JP2014086308A - Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material - Google Patents

Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material Download PDF

Info

Publication number
JP2014086308A
JP2014086308A JP2012234924A JP2012234924A JP2014086308A JP 2014086308 A JP2014086308 A JP 2014086308A JP 2012234924 A JP2012234924 A JP 2012234924A JP 2012234924 A JP2012234924 A JP 2012234924A JP 2014086308 A JP2014086308 A JP 2014086308A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
lithium secondary
silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012234924A
Other languages
Japanese (ja)
Inventor
Kazunori Takada
和典 高田
Rinlee Butch Mangrobang Cervera
リンリブツ マングローバン セルベラ
Naoki Suzuki
直毅 鈴木
Takeshi Onishi
剛 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012234924A priority Critical patent/JP2014086308A/en
Publication of JP2014086308A publication Critical patent/JP2014086308A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a silicon alloy negative electrode has a theoretical capacity reaching 4,200 (mA h)/g at the maximum and is expected as a negative electrode capable of increasing an energy density of a lithium battery but an active material utilization rate in the case where silicon powder is actually used for the negative electrode is low and a negative electrode capacity is extremely more decreased as a charging/discharging cycle is repeated.SOLUTION: A negative electrode material is provided by mixing an inorganic substance having electron conductivity with silicon, temporarily bringing the mixture into a gas state and then solidifying the mixture. Since the silicon and the electron conductive substance are sufficiently mixed at an atomic level in the gas state, the electron conductive substance is uniformly dispersed in the silicon, even in the negative electrode material. As a result, electron conductivity is imparted to every part over the entire electrode material, so that an active material utilization rate is increased and a high-capacity negative electrode is provided. A portion in which no electron is exchanged is unlikely to be generated even under a volume change accompanying charging/discharging, and the negative electrode material is also improved in charging/discharging cycle properties.

Description

本発明は、リチウム二次電池用の負極材料、その製造方法、及びこの負極材料を用いたリチウム二次電池に関するものである。   The present invention relates to a negative electrode material for a lithium secondary battery, a production method thereof, and a lithium secondary battery using the negative electrode material.

リチウム二次電池は、携帯電話やノートパソコンなどの電源として用いられ、現在の高度情報化社会を支えるキーデバイスとなっている。これら携帯電子機器においては、情報処理量の増加にともなう消費電力の増加が顕著であり、その電源であるリチウム二次電池においてはたゆみない高エネルギー密度化が求められている。   Lithium secondary batteries are used as power sources for mobile phones and laptop computers, and are key devices that support the current advanced information society. In these portable electronic devices, the increase in power consumption accompanying an increase in the amount of information processing is remarkable, and a continuous increase in energy density is required for the lithium secondary battery as the power source.

また一方、環境調和型社会実現は地球規模の喫緊の課題であり、そのためのエネルギーの高効率利用や再生可能エネルギーの導入が進められている。これら施策として取り組まれているものの一つが電気自動車の導入であるが、現在電気自動車の走行距離はせいぜい100km程度である。これをガソリン車と同等の走行距離を実現するためには現存のリチウムイオン電池の数倍のエネルギー密度が必要とされており、このような分野においてもリチウム二次電池の高エネルギー密度化は重要な課題である。   On the other hand, the realization of an environmentally harmonious society is an urgent issue on a global scale, and high-efficiency use of energy and the introduction of renewable energy are being promoted. One of these measures has been the introduction of electric vehicles, but the current travel distance of electric vehicles is at most about 100 km. In order to achieve the same mileage as a gasoline vehicle, energy density several times that of existing lithium-ion batteries is required. In these fields, it is important to increase the energy density of lithium secondary batteries. It is a difficult task.

もっとも普及しているリチウム二次電池であるリチウムイオン電池は、黒鉛負極とLiCoO正極を組み合わせることで高いエネルギー密度を達成している。しかしながら、この組み合わせを使用する限り、エネルギー密度をさらに数倍に高め、先に述べた社会の要請にこたえることは極めて困難であり、飛躍的なエネルギー密度の向上を可能とする新しい電極材料の開発が急務となっている。 A lithium ion battery, which is the most popular lithium secondary battery, achieves a high energy density by combining a graphite negative electrode and a LiCoO 2 positive electrode. However, as long as this combination is used, it is extremely difficult to increase the energy density several times and meet the social demands described above, and development of new electrode materials that can dramatically improve energy density Is an urgent need.

現状のリチウムイオン電池は正極活物質にLiCoO、負極活物質に炭素材料を用いた電池である。これら電極活物質はいずれもインターカレーション材料である。インターカレーション材料は、ホスト相内へのゲストの挿入脱離反応を電極反応として用いるため、高い繰り返し特性を示す一方、ホスト相の重量や体積により容量密度の限界が決まっており、インターカレーション材料を電極活物質として用いる限りにおいてリチウム二次電池の革新的な高エネルギー密度化は望むことができない。 The current lithium ion battery is a battery using LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode active material. These electrode active materials are all intercalation materials. The intercalation material uses a guest insertion / extraction reaction in the host phase as an electrode reaction, so it exhibits high repeatability, while the capacity density limit is determined by the weight and volume of the host phase. As long as the material is used as an electrode active material, an innovative increase in energy density of the lithium secondary battery cannot be expected.

この問題を解決すべく、インターカレーション反応の制約を受けず、高容量負極として期待されているものとして、リチウム合金、特に高い理論容量密度と低い電位を示すリチウム−ケイ素合金負極の研究が進められている。より具体的に説明すれば、リチウム二次電池における高容量負極の候補材料は、原子量や分子量と電極反応における反応電子数から算出される電気化学当量から既知であり、金属リチウム、リチウム合金などがこれに該当する。このうち金属リチウムは放電容量が約4000mAh/gであり、また酸化還元電位が−3.04V(SHE)と非常に低いため、大容量かつ高エネルギー密度の負極が実現することが期待される。しかしながら、金属リチウムを負極に用いると充電時に金属リチウムが針状に析出し、セパレータを突き破って正極と短絡を引き起こす問題があり、実用化には困難が伴う。リチウム合金負極は通常リチウムを含まない単体の元素からなる電極であり、電池の充電にともないリチウムと合金を形成する。例えばケイ素負極を例に取ると、充電時に
Si+4.4Li+4.4e→SiLi4.4
という反応を起こし、リチウム合金化する。この反応の起こる電位はリチウムの酸化還元電位よりも0.2Vほど高いものの、理論放電容量は約4200mAh/gと黒鉛負極の約10倍の高容量である。リチウム合金負極はリチウム金属負極と異なり、針状析出の問題が発生しないため、安全な負極となることが期待される。
In order to solve this problem, research on lithium alloys, especially lithium-silicon alloy negative electrodes that exhibit high theoretical capacity density and low potential, is expected as a high-capacity negative electrode without being restricted by the intercalation reaction. It has been. More specifically, candidate materials for high-capacity negative electrodes in lithium secondary batteries are known from the electrochemical equivalent calculated from the atomic weight and molecular weight and the number of reaction electrons in the electrode reaction, such as metallic lithium and lithium alloys. This is the case. Among these, metallic lithium has a discharge capacity of about 4000 mAh / g and a very low oxidation-reduction potential of -3.04 V (SHE), so that it is expected that a negative electrode having a large capacity and a high energy density will be realized. However, when metallic lithium is used for the negative electrode, there is a problem that metallic lithium is deposited in a needle shape at the time of charging and breaks through the separator to cause a short circuit with the positive electrode. The lithium alloy negative electrode is an electrode composed of a single element that usually does not contain lithium, and forms an alloy with lithium as the battery is charged. For example, taking a silicon negative electrode as an example, at the time of charging, Si + 4.4Li + + 4.4e → SiLi 4.4
This causes a reaction to form a lithium alloy. Although the potential at which this reaction occurs is about 0.2 V higher than the oxidation-reduction potential of lithium, the theoretical discharge capacity is about 4200 mAh / g, which is about 10 times as high as that of the graphite negative electrode. Unlike a lithium metal negative electrode, a lithium alloy negative electrode is expected to be a safe negative electrode because it does not cause a problem of acicular precipitation.

