P1a)、熱伝導体21の側面21bに垂直に(熱伝導体21の底面に平行に)進む光(経路P3a)、及び光反射層24へ進む光(経路P5a)についてのみ説明する。   FIG. 4 is a diagram illustrating a light path in the light source device when the optical wavelength conversion device 20 according to the second embodiment is used. Similar to the first embodiment, the light beam LB enters the heat conductor 21 via the light incident portion 22, and enters the phosphor portion 23 through various paths in the heat conductor 21. As shown in FIG. 4, in this embodiment, the light (path P1a) traveling to the bonding surface between the heat conductor 21 and the light diffuser portion 26 is perpendicular to the side surface 21b of the heat conductor 21 (heat Only the light (path P3a) traveling in parallel to the bottom surface of the conductor 21 and the light traveling to the light reflecting layer 24 (path P5a) will be described.

経路P1a、P3a、及びP5aを進む光は、それぞれ実施例1における経路P1、P3、及びP5と同様の経路を進む。しかし、実施例1とは異なり、角ABCは鋭角である。従って、経路P1a及びP5aを進む光の一部並びに経路P3aを進む光は、傾斜面21aにおいて拡散及び反射された後に、蛍光体部23に向けて進む確率が高い。図示していないが、他の経路を経た後に傾斜面21aにおいて拡散及び反射された光も同様にその多くは蛍光体部23の向きへ進むこととなる。すなわち、傾斜面21aにおいて拡散及び反射された光の大部分が蛍光体部23へ入射することとなる。従って、本実施例によれば、上記した効果に加え、特に、発光効率が向上した光波長変換装置を提供することができる。   The light that travels along the paths P1a, P3a, and P5a travels along the same path as the paths P1, P3, and P5 in the first embodiment. However, unlike the first embodiment, the angle ABC is an acute angle. Therefore, a part of the light traveling along the paths P1a and P5a and the light traveling along the path P3a are highly likely to travel toward the phosphor portion 23 after being diffused and reflected on the inclined surface 21a. Although not shown, most of the light diffused and reflected on the inclined surface 21a after passing through another path also proceeds in the direction of the phosphor portion 23. That is, most of the light diffused and reflected on the inclined surface 21 a enters the phosphor portion 23. Therefore, according to the present embodiment, in addition to the above-described effects, it is possible to provide an optical wavelength conversion device with particularly improved luminous efficiency.

図5は、本発明の実施例3の光波長変換装置の構造を示す断面図である。光波長変換装置30は、熱伝導体31(側面31aを含む)、光入射部32、蛍光体部33、光反射層34、光拡散層35、光拡散体部36、及び放熱体37(サブマウント37a及び放熱部材37b)を有している。光波長変換装置30の光入射部32に対向する熱伝導体31の側面31aは、熱伝導体31の底面(光反射層34との接合面)に対して傾斜した傾斜面として構成されている。   FIG. 5 is a cross-sectional view showing the structure of the optical wavelength conversion device according to the third embodiment of the present invention. The light wavelength conversion device 30 includes a heat conductor 31 (including a side surface 31a), a light incident part 32, a phosphor part 33, a light reflection layer 34, a light diffusion layer 35, a light diffuser part 36, and a heat radiator 37 (sub It has a mount 37a and a heat dissipation member 37b). The side surface 31 a of the heat conductor 31 that faces the light incident portion 32 of the light wavelength conversion device 30 is configured as an inclined surface that is inclined with respect to the bottom surface (bonding surface with the light reflection layer 34) of the heat conductor 31. .

より詳細には、側面31aは、蛍光体部33の底面と、光入射部32に対向する熱伝導体31の側面31aとがなす角が鈍角となるように構成されている。図5に示されているように、線ABと線BCとがなす内角である角ABC(内角θ)が鈍角(90°<θ<180°)となるように構成されている。従って、線BCと線CDとがなす内角である角BCD(内角180−θ)は鋭角となる。なお、実施例2と同様に、点A、B、C、及びDは説明の便宜上示したものである。   More specifically, the side surface 31 a is configured such that the angle formed by the bottom surface of the phosphor portion 33 and the side surface 31 a of the heat conductor 31 facing the light incident portion 32 is an obtuse angle. As shown in FIG. 5, the angle ABC (inner angle θ), which is the inner angle formed by the line AB and the line BC, is configured to be an obtuse angle (90 ° <θ <180 °). Therefore, an angle BCD (inner angle 180-θ) that is an inner angle formed by the line BC and the line CD is an acute angle. As in the second embodiment, the points A, B, C, and D are shown for convenience of explanation.

