JP2014073453A - Vacuum washing apparatus - Google Patents

Vacuum washing apparatus Download PDF

Info

Publication number
JP2014073453A
JP2014073453A JP2012221960A JP2012221960A JP2014073453A JP 2014073453 A JP2014073453 A JP 2014073453A JP 2012221960 A JP2012221960 A JP 2012221960A JP 2012221960 A JP2012221960 A JP 2012221960A JP 2014073453 A JP2014073453 A JP 2014073453A
Authority
JP
Japan
Prior art keywords
chamber
waste liquid
steam
cleaning
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012221960A
Other languages
Japanese (ja)
Other versions
JP5756072B2 (en
Inventor
Jun Hirata
淳 平田
Kazuo Miyoshi
一雄 三好
Noboru Hiramoto
昇 平本
Shiko Matsuda
至康 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Machinery and Furnace Co Ltd
Original Assignee
IHI Corp
IHI Machinery and Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Machinery and Furnace Co Ltd filed Critical IHI Corp
Priority to JP2012221960A priority Critical patent/JP5756072B2/en
Publication of JP2014073453A publication Critical patent/JP2014073453A/en
Application granted granted Critical
Publication of JP5756072B2 publication Critical patent/JP5756072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To efficiently condense steam created in a waste liquid concentration chamber without enlarging an apparatus itself.SOLUTION: A vacuum washing apparatus 100 comprises: a steam chamber 200 which creates steam of hydrocarbon-based cleaning agent; a washing chamber 102 which is connected to the steam chamber and capable of washing a workpiece by the steam of the hydrocarbon-based cleaning agent supplied from the steam chamber under reduced pressure; a waste liquid concentration chamber 250 which houses the waste liquid containing the condensed hydrocarbon-based cleaning agent which is generated by washing the workpiece in the washing chamber; a concentration chamber heat exchanger 320 which is provided in the waste liquid concentration chamber, heats the waste liquid housed in the waste liquid concentration chamber to create the steam of the hydrocarbon-based cleaning agent, and concentrates the waste liquid; and an open/close valve 260 which allows the waste liquid concentration chamber and the washing chamber to communicate with each other or cuts off the communication, and introduces the steam of the hydrocarbon-based cleaning agent created in the waste liquid concentration chamber into the washing chamber in the communicated state between the waste liquid concentration chamber and the washing chamber.

Description

本発明は、減圧下にある洗浄室に炭化水素系洗浄剤の蒸気を供給してワークを洗浄する真空洗浄装置に関する。   The present invention relates to a vacuum cleaning apparatus for cleaning a workpiece by supplying a vapor of a hydrocarbon-based cleaning agent to a cleaning chamber under reduced pressure.

従来、例えば、特許文献1に示される真空洗浄装置が知られている。この真空洗浄装置によれば、まず、ワークが搬入された蒸気洗浄乾燥室を真空ポンプによって減圧する減圧工程がなされ、その後、蒸気室で生成した炭化水素系洗浄剤の蒸気を蒸気洗浄乾燥室に供給してワークを洗浄する蒸気洗浄工程がなされる。次に、ワークに炭化水素系洗浄剤を噴霧したり、浸漬室に貯留された炭化水素系洗浄剤にワークを浸漬させたりして、特に、蒸気洗浄工程で洗浄が不十分となるワークの隙間等を洗浄する噴霧浸漬洗浄工程がなされる。このようにしてワークの洗浄が完了すると、再び蒸気洗浄乾燥室にワークを搬送した後に、蒸気洗浄乾燥室をさらに減圧してワーク表面に付着した洗浄剤を蒸発させる乾燥工程がなされる。そして、乾燥工程が終了したら、蒸気洗浄乾燥室を大気圧に復帰させた後にワークを搬出して一連の工程が終了となる。   Conventionally, for example, a vacuum cleaning apparatus disclosed in Patent Document 1 is known. According to this vacuum cleaning apparatus, first, a depressurization step is performed to depressurize the steam cleaning / drying chamber into which the work has been carried in by a vacuum pump, and then the hydrocarbon-based cleaning agent vapor generated in the steam chamber is transferred to the steam cleaning / drying chamber. A steam cleaning process for supplying and cleaning the workpiece is performed. Next, spray the hydrocarbon-based cleaning agent on the workpiece, or immerse the workpiece in the hydrocarbon-based cleaning agent stored in the immersion chamber. A spray dip cleaning process is performed to clean the components. When cleaning of the workpiece is completed in this way, after the workpiece is transferred again to the steam cleaning / drying chamber, a drying process is performed in which the steam cleaning / drying chamber is further depressurized to evaporate the cleaning agent attached to the workpiece surface. And after a drying process is complete | finished, after returning a steam washing drying chamber to atmospheric pressure, a workpiece | work is carried out and a series of processes are complete | finished.

このような真空洗浄装置において、使用済みの炭化水素系洗浄剤(ワークに付着した汚染物および炭化水素系洗浄剤、以下、使用済み洗浄剤と称する)は、蒸気室に送られて再生される。具体的に説明すると、蒸気室に送られた使用済み洗浄剤は、電気ヒータ等で加熱されることによって、実質的に炭化水素系洗浄剤のみの蒸気となる(蒸留)。そして、蒸気室において生成された炭化水素系洗浄剤のみの蒸気は、再度蒸気洗浄工程で利用されたり、冷却水を利用した冷却器で凝縮された後、噴霧浸漬洗浄工程で利用されたりする。   In such a vacuum cleaning apparatus, used hydrocarbon cleaners (contaminants adhering to the workpiece and hydrocarbon cleaners, hereinafter referred to as used cleaners) are sent to the steam chamber for regeneration. . More specifically, the used cleaning agent sent to the steam chamber is heated by an electric heater or the like to become substantially hydrocarbon-based cleaning vapor (distillation). And the vapor | steam of only the hydrocarbon type cleaning agent produced | generated in the vapor | steam chamber is utilized again in a vapor | steam washing process, or after being condensed with the cooler using cooling water, it is utilized in a spray immersion washing process.

特開平7−166385号公報JP-A-7-166385

上述した真空洗浄装置では、上記一連の工程を繰り返せば繰り返すほど、蒸気室における汚染物の濃度が高くなる。そこで、蒸気室内に廃液濃縮室を配しておき、蒸気室に収容された使用済みの洗浄剤の一部を廃液濃縮室に送出し、廃液濃縮室において蒸留を行う構成が考えられる。かかる構成では、廃液濃縮室において、蒸気室から伝達された熱で炭化水素系洗浄剤のみの蒸気を生成することで、使用済みの洗浄剤中の汚染物の濃度を高くする(使用済みの洗浄剤を濃縮する)ことができる。   In the vacuum cleaning apparatus described above, the more the above series of steps are repeated, the higher the concentration of contaminants in the vapor chamber. Therefore, a configuration is conceivable in which a waste liquid concentration chamber is provided in the steam chamber, a part of the used cleaning agent accommodated in the steam chamber is sent to the waste liquid concentration chamber, and distillation is performed in the waste liquid concentration chamber. In such a configuration, the concentration of contaminants in the used cleaning agent is increased in the waste liquid concentrating chamber by generating only the hydrocarbon-based cleaning agent steam with the heat transferred from the steam chamber (used cleaning agent). The agent can be concentrated).

そして、濃縮された使用済みの洗浄剤は廃棄され、廃液濃縮室で生成(蒸留)された炭化水素系洗浄剤のみの蒸気は、冷却水を利用した冷却器で凝縮された後、蒸気室に戻されて再度利用される。   The concentrated used cleaning agent is discarded, and only the hydrocarbon-based cleaning agent vapor generated (distilled) in the waste liquid concentration chamber is condensed in a cooler using cooling water, and then stored in the steam chamber. Returned and used again.

