JP2014083530A - Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement - Google Patents

Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement Download PDF

Info

Publication number
JP2014083530A
JP2014083530A JP2012237036A JP2012237036A JP2014083530A JP 2014083530 A JP2014083530 A JP 2014083530A JP 2012237036 A JP2012237036 A JP 2012237036A JP 2012237036 A JP2012237036 A JP 2012237036A JP 2014083530 A JP2014083530 A JP 2014083530A
Authority
JP
Japan
Prior art keywords
reinforcing bar
coating
resin
coated
undercoat layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237036A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maejima
靖浩 前島
Hiromasa Ieda
博雅 家田
Toru Sakakibara
亨 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUTSUI KOGYO KK
Original Assignee
TSUTSUI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUTSUI KOGYO KK filed Critical TSUTSUI KOGYO KK
Priority to JP2012237036A priority Critical patent/JP2014083530A/en
Publication of JP2014083530A publication Critical patent/JP2014083530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a resin-coated reinforcement for use in concrete, the method having a novel configuration and capable of solving problems in a conventional epoxy resin- coated reinforcing bar at one sweep.SOLUTION: A method is provided for manufacturing resin-coated reinforcement for use in concrete in which a reinforcement base metal 14 is coated by an electrostatic coating 15 using a powdered paint of epoxy resin. The method is characterized by applying a primary electrostatic coating after heating the reinforcement base metal 14, and forming an undercoat layer 15a on a reinforcement body, and further applying a secondary electrostatic coating on the undercoat layer 15a and bringing a topcoat layer 15b having surface irregularities into a curing and adhering state by using a holding heat of the undercoat layer 15a. The amount of application on the overcoat layer 15b can be brought into the curing and adhering state in a shape of dissemination, while making innumerable paint material particles project partially on the undercoat layer 15a. Thus, the surface irregularities on the overcoat layer 15b are formed.

Description

本発明は、鉄筋母材が、エポキシ樹脂の粉体塗料を用いる静電塗膜によって被覆されるコンクリート用の樹脂塗装鉄筋の製造方法及び樹脂塗装鉄筋に関する。   The present invention relates to a method for producing a resin-coated reinforcing bar for concrete in which a reinforcing bar base material is covered with an electrostatic coating film using an epoxy resin powder coating, and a resin-coated reinforcing bar.

具体的には、橋梁、高潮堤(防波堤)や、海岸近辺のホテルその他の観光施設等の建造物をコンクリート施工する際に好適な樹脂塗装鉄筋の発明に係る。なお、本発明の樹脂塗装鉄筋は、現場施工の場合ばかりでなく、プレキャスト等の鉄筋コンクリート製品にも適用できる。   More specifically, the present invention relates to an invention of a resin-coated reinforcing bar suitable for concrete construction of a bridge, a high tide bank (breakwater), a building such as a hotel or other tourist facility near the coast. The resin-coated reinforcing bar of the present invention can be applied not only to on-site construction but also to reinforced concrete products such as precast.

上記のような建造物を鉄筋コンクリートで施工する際には塩害を考慮して、エポキシ樹脂塗装鉄筋(1)又はステンレス鉄筋(2)を使用している。   When constructing the above building with reinforced concrete, an epoxy resin coated reinforcing bar (1) or a stainless steel reinforcing bar (2) is used in consideration of salt damage.

(1)ここで、樹脂塗装鉄筋の樹脂材料としてエポキシ樹脂が使用されるのは、エポキシ樹脂が、耐アルカリ性、鉄筋への塗膜付着性、及び塩化物イオン遮蔽性のいずれにも優れているためである。   (1) Here, the epoxy resin is used as the resin material of the resin-coated reinforcing bar. The epoxy resin is excellent in all of alkali resistance, adhesion of the coating film to the reinforcing bar, and chloride ion shielding property. Because.

エポキシ樹脂塗装鉄筋についての、土木学会規格「JSCE−E102(2003):エポキシ樹脂塗装鉄筋の品質規格」(以下単に「塗装鉄筋規格」という。)の一部を、表1として引用する。   A part of the JSCE Standard “JSCE-E102 (2003): Quality Standard of Epoxy Resin Coated Reinforcement” (hereinafter simply referred to as “Coated Reinforcing Bar Standard”) for epoxy resin coated reinforcing steel is cited in Table 1.

Figure 2014083530
Figure 2014083530

そして、該エポキシ樹脂塗装鉄筋は、塗膜厚を、防錆上の見地から、上記塗装鉄筋規格に規定されているように「220±40μm(設定膜厚220μm、公差±40μm)」と厚くする必要がある。このため、下記のような課題(問題点)があった。   The epoxy resin-coated reinforcing bar has a coating thickness of “220 ± 40 μm (set film thickness 220 μm, tolerance ± 40 μm)” as defined in the above-mentioned coating reinforcing bar standard from the viewpoint of rust prevention. There is a need. For this reason, there existed the following subjects (problems).

1)コンクリートとの付着強度が低下する。この付着強度の低下は、鉄筋の構造設計に折り込む必要がある。すなわち、付着強度が15%低下することを見込んで、コンクリート13への基本定着長さを無塗装鉄筋の1.18倍以上確保する必要がある。すなわち、図1に示す如く、鉄筋12、12相互を接続配筋する場合、鉄筋12、12の重ね継手とする場合の重ね長さL1を塗装品においては、無塗装鉄筋の1.18倍以上とするように前記「塗装鉄筋規格」に規定されている。   1) Adhesive strength with concrete decreases. This decrease in adhesion strength must be folded into the structural design of the reinforcing bars. In other words, it is necessary to secure a basic fixing length to the concrete 13 of 1.18 times or more of the unpainted reinforcing bar in anticipation of a 15% decrease in adhesion strength. That is, as shown in FIG. 1, when connecting reinforcing bars 12 and 12 to each other, the overlap length L1 in the case of using a lap joint of the reinforcing bars 12 and 12 is 1.18 times or more that of uncoated reinforcing bars in a coated product. As described above, it is defined in the “painted reinforcing steel standard”.