このように、合金負極、特にケイ素負極は、高い理論容量と低い電位をもち、電池を高エネルギー密度化できる負極として期待されている。その理論容量は4200mAh/gにも達するが、ケイ素の粉末を負極に使用すると1000mAh/gから2000mAh/g程度の容量しか示さない、すなわち、活物質利用率が低い値にとどまってしまう課題を抱えている。これはケイ素の電子導電性及び合金化した際のリチウムイオン導電性が低く、合金化反応に関わることができる電子とイオンが邂逅できる領域が狭いことによるものと考えられる。   Thus, alloy negative electrodes, particularly silicon negative electrodes, have high theoretical capacity and low potential, and are expected as negative electrodes capable of increasing the energy density of batteries. Its theoretical capacity reaches 4200 mAh / g, but when silicon powder is used for the negative electrode, it shows only a capacity of about 1000 mAh / g to 2000 mAh / g, that is, the active material utilization rate remains low. ing. This is thought to be due to the low electronic conductivity of silicon and lithium ion conductivity when alloyed, and the narrow region where electrons and ions that can participate in the alloying reaction can be trapped.

さらにリチウム合金負極では、充放電の繰り返し特性が悪く、充放電サイクルを繰り返すにつれて、負極容量が著しく減少するという課題も未解決である。これは一般的に次のように説明される。ケイ素負極を例に取ると、ケイ素とリチウムとの合金化過程において、格子体積は約4倍に膨張し、逆に脱合金化時には合金時に比べて4分の1に縮小する。このような体積変化を繰り返すにつれてケイ素負極は破壊・微粉化していき、それにともない集電体との電気的な接触を失い、電気化学反応に寄与できなくなる部位が増大し、負極の容量が低下する。   Furthermore, in the lithium alloy negative electrode, the charge / discharge repeatability is poor, and the problem that the negative electrode capacity is remarkably reduced as the charge / discharge cycle is repeated is still unsolved. This is generally explained as follows. Taking a silicon negative electrode as an example, in the alloying process of silicon and lithium, the lattice volume expands by about four times, and conversely, at the time of dealloying, it is reduced to a quarter of that at the time of alloying. As this volume change is repeated, the silicon negative electrode breaks down and becomes fine powder. As a result, electrical contact with the current collector is lost, the number of sites that cannot contribute to the electrochemical reaction increases, and the negative electrode capacity decreases. .

これらの問題を解決するために、ケイ素を薄膜化することで電子やイオンの輸送距離を短縮するとともに、体積変化にともなう応力を緩和するという対策が提案されている(非特許文献1)。非特許文献1で開示されたところによると、50nm厚のケイ素薄膜をNi箔上に形成すると、第1サイクルにおいて3500mAh/gを超える容量を達成することができ、さらに200サイクル程度まで安定に充放電を繰り返すことができる。これは、ケイ素の膜厚が薄く、また導電性基板上に成膜されているために膜全体の電子伝導性が良いことが理由であると考えられる。一方、膜厚を150nmに増加させると、容量は2500mAh/g程度に減少する。これは膜厚が増えたために、ケイ素表面から導電性基板までの間の電気抵抗が増加したことが原因であると結論付けられている。   In order to solve these problems, a countermeasure has been proposed in which the transport distance of electrons and ions is shortened by reducing the thickness of silicon, and stress associated with volume change is reduced (Non-patent Document 1). As disclosed in Non-Patent Document 1, when a silicon thin film having a thickness of 50 nm is formed on a Ni foil, a capacity exceeding 3500 mAh / g can be achieved in the first cycle, and it can be stably charged up to about 200 cycles. The discharge can be repeated. This is thought to be because the film thickness of silicon is thin and the electron conductivity of the entire film is good because it is formed on a conductive substrate. On the other hand, when the film thickness is increased to 150 nm, the capacity decreases to about 2500 mAh / g. It is concluded that this is due to the increase in electrical resistance between the silicon surface and the conductive substrate due to the increased film thickness.

上記の知見は、電極材料の粒子サイズを数十ナノメートル以下にまで微細化することで、良好な充放電サイクル特性が達成できることを示唆するものではあるが、電極材料を微細化すると電極内における電極材料の充填密度が低下するうえ、各電極材料微粒子に電子伝導経路を接続する必要性から電子導電材の添加量を増加させなければならず、高い理論容量密度を生かし切ることができず、高容量の負極を構成することが困難となる。   The above findings suggest that good charge / discharge cycle characteristics can be achieved by miniaturizing the particle size of the electrode material to several tens of nanometers or less. In addition to a decrease in the packing density of the electrode material, it is necessary to increase the addition amount of the electron conductive material from the necessity of connecting the electron conduction path to each electrode material fine particle, and it is not possible to make full use of the high theoretical capacity density, It becomes difficult to construct a high capacity negative electrode.

S. Ohara, J. Suzuki, K. Sekine, T. Takamura, J. Power Sources 136 (2004) 303.S. Ohara, J. Suzuki, K. Sekine, T. Takamura, J. Power Sources 136 (2004) 303. B. Gao, S. Sinha, L. Fleming, O. Zhou, Adv. Mater., 13 (2001) 816.B. Gao, S. Sinha, L. Fleming, O. Zhou, Adv. Mater., 13 (2001) 816.

本発明はこれらの課題に鑑みなされたものであり、ケイ素合金負極における電極活性を高めることで高い容量を発生させ、また充放電サイクルにともなう容量低下を防ぐことにより、リチウム二次電池の高容量負極として作用させることを目的とする。   The present invention has been made in view of these problems, and generates a high capacity by increasing the electrode activity in the silicon alloy negative electrode, and prevents the capacity from being reduced with the charge / discharge cycle, thereby increasing the capacity of the lithium secondary battery. The purpose is to act as a negative electrode.