そうすると、廃液濃縮室において炭化水素系洗浄剤の蒸気を生成するために利用された熱が、冷却器で回収されて捨てられてしまうことになっていた。また、蒸気を冷却するためには、200L/min程度といった大量の冷却水を要したり、貯水槽、クーリングタワー等の別途の設備も要したりする等、装置が大型化していた。   If it does so, the heat | fever utilized in order to produce | generate the vapor | steam of a hydrocarbon type cleaning agent in a waste liquid concentration chamber will be collect | recovered with a cooler, and was thrown away. Further, in order to cool the steam, a large amount of cooling water such as about 200 L / min is required, and additional equipment such as a water storage tank and a cooling tower is required.

本発明の目的は、装置自体を大型化することなく、廃液濃縮室において生成された蒸気を、効率よく凝縮することができる真空洗浄装置を提供することである。   An object of the present invention is to provide a vacuum cleaning apparatus capable of efficiently condensing steam generated in a waste liquid concentration chamber without increasing the size of the apparatus itself.

上記課題を解決するために、本発明の真空洗浄装置は、炭化水素系洗浄剤の蒸気を生成する蒸気室と、前記蒸気室に接続され、該蒸気室から供給される炭化水素系洗浄剤の蒸気によって減圧下でワークを洗浄可能な洗浄室と、前記洗浄室において前記ワークを洗浄することで生じる、凝縮された炭化水素系洗浄剤を含む廃液を収容する廃液濃縮室と、前記廃液濃縮室に設けられ、該廃液濃縮室に収容された廃液を加熱することで、炭化水素系洗浄剤の蒸気を生成して、該廃液を濃縮するヒータと、前記廃液濃縮室と前記洗浄室とを連通、もしくは、その連通を遮断するとともに、前記廃液濃縮室と前記洗浄室との連通状態において、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記洗浄室に導入する第1の開閉手段と、を備えたことを特徴とする。   In order to solve the above-described problems, a vacuum cleaning apparatus of the present invention includes a steam chamber that generates a vapor of a hydrocarbon-based cleaning agent, and a hydrocarbon-based cleaning agent that is connected to the steam chamber and is supplied from the steam chamber. A cleaning chamber capable of cleaning the workpiece under reduced pressure with steam, a waste liquid concentration chamber containing waste liquid containing a condensed hydrocarbon-based cleaning agent, which is generated by cleaning the workpiece in the cleaning chamber, and the waste liquid concentration chamber The waste liquid contained in the waste liquid concentration chamber is heated to produce a hydrocarbon-based cleaning agent vapor, and the heater is concentrated to communicate the waste liquid concentration chamber and the cleaning chamber. Alternatively, a first opening / closing operation that shuts off the communication and introduces the steam of the hydrocarbon-based cleaning agent generated in the waste liquid concentrating chamber into the cleaning chamber in a communication state between the waste liquid concentrating chamber and the cleaning chamber. Means and The features.

また、前記廃液濃縮室に接続され、該廃液濃縮室で生成された炭化水素系洗浄剤の蒸気が導入される第1の凝縮室と、前記第1の凝縮室を前記廃液濃縮室よりも低い温度に保持する第1の温度保持手段と、前記廃液濃縮室と前記第1の凝縮室とを連通、もしくは、その連通を遮断するとともに、前記第1の凝縮室と前記廃液濃縮室との連通状態において、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第1の凝縮室に導入する第2の開閉手段と、を備えるとしてもよい。   Also, a first condensing chamber connected to the waste liquid concentrating chamber and into which the vapor of the hydrocarbon-based cleaning agent generated in the waste liquid concentrating chamber is introduced, and the first condensing chamber is lower than the waste liquid concentrating chamber. The first temperature holding means for maintaining the temperature, and the waste liquid concentration chamber and the first condensing chamber communicate with each other, or the communication between the first condensing chamber and the waste liquid concentrating chamber is communicated. In the state, a second opening / closing means for introducing the vapor of the hydrocarbon-based cleaning agent generated in the waste liquid concentration chamber into the first condensation chamber may be provided.

また、前記第1の開閉手段を遮断状態から連通状態とし、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記洗浄室に導入させ、前記第1の開閉手段を連通状態から遮断状態とし、前記第2の開閉手段を遮断状態から連通状態として、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第1の凝縮室に導入させる制御手段を備えるとしてもよい。   Further, the first opening / closing means is changed from the shut-off state to the communication state, the hydrocarbon-based cleaning agent vapor generated in the waste liquid concentrating chamber is introduced into the cleaning chamber, and the first opening / closing means is shut off from the communication state. It is good also as a control means which makes the said 2nd opening-and-closing means into a communication state from the interruption | blocking state, and introduce | transduces the vapor | steam of the hydrocarbon-type cleaning agent produced | generated in the said waste liquid concentration chamber into a said 1st condensation chamber.

また、前記洗浄室に接続され、減圧状態に保持される第2の凝縮室と、前記第2の凝縮室を前記洗浄室よりも低い温度に保持する第2の温度保持手段と、前記第2の凝縮室と前記洗浄室とを連通させ、または、その連通を遮断する第3の開閉手段と、前記廃液濃縮室と前記第2の凝縮室とを連通、もしくは、その連通を遮断するとともに、前記第2の凝縮室と前記廃液濃縮室との連通状態において、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第2の凝縮室に導入する第4の開閉手段と、を備えるとしてもよい。   A second condensing chamber connected to the cleaning chamber and maintained in a depressurized state; a second temperature holding means for holding the second condensing chamber at a temperature lower than that of the cleaning chamber; The condensing chamber and the cleaning chamber are communicated with each other, or the third opening / closing means for shutting off the communication, the waste liquid concentrating chamber and the second condensing chamber are communicated, or the communication is shut off, A fourth open / close means for introducing the hydrocarbon-based cleaning agent vapor generated in the waste liquid concentrating chamber into the second condensing chamber in a communication state between the second condensing chamber and the waste liquid concentrating chamber; It may be provided.

また、前記第1の開閉手段を遮断状態から連通状態とし、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記洗浄室に導入させ、前記第1の開閉手段を連通状態から遮断状態とし、前記第4の開閉手段を遮断状態から連通状態として、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第2の凝縮室に導入させる制御手段を備えるとしてもよい。   Further, the first opening / closing means is changed from the shut-off state to the communication state, the hydrocarbon-based cleaning agent vapor generated in the waste liquid concentrating chamber is introduced into the cleaning chamber, and the first opening / closing means is shut off from the communication state. It is good also as a control means which makes the said 4th opening-and-closing means into a communication state from the interruption | blocking state, and introduce | transduces the vapor | steam of the hydrocarbon type cleaning agent produced | generated in the said waste liquid concentration chamber into the said 2nd condensing chamber.

また、前記蒸気室に接続され、前記炭化水素系洗浄剤の蒸気を凝縮する第3の凝縮室と、前記第3の凝縮室において、前記蒸気室から導入された蒸気と熱媒体とで熱交換を行うことにより、該蒸気を凝縮して炭化水素系洗浄剤にするとともに、該熱媒体を加熱する第1の熱交換器と、前記第1の熱交換器で加熱された熱媒体を断熱圧縮し、さらに昇温する圧縮機と、前記廃液濃縮室において、前記圧縮機によって昇温された熱媒体と、前記炭化水素系洗浄剤とで熱交換を行うことで、該炭化水素系洗浄剤を気化させて蒸気を生成するとともに、該熱媒体を冷却する、前記ヒータを構成する第2の熱交換器と、前記第2の熱交換器と前記第1の熱交換器との間に設けられ、該第2の熱交換器で冷却された熱媒体を減圧膨張させてさらに冷却して、前記第1の熱交換器に送出する減圧部と、を備えるとしてもよい。   Further, in the third condensing chamber connected to the steam chamber and condensing the hydrocarbon-based cleaning agent steam, heat exchange is performed between the steam introduced from the steam chamber and the heat medium in the third condensing chamber. The steam is condensed into a hydrocarbon-based cleaning agent, and the first heat exchanger that heats the heat medium and the heat medium heated by the first heat exchanger are adiabatically compressed. In the waste liquid concentration chamber, heat exchange is performed between the heating medium heated by the compressor and the hydrocarbon-based cleaning agent, whereby the hydrocarbon-based cleaning agent is obtained. Vaporized to generate steam and cool the heat medium, provided between the second heat exchanger constituting the heater, the second heat exchanger, and the first heat exchanger. The heat medium cooled by the second heat exchanger is expanded under reduced pressure and further cooled. A pressure reducing unit to be transmitted to the first heat exchanger may be provided with.

