JP2014078665A - Inductance component - Google Patents

Inductance component Download PDF

Info

Publication number
JP2014078665A
JP2014078665A JP2012226965A JP2012226965A JP2014078665A JP 2014078665 A JP2014078665 A JP 2014078665A JP 2012226965 A JP2012226965 A JP 2012226965A JP 2012226965 A JP2012226965 A JP 2012226965A JP 2014078665 A JP2014078665 A JP 2014078665A
Authority
JP
Japan
Prior art keywords
inductance component
winding
core
heat sink
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012226965A
Other languages
Japanese (ja)
Inventor
Yukihiro Nishikawa
幸廣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012226965A priority Critical patent/JP2014078665A/en
Publication of JP2014078665A publication Critical patent/JP2014078665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inductance component that is configured to dissipate heat of a core and a coil efficiently without enlarging the size of the entire component.SOLUTION: In an inductance component comprising a core type inductance component body 30 having cores 31A, 31B, bobbins 32A, 32B, and coils 33A, 33B including air gaps, and a heat sink 40 for heat dissipation arranged in a close contact with the body 30, a counterbore portion 41 for receiving a part of outer peripheral surfaces of the coils 33A, 33B is formed in a surface of the heat sink 40. The inductance component body 30 is disposed so that a part of the outer peripheral surfaces of the coils 33A, 33B is in a close contact with the counterbore portion 41 through an insulative heat dissipation sheet 42 in a state where the cores 31A, 31B are in a close contact with the surface of the heat sink 40.

Description

本発明は、ヒートシンクによる放熱構造を備えたインダクタンス部品に関するものである。   The present invention relates to an inductance component having a heat dissipation structure using a heat sink.

半導体電力変換装置には、絶縁トランスやチョークコイル等のインダクタンス部品が多用されている。一方、この種の半導体電力変換装置は、密閉された筺体に内部回路を収納することによって防水・防塵効果を高めており、内部のインダクタンス部品を空冷することが難しい。このため、インダクタンス部品を水冷式のヒートシンクに接触させて放熱し、筺体内部の温度上昇を防いでいる。   Inductive components such as insulating transformers and choke coils are frequently used in semiconductor power conversion devices. On the other hand, this type of semiconductor power conversion device enhances the waterproof / dustproof effect by housing the internal circuit in a sealed casing, and it is difficult to air-cool the internal inductance components. For this reason, the inductance component is brought into contact with a water-cooled heat sink to dissipate heat, thereby preventing the temperature inside the housing from rising.

ここで、図3は、ヒートシンクを備えた従来のインダクタンス部品の構成図である。
図3において、10は絶縁トランス等のインダクタンス部品本体、20は放熱用のヒートシンクである。
インダクタンス部品本体10は、一対のフェライトコア1A,1Bと、そのセンターコア部1a,1bを中心として配置されたボビン3と、このボビン3に互いに絶縁材6を介して素線が巻回された巻線部2,5と、を備えている。なお、1cはセンターコア部1a,1bの間に形成されたエアギャップであり、インダクタンス値を調整するために設けられている。
インダクタンス部品本体10はヒートシンク20の上面に密着して固定されており、ヒートシンク20によりフェライトコア1B等を冷却して放熱する構造となっている。
Here, FIG. 3 is a configuration diagram of a conventional inductance component provided with a heat sink.
In FIG. 3, 10 is an inductance component main body such as an insulating transformer, and 20 is a heat sink for heat dissipation.
The inductance component body 10 includes a pair of ferrite cores 1A and 1B, a bobbin 3 disposed around the center core portions 1a and 1b, and strands wound around the bobbin 3 with an insulating material 6 therebetween. Winding portions 2 and 5 are provided. Reference numeral 1c denotes an air gap formed between the center core portions 1a and 1b, which is provided for adjusting the inductance value.
The inductance component main body 10 is fixed in close contact with the upper surface of the heat sink 20, and has a structure in which the ferrite core 1B and the like are cooled by the heat sink 20 to dissipate heat.