このため特許文献1において、エポキシ樹脂塗装鉄筋のコンクリートに対する付着性を改善するために下記鉄筋材の製造方法に係る発明が提案されている(請求項4)。   For this reason, in patent document 1, in order to improve the adhesiveness with respect to the concrete of an epoxy resin coating reinforcing bar, the invention which concerns on the manufacturing method of the following reinforcing bar material is proposed (Claim 4).

「鉄筋材を加熱し、鉄筋材の表面温度が250〜390℃にある間に、当該鉄筋材にエポキシ粉体塗料を吹付けて溶融付着させることにより第一防食被膜を形成するとともに、この温度条件下で、溶融状態にある第一防食被膜の表面に、粒状物とエポキシ樹脂及び硬化剤とが混合されてなる粉体塗料を吹付けて溶融付着させることにより第二防食被膜を形成し、しかる後、第一、第二防食被膜付き鉄筋材を冷却することにより、第二防食被膜によって形成された無数の突起を有する高付着防食鉄筋材を製造することを特徴とする。」   `` While the reinforcing bar material is heated and the surface temperature of the reinforcing bar material is 250 to 390 ° C, an epoxy powder coating is sprayed on the reinforcing bar material to melt and adhere to it, and the first anticorrosive film is formed. Under the conditions, the second anticorrosive film is formed by spraying and adhering a powder coating formed by mixing the granular material, the epoxy resin and the curing agent to the surface of the first anticorrosive film in a molten state, Thereafter, the first and second anticorrosion coated reinforcing bars are cooled to produce a highly adhered anticorrosive reinforcing bar having innumerable protrusions formed by the second anticorrosive coating.

しかし、この特許文献1に記載の鉄筋材の製造方法においては、第二防食被膜を形成するためのエポキシ粉体塗料に混合される粒状物が亜鉛金属末(無機粒状物)であるため、これをバインダー成分(エポキシ樹脂)でコーティングされた状態の強固な突起(コンクリートに対する付着性改善のための凹凸)として第二防食被覆の表面に発現させるためには、250〜390℃といった高温条件下で第二防食被覆の吹付け塗装(静電塗装)を行なう必要がある。結果的に、エポキシ樹脂を劣化させて第二防食被膜の性能を保持し難い(特許文献2段落0014)。   However, in the method for manufacturing a reinforcing bar material described in Patent Document 1, since the granular material mixed with the epoxy powder coating for forming the second anticorrosive coating is zinc metal powder (inorganic granular material), In order to make the surface of the second anti-corrosion coating appear as a strong protrusion (unevenness for improving adhesion to concrete) coated with a binder component (epoxy resin) under high temperature conditions of 250-390 ° C It is necessary to perform spray coating (electrostatic coating) of the second anticorrosion coating. As a result, it is difficult to maintain the performance of the second anticorrosive film by deteriorating the epoxy resin (Patent Document 2, paragraph 0014).

当該問題点を解決するために、特許文献2において、下記各構成の「高付着防食被膜付き鉄筋材の製造方法」が提案されている(請求項2;本願添付図2参照、括弧内は本願明細書で使用する対応技術用語)。なお、「溶融付着」を「硬化・密着」としたのは、エポキシ樹脂のような熱硬化性樹脂の界面密着(接着)は、熱可塑性樹脂におけるような相互溶融でなく、硬化しながらの架橋接着と考えられるからである。   In order to solve the problem, Patent Document 2 proposes “a method for producing a reinforcing bar with a highly adherent anticorrosion coating” having the following constitutions (see claim 2; see FIG. 2 attached hereto) Corresponding technical terms used in the description). Note that “melt adhesion” is “curing / adhesion” because interfacial adhesion (adhesion) of a thermosetting resin such as an epoxy resin is not a mutual melting as in a thermoplastic resin, but is crosslinked while curing. This is because it is considered to be adhesion.

「鉄筋材を加熱し、鉄筋材(鉄筋母材)の表面温度が200〜250℃にある間に、当該鉄筋材に、エポキシ粉体塗料を吹付けて溶融付着(硬化・密着)させることにより第一防食被膜(下塗り層)を形成するともに、この温度条件下で、溶融状態にある第一防食被膜の表面に、粒径がエポキシ粉体塗料の粒径の2.5倍〜3倍のアクリル系樹脂ビーズが混合されたエポキシ粉体塗料を吹付けて溶融付着させることにより、第二防食被膜(上塗り層)によって形成された無数の突起を有する高付着防食被膜付鉄筋材を製造することを特徴とする防食被膜付き鉄筋材の製造方法。」   “By heating the reinforcing bar material and spraying an epoxy powder paint on the reinforcing bar material (hardening / adhering) while the surface temperature of the reinforcing bar material (rebar base material) is between 200 and 250 ° C The first anticorrosion film (undercoat layer) is formed, and under this temperature condition, on the surface of the first anticorrosion film in a molten state, the acrylic particle size is 2.5 to 3 times the particle size of the epoxy powder coating. By spraying an epoxy powder coating mixed with resin beads and melt-adhering it, a rebar material with a highly adhered anticorrosion coating having innumerable protrusions formed by the second anticorrosion coating (overcoat layer) is produced. A method of manufacturing a reinforcing bar with anticorrosion coating. "

しかし、当該構成の「高付着防食被膜付き鉄筋材およびその製造方法」は、上記特許文献1に記載の問題点を解決できるも、下記のような問題点が発生するものと考えられる。   However, although the “reinforcing bar material with a high adhesion anticorrosive coating and the method for producing the same” can solve the problems described in Patent Document 1, the following problems are considered to occur.