また、前記蒸気室において、前記第2の熱交換器の下流側と、前記第1の熱交換器の上流側との間を流通する熱媒体と、前記炭化水素系洗浄剤とで熱交換を行うことで、該炭化水素系洗浄剤を気化させて蒸気を生成するとともに、該熱媒体を冷却する第3の熱交換器をさらに備えるとしてもよい。   Further, in the steam chamber, heat exchange is performed between the downstream side of the second heat exchanger and the upstream side of the first heat exchanger, and the hydrocarbon-based cleaning agent. By performing this, the hydrocarbon-based cleaning agent may be vaporized to generate steam, and a third heat exchanger for cooling the heat medium may be further provided.

本発明によれば、装置自体を大型化することなく、廃液濃縮室において生成された蒸気を、効率よく凝縮することができる。   According to the present invention, the steam generated in the waste liquid concentration chamber can be efficiently condensed without increasing the size of the apparatus itself.

真空洗浄装置を説明するための概念図である。It is a conceptual diagram for demonstrating a vacuum cleaning apparatus. 真空洗浄装置の処理工程を説明するフローチャートである。It is a flowchart explaining the process of a vacuum cleaning apparatus.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(真空洗浄装置100)
図1は、真空洗浄装置100を説明するための概念図である。図1中、炭化水素系洗浄剤の流れを実線の矢印で、熱媒体の流れを破線の矢印で示す。この図に示すように、真空洗浄装置100は、内部に洗浄室102が設けられた真空容器104を備えている。この真空容器104には、不図示の開口が形成されており、不図示の開閉扉によって開口が開閉可能となっている。したがって、ワークWを洗浄する際には、開閉扉を開放して開口から洗浄室102内にワークWを搬入して載置部108に載置するとともに、開閉扉を閉じてワークWを洗浄した後、再び開閉扉を開放して、開口からワークWを搬出することとなる。
(Vacuum cleaning device 100)
FIG. 1 is a conceptual diagram for explaining the vacuum cleaning apparatus 100. In FIG. 1, the flow of the hydrocarbon-based cleaning agent is indicated by solid arrows, and the flow of the heat medium is indicated by broken arrows. As shown in this figure, the vacuum cleaning apparatus 100 includes a vacuum container 104 in which a cleaning chamber 102 is provided. The vacuum container 104 has an opening (not shown), and the opening can be opened and closed by an opening / closing door (not shown). Accordingly, when cleaning the workpiece W, the opening / closing door is opened, the workpiece W is loaded into the cleaning chamber 102 from the opening and placed on the mounting unit 108, and the opening / closing door is closed to clean the workpiece W. Thereafter, the opening / closing door is opened again, and the workpiece W is carried out from the opening.

そして、上記の洗浄室102には、シャワー部110が設けられている。シャワー部110は、蒸気供給管114、凝縮室120(第3の凝縮室)、凝縮洗浄剤供給管122、洗浄剤貯留部124、凝縮洗浄剤供給管126を介して蒸気室200に接続されている。   In the cleaning chamber 102, a shower unit 110 is provided. The shower unit 110 is connected to the vapor chamber 200 via a vapor supply pipe 114, a condensation chamber 120 (third condensation chamber), a condensed cleaning agent supply pipe 122, a cleaning agent reservoir 124, and a condensed cleaning agent supply pipe 126. Yes.

また、洗浄室102には、蒸気供給部130が設けられている。蒸気供給部130は、蒸気供給管114を介して蒸気室200に接続されている。   The cleaning chamber 102 is provided with a steam supply unit 130. The steam supply unit 130 is connected to the steam chamber 200 via a steam supply pipe 114.

蒸気室200は、ヒータ202および蒸気室熱交換器330(第3の熱交換器)を備えており、炭化水素系洗浄剤(溶剤)を、例えば、80℃〜140℃程度、好ましくは120℃程度に加熱して炭化水素系洗浄剤の蒸気(以下、単に蒸気と称する)を生成する。蒸気室200において生成された蒸気は、蒸気供給管114を介して凝縮室120に導入されたり、蒸気供給部130を通じて洗浄室102に供給されたりする。蒸気供給部130が供給した蒸気は、ワークWに付着することで凝縮される。   The steam chamber 200 includes a heater 202 and a steam chamber heat exchanger 330 (third heat exchanger), and a hydrocarbon-based cleaning agent (solvent) is, for example, about 80 ° C. to 140 ° C., preferably 120 ° C. By heating to a certain degree, steam of hydrocarbon-based cleaning agent (hereinafter simply referred to as steam) is generated. The steam generated in the steam chamber 200 is introduced into the condensation chamber 120 via the steam supply pipe 114 or supplied to the cleaning chamber 102 through the steam supply unit 130. The steam supplied by the steam supply unit 130 is condensed by adhering to the workpiece W.

なお、この炭化水素系洗浄剤の種類は特に限定されないが、安全性の観点から第3石油類の洗浄剤を使用することが望ましく、例えば、ノルマルパラフィン系、イソパラフィン系、ナフテン系、芳香族系の炭化水素系洗浄剤が挙げられる。具体的には、第3石油類の洗浄剤として、クリーニングソルベントと呼ばれるテクリーン(登録商標)N20、クリーンソルG、ダフニーソルベント等を使用するとよい。   The type of the hydrocarbon-based cleaning agent is not particularly limited, but it is desirable to use a third petroleum cleaning agent from the viewpoint of safety. For example, normal paraffinic, isoparaffinic, naphthenic, aromatic These hydrocarbon-based cleaning agents are listed. Specifically, Teclean (registered trademark) N20, a clean solvent G, a Daphne solvent, or the like called a cleaning solvent may be used as the third petroleum cleaning agent.

凝縮室120(第3の凝縮室)は、凝縮室熱交換器310(第1の熱交換器)を備えており、凝縮室120に導入された蒸気は、凝縮室熱交換器310によって冷却されて、液体の炭化水素系洗浄剤(以下、単に凝縮洗浄剤と称する)に凝縮される。そして、凝縮洗浄剤は、凝縮洗浄剤供給管122を介して、洗浄剤貯留部124に貯留された後、凝縮洗浄剤供給管126およびシャワー部110を介して、洗浄室102に供給されることとなる。凝縮室熱交換器310による冷却機構および蒸気室熱交換器330による加熱機構については、後に詳述する。   The condensation chamber 120 (third condensation chamber) includes a condensation chamber heat exchanger 310 (first heat exchanger), and the steam introduced into the condensation chamber 120 is cooled by the condensation chamber heat exchanger 310. Then, it is condensed into a liquid hydrocarbon-based cleaning agent (hereinafter simply referred to as a condensed cleaning agent). The condensed cleaning agent is stored in the cleaning agent storage unit 124 through the condensed cleaning agent supply pipe 122 and then supplied to the cleaning chamber 102 through the condensed cleaning agent supply pipe 126 and the shower unit 110. It becomes. The cooling mechanism by the condensation chamber heat exchanger 310 and the heating mechanism by the steam chamber heat exchanger 330 will be described in detail later.