本実施例において、熱伝導体31の蛍光体部33側の主面(上面)の面積は、光反射層34側の主面(底面)の面積よりも小さい。また、図示していないが、傾斜面31aにおいて拡散及び反射された光は、光反射層34に向かって進む確率が高い。すなわち、傾斜面31aにおいて拡散及び反射された光の大部分が光反射層34において内部反射することとなり、熱伝導体31内における光の拡散効果が高い。さらに、熱伝導体31の底面が上面よりも広く設けられているため、蛍光体部33から発生した熱を多く放熱体37へ伝達することが可能となる。従って、本実施例によれば、特に、拡散効率及び放熱効率が向上した光波長変換装置を提供することができる。   In the present embodiment, the area of the main surface (upper surface) on the phosphor portion 33 side of the heat conductor 31 is smaller than the area of the main surface (bottom surface) on the light reflection layer 34 side. Although not shown, the light diffused and reflected on the inclined surface 31 a has a high probability of traveling toward the light reflecting layer 34. That is, most of the light diffused and reflected on the inclined surface 31a is internally reflected by the light reflecting layer 34, and the light diffusion effect in the heat conductor 31 is high. Furthermore, since the bottom surface of the heat conductor 31 is provided wider than the top surface, a large amount of heat generated from the phosphor portion 33 can be transmitted to the heat radiator 37. Therefore, according to the present embodiment, it is possible to provide an optical wavelength conversion device with improved diffusion efficiency and heat dissipation efficiency.

図6は、本発明の実施例4の光波長変換装置の構造を示す断面図である。光波長変換装置40は、熱伝導体41、光入射部42、蛍光体部43、光反射層44、光拡散層45、光拡散体部46、及び放熱体47(サブマウント47a及び放熱部材47b)を有している。図6に示されているように、光波長変換装置40における光入射部42が設けられた熱伝導体41の側面は、熱伝導体41の底面(光反射層44との接合面)に対して傾斜した傾斜面として構成されている。より詳細には、光入射部42が設けられた熱伝導体41の側面は、蛍光体部43の底面と、光入射部42が設けられた熱伝導体41の側面とがなす内角(θ)が鈍角となるように構成されている。   FIG. 6 is a cross-sectional view showing the structure of the optical wavelength conversion device according to the fourth embodiment of the present invention. The light wavelength conversion device 40 includes a heat conductor 41, a light incident portion 42, a phosphor portion 43, a light reflecting layer 44, a light diffusing layer 45, a light diffusing portion 46, and a heat radiating body 47 (submount 47a and heat radiating member 47b). )have. As shown in FIG. 6, the side surface of the heat conductor 41 provided with the light incident portion 42 in the light wavelength conversion device 40 is in relation to the bottom surface (bonding surface with the light reflection layer 44) of the heat conductor 41. It is configured as an inclined surface. More specifically, the side surface of the heat conductor 41 provided with the light incident portion 42 has an inner angle (θ) formed by the bottom surface of the phosphor portion 43 and the side surface of the heat conductor 41 provided with the light incident portion 42. Is configured to have an obtuse angle.

本実施例において、熱伝導体41の蛍光体部43側の主面(上面)の面積は、光反射層44側の主面(底面)の面積よりも小さい。また、図示していないが、入射した光ビームは光反射層44に向かって進む確率が高い。すなわち、入射した光ビームの大部分が光反射層44において内部反射することとなり、熱伝導体41内における光の拡散効果が高い。さらに、熱伝導体41の底面が上面よりも広く設けられているため、蛍光体部43から発生した熱を多く放熱体47へ伝達することが可能となる。従って、本実施例によれば、特に、拡散効率及び放熱効率が向上した光波長変換装置を提供することができる。   In the present embodiment, the area of the main surface (upper surface) on the phosphor portion 43 side of the heat conductor 41 is smaller than the area of the main surface (bottom surface) on the light reflection layer 44 side. Although not shown, the incident light beam has a high probability of traveling toward the light reflecting layer 44. That is, most of the incident light beam is internally reflected by the light reflecting layer 44, and the light diffusion effect in the heat conductor 41 is high. Furthermore, since the bottom surface of the heat conductor 41 is provided wider than the top surface, a large amount of heat generated from the phosphor portion 43 can be transmitted to the heat radiator 47. Therefore, according to the present embodiment, it is possible to provide an optical wavelength conversion device with improved diffusion efficiency and heat dissipation efficiency.