SP値においてアクリル樹脂(PMMA):9.25とエポキシ樹脂:10.9〜11.5と異なり、下塗り層(エポキシ樹脂層)に対するアクリル系樹脂ビーズの接着強度を得難い。すなわち、下塗り層と上塗り層との間に実質的な接着強度を得難い。   Unlike the acrylic resin (PMMA): 9.25 and the epoxy resin: 10.9 to 11.5 in SP value, it is difficult to obtain the adhesive strength of the acrylic resin beads to the undercoat layer (epoxy resin layer). That is, it is difficult to obtain a substantial adhesive strength between the undercoat layer and the overcoat layer.

また、第二防食被膜の突起を形成するアクリル系樹脂ビーズは、粒径がエポキシ粉体塗料の2.5〜3倍であるため、上塗り層が厚くなり易い。   Moreover, since the acrylic resin beads forming the protrusions of the second anticorrosive coating have a particle size of 2.5 to 3 times that of the epoxy powder coating, the overcoat layer tends to be thick.

さらには、アクリル系樹脂ビーズは熱軟化温度(熱変形温度)が80〜100℃と、エポキシ樹脂のそれ110〜160℃に比して低く、高熱環境下で使用される場合に十分な耐熱性を静電塗膜に得難い。   Furthermore, acrylic resin beads have a heat softening temperature (thermal deformation temperature) of 80 to 100 ° C, which is lower than that of epoxy resin of 110 to 160 ° C, which is sufficient heat resistance when used in a high heat environment. Is difficult to obtain in an electrostatic coating.

特開2005−66574号公報(請求項4等)JP 2005-66574 A (Claim 4 etc.) 特開2006−233614号公報(請求項2等)JP 2006-233614 A (Claim 2 etc.)

本発明は、上記にかんがみて、上記のように一次静電塗装して鉄筋母材に下塗り層を形成し、該下塗り層の上に二次静電塗装して表面凹凸の上塗り層を硬化・密着させる方法において、エポキシ樹脂を劣化させるような高温条件下で上塗り層を形成する二次静電塗装をする必要がないとともに、上塗り層の表面凹凸の耐熱性および耐久性にも優れている樹脂塗装鉄筋の製造方法および樹脂塗装鉄筋を提供することを目的とする。   In view of the above, the present invention performs the primary electrostatic coating as described above to form an undercoat layer on the reinforcing bar base material, and the secondary electrostatic coating is applied on the undercoat layer to cure the surface irregularity overcoat layer. Resin that does not require secondary electrostatic coating to form an overcoat layer under high temperature conditions that degrade the epoxy resin in the method of adhering, and also has excellent heat resistance and durability of the surface irregularities of the overcoat layer An object of the present invention is to provide a method for producing a coated reinforcing bar and a resin-coated reinforcing bar.

本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の樹脂塗装鉄筋の製造方法および樹脂塗装鉄筋に想到した。   As a result of diligent development in order to solve the above-mentioned problems, the present inventors have conceived a method for producing a resin-coated reinforcing bar having the following configuration and a resin-coated reinforcing bar.

鉄筋母材が、エポキシ樹脂の粉体塗料を用いた静電塗膜によって被覆されるコンクリート用の樹脂塗装鉄筋の製造方法であって、
前記鉄筋母材を加熱後、一次静電塗装して前記鉄筋母材に下塗り層を形成し、さらに、該下塗り層の上に、二次静電塗装し、前記下塗り層の保持熱を用いて表面凹凸の上塗り層を硬化・密着させる方法において、
前記上塗り層の塗布量を、前記下塗り層の上に無数の塗料粒子を部分突出させた状態で散点状に硬化・密着させることが可能となるものとして、前記上塗り層の表面凹凸を形成する、ことを特徴とする。
The reinforcing bar base material is a method for producing a resin-coated reinforcing bar for concrete coated with an electrostatic coating using an epoxy resin powder coating,
After heating the reinforcing bar base material, primary electrostatic coating is performed to form an undercoat layer on the reinforcing bar base material, and further, secondary electrostatic coating is performed on the undercoat layer, and the holding heat of the undercoat layer is used. In the method of curing and adhering the top coat layer of surface irregularities,
The surface coating of the topcoat layer is formed so that the coating amount of the topcoat layer can be cured and adhered in the form of dots in a state where innumerable paint particles are partially projected on the undercoat layer. It is characterized by that.

また、樹脂塗装鉄筋は、下記構成のものとなる。   The resin-coated reinforcing bar has the following configuration.

鉄筋母材が、熱硬化性樹脂の粉体塗料を用いた静電塗膜によって被覆されたコンクリート用の樹脂塗装鉄筋であって、
鉄筋母材の上に一次静電塗装により形成された下塗り層と、該下塗り層の上に二次静電塗装により硬化・密着して形成される上塗り層とを備え、
該上塗り層が、前記下塗り層の上に無数の塗料粒子が部分突出した状態で散点状に硬化・密着されて表面凹凸に形成されている、ことを特徴とする。
The rebar base material is a resin-coated rebar for concrete coated with an electrostatic coating using a powder coating of thermosetting resin,
An undercoat layer formed by primary electrostatic coating on the reinforcing bar base material, and an overcoat layer formed by being cured and adhered by secondary electrostatic coating on the undercoat layer,
The overcoat layer is formed to have surface irregularities by being hardened and closely adhered in the form of dots with innumerable coating particles partially protruding on the undercoat layer.