そして、シャワー部110から供給されワークWを洗浄した凝縮洗浄剤や、蒸気供給部130から供給され、ワークWにおいて凝縮されることで生じた凝縮洗浄剤(使用済み洗浄剤)は、使用済み洗浄剤導入管140、開閉バルブ142を介して、再び蒸気室200に導入され、上述したヒータ202や蒸気室熱交換器330によって再び加熱されることで蒸気となる(再生)。   The condensed cleaning agent supplied from the shower unit 110 and cleaning the work W, and the condensed cleaning agent (used cleaning agent) generated by being supplied from the steam supply unit 130 and condensed in the work W are used cleaning. It is again introduced into the steam chamber 200 through the agent introduction pipe 140 and the opening / closing valve 142, and is reheated by the heater 202 and the steam chamber heat exchanger 330 described above to become steam (regeneration).

また、洗浄室102および蒸気室200には、不図示の真空ポンプが接続されている。この真空ポンプは、ワークWの洗浄を開始する前の減圧工程において、真空容器104および蒸気室200内を真空引き(初期真空)によって減圧する(例えば、6kPa)ものである。さらに、洗浄室102には、当該洗浄室102を大気開放するための不図示の配管が接続されている。この配管には、大気と洗浄室102とを遮断または開放する大気開放弁が設けられており、ワークWの洗浄工程および乾燥工程が終了した後の搬出工程において、洗浄室102を大気開放して大気圧に復帰させるものである。   Further, a vacuum pump (not shown) is connected to the cleaning chamber 102 and the vapor chamber 200. This vacuum pump is for reducing the pressure in the vacuum vessel 104 and the vapor chamber 200 by evacuation (initial vacuum) (for example, 6 kPa) in the pressure reducing step before starting the cleaning of the workpiece W. Further, a pipe (not shown) for opening the cleaning chamber 102 to the atmosphere is connected to the cleaning chamber 102. This piping is provided with an air release valve that shuts off or opens the atmosphere and the cleaning chamber 102, and the cleaning chamber 102 is opened to the atmosphere in the unloading process after the cleaning process and the drying process of the workpiece W are completed. It returns to atmospheric pressure.

そして、洗浄室102には、開閉バルブ150(第3の開閉手段)を介して乾燥室152(第2の凝縮室)が接続されており、開閉バルブ150を開弁すると洗浄室102と乾燥室152とが連通し、開閉バルブ150を閉弁すると洗浄室102と乾燥室152との連通が遮断されるように構成されている。この乾燥室152も、洗浄室102および蒸気室200と同様に、上記の真空ポンプに接続されており、減圧状態に保持可能な構成となっている。また、この乾燥室152には、熱交換器等からなる温度保持装置154(第2の温度保持手段)が設けられており、乾燥室152内の温度が洗浄室102内の温度よりも低い一定温度(5℃〜50℃、より好ましくは5℃〜10℃)に保持されるようにしている。   The cleaning chamber 102 is connected to a drying chamber 152 (second condensing chamber) via an opening / closing valve 150 (third opening / closing means). When the opening / closing valve 150 is opened, the cleaning chamber 102 and the drying chamber are connected. The communication between the cleaning chamber 102 and the drying chamber 152 is blocked when the open / close valve 150 is closed. Similarly to the cleaning chamber 102 and the vapor chamber 200, the drying chamber 152 is also connected to the vacuum pump and can be maintained in a reduced pressure state. Further, the drying chamber 152 is provided with a temperature holding device 154 (second temperature holding means) including a heat exchanger or the like, and the temperature in the drying chamber 152 is constant lower than the temperature in the cleaning chamber 102. The temperature is maintained (5 ° C to 50 ° C, more preferably 5 ° C to 10 ° C).

したがって、制御手段が開閉バルブ150を開弁すると、洗浄室102内の蒸気は乾燥室152に移動して凝縮される。これにより、洗浄室102が減圧され、ワークWに付着している炭化水素系洗浄剤が全て気化して乾燥室152に移動し、ワークWが乾燥されることとなる。   Therefore, when the control means opens the opening / closing valve 150, the steam in the cleaning chamber 102 moves to the drying chamber 152 and is condensed. As a result, the pressure in the cleaning chamber 102 is reduced, and all the hydrocarbon-based cleaning agent adhering to the workpiece W is vaporized and moved to the drying chamber 152, and the workpiece W is dried.

さらに、乾燥室152の底部には、リターン配管156、開閉バルブ158、を介して蒸気室200が接続されており、乾燥室152で凝縮した使用済み洗浄剤は、リターン配管156を介して再び蒸気室200に導入される。そして、リターン配管156を介して、蒸気室200に導入された使用済み洗浄剤は、上述したヒータ202や蒸気室熱交換器330によって加熱され、再び蒸気となる(再生)。   Further, the vapor chamber 200 is connected to the bottom of the drying chamber 152 via a return pipe 156 and an opening / closing valve 158, and the used cleaning agent condensed in the drying chamber 152 is vaporized again via the return pipe 156. It is introduced into the chamber 200. Then, the used cleaning agent introduced into the steam chamber 200 via the return pipe 156 is heated by the heater 202 and the steam chamber heat exchanger 330 described above to become steam again (regeneration).

また、蒸気室200内には、廃液濃縮室250が設けられている。廃液濃縮室250は、開閉バルブ252を介して蒸気室200が接続されており、開閉バルブ252を開弁すると蒸気室200と廃液濃縮室250とが連通し、開閉バルブ252を閉弁すると蒸気室200と廃液濃縮室250との連通が遮断されるように構成されている。したがって、開閉バルブ252が開弁すると、蒸気室200に収容されている使用済み凝縮液と炭化水素系洗浄剤との混合物(以下、単に廃液と称する)の一部が廃液濃縮室250へ導入されることとなる。   Further, a waste liquid concentration chamber 250 is provided in the steam chamber 200. The waste liquid concentrating chamber 250 is connected to the steam chamber 200 via an open / close valve 252. When the open / close valve 252 is opened, the steam chamber 200 and the waste liquid concentrating chamber 250 communicate, and when the open / close valve 252 is closed, the steam chamber is connected. The communication between 200 and the waste liquid concentration chamber 250 is blocked. Therefore, when the opening / closing valve 252 is opened, a part of the mixture of the used condensate and the hydrocarbon-based cleaning agent (hereinafter simply referred to as waste liquid) accommodated in the steam chamber 200 is introduced into the waste liquid concentration chamber 250. The Rukoto.

また、廃液濃縮室250には、ヒータとしての濃縮室熱交換器320(第2の熱交換器)が設けられており、廃液を、例えば、80℃〜140℃程度、好ましくは120℃程度に加熱して蒸気を生成する。このようにして廃液が濃縮される。濃縮室熱交換器320による加熱機構については、後に詳述する。   The waste liquid concentrating chamber 250 is provided with a concentrating chamber heat exchanger 320 (second heat exchanger) as a heater, and the waste liquid is, for example, about 80 ° C. to 140 ° C., preferably about 120 ° C. Heat to produce steam. In this way, the waste liquid is concentrated. The heating mechanism by the concentrating chamber heat exchanger 320 will be described in detail later.