上記構成において、ヒートシンク20から遠い位置にあるフェライトコア1Aのセンターコア部1aは、エアギャップ1cにより断熱されているため温度上昇が著しくなる。通常のフェライトコアでは、コア温度が100℃を超えると温度に伴って鉄損が増加し、熱暴走する危険性がある。   In the above configuration, since the center core portion 1a of the ferrite core 1A located far from the heat sink 20 is thermally insulated by the air gap 1c, the temperature rises remarkably. In a normal ferrite core, when the core temperature exceeds 100 ° C., the iron loss increases with temperature, and there is a risk of thermal runaway.

上記のような問題に対し、特許文献1には、一対のセンターコア部の間に形成されたエアギャップにシリコーン系樹脂接着剤等の高分子部材を充填し、ヒートシンクから遠い位置にあるセンターコア部の熱を、高分子部材を介してヒートシンク側のセンターコア部に伝導させることにより放熱させるインダクタンス部品が記載されている。
また、特許文献2には、コアの一部に厚みを持たせ、平板状のヒートシンク等にコアの一部と巻線部とを接触させることにより、コアの鉄損による熱と巻線部の銅損による熱とを同時に放熱するようにしたリアクトル用部品が記載されている。
In order to solve the above problems, Patent Document 1 discloses that a center core located at a position far from a heat sink is filled with a polymer member such as a silicone-based resin adhesive in an air gap formed between a pair of center core portions. Inductance components that dissipate heat by conducting the heat of the part to the center core part on the heat sink side through the polymer member are described.
Further, in Patent Document 2, a part of the core is made thick, and a part of the core and the winding part are brought into contact with a flat plate heat sink or the like, so that the heat caused by the iron loss of the core and the winding part are reduced. A reactor component that dissipates heat from copper loss at the same time is described.

特開2011−77304号公報(段落[0013]〜[0018]、図1,図2等)Japanese Patent Laying-Open No. 2011-77304 (paragraphs [0013] to [0018], FIG. 1, FIG. 2, etc.) 特開2010−226138号公報(段落[0080],[0098]、図5,図9等)JP 2010-226138 A (paragraphs [0080], [0098], FIG. 5, FIG. 9 etc.)

一般的なフェライトを構成するMn−Zn系の材質では、熱伝導率が約10[W/m・K]程度であり、アルミニウムの熱伝導率である約200[W/m・K]に対して約1/20である。つまり、フェライトコアは本来的に熱が伝わりにくいため、特許文献1のような構造を採ったとしても、十分な放熱効果を得ることは難しい。   In a Mn—Zn-based material constituting a general ferrite, the thermal conductivity is about 10 [W / m · K], which is about 200 [W / m · K] which is the thermal conductivity of aluminum. About 1/20. In other words, since the ferrite core is inherently difficult to transmit heat, it is difficult to obtain a sufficient heat dissipation effect even if the structure as in Patent Document 1 is adopted.

また、図3のようにセンターコア部の周囲にボビンを介して巻線を施す場合、ボビンの熱伝導率はフェライトよりも更に低く、特にボビンとセンターコア部との間に空気の層が存在すると、巻線部の放熱が困難になって過熱状態となり、銅損が増加する。これを防止するためには、巻線の径を太くしたり、細径の巻線の並列数を増やす等の対策をとって銅損を低減する必要があり、結果として部品全体が大型化するという問題があった。   In addition, when winding around the center core part via a bobbin as shown in FIG. 3, the thermal conductivity of the bobbin is even lower than that of ferrite, and there is an air layer between the bobbin and the center core part. As a result, it becomes difficult to dissipate heat from the winding portion, and the coil is overheated, resulting in an increase in copper loss. In order to prevent this, it is necessary to reduce the copper loss by taking measures such as increasing the diameter of the winding or increasing the number of parallel windings of the small diameter winding, resulting in an increase in the size of the entire component. There was a problem.