上記構成の樹脂塗装鉄筋の製造方法および樹脂塗装鉄筋は、一次静電塗装及び二次静電塗装に使用する下塗り粉体塗料と上塗り粉体塗料が、同一又は実質的に同一なものである。このため、上塗り層と下塗り層との間の密着性に問題が発生するおそれがなく、上塗り層の表面凹凸の耐熱性および耐久性(密着性)にも優れている。当然、エポキシ樹脂を劣化させるような高温条件下で二次静電塗装をする必要もない。   In the method of manufacturing a resin-coated reinforcing bar and the resin-coated reinforcing bar having the above-described configuration, the undercoat powder coating and the topcoat powder coating used for the primary electrostatic coating and the secondary electrostatic coating are the same or substantially the same. For this reason, there is no possibility that a problem occurs in the adhesion between the topcoat layer and the undercoat layer, and the heat resistance and durability (adhesion) of the surface irregularities of the topcoat layer are excellent. Of course, there is no need for secondary electrostatic coating under high temperature conditions that degrade the epoxy resin.

コンクリート鉄筋の配筋接続部を示すモデル断面図であるIt is model sectional drawing which shows the reinforcement connection part of a concrete reinforcement 従来の静電粉体塗装による付着改善鉄筋の製造方法の概略工程図である。It is a general | schematic process figure of the manufacturing method of the adhesion improvement reinforcing bar by the conventional electrostatic powder coating. 本発明の静電粉体塗装による付着改善鉄筋の製造方法の概略工程図である。It is a schematic process drawing of the manufacturing method of the adhesion improvement reinforcing bar by electrostatic powder coating of the present invention. 本発明で使用する好適なエポキシ粉体塗料の拡大態様図である。It is an expansion aspect figure of the suitable epoxy powder coating material used by this invention. 実施例1の上塗り層の表面凹凸の断面曲線である。2 is a cross-sectional curve of surface irregularities of the topcoat layer of Example 1. 実施例2の上塗り層の表面凹凸の断面曲線である。4 is a cross-sectional curve of surface irregularities of the topcoat layer of Example 2.

以下、本発明の望ましい形態について説明する。   Hereinafter, desirable modes of the present invention will be described.

本発明の方法で製造する樹脂塗装鉄筋は、エポキシ樹脂の粉体塗料を用いた鉄筋母材14が静電塗膜15で被覆されているものである(図3参照)。   The resin-coated reinforcing bars produced by the method of the present invention are those in which a reinforcing bar base material 14 using an epoxy resin powder coating is coated with an electrostatic coating film 15 (see FIG. 3).

ここで、鉄筋母材14の材質は、通常、炭素鋼であるがステンレス鋼も可能である。   Here, the material of the reinforcing bar base material 14 is usually carbon steel, but stainless steel is also possible.

鉄筋母材14の太さは、JIS G3112に規定されている、鉄筋母材径(称呼径)10〜60mmのものを使用できる。   The thickness of the reinforcing bar base material 14 can be a reinforcing bar base material diameter (nominal diameter) of 10 to 60 mm as defined in JIS G3112.

上記粉体塗料のベースとするエポキシ樹脂には、エポキシ樹脂そのものばかりでなくエポキシ樹脂均等物も含む。エポキシ樹脂の変性体は勿論、耐アルカリ性(pH12以上)を有し、且つ、前述のJSCE−E104に規定する鉄筋に対する塗膜密着性および塩化物イオン遮蔽性の各試験方法において基準を満たすものであれば特に限定されない。   The epoxy resin used as the base of the powder coating includes not only the epoxy resin itself but also an epoxy resin equivalent. Of course, the modified epoxy resin has alkali resistance (pH 12 or more), and satisfies the standards in the test methods for coating film adhesion to chloride and chloride ion shielding specified in JSCE-E104. If there is no particular limitation.

そして、上記粉体塗料の平均粒径(メジアン)20〜70μm、望ましくは30〜60μm、さらに望ましくは45μm前後のものを使用する。静電塗装性の見地からである。   The powder paint has an average particle size (median) of 20 to 70 μm, preferably 30 to 60 μm, more preferably about 45 μm. This is from the standpoint of electrostatic paintability.

そして、本発明の塗装鉄筋は、下記の如くにして製造する(図3参照)。以下の設定数値は、粉体塗料の平均粒径(メジアン)45μm前後の場合を想定したものである。   And the coated reinforcing bar of this invention is manufactured as follows (refer FIG. 3). The following setting values are based on the assumption that the average particle diameter (median) of the powder coating is around 45 μm.

前提的には、鉄筋母材14が、エポキシ樹脂の粉体塗料を用いた静電塗膜によって被覆されるコンクリート用の樹脂塗装鉄筋の製造方法であって、鉄筋母材14を加熱後、一次静電塗装して鉄筋母材14に下塗り層15aを形成し、さらに、該下塗り層15aの上に、二次静電塗装をし、下塗り層15aの保持熱を用いて上塗り層15bを硬化・密着させる。ここまでは、従来技術と同様である。   The premise is a method for manufacturing a resin-coated reinforcing bar for concrete in which the reinforcing bar base material 14 is covered with an electrostatic coating film using an epoxy resin powder coating. An undercoat layer 15a is formed on the reinforcing bar base 14 by electrostatic coating, and further, a secondary electrostatic coating is applied on the undercoat layer 15a, and the overcoat layer 15b is cured by using the heat retained by the undercoat layer 15a. Adhere closely. So far, it is the same as that of the prior art.

上記鉄筋母材14の、上記設定加熱温度はエポキシ樹脂や種類、鉄筋母材の種類(径を含む。)等により変動するものであり絶対的なものではない。通常、エポキシ樹脂の設定硬化温度を180〜200℃とするとき、それより10〜20℃高い190〜220℃の範囲から設定する。下塗り層15aを熱硬化させるとともに、上塗り層15bを、下塗り層15aの保持熱を用いて熱硬化させる必要があるためである。   The set heating temperature of the reinforcing bar base material 14 varies depending on the epoxy resin, the type, the type (including the diameter) of the reinforcing bar base material, and is not absolute. Usually, when setting hardening temperature of an epoxy resin shall be 180-200 degreeC, it sets from the range of 190-220 degreeC higher 10-20 degreeC than it. This is because it is necessary to thermally cure the undercoat layer 15a and to thermally cure the topcoat layer 15b using the heat retained by the undercoat layer 15a.