廃液濃縮室250は、開閉バルブ260(第1の開閉手段)、蒸気供給管262を介して洗浄室102に接続されており、開閉バルブ260を開弁すると廃液濃縮室250と洗浄室102とが連通し、開閉バルブ260を閉弁すると廃液濃縮室250と洗浄室102との連通が遮断されるように構成されている。したがって、開閉バルブ260を開弁すると廃液濃縮室250で生成された蒸気が洗浄室102へ導入されることとなる。   The waste liquid concentration chamber 250 is connected to the cleaning chamber 102 via an opening / closing valve 260 (first opening / closing means) and a steam supply pipe 262. When the opening / closing valve 260 is opened, the waste liquid concentration chamber 250 and the cleaning chamber 102 are connected to each other. When the open / close valve 260 is closed, the communication between the waste liquid concentration chamber 250 and the cleaning chamber 102 is blocked. Therefore, when the on-off valve 260 is opened, the steam generated in the waste liquid concentration chamber 250 is introduced into the cleaning chamber 102.

さらに、廃液濃縮室250は、開閉バルブ270(第4の開閉手段)、蒸気供給管272を介して乾燥室152に接続されており、開閉バルブ270を開弁すると廃液濃縮室250と乾燥室152とが連通し、開閉バルブ270が閉弁すると廃液濃縮室250と乾燥室152との連通が遮断されるように構成されている。したがって、開閉バルブ270を開弁すると廃液濃縮室250で生成された蒸気が乾燥室152へ導入されることとなる。   Further, the waste liquid concentrating chamber 250 is connected to the drying chamber 152 via an opening / closing valve 270 (fourth opening / closing means) and a steam supply pipe 272. When the opening / closing valve 270 is opened, the waste liquid concentrating chamber 250 and the drying chamber 152 are opened. Are communicated and the open / close valve 270 is closed, the communication between the waste liquid concentration chamber 250 and the drying chamber 152 is blocked. Therefore, when the opening / closing valve 270 is opened, the steam generated in the waste liquid concentration chamber 250 is introduced into the drying chamber 152.

また、廃液濃縮室250は、開閉バルブ280(第2の開閉手段)、蒸気供給管282を介して凝縮室290(第1の凝縮室)に接続されており、開閉バルブ280が開弁すると廃液濃縮室250と凝縮室290とが連通し、開閉バルブ280が閉弁すると廃液濃縮室250と凝縮室290との連通が遮断されるように構成されている。したがって、開閉バルブ280を開弁すると廃液濃縮室250で生成された蒸気が凝縮室290へ導入されることとなる。   The waste liquid concentrating chamber 250 is connected to the condensing chamber 290 (first condensing chamber) via the opening / closing valve 280 (second opening / closing means) and the steam supply pipe 282, and the waste liquid is opened when the opening / closing valve 280 is opened. The concentrating chamber 250 and the condensing chamber 290 communicate with each other, and the communication between the waste liquid concentrating chamber 250 and the condensing chamber 290 is blocked when the on-off valve 280 is closed. Therefore, when the opening / closing valve 280 is opened, the steam generated in the waste liquid concentration chamber 250 is introduced into the condensation chamber 290.

換言すれば、廃液濃縮室250において生成された蒸気は、開閉バルブ260、蒸気供給管262を介して洗浄室102に導入されたり、開閉バルブ270、蒸気供給管272を介して乾燥室152に導入されたり、開閉バルブ280、蒸気供給管282を介して凝縮室290に導入されたりする。   In other words, the steam generated in the waste liquid concentration chamber 250 is introduced into the cleaning chamber 102 via the opening / closing valve 260 and the steam supply pipe 262 or introduced into the drying chamber 152 via the opening / closing valve 270 and the steam supply pipe 272. Or introduced into the condensing chamber 290 via the open / close valve 280 and the steam supply pipe 282.

凝縮室290には、熱交換器等からなる温度保持装置292(第1の温度保持手段)が設けられており、凝縮室290内の温度が廃液濃縮室250内の温度よりも低い一定温度(例えば、30℃)に保持されるようにしている。温度保持装置292は、例えば、空気を冷却媒体とした熱交換器で構成されている。   The condensation chamber 290 is provided with a temperature holding device 292 (first temperature holding means) including a heat exchanger or the like, and a constant temperature (the temperature in the condensation chamber 290 is lower than the temperature in the waste liquid concentration chamber 250). For example, the temperature is maintained at 30 ° C. The temperature holding device 292 is constituted by, for example, a heat exchanger using air as a cooling medium.

また、凝縮室290の底部は、リターン配管294、開閉バルブ296、を介して蒸気室200に接続されており、凝縮室290で凝縮した凝縮洗浄剤は、リターン配管294を介して再び蒸気室200に導入される。そして、リターン配管294を介して、蒸気室200に導入された凝縮洗浄剤は、上述したヒータ202や蒸気室熱交換器330によって加熱されることで蒸気となる。   Further, the bottom of the condensing chamber 290 is connected to the steam chamber 200 via a return pipe 294 and an opening / closing valve 296, and the condensed cleaning agent condensed in the condensing chamber 290 is again returned to the steam chamber 200 via the return pipe 294. To be introduced. Then, the condensed cleaning agent introduced into the steam chamber 200 via the return pipe 294 becomes steam by being heated by the heater 202 and the steam chamber heat exchanger 330 described above.

(ヒートポンプユニット300)
ヒートポンプユニット300は、凝縮室熱交換器310と、濃縮室熱交換器320と、蒸気室熱交換器330と、熱媒体循環ライン340(図1中、340a〜340gで示す)と、圧縮機350と、減圧部360と、中間熱交換器370(第4の熱交換器)とを含んで構成される。ヒートポンプユニット300において、熱媒体は、図1中破線の矢印で示すように、熱媒体循環ライン340を循環しており、熱媒体循環ライン340に設けられた凝縮室熱交換器310、中間熱交換器370、圧縮機350、濃縮室熱交換器320、蒸気室熱交換器330、中間熱交換器370、減圧部360を介して、凝縮室熱交換器310に再び導入される。なお、この熱媒体の種類は特に限定されないが、凝縮室熱交換器310において熱媒体の潜熱を利用することができる、フロン系の熱媒体を使用するとよい。
(Heat pump unit 300)
The heat pump unit 300 includes a condensation chamber heat exchanger 310, a concentration chamber heat exchanger 320, a steam chamber heat exchanger 330, a heat medium circulation line 340 (indicated by 340a to 340g in FIG. 1), and a compressor 350. And a decompression unit 360 and an intermediate heat exchanger 370 (fourth heat exchanger). In the heat pump unit 300, the heat medium circulates through the heat medium circulation line 340, as shown by the dashed arrows in FIG. 1, and the condensation chamber heat exchanger 310 provided in the heat medium circulation line 340, intermediate heat exchange It is reintroduced into the condensing chamber heat exchanger 310 via the condenser 370, the compressor 350, the concentrating chamber heat exchanger 320, the steam chamber heat exchanger 330, the intermediate heat exchanger 370, and the decompression unit 360. Although the type of the heat medium is not particularly limited, it is preferable to use a Freon-based heat medium that can utilize the latent heat of the heat medium in the condensing chamber heat exchanger 310.

凝縮室熱交換器310は、凝縮室120において、熱媒体と、蒸気室200から導入された蒸気とで熱交換を行うことにより、蒸気を冷却することで凝縮して凝縮洗浄剤にするとともに、熱媒体を加熱する。ここで、凝縮室熱交換器310よって加熱されることにより、熱媒体は気体(図1中、Gで示す)となる。そして、凝縮室熱交換器310によって加熱された熱媒体は、中間熱交換器370によってさらに加熱される。中間熱交換器370による加熱機構については、後に詳述する。   The condensing chamber heat exchanger 310 performs heat exchange between the heat medium and the steam introduced from the steam chamber 200 in the condensing chamber 120, thereby condensing by cooling the steam into a condensed cleaning agent, Heat the heating medium. Here, the heat medium becomes a gas (indicated by G in FIG. 1) by being heated by the condensation chamber heat exchanger 310. The heat medium heated by the condensation chamber heat exchanger 310 is further heated by the intermediate heat exchanger 370. The heating mechanism by the intermediate heat exchanger 370 will be described in detail later.