更に、特許文献2に記載されている放熱構造によれば、コア及び巻線部の熱を同時に放熱することは可能であるが、コアの磁束分布は肉厚が薄くて最短距離となる部分に集中するのに対し、コアの肉厚部分は磁束密度が低く、その分、鉄損による発熱量も少ないため、肉厚部分からの放熱はそれほど見込むことができない。また、前述したようにコアにフェライトを使用した時の熱伝導率は比較的低いため、もともとコアからの放熱を余り期待できないという問題があった。   Furthermore, according to the heat dissipating structure described in Patent Document 2, it is possible to dissipate the heat of the core and the winding portion at the same time, but the magnetic flux distribution of the core is thin at the portion where the thickness is shortest. On the other hand, the thick part of the core has a low magnetic flux density, and the amount of heat generated by the iron loss is small. Therefore, heat radiation from the thick part cannot be expected so much. Further, as described above, since the thermal conductivity when ferrite is used for the core is relatively low, there is a problem that heat radiation from the core cannot be expected so much.

そこで、本発明の解決課題は、部品全体の大型化を招くこともなく、コア及び巻線部の熱を効率よく放熱するようにしたインダクタンス部品を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an inductance component that efficiently dissipates heat from a core and a winding portion without causing an increase in size of the entire component.

上記課題を解決するため、請求項1に係る発明は、エアギャップを有するコアと前記コアに絶縁性のボビンを介して素線が巻回された巻線部とを有する内鉄形のインダクタンス部品本体と、
前記インダクタンス部品本体に密着して配置され、前記コア及び前記巻線部から発生する熱を放熱するヒートシンクと、
を備えたインダクタンス部品において、
前記ヒートシンクの表面に、前記巻線部の外周面の一部を受容する座ぐり部を形成し、
前記コアが前記ヒートシンクの表面に密着した状態で前記巻線部の外周面の一部が絶縁材料を介して前記座ぐり部に密着するように、前記インダクタンス部品本体を配置したものである。
In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an inner iron-type inductance component having a core having an air gap and a winding portion in which a wire is wound around the core via an insulating bobbin. The body,
A heat sink that is disposed in close contact with the inductance component main body and dissipates heat generated from the core and the winding portion;
Inductance components with
On the surface of the heat sink, a counterbore part that receives a part of the outer peripheral surface of the winding part is formed,
The inductance component main body is arranged such that a part of the outer peripheral surface of the winding portion is in close contact with the counterbore portion via an insulating material in a state where the core is in close contact with the surface of the heat sink.

請求項2に係る発明は、請求項1に記載したインダクタンス部品において、前記巻線部の外径を前記ボビンのフランジ部の外径よりも大きくしたものである。   The invention according to claim 2 is the inductance component according to claim 1, wherein the outer diameter of the winding portion is larger than the outer diameter of the flange portion of the bobbin.

請求項3に係る発明は、請求項1または2に記載したインダクタンス部品において、前記巻線の外周面の一部が、低硬度かつ絶縁性の放熱シートを介して前記座ぐり部に密着しているものである。   According to a third aspect of the present invention, in the inductance component according to the first or second aspect, a part of the outer peripheral surface of the winding is in close contact with the counterbore portion via a low hardness and insulating heat dissipation sheet. It is what.

本発明によれば、コア及び巻線部をヒートシンクに同時に密着させることにより、巻線の径を太くして銅損を減らす等の方法を採らずに、コア及び巻線部の放熱効果に優れた小型のインダクタンス部品を実現することができる。   According to the present invention, the core and the winding portion are closely adhered to the heat sink at the same time, and the heat dissipation effect of the core and the winding portion is excellent without taking a method such as increasing the diameter of the winding and reducing copper loss. A small inductance component can be realized.