本発明の一側面によれば、ケイ素と電子伝導性を有する無機物質との気体状態の混合物を固化した複合体である、リチウム二次電池用負極材料が与えられる。
ここで、前記ケイ素と電子伝導性を有する無機物質との気体状態の混合物はケイ素と前記無機物質との混合物を気化することによって得てよい。
また、前記無機物質が存在しない領域が10nm×10nm×10nmより小さなものであってよい。
また、パルスレーザーアブレーション法を用いて前記気体状態としてよい。
本発明の他の側面によれば、ケイ素と電子伝導性を有する無機物質とよりなる複合体であって、前記無機物質が存在しない領域が10nm×10nm×10nmより小さなものである、リチウム二次電池用陰極材料が与えられる。
上記何れかの負極材料において、前記無機物質が金属硫化物であってよい。
また、前記無機物質が鉄の硫化物であってよい。
また、前記前記複合体中のケイ素が非晶質状態であってよい。
また、負極材料は薄膜形状であってよい。
また、この薄膜は厚さが100nm以上であってよい。
あるいは、負極材用は粉末状であってよい。
また、この粉末は粒径が100nm以上であってよい。
本発明の更に他の側面によれば、上記何れかのリチウム二次電池用負極材料を用い、電解質としてリチウムイオン伝導性無機固体電解質を用いた、リチウム二次電池が与えられる。
According to one aspect of the present invention, there is provided a negative electrode material for a lithium secondary battery, which is a composite obtained by solidifying a gaseous mixture of silicon and an inorganic substance having electronic conductivity.
Here, the gaseous mixture of the silicon and the inorganic substance having electron conductivity may be obtained by vaporizing the mixture of silicon and the inorganic substance.
Further, the region where the inorganic substance is not present may be smaller than 10 nm × 10 nm × 10 nm.
Further, the gas state may be obtained by using a pulse laser ablation method.
According to another aspect of the present invention, there is provided a lithium secondary material, which is a composite composed of silicon and an inorganic substance having electronic conductivity, wherein the region where the inorganic substance is not present is smaller than 10 nm × 10 nm × 10 nm. A battery cathode material is provided.
In any of the above negative electrode materials, the inorganic substance may be a metal sulfide.
The inorganic substance may be iron sulfide.
Further, the silicon in the composite may be in an amorphous state.
The negative electrode material may be in the form of a thin film.
The thin film may have a thickness of 100 nm or more.
Alternatively, the negative electrode material may be in a powder form.
The powder may have a particle size of 100 nm or more.
According to still another aspect of the present invention, there is provided a lithium secondary battery using any one of the negative electrode materials for lithium secondary batteries and using a lithium ion conductive inorganic solid electrolyte as an electrolyte.

本発明によれば、高容量かつ充放電の繰り返し特性が良好なリチウム二次電池用の負極、及びその製造方法が与えられる。また、この負極を使用することにより、高容量かつ充放電の繰り返し特性が良好なリチウム二次電池が与えられる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode for lithium secondary batteries with a favorable capacity | capacitance and the repetition characteristic of charging / discharging and its manufacturing method are provided. Further, by using this negative electrode, a lithium secondary battery having a high capacity and good charge / discharge repeatability is provided.

本発明の実施例1における負極材料を様々な放電速度で放電させた際の放電曲線を示す図である。It is a figure which shows the discharge curve at the time of discharging the negative electrode material in Example 1 of this invention with various discharge rates. 本発明の実施例2における負極材料を様々な放電速度で放電させた際の放電曲線を示す図である。It is a figure which shows the discharge curve at the time of discharging the negative electrode material in Example 2 of this invention with various discharge rates. 本発明の実施例3における負極材料を様々な放電速度で放電させた際の放電曲線を示す図である。It is a figure which shows the discharge curve at the time of discharging the negative electrode material in Example 3 of this invention with various discharge rates. 本発明の実施例3における負極材料をラマン分光法により調べた結果を示す図である。It is a figure which shows the result of having investigated the negative electrode material in Example 3 of this invention by the Raman spectroscopy. 本発明の実施例3における負極材料を電子顕微鏡で観察した結果を示す図である。It is a figure which shows the result of having observed the negative electrode material in Example 3 of this invention with the electron microscope. 本発明の実施例3における負極材料中における鉄とケイ素の分布状態を電子エネルギー損失分光法により調べた結果を示す図である。It is a figure which shows the result of having investigated the distribution state of iron and silicon in the negative electrode material in Example 3 of this invention by the electron energy loss spectroscopy. 本発明の実施例4における充放電サイクルにともなう放電容量の変化を示す図である。It is a figure which shows the change of the discharge capacity accompanying the charging / discharging cycle in Example 4 of this invention. 本発明の比較例1における充放電サイクルにともなう放電容量の変化を示す図である。It is a figure which shows the change of the discharge capacity accompanying the charging / discharging cycle in the comparative example 1 of this invention. 本発明の比較例2における負極材料の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the negative electrode material in the comparative example 2 of this invention. 本発明の比較例2における負極材料の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the negative electrode material in the comparative example 2 of this invention.

上述した目的を達成するために鋭意研究したところ、本発明者らは、ケイ素に例えば硫化鉄などの電子伝導性を有する無機物質を混合し、この混合物を一度気体状態とした後、固化したものを作製したところ、高い電極活性、高容量と良好な充放電サイクル特性をもたらすことを見いだし、本発明に至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors have mixed an inorganic substance having electronic conductivity such as iron sulfide with silicon, and the mixture is once gasified and then solidified. As a result, it was found that high electrode activity, high capacity and good charge / discharge cycle characteristics were brought about, and the present invention was achieved.

本発明における負極材料は、ケイ素と電子伝導性を有する無機物質とを複合化したものである。リチウムと合金化反応を呈し、リチウム電池の負極活物質として作用する物質としては、ケイ素以外にもゲルマニウム、スズ、亜鉛、インジウム、ガリウム、アンチモン、鉛、金、銀、アルミニウム、白金、パラジウムや様々な合金が挙げられる。しかしながら、スズやインジウムなどはリチウムと合金化していない単体においても金属伝導を示すことから、電子導電材を付与する本発明の効果は小さい。一方、ケイ素やゲルマニウムは半導体であり、さらには、充放電を行うと非晶質化により電子伝導性が低下するため、本発明による効果は極めて大きい。特に、ケイ素はゲルマニウムに比べて合金化反応における電気化学当量の小さな、すなわち理論容量の大きな材料であり、さらに安価な材料であることから、産業上の価値が最も高い。   The negative electrode material in the present invention is a composite of silicon and an inorganic substance having electronic conductivity. In addition to silicon, germanium, tin, zinc, indium, gallium, antimony, lead, gold, silver, aluminum, platinum, palladium, and various other materials that exhibit an alloying reaction with lithium and act as a negative electrode active material for lithium batteries Alloys. However, since tin, indium, and the like exhibit metal conduction even in a simple substance that is not alloyed with lithium, the effect of the present invention for providing an electronic conductive material is small. On the other hand, silicon and germanium are semiconductors, and furthermore, when charged and discharged, the electronic conductivity is lowered due to amorphization, and thus the effect of the present invention is extremely large. In particular, silicon has the highest industrial value because it is a material having a smaller electrochemical equivalent in an alloying reaction than germanium, that is, a material having a large theoretical capacity, and is an inexpensive material.