下塗り層15aの形成は、鉄筋母材14をブラスト処理(下地処理)後、素材表面温度を、エポキシ樹脂の設定硬化温度より若干高い上記設定温度に加熱維持した状態で、設定乾燥膜厚となるように一次静電塗装(電圧:100kV)をすることにより行う。   The undercoat layer 15a is formed in a set dry film thickness in a state where the material surface temperature is heated and maintained at the set temperature that is slightly higher than the set curing temperature of the epoxy resin after the reinforced base material 14 is blasted (base treatment). In this way, primary electrostatic coating (voltage: 100 kV) is applied.

下塗り層15aの塗膜厚は、要求性能(曲げ加工性、防錆性等)により異なる。例えば、要求性能が従来のエポキシ樹脂塗装鉄筋と同等として、合計平均設定膜厚220μmとした場合、下塗り層15aの設定塗膜厚は、それより5〜40μm(望ましくは20〜30μm)減じたもの、すなわち、180〜215μm(望ましくは190〜200μm)とする。   The coating thickness of the undercoat layer 15a varies depending on required performance (bending workability, rust prevention property, etc.). For example, when the required performance is equivalent to that of a conventional epoxy resin-coated reinforcing bar and the total average set film thickness is 220 μm, the set coating thickness of the undercoat layer 15a is reduced by 5 to 40 μm (preferably 20 to 30 μm). That is, it is set to 180 to 215 μm (preferably 190 to 200 μm).

下塗り層15aの膜厚が大きいと上塗り後の合計膜厚の制御が困難となる。膜厚が小さいと所要の防錆性を確保し難くなる。   When the film thickness of the undercoat layer 15a is large, it becomes difficult to control the total film thickness after overcoating. If the film thickness is small, it will be difficult to ensure the required rust prevention.

そして、本発明は、上塗り層15bの塗布量を、無数の塗料粒子を突起させて散点状に硬化・密着させることが可能となるものとして、上塗り層15bの表面凹凸を形成することを特徴とするものである。   And this invention forms the surface unevenness | corrugation of the top-coat layer 15b as what becomes possible to make the coating amount of the top-coat layer 15b project and make a myriad of paint particles protrude and to make it adhere to a dotted shape. It is what.

上塗り層15bの塗布量は、設定膜厚が前記粉体塗料のメジアン粒子径の約1/1未満〜1/10、望ましくは、1/1.5〜1/6となるものとする。具体的には、メジアン粒子径を45μmとしたとき、4.5μm以上45μm未満、望ましくは7.5〜30μmとする。   The coating amount of the overcoat layer 15b is such that the set film thickness is less than about 1/1 to 1/10, preferably 1 / 1.5-1 to 1/6 of the median particle diameter of the powder coating material. Specifically, when the median particle diameter is 45 μm, it is 4.5 μm or more and less than 45 μm, preferably 7.5 to 30 μm.

塗布量が多いと、塗料粒子を散点状に硬化・密着させることが困難となる。すなわち、塗料の粒子相互が近接ないし重なりあって硬化・密着して、上塗り層15bの表面凹凸が起伏高低差の小さい(起伏度に乏しい)ものとなる。逆に塗布量が少ないと、塗料粒子は散点状となるが表面凹凸の起伏密度の粗いものとなる。いずれの場合も、上塗り層15bの表面凹凸によるコンクリート付着改善効果が期待し難くなる。   When the coating amount is large, it becomes difficult to cure and adhere the coating particles in the form of dots. That is, the coating particles are close to each other or overlap each other and harden and adhere to each other, so that the surface unevenness of the overcoat layer 15b has a small undulation difference (poor undulation). On the other hand, when the coating amount is small, the coating particles are scattered, but the roughness of the surface irregularities is rough. In either case, it is difficult to expect the effect of improving concrete adhesion due to the surface irregularities of the topcoat layer 15b.

そして、本発明の一実施形態は、下塗り層15aと上塗り層15bともに同一の塗料を使用するものである。   In one embodiment of the present invention, the same paint is used for both the undercoat layer 15a and the overcoat layer 15b.

こうして、下塗り層15aに対して二次静電塗装することにより、塗料粒子が下塗り層15aに密着はするが同化しない。結果的に、塗料粒子を部分突出させた状態で散点状に付着させることが可能となり、上塗り層15bが凹凸状となる。   Thus, by applying secondary electrostatic coating to the undercoat layer 15a, the paint particles adhere to the undercoat layer 15a but are not assimilated. As a result, it becomes possible to make the coating particles adhere in the form of dots in a state of partially protruding, and the top coat layer 15b becomes uneven.

二次静電塗装の一次静電塗装からの間隔は、通常、15s〜3min、望ましくは、30s〜2minである。   The interval from the primary electrostatic coating to the secondary electrostatic coating is usually 15 s to 3 min, preferably 30 s to 2 min.

二次静電塗装までの間隔時間が短いと、下塗り層15aが加熱溶融時の粘度の低いB状態に近く、上塗り層15bを形成する塗料粒子が下塗り層15aに埋没し易くなり、塗料粒子を突出させて散点状に硬化・密着させることが困難となる。逆に、二次静電塗装までの間隔が長いと、下塗り層15aの温度が低くなり、塗料粒子の硬化・密着が困難となる。結果的に、無数の塗料粒子を部分突出させた状態で散点状に硬化・密着させて、上塗り層15bを表面凹凸に形成することが困難となる。   When the interval time until the secondary electrostatic coating is short, the undercoat layer 15a is close to the B state having a low viscosity when heated and melted, and the paint particles forming the overcoat layer 15b are easily embedded in the undercoat layer 15a. It becomes difficult to make it protrude and harden and adhere in a dotted manner. On the other hand, if the interval until the secondary electrostatic coating is long, the temperature of the undercoat layer 15a becomes low, and it becomes difficult to cure and adhere the coating particles. As a result, it becomes difficult to form the top coat layer 15b with surface irregularities by curing and adhering innumerable coating particles in a state of partially protruding in a scattered manner.