本発明の実施形態に係るインダクタンス部品の全体構成図である。1 is an overall configuration diagram of an inductance component according to an embodiment of the present invention. 図1における主要部の平面図である。It is a top view of the principal part in FIG. ヒートシンクを備えた従来のインダクタンス部品の構成図である。It is a block diagram of the conventional inductance component provided with the heat sink.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係るインダクタンス部品の全体構成を示す外観図である。図1において、30は外鉄形の絶縁トランス等のインダクタンス部品本体、40は放熱用のヒートシンクであり、ヒートシンク40の上面にインダクタンス部品本体30を密着させて固定することで、本実施形態のインダクタンス部品が構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an external view showing the overall configuration of the inductance component according to this embodiment. In FIG. 1, reference numeral 30 denotes an inductance component main body such as an outer iron type insulating transformer, and reference numeral 40 denotes a heat sink for heat dissipation. The inductance component main body 30 is fixed in close contact with the upper surface of the heat sink 40. Parts are configured.

インダクタンス部品本体30は、ほぼコ字形のコア31A,31Bを、図示されていないエアギャップを介して対向させると共に、これらのエアギャップをそれぞれ包囲するボビン32A,32Bを介して、素線を巻回した巻線部33A,33Bが配置されている。
また、ヒートシンク40は熱伝導率の大きい金属からなり、巻線部33A,33Bの外周面の一部に対向する部分には座ぐり部41が形成されている。そして、この座ぐり部41の上面と巻線部33A,33Bとの間には、絶縁性の放熱シート42が密接して配置されている。
The inductance component main body 30 has the substantially U-shaped cores 31A and 31B opposed to each other through air gaps (not shown), and the wires are wound through bobbins 32A and 32B surrounding the air gaps, respectively. Winding portions 33A and 33B are arranged.
Further, the heat sink 40 is made of a metal having a high thermal conductivity, and a spot facing portion 41 is formed at a portion facing a part of the outer peripheral surface of the winding portions 33A and 33B. An insulating heat radiation sheet 42 is closely disposed between the upper surface of the spot facing portion 41 and the winding portions 33A and 33B.

すなわち、巻線部33A,33Bの外周面の一部は、放熱シート42を介して座ぐり部41に受容されるように配置されており、巻線部33A,33Bの熱が放熱シート42を介してヒートシンク40の座ぐり部41に伝導されるようになっている。
更に、コア31A,31Bの下面も、座ぐり部41を除いたヒートシンク40の上面に接触しており、コア31A,31Bの熱がヒートシンク40に直接、伝導されるようになっている。
That is, a part of outer peripheral surface of winding part 33A, 33B is arrange | positioned so that it may be received by the counterbore part 41 via the thermal radiation sheet 42, and the heat | fever of winding part 33A, 33B makes the thermal radiation sheet 42 pass through. It is conducted to the counterbore part 41 of the heat sink 40 through the gap.
Furthermore, the lower surfaces of the cores 31 </ b> A and 31 </ b> B are also in contact with the upper surface of the heat sink 40 excluding the spot facing portion 41, so that the heat of the cores 31 </ b> A and 31 </ b> B is directly conducted to the heat sink 40.

図2は、図1の主要部を示しており、ボビン32Aのフランジ部及び巻線部33Aの寸法関係を説明するための図である。なお、他方のボビン32Bのフランジ部及び巻線部33Bの寸法関係についても、図2と同様である。
図2から明らかなように、巻線部33A(巻線部33B)の外径Lはボビン32A(ボビン32B)のフランジ部の外径Lよりも大きくなっている。このため、ヒートシンク40の上面にインダクタンス部品本体30を載置すると、ボビン32A,32Bのフランジ部が邪魔になることなく巻線部33A,33Bの外周面が放熱シート42に密着し、巻線部33A,33Bを好適に放熱させることができる。
FIG. 2 shows the main part of FIG. 1, and is a diagram for explaining the dimensional relationship between the flange part of the bobbin 32A and the winding part 33A. The dimensional relationship between the flange portion of the other bobbin 32B and the winding portion 33B is also the same as in FIG.
As apparent from FIG. 2, the outer diameter L 1 of the winding portion 33A (winding portion 33B) is larger than the outer diameter L 2 of the flange portion of the bobbin 32A (bobbin 32B). For this reason, when the inductance component main body 30 is placed on the upper surface of the heat sink 40, the outer peripheral surfaces of the winding portions 33A and 33B are in close contact with the heat radiation sheet 42 without obstructing the flange portions of the bobbins 32A and 32B. 33A and 33B can be radiated suitably.