上記したように、本発明によれば、放熱性に優れ、発光効率の高い光波長変換装置を提供することができる。また、アイセーフ効果が高く、蛍光品質にも優れた光波長変換装置を提供することができる。さらに、放熱性が向上することに伴って、発熱部分である蛍光体部のみならず他の構成部材の部材寿命が延びる及び安定するなど、信頼性の高い光波長変換装置を提供することができる。   As described above, according to the present invention, it is possible to provide an optical wavelength conversion device that has excellent heat dissipation and high light emission efficiency. In addition, it is possible to provide an optical wavelength converter that has a high eye-safe effect and excellent fluorescence quality. Furthermore, along with the improvement in heat dissipation, it is possible to provide a highly reliable optical wavelength conversion device that extends and stabilizes the lifetime of not only the phosphor portion, which is a heat generating portion, but also other components. .

なお、実施例1−4においては、光源として半導体レーザ光を用いた場合について説明したが、他の光源を用いた場合であっても適用可能である。   In Embodiment 1-4, the case where the semiconductor laser beam is used as the light source has been described. However, the present invention is applicable even when another light source is used.

10、20、30、40 光波長変換装置
11、21、31、41 透明熱伝導体
12、22、32、42 光入射部
13、23、33、43 蛍光体部
14、24、34、44 光反射層
15、25、35、45 光拡散層
16、26、36、46 光拡散体部
17、27、37、47 放熱体
13a、16a 接合面の凹凸構造
10, 20, 30, 40 Light wavelength converter 11, 21, 31, 41 Transparent heat conductor 12, 22, 32, 42 Light incident part 13, 23, 33, 43 Phosphor part 14, 24, 34, 44 Light Reflective layers 15, 25, 35, 45 Light diffusing layers 16, 26, 36, 46 Light diffusing portions 17, 27, 37, 47 Heat radiating bodies 13a, 16a Uneven structure of joint surface

Claims (8)