また、ケイ素と電子伝導性を有する無機物質を複合化する手法としては、混合物を一度気化したのち固化する手法が好ましい。なお、当該混合物の成分毎に個別に気化させた後、それらの蒸気を混合するという方法によっても無機物質の複合化は達成できる。しかし、気化状態を維持するためには高温で保つ必要があり、また両者を別々の蒸発源から気化するためには装置が複雑になるという点から、混合物を気化する方法が最も現実的であると考えられる。気化することでケイ素と電子伝導性を有する無機物質とがそれぞれ原子・分子レベルまで分解され、これらが均一に混合された気体状態から固化することで、電子伝導性無機物質が負極材料中に原子レベルできわめて微細な粒子として分散された状態となる。その結果、電極内における電子導電材の体積分率を上げることなく、電極全体に電子伝導性を付与することができるからである。   Moreover, as a method of combining silicon and an inorganic substance having electronic conductivity, a method of solidifying after vaporizing the mixture once is preferable. In addition, the compounding of the inorganic substance can also be achieved by a method of individually vaporizing each component of the mixture and then mixing those vapors. However, in order to maintain the vaporized state, it is necessary to keep at a high temperature, and in order to vaporize both from separate evaporation sources, the apparatus is complicated, and the method of vaporizing the mixture is the most realistic. it is conceivable that. By vaporizing, silicon and the inorganic substance having electron conductivity are decomposed to the atomic and molecular levels, respectively, and solidifying from the homogeneously mixed gas state, the electron conductive inorganic substance is atomized in the negative electrode material. It becomes a dispersed state as extremely fine particles at the level. As a result, it is possible to impart electron conductivity to the entire electrode without increasing the volume fraction of the electronic conductive material in the electrode.

ケイ素と電子伝導性を有する無機物質の混合物を気化したのち固化することで、負極材料内部に電子伝導性を有する無機物質が均一に分散され、電極反応において電子の授受に与らない部位が大幅に減少する。このような分散状態としては、混合した電子伝導性を有する無機物質が存在しない領域が何れも10nm×10nm×10nmより小さなものであることが好ましい。   By vaporizing and solidifying a mixture of silicon and an inorganic substance with electron conductivity, the inorganic substance with electron conductivity is uniformly dispersed inside the negative electrode material, and there are significant areas where electrons are not transferred in the electrode reaction. To decrease. As such a dispersed state, it is preferable that any region where the mixed inorganic substance having electronic conductivity does not exist is smaller than 10 nm × 10 nm × 10 nm.

また、混合物を気体状態とする方法としては、加熱する、あるいは高周波を照射するなどのこの混合物にエネルギーを与える様々な方法をとることができる。しかしながら熱エネルギーで気化させる加熱法では、混合物の各成分の蒸気圧の違いにより組成ずれが起こりやすく、電気エネルギーで気化するスパッタ法では混合物の電極を形成する必要があることから連続的な合成が困難である。これらの方法に対してパルスレーザーアブレーション法は、混合物にパルスレーザー光を照射するのみで混合物を気化することができ、またパルスレーザー光が照射された部分が順次蒸発していくため、気化する前の混合物と、固化した後の最終生成物との間で組成の違いが起こりにくい利点をもつ。したがって、気体状態とする方法としては、パルスレーザーアブレーション法が特に好ましく用いられる。   In addition, as a method for bringing the mixture into a gaseous state, various methods for applying energy to the mixture such as heating or irradiation with high frequency can be used. However, in the heating method that vaporizes with thermal energy, compositional deviation tends to occur due to the difference in vapor pressure of each component of the mixture, and in the sputtering method that vaporizes with electric energy, it is necessary to form an electrode of the mixture, so that continuous synthesis is possible. Have difficulty. In contrast to these methods, the pulsed laser ablation method can vaporize the mixture just by irradiating the mixture with pulsed laser light, and the portions irradiated with the pulsed laser light will evaporate sequentially, so There is an advantage that a difference in composition is unlikely to occur between the mixture of and the final product after solidification. Therefore, the pulse laser ablation method is particularly preferably used as a method for obtaining a gaseous state.

電子伝導性を有する無機物質としては金属が一般的であるが、気体状態としたのちに固化した際に粒子状に凝集しやすく、負極内部において不均一な分散状態となりやすい。それに対して、電子伝導性を有する無機物質として金属硫化物を用いた場合は、気体状態から固化した際に粒子状に凝集することがなく、負極内部で均一に分散しやすい。そのため、電子伝導性を有する無機物質としては金属硫化物が好ましく用いられ、特に金属硫化物が鉄の硫化物の場合には高い電極活性を示す負極とすることができる。また、電子伝導性を有する無機物質の伝導度は高いほど好ましいことは言うまでもないが、電子伝導が電極反応を律速することのない電子伝導性を付与できる範囲として0.1S・cm−1以上の電子伝導度を有する無機物質が好ましく用いられる。 A metal is generally used as the inorganic substance having electron conductivity. However, when it is in a gaseous state and then solidified, it tends to aggregate into particles, and tends to be non-uniformly dispersed inside the negative electrode. On the other hand, when a metal sulfide is used as an inorganic substance having electron conductivity, it does not agglomerate in the form of particles when solidified from a gaseous state, and is easily dispersed uniformly within the negative electrode. Therefore, metal sulfide is preferably used as the inorganic substance having electron conductivity, and in particular, when the metal sulfide is iron sulfide, a negative electrode having high electrode activity can be obtained. Needless to say, the higher the conductivity of the inorganic substance having electron conductivity, the better, but the range in which the electron conductivity can be imparted without limiting the electrode reaction is 0.1 S · cm −1 or more. An inorganic substance having electronic conductivity is preferably used.

本発明に係る負極中に混入される無機物質の割合は特に限定されるものではないが、1重量%以上50重量%以下であることが好ましく、5重量%以上20重量%以下であることがより好ましい。1重量%以下では負極材料中の電子伝導性が十分なものとはならず、また50重量%以上では電極中における活物質として作用するケイ素の量が少なくなり、高い容量を得ることができない。   The proportion of the inorganic substance mixed in the negative electrode according to the present invention is not particularly limited, but is preferably 1% by weight or more and 50% by weight or less, and preferably 5% by weight or more and 20% by weight or less. More preferred. If it is 1% by weight or less, the electron conductivity in the negative electrode material is not sufficient, and if it is 50% by weight or more, the amount of silicon acting as an active material in the electrode decreases, and a high capacity cannot be obtained.

本発明における負極材料を用いて電池を構成する際の電解質としては、リチウムイオンを伝導種とする無機物の固体電解質が好ましい。ケイ素の合金化・脱合金化反応は結晶格子の大きな変化を引き起こす。そのために、充放電の繰り返しにより電極構造が変化しやすく、それが電極性能の低下につながることがある。それに対して固体電解質は特定のイオン種のみを伝導種としている。したがって、無機の固体電解質中では電極構造の変化を引き起こすケイ素の輸送が起こりにくく、これを使用することで充放電にともなう電極性能の低下を抑制することができる。   As an electrolyte for constituting a battery using the negative electrode material in the present invention, an inorganic solid electrolyte containing lithium ions as a conductive species is preferable. Silicon alloying and dealloying reactions cause large changes in the crystal lattice. Therefore, the electrode structure is likely to change due to repeated charge and discharge, which may lead to a decrease in electrode performance. In contrast, solid electrolytes use only specific ionic species as conductive species. Therefore, the transport of silicon that causes a change in the electrode structure hardly occurs in the inorganic solid electrolyte, and by using this, it is possible to suppress a decrease in electrode performance due to charge / discharge.