なお、コア31A,31Bの下面とヒートシンク40の上面との接触面、及び、巻線部33A,33Bの外周面と放熱シート42との接触面には、熱伝導を良くするために空気の層が存在しないことが望ましい。言い換えれば、コア31A,31B及び巻線部33A,33Bとヒートシンク40とを密着させる必要がある。しかしながら、コア31A,31Bとボビン32A,32Bとの間の隙間に起因して、特に巻線部33A,33Bと放熱シート42または座ぐり部41との間に若干のガタつきを生じる場合がある。   Note that an air layer is provided on the contact surface between the lower surface of the cores 31A and 31B and the upper surface of the heat sink 40 and the contact surface between the outer peripheral surface of the winding portions 33A and 33B and the heat radiation sheet 42 in order to improve heat conduction. It is desirable that is not present. In other words, the cores 31A and 31B and the winding portions 33A and 33B need to be in close contact with the heat sink 40. However, due to the gap between the cores 31A and 31B and the bobbins 32A and 32B, there may be a slight rattling particularly between the winding portions 33A and 33B and the heat dissipation sheet 42 or the counterbore portion 41. .

そこで、絶縁性の放熱シート42として低硬度の材料からなるシートを用いれば、巻線部33A,33Bとヒートシンク40との重なり方向(図1における矢印X方向)の隙間やズレを吸収することができ、巻線部33A,33Bを放熱シート42に密着させると共に、コア31A,31Bの下面とヒートシンク40の上面との密着性向上にも寄与し、放熱効果を一層高めることができる。   Therefore, if a sheet made of a low-hardness material is used as the insulating heat-dissipating sheet 42, it is possible to absorb gaps and deviations in the overlapping direction (direction of arrow X in FIG. 1) between the winding portions 33A and 33B and the heat sink 40. In addition, the winding portions 33A and 33B are brought into close contact with the heat dissipation sheet 42, and also contribute to improving the adhesion between the lower surfaces of the cores 31A and 31B and the upper surface of the heat sink 40, thereby further enhancing the heat dissipation effect.

本発明は、絶縁トランスやチョークコイル、鉄芯リアクトル等の各種のインダクタンス部品に利用することができる。   The present invention can be used for various inductance components such as an insulation transformer, a choke coil, and an iron core reactor.

30:インダクタンス部品本体
31A,31B:コア
32A,32B:ボビン
33A,33B:巻線部
40:ヒートシンク
41:座ぐり部
42:放熱シート
30: Inductance component main body 31A, 31B: Core 32A, 32B: Bobbin 33A, 33B: Winding part 40: Heat sink 41: Counterbore part 42: Heat dissipation sheet

Claims (3)

エアギャップを有するコアと、前記コアに絶縁性のボビンを介して素線が巻回された巻線部とを有する内鉄形のインダクタンス部品本体と、
前記インダクタンス部品本体に密着して配置され、前記コア及び前記巻線部から発生する熱を放熱するヒートシンクと、
を備えたインダクタンス部品において、
前記ヒートシンクの表面に、前記巻線部の外周面の一部を受容する座ぐり部を形成し、
前記コアが前記ヒートシンクの表面に密着した状態で前記巻線の外周面の一部が絶縁材料を介して前記座ぐり部に密着するように、前記インダクタンス部品本体を配置したことを特徴とするインダクタンス部品。
An inner iron-type inductance component main body having a core having an air gap and a winding portion in which a wire is wound around the core via an insulating bobbin;
A heat sink that is disposed in close contact with the inductance component main body and dissipates heat generated from the core and the winding portion;
Inductance components with
On the surface of the heat sink, a counterbore part that receives a part of the outer peripheral surface of the winding part is formed,
The inductance component main body is arranged such that a part of the outer peripheral surface of the winding is in close contact with the counterbore portion through an insulating material in a state where the core is in close contact with the surface of the heat sink. parts.
請求項1に記載したインダクタンス部品において、
前記巻線部の外径を前記ボビンのフランジ部の外径よりも大きくしたことを特徴とするインダクタンス部品。
The inductance component according to claim 1,
An inductance component, wherein an outer diameter of the winding portion is larger than an outer diameter of a flange portion of the bobbin.
請求項1または2に記載したインダクタンス部品において、
前記巻線の外周面の一部が、低硬度かつ絶縁性の放熱シートを介して前記座ぐり部に密着していることを特徴とするインダクタンス部品。
In the inductance component according to claim 1 or 2,
A part of the outer peripheral surface of the winding is in close contact with the counterbore portion through a low hardness and insulating heat dissipation sheet.
JP2012226965A 2012-10-12 2012-10-12 Inductance component Pending JP2014078665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012226965A JP2014078665A (en) 2012-10-12 2012-10-12 Inductance component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012226965A JP2014078665A (en) 2012-10-12 2012-10-12 Inductance component