レーザ光を受光して波長が変換された光を出射する光波長変換装置であって、
透明熱伝導体と、
前記透明熱伝導体の底部に設けられた光反射層と、
前記光反射層を介して前記透明熱伝導体を載置する放熱体と、
前記光反射層に対向する前記透明熱伝導体の表面上に設けられかつ蛍光体を含む蛍光体部と、
前記透明熱伝導体の一部の表面上に設けられた光入射部と、を含むことを特徴とする光波長変換装置。
An optical wavelength conversion device that receives laser light and emits light whose wavelength is converted,
A transparent heat conductor,
A light reflecting layer provided at the bottom of the transparent heat conductor;
A heat dissipating body on which the transparent heat conductor is placed via the light reflecting layer;
A phosphor part provided on the surface of the transparent thermal conductor facing the light reflecting layer and containing a phosphor;
And a light incident portion provided on a part of the surface of the transparent heat conductor.
前記透明熱伝導体はサファイア、窒化ガリウム、酸化ガリウム、及び炭化ケイ素のうち少なくとも1つからなることを特徴とする請求項1に記載の光波長変換装置。   The optical wavelength conversion device according to claim 1, wherein the transparent heat conductor is made of at least one of sapphire, gallium nitride, gallium oxide, and silicon carbide. 前記光入射部、前記蛍光体部、及び前記光反射層を除いた前記透明熱伝導体の表面は光拡散性材料からなる光拡散層によって覆われていることを特徴とする請求項1又は2に記載の光波長変換装置。   The surface of the said transparent heat conductor except the said light-incidence part, the said fluorescent substance part, and the said light reflection layer is covered with the light-diffusion layer which consists of a light-diffusion material. 2. An optical wavelength conversion device according to 1. 前記透明熱伝導体と前記蛍光体部との接合面は凹凸構造を有していることを特徴とする請求項1乃至3のいずれか1つに記載の光波長変換装置。   The light wavelength conversion device according to any one of claims 1 to 3, wherein a joint surface between the transparent heat conductor and the phosphor portion has an uneven structure. 前記透明熱伝導体は平板形状を有し、前記蛍光体部及び前記光反射層は前記透明熱伝導体の互いに対向する主面上に設けられ、前記光入射部は前記透明熱伝導体の側面上に設けられ、前記蛍光体部が設けられた前記透明熱伝導体の主面であって前記蛍光体部よりも前記光入射部に近い部分には光拡散性材料からなる光拡散体部が設けられていることを特徴とする請求項1乃至4のいずれか1つに記載の光波長変換装置。   The transparent heat conductor has a flat plate shape, the phosphor portion and the light reflecting layer are provided on the main surfaces of the transparent heat conductor facing each other, and the light incident portion is a side surface of the transparent heat conductor. A light diffusing part made of a light diffusing material is provided on the main surface of the transparent heat conductor provided on the phosphor part and closer to the light incident part than the phosphor part. The optical wavelength conversion device according to claim 1, wherein the optical wavelength conversion device is provided. 前記蛍光体部の底面と、前記光入射部に対向する前記透明熱伝導体の側面と、がなす内角が鋭角となるように、前記光入射部に対向する前記透明熱伝導体の側面は、前記透明熱伝導体の底面に対して傾斜していることを特徴とする請求項5に記載の光波長変換装置。   The side surface of the transparent heat conductor facing the light incident portion is an acute angle formed by the bottom surface of the phosphor portion and the side surface of the transparent heat conductor facing the light incident portion, The light wavelength conversion device according to claim 5, wherein the light wavelength conversion device is inclined with respect to a bottom surface of the transparent heat conductor. 前記蛍光体部の底面と、前記光入射部に対向する前記透明熱伝導体の側面と、がなす内角が鈍角となるように、前記光入射部に対向する前記透明熱伝導体の側面は、前記透明熱伝導体の底面に対して傾斜していることを特徴とする請求項5に記載の光波長変換装置。   The side surface of the transparent heat conductor facing the light incident portion is an obtuse angle formed by the bottom surface of the phosphor portion and the side surface of the transparent heat conductor facing the light incident portion. The light wavelength conversion device according to claim 5, wherein the light wavelength conversion device is inclined with respect to a bottom surface of the transparent heat conductor. 前記蛍光体部の底面と、前記光入射部が設けられた前記透明熱伝導体の側面と、がなす内角が鈍角となるように、前記光入射部が設けられた前記透明熱伝導体の側面は、前記透明熱伝導体の底面に対して傾斜していることを特徴とする請求項5に記載の光波長変換装置。   The side surface of the transparent heat conductor provided with the light incident portion so that the inner angle formed by the bottom surface of the phosphor portion and the side surface of the transparent heat conductor provided with the light incident portion is an obtuse angle. The optical wavelength conversion device according to claim 5, wherein is inclined with respect to a bottom surface of the transparent heat conductor.
JP2012234351A 2012-10-24 2012-10-24 Optical wavelength conversion device Pending JP2014086566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234351A JP2014086566A (en) 2012-10-24 2012-10-24 Optical wavelength conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234351A JP2014086566A (en) 2012-10-24 2012-10-24 Optical wavelength conversion device

Publications (1)

Publication Number Publication Date
JP2014086566A true JP2014086566A (en) 2014-05-12

Family

ID=50789346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234351A Pending JP2014086566A (en) 2012-10-24 2012-10-24 Optical wavelength conversion device

Country Status (1)

Country Link
JP (1) JP2014086566A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082014A (en) * 2014-10-15 2016-05-16 日亜化学工業株式会社 Light-emitting device
JP2017526192A (en) * 2014-09-02 2017-09-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light emitting device
JP2017216362A (en) * 2016-05-31 2017-12-07 日亜化学工業株式会社 Light-emitting device
JP2019161128A (en) * 2018-03-15 2019-09-19 豊田合成株式会社 Light-emitting device
CN112133718A (en) * 2019-06-25 2020-12-25 成都辰显光电有限公司 Display panel, display device and preparation method of display panel
US11043789B2 (en) 2019-04-25 2021-06-22 Nichia Corporation Light emitting device
JP2021524669A (en) * 2018-05-24 2021-09-13 マテリオン コーポレイション White light fluorescent device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155456A (en) * 1997-07-31 1999-02-26 Rohm Co Ltd Image reader
JP2000036210A (en) * 1998-07-17 2000-02-02 Sanyo Electric Co Ltd Planar light source device having lighting mechanism and liquid crystal display having lighting mechanism
JP2000156358A (en) * 1998-07-29 2000-06-06 Lg Electronics Inc Method and device for processing transparent medium using laser
JP2002299697A (en) * 2001-03-29 2002-10-11 Mitsubishi Electric Lighting Corp Led light-source device and illuminator
JP2003142765A (en) * 2001-08-23 2003-05-16 Sony Corp Method of mounting light emitting element
JP2011190134A (en) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd Process and apparatus for producing gallium oxide single crystal
JP2012069908A (en) * 2010-08-25 2012-04-05 Stanley Electric Co Ltd Wavelength conversion structure and light source device
JP2012114759A (en) * 2010-11-26 2012-06-14 Clear Office Kk Line light source