圧縮機350は、中間熱交換器370で加熱された熱媒体を断熱圧縮し、さらに昇温する。   The compressor 350 adiabatically compresses the heat medium heated by the intermediate heat exchanger 370 and further raises the temperature.

濃縮室熱交換器320は、廃液濃縮室250において、圧縮機350によって昇温された熱媒体と、液体の廃液とで熱交換を行うことで、廃液を加熱して、廃液中の炭化水素系洗浄剤を気化させて蒸気を生成するとともに、熱媒体を冷却する。   The concentrating chamber heat exchanger 320 heats the waste liquid by exchanging heat between the heat medium heated by the compressor 350 and the liquid waste liquid in the waste liquid concentrating chamber 250, and the hydrocarbon system in the waste liquid The cleaning agent is vaporized to generate steam, and the heat medium is cooled.

このように、凝縮室120において凝縮室熱交換器310が蒸気を冷却することによって回収した熱(潜熱)を、廃液濃縮室250において濃縮室熱交換器320が直接利用することができ、熱の損失を最低限に抑えつつ、蒸気の凝縮と蒸気の生成を短時間で効率よく行うことが可能となる。   In this way, the heat (latent heat) recovered by cooling the steam in the condensing chamber 120 by the condensing chamber heat exchanger 310 can be directly used by the concentrating chamber heat exchanger 320 in the waste liquid concentrating chamber 250, and the heat It is possible to efficiently perform steam condensation and steam generation in a short time while minimizing loss.

また、濃縮室熱交換器320が廃液濃縮室250において廃液を加熱することにより、単位時間あたりの蒸気の生成量を、洗浄室102において蒸気洗浄を行うことができる程度にまで増加させることができる。従来は、単位時間あたりの蒸気の生成量が少なく、洗浄室102において蒸気洗浄を行うことができる程度の生成量に達しておらず、生成された蒸気を一旦凝縮しなければならなかったが、本実施形態にかかる真空洗浄装置100によれば、廃液濃縮室250で生成された蒸気を直接、蒸気洗浄に用いることが可能となる(後述する初期洗浄工程S140参照)。このため、従来、廃棄されていた凝縮で回収された熱エネルギーを削減することができる。   Further, when the concentrating chamber heat exchanger 320 heats the waste liquid in the waste liquid concentrating chamber 250, the amount of steam generated per unit time can be increased to such an extent that steam cleaning can be performed in the cleaning chamber 102. . Conventionally, the amount of steam generated per unit time is small, the amount of steam generated in the cleaning chamber 102 is not high enough to perform steam cleaning, and the generated steam has to be condensed once. According to the vacuum cleaning apparatus 100 according to the present embodiment, the steam generated in the waste liquid concentration chamber 250 can be directly used for steam cleaning (see the initial cleaning step S140 described later). Therefore, it is possible to reduce the heat energy recovered by condensation that has been conventionally discarded.

また、濃縮室熱交換器320が、廃液濃縮室250において廃液と接触状態を維持している間(後述する第1濃縮工程)は、熱媒体と廃液とで熱交換を行うことができるため、蒸気が生成される。一方、蒸気の生成が進み、廃液濃縮室250における廃液の液面が低下してくると、廃液の液面が濃縮室熱交換器320の鉛直下方に位置するようになる。そうすると、濃縮室熱交換器320と廃液との接触が解除され、濃縮室熱交換器320において、熱媒体と廃液との間で熱交換が行われなくなる。つまり、濃縮室熱交換器320による廃液の加熱が停止されることとなる。   Further, while the concentrating chamber heat exchanger 320 is in contact with the waste liquid in the waste liquid concentrating chamber 250 (first concentration step described later), heat exchange can be performed between the heat medium and the waste liquid. Steam is generated. On the other hand, when the generation of steam proceeds and the liquid level of the waste liquid in the waste liquid concentration chamber 250 decreases, the liquid level of the waste liquid comes to be positioned vertically below the concentration chamber heat exchanger 320. Then, the contact between the concentrating chamber heat exchanger 320 and the waste liquid is released, and in the concentrating chamber heat exchanger 320, heat exchange is not performed between the heat medium and the waste liquid. That is, heating of the waste liquid by the concentrating chamber heat exchanger 320 is stopped.

したがって、廃液濃縮室250に濃縮室熱交換器320を設けることで、電気ヒータ等のヒータで加熱する場合とは異なり空焚きが生じる事態を回避することができる。   Therefore, by providing the concentrating chamber heat exchanger 320 in the waste liquid concentrating chamber 250, unlike the case of heating with a heater such as an electric heater, it is possible to avoid a situation where emptying occurs.

また、濃縮室熱交換器320による廃液の加熱が停止されると、凝縮室120において凝縮室熱交換器310が蒸気を冷却することによって回収した熱を有する熱媒体は、濃縮室熱交換器320において放熱されることなく、濃縮室熱交換器320の下流側に設けられた蒸気室熱交換器330へ導入される。   When the heating of the waste liquid by the concentrating chamber heat exchanger 320 is stopped, the heat medium having heat recovered by cooling the steam by the condensing chamber heat exchanger 310 in the condensing chamber 120 becomes the concentrating chamber heat exchanger 320. Without being dissipated, the steam is introduced into the steam chamber heat exchanger 330 provided on the downstream side of the concentrating chamber heat exchanger 320.

つまり、廃液濃縮室250において、蒸気の生成が進み、廃液と濃縮室熱交換器320との接触が解除されると、濃縮室熱交換器320の加熱機能は、自動的に蒸気室熱交換器330へ移動することとなる。一方、後述するが、上述した第1濃縮工程において、蒸気室200から廃液濃縮室250に廃液が導入されると、濃縮室熱交換器320と廃液が接触することとなり、蒸気室熱交換器330の加熱機能は、自動的に濃縮室熱交換器320へ移動することとなる。したがって、別途の切換手段を備えずとも、熱交換器の加熱機能を濃縮室熱交換器320から蒸気室熱交換器330へ切り換えることが可能となる。   That is, when the generation of steam proceeds in the waste liquid concentration chamber 250 and the contact between the waste liquid and the concentration chamber heat exchanger 320 is released, the heating function of the concentration chamber heat exchanger 320 automatically becomes the steam chamber heat exchanger. It will move to 330. On the other hand, as will be described later, when waste liquid is introduced from the steam chamber 200 to the waste liquid concentration chamber 250 in the first concentration step described above, the concentration chamber heat exchanger 320 and the waste liquid come into contact with each other, and the steam chamber heat exchanger 330 is reached. This heating function automatically moves to the concentrating chamber heat exchanger 320. Therefore, the heating function of the heat exchanger can be switched from the concentrating chamber heat exchanger 320 to the steam chamber heat exchanger 330 without providing a separate switching means.

なお、ここで、廃液濃縮室250における濃縮室熱交換器320の設置位置は、廃液濃縮室250の底部近傍に設けられるとよい。かかる構成により、廃液濃縮室250における濃縮効率を向上させることができる。   Here, the installation position of the concentration chamber heat exchanger 320 in the waste liquid concentration chamber 250 is preferably provided in the vicinity of the bottom of the waste liquid concentration chamber 250. With this configuration, the concentration efficiency in the waste liquid concentration chamber 250 can be improved.

ここで、濃縮室熱交換器320と廃液とが接触状態を維持しており、濃縮室熱交換器320によって熱媒体が冷却されると、熱媒体は気液混合状態(図1中、G、Lで示す)となる。そして、濃縮室熱交換器320によって冷却された熱媒体は、蒸気室熱交換器330によって、さらに冷却され、中間熱交換器370によってさらに冷却される。   Here, when the concentrating chamber heat exchanger 320 and the waste liquid are kept in contact with each other and the heat medium is cooled by the concentrating chamber heat exchanger 320, the heat medium is in a gas-liquid mixed state (G, L). The heat medium cooled by the concentrating chamber heat exchanger 320 is further cooled by the steam chamber heat exchanger 330 and further cooled by the intermediate heat exchanger 370.