なお、図例では上塗り層15bは強調して表現してある。   In the illustrated example, the overcoat layer 15b is expressed with emphasis.

本発明の他の実施形態は、上塗り層15bの粉体塗料として、下塗り層15aの表面温度で軟化しない耐熱性を有する誘電体微粉が添加されて、粉体粒子の相互融着を阻止可能とされた塗料を使用する。すなわち、粉体粒子が誘電体微粉(金属酸化物微粉)で塗されている塗料を使用する(図4参照)。   In another embodiment of the present invention, dielectric fine powder having heat resistance that does not soften at the surface temperature of the undercoat layer 15a is added as a powder coating for the overcoat layer 15b, thereby preventing mutual fusion of the powder particles. Use painted paint. That is, a paint in which powder particles are coated with dielectric fine powder (metal oxide fine powder) is used (see FIG. 4).

塗料粒子相互の融着が抑制乃至阻止されて、上塗り層15bを凹凸状の度合いの高いものに形成しやすくなる。さらに、上塗り層15bを形成する塗料粒子は、加熱溶融により扁平体となるが、該扁平体の下面の下塗り層15aに対する、誘電体微粉の介在により密着度が低くなる。このため、上塗り層15bのその後の硬化収縮に際して、誘電体微分が介在しない場合に比して、溶融により扁平化した粉体粒子の扁平度の回復がし易い(***度が高くなり易い。)。結果的に、上塗り層15bの凹凸状の起伏度が高くなってコンクリートに対する付着性改善効果(付着強度)がより増大する。   The adhesion between the paint particles is suppressed or prevented, so that the overcoat layer 15b can be easily formed in a highly uneven shape. Furthermore, the coating particles forming the top coat layer 15b become a flat body by heating and melting, but the degree of adhesion decreases due to the presence of dielectric fine powder with respect to the undercoat layer 15a on the bottom surface of the flat body. For this reason, in the subsequent curing shrinkage of the overcoat layer 15b, the flatness of the powder particles flattened by melting can be easily restored (the degree of bulge tends to be higher) than when no dielectric differentiation is present. . As a result, the unevenness of the concavo-convex shape of the overcoat layer 15b is increased, and the adhesion improving effect (adhesion strength) to the concrete is further increased.

上記誘電体微粉は、耐熱性熱硬化性樹脂(例えば、メラミン樹脂)等でもよいが、金属酸化物微粉(1μm未満)が望ましい。具体的には、シリカ、アルミナ又はチタニアを原料とした高熱法酸化物微粉を挙げることができる。より具体的には、アエロジル(登録商標)の商品名で上市されているもののうち、平均一次粒子径(メジアン径)5〜100nm(より望ましくは5〜50nm)のもの、特に、エポキシ樹脂との親和性の見地から親水性のものを好適に使用できる。なお、通常のエポキシ樹脂粉体塗料にも、流動性改善剤としてアエロジル類が微量(例えば、0.3%前後)添加されているものがあるとされている。   The dielectric fine powder may be a heat-resistant thermosetting resin (for example, melamine resin) or the like, but metal oxide fine powder (less than 1 μm) is desirable. Specific examples include high-heat oxide fine powders made from silica, alumina, or titania. More specifically, among those marketed under the trade name Aerosil (registered trademark), those having an average primary particle diameter (median diameter) of 5 to 100 nm (more preferably 5 to 50 nm), particularly with an epoxy resin From the viewpoint of affinity, hydrophilic ones can be preferably used. In addition, there are some epoxy resin powder coatings to which a small amount (for example, around 0.3%) of Aerosils is added as a fluidity improver.

誘電体微粉のエポキシ樹脂に対する添加量は、耐熱性熱硬化性樹脂微粉と金属酸化物微粉では異なるが、金属酸化物微粉のとき0.5〜15質量%(望ましくは3〜10質量%)とする。   The addition amount of the dielectric fine powder to the epoxy resin is different between the heat-resistant thermosetting resin fine powder and the metal oxide fine powder, but is 0.5 to 15 mass% (preferably 3 to 10 mass%) for the metal oxide fine powder.

誘電体微粉の添加量が少ないと、塗料粒子相互の融着抑制乃至阻止作用を得難くなる。添加量が多いと、コスト的に問題が発生するとともに、上塗り層15aと下塗り層15aとの間の融着抑制乃至阻止作用は十分であるが、凹凸を形成する塗装粒子の下塗り層15aとの密着性が低下して、上塗り層15bの耐久性(塗装粒子剥離等)に問題が発生し易くなる。   When the addition amount of the dielectric fine powder is small, it becomes difficult to obtain a fusion suppressing or blocking action between the paint particles. If the amount added is large, there will be a problem in terms of cost, and the effect of suppressing or preventing fusion between the topcoat layer 15a and the undercoat layer 15a will be sufficient, but the coating particle undercoat layer 15a that forms irregularities Adhesion is lowered, and a problem is likely to occur in the durability (coating particle peeling, etc.) of the overcoat layer 15b.

次に本発明の効果を確認するために行なった実施例について説明する。   Next, examples carried out to confirm the effect of the present invention will be described.

粉体塗料は、下塗り粉体塗料は、メジアン粒子径:45μmのエポキシ粉体塗料を使用し、上塗り粉体塗料は、実施例1では、下塗り塗料と同じものを、実施例2では、当該エポキシ粉体塗料100部に、金属酸化物微粉(設定粒径13nm)5部を添加したものを使用した。   As the powder coating, an undercoating powder coating uses an epoxy powder coating having a median particle diameter of 45 μm, and the top coating powder coating is the same as the undercoating coating in Example 1 and the epoxy coating in Example 2. What added 5 parts of metal oxide fine powder (set particle size 13 nm) to 100 parts of powder coating material was used.