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155456A (en) * 1997-07-31 1999-02-26 Rohm Co Ltd Image reader
JP2000036210A (en) * 1998-07-17 2000-02-02 Sanyo Electric Co Ltd Planar light source device having lighting mechanism and liquid crystal display having lighting mechanism
JP2000156358A (en) * 1998-07-29 2000-06-06 Lg Electronics Inc Method and device for processing transparent medium using laser
JP2002299697A (en) * 2001-03-29 2002-10-11 Mitsubishi Electric Lighting Corp Led light-source device and illuminator
JP2003142765A (en) * 2001-08-23 2003-05-16 Sony Corp Method of mounting light emitting element
JP2011190134A (en) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd Process and apparatus for producing gallium oxide single crystal
JP2012069908A (en) * 2010-08-25 2012-04-05 Stanley Electric Co Ltd Wavelength conversion structure and light source device
JP2012114759A (en) * 2010-11-26 2012-06-14 Clear Office Kk Line light source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017526192A (en) * 2014-09-02 2017-09-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light emitting device
JP2016082014A (en) * 2014-10-15 2016-05-16 日亜化学工業株式会社 Light-emitting device
JP2017216362A (en) * 2016-05-31 2017-12-07 日亜化学工業株式会社 Light-emitting device
JP2019161128A (en) * 2018-03-15 2019-09-19 豊田合成株式会社 Light-emitting device
JP7043002B2 (en) 2018-03-15 2022-03-29 豊田合成株式会社 Light emitting device
JP2021524669A (en) * 2018-05-24 2021-09-13 マテリオン コーポレイション White light fluorescent device
US11624494B2 (en) 2018-05-24 2023-04-11 Materion Corporation White light phosphor device
JP7394789B2 (en) 2018-05-24 2023-12-08 マテリオン コーポレイション white light fluorescent device
US11043789B2 (en) 2019-04-25 2021-06-22 Nichia Corporation Light emitting device
CN112133718A (en) * 2019-06-25 2020-12-25 成都辰显光电有限公司 Display panel, display device and preparation method of display panel
CN112133718B (en) * 2019-06-25 2024-02-20 成都辰显光电有限公司 Display panel, display device and preparation method of display panel

Similar Documents

Publication Publication Date Title
US8669575B2 (en) Light emitting module, method of manufacturing the light emitting module, and lamp unit
JP2014086566A (en) Optical wavelength conversion device
US20220052506A1 (en) Light emitting device
WO2017068765A1 (en) Wavelength conversion element and light-emitting device
JP5395097B2 (en) Light emitting module and lamp unit
KR102594756B1 (en) Optical device that generates high-brightness light
US9151468B2 (en) High brightness illumination devices using wavelength conversion materials
WO2017056470A1 (en) Wavelength conversion element and light emitting device
JP2014207349A (en) Light-emitting device and manufacturing method thereof
WO2014122888A1 (en) Light-emitting module
JP2011198560A (en) Vehicular lighting fixture
JP6457099B2 (en) Wavelength conversion member and light emitting device
JP5527456B2 (en) Method for manufacturing light emitting device
JP2013207049A (en) Light emitting device using wavelength conversion body
JP6125666B2 (en) Light emitting device
CN112636160B (en) Laser device
JP2015133231A (en) Light source device
JP5425024B2 (en) Vehicle headlamp
WO2013175752A1 (en) Wavelength conversion member, optical element, light-emitting device, and projection device
JP2019184644A (en) Light wavelength conversion member and light-emitting device
TWI833971B (en) Laser device
JP7277844B2 (en) light emitting device
JP2020502569A (en) Light conversion device
US20200271299A1 (en) Light emitting device
WO2021060519A1 (en) Light-emitting device, wavelength conversion unit, and headlight or display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108