蒸気室熱交換器330は、濃縮室熱交換器320と廃液との接触が解除されている場合(後述する蒸気洗浄工程S150〜廃棄工程S190)、蒸気室200において、圧縮機350によって昇温された熱媒体と、液体の炭化水素系洗浄剤とで熱交換を行うことで、炭化水素系洗浄剤を加熱して蒸気を生成するとともに、熱媒体を冷却する。   The steam chamber heat exchanger 330 is heated by the compressor 350 in the steam chamber 200 when the contact between the concentrating chamber heat exchanger 320 and the waste liquid is released (steam cleaning step S150 to disposal step S190 described later). By exchanging heat between the heat medium and the liquid hydrocarbon-based cleaning agent, the hydrocarbon-based cleaning agent is heated to generate steam, and the heat medium is cooled.

このように、凝縮室120において凝縮室熱交換器310が蒸気を冷却することによって回収した熱(潜熱)を、蒸気室200において蒸気室熱交換器330が直接利用することができ、熱の損失を最低限に抑えつつ、蒸気の凝縮と蒸気の生成を効率よく行うことが可能となる。したがって、蒸気室200におけるヒータ202の加熱量を抑えることができる。   In this way, the heat (latent heat) recovered by cooling the steam in the condensing chamber 120 by the condensing chamber heat exchanger 310 can be directly used by the steam chamber heat exchanger 330 in the steam chamber 200, resulting in heat loss. It is possible to efficiently condense steam and generate steam while minimizing the above. Therefore, the heating amount of the heater 202 in the steam chamber 200 can be suppressed.

ここで、蒸気室熱交換器330によって冷却されることにより、熱媒体は気液混合状態(図1中、G、Lで示す)となる。そして、蒸気室熱交換器330によって冷却された熱媒体は、中間熱交換器370によってさらに冷却される。   Here, by being cooled by the steam chamber heat exchanger 330, the heat medium is in a gas-liquid mixed state (indicated by G and L in FIG. 1). Then, the heat medium cooled by the steam chamber heat exchanger 330 is further cooled by the intermediate heat exchanger 370.

減圧部360は、流体の圧力降下をもたらす弁である膨張弁で構成され、蒸気室熱交換器330で冷却された熱媒体を減圧膨張させてさらに冷却する。ここで、減圧部360によって冷却されることにより、熱媒体は液体(図1中、Lで示す)となる。そして、減圧部360において冷却された熱媒体は、熱媒体循環ライン340gを通って再び凝縮室熱交換器310に導入される。   The decompression unit 360 includes an expansion valve that is a valve that causes a pressure drop of the fluid. The decompression unit 360 decompresses and expands the heat medium cooled by the steam chamber heat exchanger 330 to further cool the heat medium. Here, by being cooled by the decompression unit 360, the heat medium becomes a liquid (indicated by L in FIG. 1). Then, the heat medium cooled in the decompression unit 360 is again introduced into the condensation chamber heat exchanger 310 through the heat medium circulation line 340g.

中間熱交換器370は、熱媒体循環ライン340a、340b(凝縮室熱交換器310および圧縮機350の間)を流通する熱媒体と、熱媒体循環ライン340e、340f(蒸気室熱交換器330および減圧部360の間)を流通する熱媒体とで熱交換を行う。凝縮室熱交換器310によって加熱され、熱媒体循環ライン340aを流通する熱媒体が、完全に気化しておらず、気液混合流体となっている場合もある。この場合、液体の熱媒体が圧縮機350に導入されてしまうと、圧縮機350に不具合が生じるおそれがある。   The intermediate heat exchanger 370 includes a heat medium flowing through the heat medium circulation lines 340a and 340b (between the condensation chamber heat exchanger 310 and the compressor 350), and heat medium circulation lines 340e and 340f (the steam chamber heat exchanger 330 and Heat exchange is performed with a heat medium flowing between the decompression unit 360). The heat medium heated by the condensing chamber heat exchanger 310 and flowing through the heat medium circulation line 340a may not be completely vaporized but may be a gas-liquid mixed fluid. In this case, if the liquid heat medium is introduced into the compressor 350, the compressor 350 may be defective.

そこで、中間熱交換器370を設け、熱媒体循環ライン340aを流通する熱媒体を加熱して飽和温度よりも高温とすることで、圧縮機350に導入される熱媒体(熱媒体循環ライン340bを流通する熱媒体)を確実に気体のみにすることが可能となる。これにより、圧縮機350に不具合が生じてしまう事態を回避することができる。   Therefore, an intermediate heat exchanger 370 is provided, and the heat medium flowing through the heat medium circulation line 340a is heated to a temperature higher than the saturation temperature, so that the heat medium (the heat medium circulation line 340b is introduced into the compressor 350). It is possible to ensure that the circulating heat medium is only gas. As a result, it is possible to avoid a situation in which a problem occurs in the compressor 350.

次に、上記の真空洗浄装置100におけるワークWの真空洗浄方法について図1および図2を用いて説明する。   Next, a vacuum cleaning method for the workpiece W in the vacuum cleaning apparatus 100 will be described with reference to FIGS. 1 and 2.

図2は、真空洗浄装置100の処理工程を説明するフローチャートである。真空洗浄装置100を利用するにあたっては、まず、準備工程(ステップS110)を1回行い、その後、1のワークWに対して、搬入工程(ステップS120)、減圧工程(ステップS130)、初期洗浄工程(ステップS140)、蒸気洗浄工程(ステップS150)、シャワー洗浄工程(ステップS160)、乾燥工程(ステップS170)、搬出工程(ステップS180)、廃棄工程(ステップS190)を行う。そして、以後、順次搬入されるワークWに対して、搬入工程S120〜廃棄工程S190の工程が行われることとなる。以下に、図1を参照しながら、上記の各工程について説明する。   FIG. 2 is a flowchart for explaining the processing steps of the vacuum cleaning apparatus 100. In using the vacuum cleaning apparatus 100, first, the preparation process (step S110) is performed once, and then, for one workpiece W, a carry-in process (step S120), a decompression process (step S130), and an initial cleaning process. (Step S140), a steam cleaning process (Step S150), a shower cleaning process (Step S160), a drying process (Step S170), an unloading process (Step S180), and a disposal process (Step S190). Thereafter, the processes of the loading process S120 to the discarding process S190 are performed on the workpieces W sequentially loaded. Hereinafter, the respective steps will be described with reference to FIG.

(準備工程S110)
まず、真空洗浄装置100を稼働するにあたり、不図示の制御手段が、開閉バルブ132、142、150、158、252、260、270、280、296を閉弁して、不図示の真空ポンプを駆動し、乾燥室152および蒸気室200を真空引きにより10kPa以下に減圧する。なお、本実施形態において制御手段は、CPU(中央処理装置)を含む半導体集積回路で構成され、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して、真空洗浄装置100全体を管理および制御する。そして、制御手段は、温度保持装置154を駆動して、減圧状態にある乾燥室152を、洗浄室102よりも低い温度、より詳細には、使用する炭化水素系洗浄剤の凝縮点以下の温度(5℃〜50℃、より好ましくは5℃〜10℃)に保持する。
(Preparation step S110)
First, when operating the vacuum cleaning apparatus 100, a control unit (not shown) closes the open / close valves 132, 142, 150, 158, 252, 260, 270, 280, and 296 to drive a vacuum pump (not shown). Then, the drying chamber 152 and the vapor chamber 200 are depressurized to 10 kPa or less by evacuation. In this embodiment, the control means is composed of a semiconductor integrated circuit including a CPU (central processing unit), reads out programs and parameters for operating the CPU itself from the ROM, and serves as a RAM or other electronic device as a work area. In cooperation with the circuit, the entire vacuum cleaning apparatus 100 is managed and controlled. And a control means drives the temperature holding | maintenance apparatus 154, temperature lower than the washing | cleaning chamber 102, more specifically the temperature below the condensation point of the hydrocarbon type cleaning agent to be used for the drying chamber 152 in a pressure-reduced state. (5 ° C to 50 ° C, more preferably 5 ° C to 10 ° C).