また、本発明における負極材料を用いて電池を構成する際の電解質として、リチウムイオン電池に用いられる通常の有機溶媒電解質を使用することもできる。例えば、エチレンカーボネート(炭酸エチレン)等の環状炭酸エステルと、ジエチルカーボネート(炭酸ジエチル)、エチルメチルカーボネート、ジメチルカーボネート等の鎖状炭酸エステルとを混合した溶媒に、LiPFなどのリチウム塩を溶解した有機溶媒電解液であるが、これに限定されるものではない。 Moreover, the normal organic-solvent electrolyte used for a lithium ion battery can also be used as an electrolyte at the time of comprising a battery using the negative electrode material in this invention. For example, a lithium salt such as LiPF 6 was dissolved in a solvent obtained by mixing a cyclic carbonate such as ethylene carbonate (ethylene carbonate) and a chain carbonate such as diethyl carbonate (diethyl carbonate), ethyl methyl carbonate, or dimethyl carbonate. Although it is an organic solvent electrolyte, it is not limited to this.

この負極材料を使用してリチウム二次電池を構成する際の正極には、リチウム電池の正極材料として知られているLiCoO、LiNiO、LiNi0.5Mn0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePO、LiMnPO、V、TiS、硫黄、硫化物、酸素などを使用することができるが、これらに限定されるものではない。 As the positive electrode when a lithium secondary battery is configured using this negative electrode material, LiCoO 2 , LiNiO 2 , LiNi 0.5 Mn 0.5 O 2 , LiCo 1 / 3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiFePO 4 , LiMnPO 4 , V 2 O 5 , TiS 2 , sulfur, sulfide, oxygen and the like can be used, but are not limited thereto. It is not something.

本発明の負極は、高い電極活性を示し、高い容量をもつのみならず良好な充放電サイクル特性を有する。このような効果が得られる理由は、以下のように推測される。   The negative electrode of the present invention exhibits high electrode activity and has not only high capacity but also good charge / discharge cycle characteristics. The reason why such an effect is obtained is presumed as follows.

ケイ素がリチウムと合金化するとケイ素の結晶格子の組み換えが起こる。充放電を繰り返すとこの組み換えが繰り返し行われるが、電池反応は室温付近で進行するため、格子が安定な結晶相へと緩和しにくく、材料は非晶質化する。この非晶質化はケイ素の電子伝導性を低下させるため、充放電前の電子に対しては半導体であった結晶質のケイ素が、充放電により非晶質化し電子伝導性を失うことになる(非特許文献2)。   Recombination of the silicon crystal lattice occurs when silicon is alloyed with lithium. This recombination is repeated when charge and discharge are repeated, but since the battery reaction proceeds near room temperature, the lattice is difficult to relax to a stable crystal phase, and the material becomes amorphous. Since this amorphization reduces the electronic conductivity of silicon, crystalline silicon that was a semiconductor with respect to electrons before charge and discharge becomes amorphous due to charge and discharge and loses electron conductivity. (Non-patent document 2).

この電子伝導性の低下は、当然のことながら電極反応を阻害するものであり、活物質利用率の低下を引き起こす。そのため、ケイ素負極の活物質利用率を高め、高い容量を実現するためには、非晶質化した際にも十分な電子伝導性をもつようにする必要がある。   This decrease in electron conductivity naturally obstructs the electrode reaction and causes a decrease in the active material utilization rate. Therefore, in order to increase the active material utilization rate of the silicon negative electrode and realize a high capacity, it is necessary to have sufficient electron conductivity even when it is amorphized.

電池の電極に電子伝導性を付与する手法としては、電極に電子伝導性の物質(電子導電材)を添加することが一般的である。しかしながら、通常の混合法、すなわちケイ素と電子導電材を乳鉢やボールミルで混合する方法では、電子導電材が電極に疎にしか分布せず、電子導電材に直接接触した部分以外は負極として作用しにくい。また、充放電にともなう体積膨張−収縮により電子導電材とケイ素の接合性が失われることで、活物質利用率はさらに低いものとなる。   As a technique for imparting electron conductivity to the electrode of a battery, it is common to add an electron conductive substance (electronic conductive material) to the electrode. However, in the usual mixing method, that is, the method in which silicon and the electronic conductive material are mixed in a mortar or ball mill, the electronic conductive material is distributed only sparsely on the electrode, and acts as a negative electrode except for the portion that is in direct contact with the electronic conductive material. Hateful. Moreover, the active material utilization rate is further reduced because the bonding property between the electronic conductive material and silicon is lost due to the volume expansion / contraction associated with charge / discharge.

この問題を解決するため、電極活物質として作用するケイ素と電子導電材の混合物をいったん気体状態としたのちに固化させることができる。この方法によれば、気体状態においてケイ素と電子導電材が原子レベルで混合された状態となることから、気体状態を経て固化した負極材料においてもケイ素中に電子導電材が均一に分散した状態となる。そのため、電極材料全体にわたって隙間なく電子伝導性が付与され、電子の授受に与らない部位が大幅に減少することから、高い活性をもつ、すなわち活物質利用率が高く、高容量の負極とすることができる。   In order to solve this problem, a mixture of silicon and an electronic conductive material acting as an electrode active material can be once solidified after being in a gaseous state. According to this method, since the silicon and the electronic conductive material are mixed at the atomic level in the gaseous state, the electronic conductive material is uniformly dispersed in the silicon even in the negative electrode material solidified through the gaseous state. Become. As a result, electron conductivity is imparted without gaps throughout the electrode material, and the number of sites that do not participate in electron transfer is greatly reduced. Therefore, the negative electrode has high activity, that is, high active material utilization and high capacity. be able to.

また、このようにして製造された負極材料では、電子伝導性がナノメートルレベルで均一に付与されているため、充放電にともなう体積膨張−収縮により負極材料が破砕した場合も電子の授受に与らない部分が生じにくく、充放電サイクル特性にも優れた負極材料となる。   In addition, since the negative electrode material manufactured in this way is uniformly imparted with electronic conductivity at the nanometer level, even when the negative electrode material is crushed by volume expansion and contraction due to charge and discharge, it is also used for the exchange of electrons. Therefore, the negative electrode material is excellent in charge / discharge cycle characteristics.

以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example.

[実施例1]
本実施例においては、電子伝導性を有する無機物質として鉄の硫化物の一つであるFeSを、これらの混合物を気体状態とする方法としてパルスレーザーアブレーションを用いてケイ素とFeSの複合体である負極材料を合成した。さらに電解質にリチウムイオン伝導性無機固体電解質の一つであるLiS−P結晶化ガラスを用いて、この負極材料の特性を調べた。
[Example 1]
In this embodiment, FeS, which is one of iron sulfides, is used as an inorganic substance having electron conductivity, and a composite of silicon and FeS using pulse laser ablation as a method for bringing these mixtures into a gaseous state. A negative electrode material was synthesized. Further using a Li 2 S-P 2 S 5 crystallized glass is one of the lithium ion conductive inorganic solid electrolyte to the electrolyte was examined characteristics of the anode material.

まず、ケイ素とFeSの複合体を以下の方法で合成した。   First, a composite of silicon and FeS was synthesized by the following method.