また、鉄筋母材は、ブラスト処理した異形鉄筋(炭素鋼SD345、鉄筋径(称呼径):19mm)を用いた。そして、該鉄筋母材に対して、下記条件で下塗り・および上塗りを行なった。   In addition, a deformed reinforcing bar (carbon steel SD345, reinforcing bar diameter (nominal diameter): 19 mm) was used as the reinforcing bar base material. Then, undercoating and overcoating were performed on the reinforcing steel base material under the following conditions.

1)下塗り:鉄筋母材の表面温度を、設定加熱温度:210℃で加熱後、塗布量を設定膜厚200μmになる量として、下塗り粉体塗料を塗布する。   1) Undercoat: After heating the surface temperature of the reinforcing bar base material at a set heating temperature: 210 ° C., the undercoat powder coating is applied with an application amount of 200 μm.

2)上塗り:上記下塗り後、1.5分後に、塗布量を設定膜厚20μmになる量として、上塗り粉体塗料を塗布する(下塗りの約1/10)。   2) Top coating: After 1.5 minutes after the above-mentioned undercoating, the top coating powder coating is applied with an application amount of 20 μm so that the coating amount is 20 μm (about 1/10 of the undercoating).

ここで、鉄筋母材は、上塗り層を形成するエポキシ樹脂(粉体粒子)が、鉄筋母材に硬化(架橋)・密着するのに十分な熱量を有している。   Here, the reinforcing bar base material has a sufficient amount of heat for the epoxy resin (powder particles) forming the overcoat layer to be cured (crosslinked) and adhered to the reinforcing bar base material.

実施例1・2の鉄筋について、表面粗度を非接触式で測定した。その測定結果を表2および図5・6の断面曲線に示す。なお、各パラメータは、EUR15178Nレポートの定義に基づく。   For the reinforcing bars of Examples 1 and 2, the surface roughness was measured in a non-contact manner. The measurement results are shown in Table 2 and the cross-sectional curves in FIGS. Each parameter is based on the definition of the EUR15178N report.

表2および図5・6から、上塗り層の凹凸状の度合い(***度)において、実施例2(上塗り層の塗料にアエロジルを添加したもの)が、実施例1(上塗り層、下塗り層ともに同一塗料)に比して高いことが分かる。すなわち、実施例2の樹脂塗装鉄筋が実施例1のそれに比してコンクリートとの付着性改善効果が高いことが期待できる。   From Table 2 and FIGS. 5 and 6, Example 2 (the one in which Aerosil was added to the paint of the topcoat layer) was the same as Example 1 (both the topcoat layer and the undercoat layer) in the degree of unevenness (the degree of protrusion) of the topcoat layer. It can be seen that it is higher than that of the paint. That is, it can be expected that the resin-coated reinforcing bar of Example 2 has a higher effect of improving adhesion to concrete than that of Example 1.

Figure 2014083530
Figure 2014083530

12 (異形)鉄筋
13 コンクリート(層)
14 鉄筋母材
15 静電塗膜
15a 下塗り層
15b 上塗り層
12 (Deformed) Rebar 13 Concrete (layer)
14 Reinforcing Bar Base Material 15 Electrostatic Coating 15a Undercoat Layer 15b Topcoat Layer

Claims (8)