Publications (1)

Publication Number Publication Date
JP2014078665A true JP2014078665A (en) 2014-05-01

Family

ID=50783739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012226965A Pending JP2014078665A (en) 2012-10-12 2012-10-12 Inductance component

Country Status (1)

Country Link
JP (1) JP2014078665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992997A1 (en) * 2020-10-28 2022-05-04 ETA Green Power Ltd. An inductor coil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210976A (en) * 2007-02-26 2008-09-11 Toyota Industries Corp Reactor device
JP2010171209A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Reactor
JP2011124245A (en) * 2008-08-18 2011-06-23 Hitachi Metals Ltd Reactor device
JP2011181856A (en) * 2010-03-04 2011-09-15 Toyota Industries Corp Assembly of induction apparatus
JP2012114122A (en) * 2010-11-19 2012-06-14 Sumitomo Electric Ind Ltd Reactor
JP2012165597A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210976A (en) * 2007-02-26 2008-09-11 Toyota Industries Corp Reactor device
JP2011124245A (en) * 2008-08-18 2011-06-23 Hitachi Metals Ltd Reactor device
JP2010171209A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Reactor
JP2011181856A (en) * 2010-03-04 2011-09-15 Toyota Industries Corp Assembly of induction apparatus
JP2012114122A (en) * 2010-11-19 2012-06-14 Sumitomo Electric Ind Ltd Reactor
JP2012165597A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992997A1 (en) * 2020-10-28 2022-05-04 ETA Green Power Ltd. An inductor coil
WO2022090278A1 (en) * 2020-10-28 2022-05-05 Eta Green Power Ltd. An inductor coil

Similar Documents

Publication Publication Date Title
JP4605192B2 (en) Coil unit and electronic equipment
JP5333294B2 (en) Assembly of induction equipment
JP5553040B2 (en) Electronic components
JP7018390B2 (en) Inductor and mounting structure of the inductor
JP6356465B2 (en) Winding parts and heat dissipation structure
JP3619457B2 (en) Smoothing coil for large current smoothing
JP2008021688A (en) Core for reactor
WO2012101764A1 (en) Reactor and reactor apparatus
JP2015002285A (en) Coil device, electronic apparatus, and method for controlling coil device
US20130293330A1 (en) Magnetic device having thermally-conductive bobbin
JP4775108B2 (en) Power electronics
JP2015133440A (en) Planer transformer
JP2011009418A (en) Insulating transformer for switching power supply device
WO2021196961A1 (en) Inductor and electronic device
JP2016103538A (en) Electronic apparatus
JP6234615B1 (en) Magnetic parts
JP2009105164A (en) Transformer
EP3522181B1 (en) Magnetic component with heat dissipation structure
JP2015141918A (en) Coil component
JP6064943B2 (en) Electronics
JP2014078665A (en) Inductance component
JP2016162765A (en) Transformer and electric power conversion system
JP2013232476A (en) Heat radiation structure of reactor
WO2017159010A1 (en) Heat dissipation structure of coil part, and coil part used therefor
JP2011014669A (en) Cooling device for magnetic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606