ケイ素とFeSは市販試薬を用い、混合物中のFeSの重量分率が10%となるようボールミルを用いて混合し、この混合物を直径20mmの円盤状に加圧成型しターゲットとした。この混合物を気体状態としたのち固化する方法としてはパルスレーザーデポジション法を用いた。成膜室内の圧力を10−6Pa〜10−5Paとし、パルスレーザーとしてはKrFを発振ガスとしたエキシマレーザー(レーザー波長:248nm)を用いた。上記のターゲットを成膜室内に設置し、このパルスレーザーを照射することにより混合物を蒸発させ、ステンレス基板上に約30nmの厚みで堆積させ薄膜状の負極とした。 For silicon and FeS, commercially available reagents were used and mixed using a ball mill so that the weight fraction of FeS in the mixture would be 10%, and this mixture was press-molded into a disk shape having a diameter of 20 mm to obtain a target. A pulsed laser deposition method was used as a method for solidifying the mixture after it was in a gaseous state. The pressure in the film formation chamber was 10 −6 Pa to 10 −5 Pa, and an excimer laser (laser wavelength: 248 nm) using KrF as an oscillation gas was used as the pulse laser. The above target was placed in a film forming chamber, and the mixture was evaporated by irradiating this pulse laser, and deposited on a stainless steel substrate with a thickness of about 30 nm to form a thin film negative electrode.

この負極材料の電極特性をLiS−P結晶化ガラスを固体電解質とした電気化学セルにおいて、定電流充放電法により評価した。 The electrode characteristics of this negative electrode material were evaluated by a constant current charge / discharge method in an electrochemical cell using Li 2 S—P 2 S 5 crystallized glass as a solid electrolyte.

LiS−P結晶化ガラスは、LiSとPをモル比で7:3に混合したものを遊星型ボールミルによるメカニカルミリング処理することで非晶質のLiS−Pを合成し、加熱・結晶化させたものを用いた。この結晶化ガラスを直径10mmの円盤状に加圧成型したものを電解質層とし、一方の面に先に述べたSi−FeSを蒸着した基板を作用極として圧接し、もう一方の面にリチウム−インジウム合金を対極として圧接し、2極式の電気化学セルとした。このセルを用いて、得られた負極材料の特性を以下の定電流充放電により評価した。 Li 2 S—P 2 S 5 crystallized glass is obtained by subjecting a mixture of Li 2 S and P 2 S 5 to a molar ratio of 7: 3 to a mechanical milling treatment using a planetary ball mill to produce amorphous Li 2 S. It was synthesized -P 2 S 5, was used by heating and crystallization. This crystallized glass is pressure-molded into a disk shape having a diameter of 10 mm as an electrolyte layer, pressed on one side using the above-described Si-FeS-deposited substrate as a working electrode, and on the other side lithium- An indium alloy was used as a counter electrode and pressed to form a bipolar electrochemical cell. Using this cell, the characteristics of the obtained negative electrode material were evaluated by the following constant current charge / discharge.

まず、得られた負極材料を0.05Cの速度で金属リチウム電極に対して0.01Vの電位まで合金化(負極としての充電反応)した。そののち様々な速度でリチウム電極に対して2.62Vの電位まで脱合金化(負極としての放電反応)し、電圧変化の様子を記録した。なお、本明細書中においては1Cの充放電速度を、ケイ素あたり4.4電子反応に相当する4200mAh/gとした。また、本実施例で対極として用いたリチウム−インジウム合金の電位は金属リチウムに対して0.62Vであり、例えば本実施例では合金化反応の終止電位を金属リチウム電極に対して0.01Vとしたが、この終止電位に相当するセル電圧は−0.61Vである。本明細書中においては表記を簡単なものにするために、実際のセル電圧に0.62Vを加算した値を表記することで、模擬的に対極にリチウム金属を用いたセルの電圧を再現した値で記載する。   First, the obtained negative electrode material was alloyed (charge reaction as a negative electrode) to a potential of 0.01 V with respect to a metal lithium electrode at a rate of 0.05C. After that, it was dealloyed (discharge reaction as a negative electrode) to a potential of 2.62 V with respect to the lithium electrode at various speeds, and the state of voltage change was recorded. In the present specification, the charge / discharge rate of 1C was set to 4200 mAh / g corresponding to 4.4 electron reaction per silicon. The potential of the lithium-indium alloy used as the counter electrode in this example is 0.62 V with respect to metallic lithium. For example, in this example, the final potential of the alloying reaction is 0.01 V with respect to the metallic lithium electrode. However, the cell voltage corresponding to this end potential is -0.61V. In order to simplify the notation in this specification, the cell voltage using lithium metal as a counter electrode was simulated by expressing the value obtained by adding 0.62 V to the actual cell voltage. Describe by value.

図1にはこのようにして得られた負極としての放電反応である脱合金化時の電位曲線を示す。低い放電速度(0.05C)の場合の放電容量は4105mAh/gであり、ほほ理論通りの値が得られた。また、高率放電時の容量維持率も良好であり、10Cでは3217mAh/g、100Cの高速放電においても2258mAh/gの容量を示した。   FIG. 1 shows a potential curve at the time of dealloying, which is a discharge reaction as the negative electrode thus obtained. The discharge capacity at a low discharge rate (0.05 C) was 4105 mAh / g, which was almost the theoretical value. Further, the capacity retention rate at high rate discharge was also good, and the capacity was 3217 mAh / g at 10 C, and 2258 mAh / g at 100 C high speed discharge.

[実施例2]
負極の厚みを400nmとした以外は実施例1と同様の方法で負極材料を作製し、その電極特性を調べたところ、図2に示すように、0.1C放電時の容量は3470mAh/g、10C放電時の容量は2887mAh/gであった。
[Example 2]
A negative electrode material was produced in the same manner as in Example 1 except that the thickness of the negative electrode was 400 nm, and the electrode characteristics were examined. As shown in FIG. 2, the capacity during 0.1 C discharge was 3470 mAh / g, The capacity at the time of 10 C discharge was 2887 mAh / g.

[実施例3]
負極の厚みを1μmとした以外は実施例1と同様の方法で負極材料を作製し、その電極特性を調べたところ、図3に示すように、0.1C放電時の容量は3052mAh/g、10C放電時の容量は2471mAh/gであった。
[Example 3]
A negative electrode material was prepared in the same manner as in Example 1 except that the thickness of the negative electrode was changed to 1 μm, and the electrode characteristics were examined. As shown in FIG. 3, the capacity during 0.1 C discharge was 3052 mAh / g, The capacity at the time of 10C discharge was 2471 mAh / g.

実施例1〜3で示したように、膜厚が増加すると負極材料中の電子やイオンの移動が電極反応を律速するようになり容量が幾分低下するが、10C放電においても2500mAh/g近い容量を示しており、本発明によると活性が高く、高率放電においても活物質利用率の高い負極材料が得られることがわかる。   As shown in Examples 1 to 3, as the film thickness increases, the movement of electrons and ions in the negative electrode material determines the electrode reaction and the capacity decreases somewhat, but even in 10C discharge, it is close to 2500 mAh / g. According to the present invention, it can be seen that a negative electrode material having high activity and a high active material utilization rate can be obtained even at high rate discharge.

実施例1〜3で明らかとなった高い電極活性の起源を明らかとするために、実施例2で得た負極材料のキャラクタリゼーションを行った。   In order to clarify the origin of the high electrode activity revealed in Examples 1 to 3, the negative electrode material obtained in Example 2 was characterized.

Raman分光を行ったところ、図4に示したように結晶質のケイ素では520cm−1に現れるTOモードが493cm−1へと低波数シフトしており、本実施例中におけるケイ素は非晶質化したものであることが示唆された。さらに、図5に示すように電子顕微鏡による組織観察においても結晶格子像は認められず、本実施例における負極材料が非晶質状態であることが分かった。 Was subjected to Raman spectroscopy, the TO mode appearing at 520 cm -1 in the silicon crystalline as shown in FIG. 4 to 493cm -1 has lower wavenumber shift, silicon in the present embodiment is amorphous It was suggested that Furthermore, as shown in FIG. 5, no crystal lattice image was observed in the structure observation with an electron microscope, and it was found that the negative electrode material in this example was in an amorphous state.