鉄筋母材が、エポキシ樹脂の粉体塗料を用いた静電塗膜によって被覆されるコンクリート用の樹脂塗装鉄筋の製造方法であって、
前記鉄筋母材を加熱後、一次静電塗装して前記鉄筋母材に下塗り層を形成し、さらに、該下塗り層の上に、二次静電塗装し、前記下塗り層の保持熱を用いて表面凹凸の上塗り層を硬化・密着させる方法において、
前記上塗り層の塗布量を、前記下塗り層の上に無数の塗料粒子を部分突出させた状態で散点状に硬化・密着させることが可能となるものとして、前記上塗り層の表面凹凸を形成する、
ことを特徴とする樹脂塗装鉄筋の製造方法。
The reinforcing bar base material is a method for producing a resin-coated reinforcing bar for concrete coated with an electrostatic coating using an epoxy resin powder coating,
After heating the reinforcing bar base material, primary electrostatic coating is performed to form an undercoat layer on the reinforcing bar base material, and further, secondary electrostatic coating is performed on the undercoat layer, and the holding heat of the undercoat layer is used. In the method of curing and adhering the top coat layer of surface irregularities,
The surface coating of the topcoat layer is formed so that the coating amount of the topcoat layer can be cured and adhered in the form of dots in a state where innumerable paint particles are partially projected on the undercoat layer. ,
A method for producing a resin-coated reinforcing bar.
前記上塗り層の塗布量を、設定膜厚が前記粉体塗料のメジアン粒子径の1/1未満〜1/10となるものとすることを特徴とする請求項1記載の樹脂塗装鉄筋の製造方法。   2. The method for producing a resin-coated reinforcing bar according to claim 1, wherein the coating amount of the overcoat layer is such that the set film thickness is less than 1/1 to 1/10 of the median particle diameter of the powder paint. . 前記粉体塗料として、下塗り層と上塗り層とに同一の塗料の使用することを特徴とする請求項1又は2記載の樹脂塗装鉄筋の製造方法。   3. The method for producing a resin-coated reinforcing bar according to claim 1, wherein the same paint is used for the undercoat layer and the topcoat layer as the powder paint. 前記粉体塗料として、上塗り層の塗料を、前記下塗り層の塗料に前記鉄筋母材の加熱後の保持温度で軟化しない耐熱性を有する誘電体微粉が添加されて、粉体粒子の相互融着を抑制乃至阻止可能とされたものを使用することを特徴とする請求項1又は2記載の樹脂塗装鉄筋の製造方法。   As the powder coating material, a coating powder for an overcoat layer is added, and dielectric fine powder having heat resistance that does not soften at a holding temperature after heating the reinforcing bar base material is added to the coating material for the undercoat layer, and powder particles are mutually fused. The method for producing a resin-coated reinforcing bar according to claim 1 or 2, wherein the one that can be suppressed or prevented is used. 前記誘電体微粉が金属酸化物微粉であることを特徴とする請求項4記載の樹脂塗装鉄筋の製造方法。   5. The method for producing a resin-coated reinforcing bar according to claim 4, wherein the dielectric fine powder is a metal oxide fine powder. 前記金属酸化物微粉が、シリカ、アルミナ又はチタニアを原料とした高熱法酸化物微粉であることを特徴とする請求項5記載の樹脂塗装鉄筋の製造方法。   6. The method for producing a resin-coated reinforcing bar according to claim 5, wherein the metal oxide fine powder is a high-heat-method oxide fine powder made of silica, alumina or titania as a raw material. 鉄筋母材が、熱硬化性樹脂の粉体塗料を用いた静電塗膜によって被覆されたコンクリート用の樹脂塗装鉄筋であって、
鉄筋母材の上に一次静電塗装により形成された下塗り層と、該下塗り層の上に二次静電塗装により硬化・密着して形成される上塗り層とを備え、
該上塗り層が、前記下塗り層の上に無数の塗料粒子が部分突出した状態で散点状に硬化・密着されて表面凹凸に形成されている、
ことを特徴とする樹脂塗装鉄筋。
The rebar base material is a resin-coated rebar for concrete coated with an electrostatic coating using a powder coating of thermosetting resin,
An undercoat layer formed by primary electrostatic coating on the reinforcing bar base material, and an overcoat layer formed by being cured and adhered by secondary electrostatic coating on the undercoat layer,
The overcoat layer is formed into irregularities on the surface of the undercoat layer by being intimately cured and closely adhered in a state of innumerable coating particles partially protruding.
This is a resin-coated reinforcing bar.
前記上塗り層の粉体塗料の粒子が、前記下塗り層の表面温度で軟化しない耐熱性を有する誘電体微粉で塗されたものであることを特徴とする請求項7記載の樹脂塗装鉄筋。   The resin-coated reinforcing bar according to claim 7, wherein the particles of the powder coating material of the overcoat layer are coated with a dielectric fine powder having heat resistance that does not soften at the surface temperature of the undercoat layer.
JP2012237036A 2012-10-26 2012-10-26 Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement Pending JP2014083530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237036A JP2014083530A (en) 2012-10-26 2012-10-26 Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237036A JP2014083530A (en) 2012-10-26 2012-10-26 Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement

Publications (1)

Publication Number Publication Date
JP2014083530A true JP2014083530A (en) 2014-05-12

Family

ID=50787130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237036A Pending JP2014083530A (en) 2012-10-26 2012-10-26 Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement

Country Status (1)

Country Link
JP (1) JP2014083530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194147A1 (en) * 2014-06-18 2017-04-20 パナソニックIpマネジメント株式会社 Solar cell module
JP2018525240A (en) * 2015-05-01 2018-09-06 ヴァルスパー・ソーシング・インコーポレーテッド High performance texture coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194147A1 (en) * 2014-06-18 2017-04-20 パナソニックIpマネジメント株式会社 Solar cell module
JP2018525240A (en) * 2015-05-01 2018-09-06 ヴァルスパー・ソーシング・インコーポレーテッド High performance texture coating
CN112898866A (en) * 2015-05-01 2021-06-04 宣伟投资管理有限公司 High performance textured coatings
CN112898866B (en) * 2015-05-01 2022-08-02 宣伟投资管理有限公司 High performance textured coatings

Similar Documents

Publication Publication Date Title
JPH03295829A (en) Metal-glass composite pipe and manufacture thereof
JPH0625438A (en) Composite friction element and its production
CN102755955B (en) Amorphous magnetic core surface coating process
CN204099362U (en) A kind of metal to metal link for the motor vehicle with wheel
US20090022980A1 (en) Reinforcing bar material coated with high adhesion anticorrosion film and method of producing the same
JP2014083530A (en) Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement
JP4319995B2 (en) Reinforcing bar with highly anti-adhesive coating and method for producing the same
CN108395742A (en) A kind of aperture is in obturator-type anti-corrosive metal coating, the preparation method and use of normal distribution
JP2007245682A (en) Corrosion-resistant metallic coating steel material
US1281108A (en) Process of coating metals, alloys, or other materials with protective coats of metals or alloys.
JP5664953B2 (en) Method for forming a multilayer coating film on cast iron pipe
CN205978208U (en) Brake sheet
JP6948583B2 (en) Resin molded body
KR101105882B1 (en) Method for manufacturing metal-form panel comprising aluminium, and metal form panel manufactured by the method thereof
JPS6055156A (en) Resin coated corrosion-proof iron wire and its production
CN113801548B (en) Desulfurization and corrosion prevention local repairing material for thermal power plant
JPS62234580A (en) Method for coating inner surface of metallic pipe
CN109317385A (en) Steel pipe fittings Layer polyethylene system erosion resistant coating coating process and steel pipe fittings
KR20200011698A (en) Method of powder coating a welded structure and work
JPH11141054A (en) Covered steel wire excellent in corrosion resistance
JPS61120671A (en) Production of painted steel material with good concrete adhesive property
KR20200011697A (en) Method of powder coating a hard chromium plated object
JP2005118621A (en) Coating method of outdoor installed box body
JPH01182386A (en) Bonding of part
JP2001090254A (en) Reinforcements for concrete and method for manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929