また、電子エネルギー損失分光法により負極材料中における鉄とケイ素の分布状態を調べたところ、図6に示したように負極材料中における鉄の分布は均一であり、電子伝導性を有する無機物質として混合したFeSが存在しない領域は少なくとも10nm×10nm×10nmより小さなものであることがわかる。   Further, when the distribution state of iron and silicon in the negative electrode material was examined by electron energy loss spectroscopy, as shown in FIG. 6, the distribution of iron in the negative electrode material was uniform, and as an inorganic substance having electron conductivity It can be seen that the region where no mixed FeS is present is at least smaller than 10 nm × 10 nm × 10 nm.

[実施例4]
実施例1、2で作製した負極材料の充放電に対する繰り返し特性を調べた。測定には各々の実施例で作製したセルを用い、電圧範囲を0.01〜2.62Vとし、0.05Cの電流密度で定電流充放電を繰り返した。
[Example 4]
The repetition characteristic with respect to charging / discharging of the negative electrode material produced in Example 1, 2 was investigated. For the measurement, the cell produced in each example was used, the voltage range was 0.01 to 2.62 V, and constant current charge / discharge was repeated at a current density of 0.05 C.

図7は、充放電の繰り返しにともなう放電容量の変化を示したものであるが、いずれの場合も繰り返し特性は良好であり、100サイクル後の容量維持率は30nmの厚みの負極では95%、400nmのものでも84%であった。   FIG. 7 shows the change in the discharge capacity with repeated charge and discharge. In each case, the repeat characteristics are good, and the capacity retention after 100 cycles is 95% for the negative electrode having a thickness of 30 nm. Even at 400 nm, it was 84%.

[比較例1]
実施例1、2で作製した負極材料を用いて、有機溶媒電解質中における充放電に対する繰り返し特性を調べた。
[Comparative Example 1]
Using the negative electrode materials prepared in Examples 1 and 2, the repetitive characteristics with respect to charge and discharge in the organic solvent electrolyte were examined.

有機電解液としては、エチレンカーボネートとジエチルカーボネートを1:1の体積比で混合した有機溶媒に、1MのLiPFを溶解したものを用いた。対極に金属リチウムを用いた2極式セルを作製し、測定には実施例1〜3で作製したセルを用い、電圧範囲を0.01〜2.62Vとし、0.05Cの電流密度で充放電を繰り返した。 As the organic electrolyte, a solution in which 1M LiPF 6 was dissolved in an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. A bipolar cell using metallic lithium as a counter electrode was prepared, and the cells prepared in Examples 1 to 3 were used for measurement. The voltage range was 0.01 to 2.62 V, and the battery was charged at a current density of 0.05 C. The discharge was repeated.

充放電の繰り返しにともなう放電容量の変化を図8に示したが、電解質に固体電解質を用いた実施例4に比べて有機溶媒を使用した場合の容量低下率は大きく、100サイクル後の容量維持率は負極の厚みが30nmの時に77%、厚みが400nmの時には58%にすぎなかった。   FIG. 8 shows the change in discharge capacity with repeated charge and discharge. The rate of decrease in capacity when an organic solvent is used is larger than that in Example 4 in which a solid electrolyte is used as the electrolyte, and the capacity is maintained after 100 cycles. The rate was 77% when the thickness of the negative electrode was 30 nm, and only 58% when the thickness was 400 nm.

実施例4と比較例1から明らかなように、電解質にリチウムイオン伝導性無機固体電解質を用いることにより、本発明の負極材料を用いた電池の充放電繰り返し特性を高いものとすることができる。   As is clear from Example 4 and Comparative Example 1, by using a lithium ion conductive inorganic solid electrolyte as the electrolyte, the charge / discharge repetition characteristics of the battery using the negative electrode material of the present invention can be improved.

[比較例2]
本比較例では気体状態を経由することなく作製した負極材料の特性を調べた。
[Comparative Example 2]
In this comparative example, the characteristics of the negative electrode material produced without going through the gas state were examined.

実施例で得たケイ素とFeSの混合物を負極材料とし、LiS−P結晶化ガラスを重量比1:1で混合したものを負極として用いた以外は実施例1と同様の方法で電気化学セルを作製した。 The same method as in Example 1 except that the mixture of silicon and FeS obtained in the example was used as the negative electrode material, and a mixture of Li 2 S—P 2 S 5 crystallized glass at a weight ratio of 1: 1 was used as the negative electrode. An electrochemical cell was prepared.

この電気化学セルを用いて、0.05Cの電流密度における定電流充放電試験を行ったところ、図9に示したように、1サイクル目の放電容量は1415mAh/g程度と低く、また10サイクルの充放電の繰り返しでも顕著な容量低下が認められた。   Using this electrochemical cell, a constant current charge / discharge test was conducted at a current density of 0.05 C. As shown in FIG. 9, the discharge capacity at the first cycle was as low as about 1415 mAh / g, and 10 cycles. A significant decrease in capacity was observed even after repeated charging and discharging.

気体状態を経ることなく作製した負極材料は、高い容量も優れた充放電サイクル特性も示さないことがわかった。   It was found that the negative electrode material produced without going through a gas state did not exhibit high capacity or excellent charge / discharge cycle characteristics.

また、電子導電材の有無が電極特性に及ぼす影響を調べるために、FeSを混合していないケイ素に対して同様の測定を行ったところ、図10に示したように1サイクル目の充電容量が1476mAh/gであった。この値は電子導電材としてFeSを加えたものとほぼ等しいものであった。これにより、気体状態を経ることなく作製した負極材料では電子導電材の分散が十分ではないため、負極材料全体にわたって電子導電性を付与することができず、導電材付与の効果があらわれないことがわかった。またFeSを混合していないケイ素についての充放電サイクル特性については、同じく図10からわかるように、5サイクルの充放電の繰り返しでも顕著な容量低下が認められた。   Further, in order to investigate the influence of the presence or absence of the electronic conductive material on the electrode characteristics, the same measurement was performed on silicon not mixed with FeS. As shown in FIG. It was 1476 mAh / g. This value was almost equal to that obtained by adding FeS as an electronic conductive material. As a result, the negative electrode material produced without going through a gas state does not have sufficient dispersion of the electronic conductive material, so that the electronic conductivity cannot be imparted over the entire negative electrode material, and the effect of imparting the conductive material may not appear. all right. In addition, regarding the charge / discharge cycle characteristics of silicon not mixed with FeS, as can be seen from FIG. 10, a significant capacity decrease was observed even after repeated charge / discharge of 5 cycles.

また実施例では、本発明における負極材料の特性を薄膜形状とした状態で調べた結果を示したが、ここで調べた最も厚い試料における1μmの膜厚(実施例3)は通常のリチウム電池に用いられる電極活物質粉末の粒子径に近いものであり、粉末状等、薄膜形状以外の負極材料においても同様の効果が得られることは明らかである。   Further, in the examples, the results of examining the characteristics of the negative electrode material in the present invention in the state of a thin film were shown. However, the film thickness of 1 μm (Example 3) in the thickest sample examined here is a typical lithium battery. It is clear that the particle diameter of the electrode active material powder used is close to that of the electrode active material powder to be used, and the same effect can be obtained even in a negative electrode material other than a thin film shape such as powder.

なお、実施例では負極特性を明らかとするために対極にインジウム−リチウム合金を用いた電気化学セルでの評価結果を示したが、この負極材料を通常の正極活物質と組み合わせることで高エネルギー密度のリチウム電池を構成できることもまた明らかである。   In the examples, evaluation results in an electrochemical cell using an indium-lithium alloy for the counter electrode were shown in order to clarify the negative electrode characteristics. By combining this negative electrode material with a normal positive electrode active material, a high energy density was obtained. It is also clear that a lithium battery can be constructed.

本発明によって与えられる負極材料は、リチウム合金負極の利用率が低く、充放電にともなう充放電容量の低下が激しいという問題を解決するものであり、例えば携帯電子機器や電気自動車用として強く要望される高いエネルギー密度を有するリチウム電池に利用することが可能である。   The negative electrode material provided by the present invention solves the problem that the utilization rate of the lithium alloy negative electrode is low and the charge / discharge capacity is drastically reduced due to charge / discharge. For example, it is strongly desired for portable electronic devices and electric vehicles. It can be used for a lithium battery having a high energy density.

Claims (13)

ケイ素と電子伝導性を有する無機物質との気体状態の混合物を固化した複合体である、リチウム二次電池用負極材料。   A negative electrode material for a lithium secondary battery, which is a composite obtained by solidifying a gaseous mixture of silicon and an inorganic substance having electronic conductivity. 前記ケイ素と電子伝導性を有する無機物質との気体状態の混合物はケイ素と前記無機物質との混合物を気化することによって得られる、請求項1に記載のリチウム二次電池用負極材料。   2. The negative electrode material for a lithium secondary battery according to claim 1, wherein the gaseous mixture of silicon and an inorganic substance having electron conductivity is obtained by vaporizing a mixture of silicon and the inorganic substance. 前記無機物質が存在しない領域が10nm×10nm×10nmより小さなものである、請求項1または2に記載のリチウム二次電池用負極材料。   3. The negative electrode material for a lithium secondary battery according to claim 1, wherein a region in which the inorganic substance does not exist is smaller than 10 nm × 10 nm × 10 nm. パルスレーザーアブレーション法を用いて前記気体状態とする、請求項1から3の何れかに記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 3, wherein the gaseous state is obtained using a pulse laser ablation method. ケイ素と電子伝導性を有する無機物質とよりなる複合体であって、
前記無機物質が存在しない領域が10nm×10nm×10nmより小さなものである、
リチウム二次電池用陰極材料。
A composite composed of silicon and an inorganic substance having electronic conductivity,
The region where the inorganic substance does not exist is smaller than 10 nm × 10 nm × 10 nm.
Cathode material for lithium secondary battery.
前記無機物質が金属硫化物である、請求項1〜5のいずれかに記載のリチウム二次電池用負極材料。 The negative electrode material for a lithium secondary battery according to any one of claims 1 to 5, wherein the inorganic substance is a metal sulfide. 前記無機物質が鉄の硫化物である、請求項6に記載のリチウム二次電池用負極材料。 The negative electrode material for a lithium secondary battery according to claim 6, wherein the inorganic substance is iron sulfide. 前記前記複合体中のケイ素が非晶質状態である、請求項1〜7のいずれかに記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 7, wherein silicon in the composite is in an amorphous state. 薄膜形状である、請求項1〜8のいずれかに記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 8, which is in a thin film shape. 厚さが100nm以上である、請求項9に記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 9, wherein the thickness is 100 nm or more. 粉末状である、請求項1〜8のいずれかに記載のリチウム二次電池用負極材料。   The negative electrode material for lithium secondary batteries according to any one of claims 1 to 8, which is in a powder form. 粒径が100nm以上である、請求項11に記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 11, wherein the particle size is 100 nm or more. 請求項1〜12のいずれかに記載のリチウム二次電池用負極材料を用い、電解質としてリチウムイオン伝導性無機固体電解質を用いた、リチウム二次電池。 The lithium secondary battery using the lithium ion conductive inorganic solid electrolyte as an electrolyte using the negative electrode material for lithium secondary batteries in any one of Claims 1-12.
JP2012234924A 2012-10-24 2012-10-24 Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material Pending JP2014086308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234924A JP2014086308A (en) 2012-10-24 2012-10-24 Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234924A JP2014086308A (en) 2012-10-24 2012-10-24 Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material

Publications (1)

Publication Number Publication Date
JP2014086308A true JP2014086308A (en) 2014-05-12

Family

ID=50789169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234924A Pending JP2014086308A (en) 2012-10-24 2012-10-24 Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material

Country Status (1)

Country Link
JP (1) JP2014086308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206961A1 (en) 2014-04-18 2015-10-22 Yazaki Corporation Interconnects
JP2017103202A (en) * 2015-11-19 2017-06-08 パナソニックIpマネジメント株式会社 Lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206961A1 (en) 2014-04-18 2015-10-22 Yazaki Corporation Interconnects
JP2017103202A (en) * 2015-11-19 2017-06-08 パナソニックIpマネジメント株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Eshetu et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes
Gao et al. A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries
Xie et al. A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic‐sulfide‐containing potassium‐ion batteries
Adair et al. Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes
Kwon et al. Silicon diphosphide: A Si-based three-dimensional crystalline framework as a high-performance Li-ion battery anode
Qiu et al. Stable lithium metal anode enabled by lithium metal partial alloying
Jung et al. Atom-level understanding of the sodiation process in silicon anode material
Weng et al. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries
CN105830269B (en) The manufacturing method of lithium solid state battery, lithium solid state battery module and lithium solid state battery
EP3213363A1 (en) Stable silicon-ionic liquid interface lithium-ion batteries
Zhou et al. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes
Petnikota et al. Amorphous vanadium oxide thin films as stable performing cathodes of lithium and sodium-ion batteries
US20200266427A1 (en) Hybrid silicon-metal anode using microparticles for lithium-ion batteries
Saito et al. Si thin platelets as high-capacity negative electrode for Li-ion batteries
JP5534226B2 (en) Power generation element and non-aqueous electrolyte battery using the same
Su et al. Lithium‐metal batteries via suppressing Li dendrite growth and improving Coulombic efficiency
Sayed et al. Stabilizing tin anodes in sodium-ion batteries by alloying with silicon
Yi et al. Electrochemical performance of LiMnPO 4 by Fe and Zn co-doping for lithium-ion batteries
JP5696993B2 (en) Negative electrode material and lithium secondary battery using the same
Strauß et al. Lithium diffusion in ion-beam sputter-deposited lithium–silicon layers
Shimizu et al. Dopant effect on lithiation/delithiation of highly crystalline silicon synthesized using the czochralski process
Ma et al. Li 3 V 2 (PO 4) 3 modified LiFePO 4/C cathode materials with improved high-rate and low-temperature properties
Keles et al. Superlattice-structured films by magnetron sputtering as new era electrodes for advanced lithium-ion batteries
Tian et al. Domino Reactions Enabling Sulfur-Mediated Gradient Interphases for High-Energy Lithium Batteries
JP2014086308A (en) Negative electrode material for lithium secondary battery, production method of negative electrode material for lithium secondary battery, and lithium secondary battery employing the negative electrode material