また、制御手段は、ヒータ202およびヒートポンプユニット300を駆動し、蒸気室200に貯留されている炭化水素系洗浄剤をヒータ202および蒸気室熱交換器330によって加温して蒸気を生成させる。そして、蒸気室200で生成された蒸気は凝縮室120に導入されるとともに、凝縮室熱交換器310によって冷却され、凝縮洗浄剤に凝縮され、洗浄剤貯留部124に貯留される。また、蒸気室熱交換器330から供給される熱によって蒸気室200の温度が予め定められた温度に到達したら、ヒータ202を停止する。これにより、真空洗浄装置100の準備工程S110が終了し、真空洗浄装置100によるワークWの洗浄が可能となる。   In addition, the control unit drives the heater 202 and the heat pump unit 300 and warms the hydrocarbon-based cleaning agent stored in the steam chamber 200 by the heater 202 and the steam chamber heat exchanger 330 to generate steam. Then, the steam generated in the steam chamber 200 is introduced into the condensing chamber 120, cooled by the condensing chamber heat exchanger 310, condensed into the condensed cleaning agent, and stored in the cleaning agent storage unit 124. When the temperature of the steam chamber 200 reaches a predetermined temperature by the heat supplied from the steam chamber heat exchanger 330, the heater 202 is stopped. Thereby, the preparatory process S110 of the vacuum cleaning apparatus 100 is completed, and the workpiece W can be cleaned by the vacuum cleaning apparatus 100.

(搬入工程S120)
真空洗浄装置100によってワークWの洗浄を行う際には、まず、制御手段は、開閉扉を開放し、開口から洗浄室102にワークWを搬入して載置部108に載置する。そして、ワークWの搬入が完了したら、制御手段は、開閉扉を閉じて洗浄室102を密閉状態にする。なお、このとき、ワークWの温度は常温(15℃〜40℃程度)となっている。
(Import process S120)
When the workpiece W is cleaned by the vacuum cleaning apparatus 100, first, the control unit opens the opening / closing door, loads the workpiece W into the cleaning chamber 102 from the opening, and places the workpiece W on the mounting unit 108. Then, when the loading of the workpiece W is completed, the control means closes the open / close door and puts the cleaning chamber 102 in a sealed state. In addition, the temperature of the workpiece | work W is normal temperature (about 15 to 40 degreeC) at this time.

(減圧工程S130)
次に、制御手段は、真空ポンプを駆動して、真空引きにより洗浄室102を10kPa以下に減圧する。
(Decompression step S130)
Next, the control means drives the vacuum pump to depressurize the cleaning chamber 102 to 10 kPa or less by evacuation.

また、かかる搬入工程S120、減圧工程S130と並行して、第1濃縮工程を行う。以下、第1濃縮工程について説明する。なお、真空洗浄装置100を用いて初めてワークWを洗浄する場合、第1濃縮工程、後述する初期洗浄工程S140、第2濃縮工程、廃棄工程S190を省略してもよい。   Moreover, a 1st concentration process is performed in parallel with this carrying-in process S120 and pressure reduction process S130. Hereinafter, the first concentration step will be described. In addition, when the workpiece | work W is wash | cleaned for the first time using the vacuum cleaning apparatus 100, you may abbreviate | omit a 1st concentration process, the initial stage washing | cleaning process S140 mentioned later, a 2nd concentration process, and the discard process S190.

(第1濃縮工程)
上記搬入工程S120、減圧工程S130と並行して、制御手段は、開閉バルブ252を開弁して、蒸気室200と廃液濃縮室250とを連通し、蒸気室200の廃液を廃液濃縮室250に移動させ、移動が完了すると、開閉バルブ252を閉弁する。
(First concentration step)
In parallel with the carry-in process S120 and the pressure-reducing process S130, the control means opens the opening / closing valve 252 to connect the steam chamber 200 and the waste liquid concentrating chamber 250, and the waste liquid in the steam chamber 200 is transferred to the waste liquid concentrating chamber 250. When the movement is completed, the opening / closing valve 252 is closed.

廃液濃縮室250には、濃縮室熱交換器320が設けられているため、廃液濃縮室250において廃液が加熱されて蒸気が生成されるとともに、廃液が濃縮される。なお、第1濃縮工程を行っている間、熱媒体が有する熱は、濃縮室熱交換器320において消費されるため、蒸気室熱交換器330による加熱が足りない場合がある。この場合、ヒータ202をオンにする。   Since the waste liquid concentration chamber 250 is provided with the concentration chamber heat exchanger 320, the waste liquid is heated in the waste liquid concentration chamber 250 to generate steam, and the waste liquid is concentrated. Note that during the first concentration step, the heat of the heat medium is consumed in the concentration chamber heat exchanger 320, and thus the heating by the steam chamber heat exchanger 330 may be insufficient. In this case, the heater 202 is turned on.

(初期洗浄工程S140)
上記搬入工程S120、減圧工程S130、および上記第1濃縮工程が終了すると、制御手段は、開閉バルブ260を開弁して、廃液濃縮室250および洗浄室102とを連通し、上記第1濃縮工程において廃液濃縮室250で生成された蒸気を洗浄室102に移動する。このとき、蒸気の温度は、80〜140℃に制御されており、高温の蒸気が洗浄室102に充満する。
(Initial cleaning step S140)
When the carry-in process S120, the pressure-reducing process S130, and the first concentration process are completed, the control unit opens the open / close valve 260 to communicate the waste liquid concentration chamber 250 and the cleaning chamber 102, and the first concentration process. The steam generated in the waste liquid concentration chamber 250 is moved to the cleaning chamber 102. At this time, the temperature of the steam is controlled to 80 to 140 ° C., and the high temperature steam fills the cleaning chamber 102.

このように、洗浄室102に供給された蒸気がワークWの表面に付着すると、蒸気がワークWの表面で凝縮し、ワークWの表面に付着していた油脂類が、凝縮された炭化水素系洗浄剤によって溶解、流下され、ワークWが洗浄されることとなる。この初期洗浄工程S140は、予め定められた時間(廃液濃縮室250において、生成した蒸気のうち大部分が洗浄室102に導入される時間、例えば、1分〜2分)行われ、かかる時間が経過したところで、制御手段は、開閉バルブ260を閉弁し、初期洗浄工程S140が終了となる。なお、初期洗浄工程S140が終了した後には、廃液濃縮室250において廃液と濃縮室熱交換器320との接触が解除されるため、熱媒体が有する熱は、濃縮室熱交換器320において消費されなくなる。したがって、蒸気室熱交換器330が蒸気室200を加熱することができ、かかる熱によって蒸気室200の温度が予め定められた温度に到達したら、ヒータ202を停止する。   As described above, when the vapor supplied to the cleaning chamber 102 adheres to the surface of the workpiece W, the vapor condenses on the surface of the workpiece W, and the fats and oils attached to the surface of the workpiece W are condensed hydrocarbon system. The work W is cleaned and dissolved by the cleaning agent. This initial cleaning step S140 is performed for a predetermined time (a time during which most of the generated steam is introduced into the cleaning chamber 102 in the waste liquid concentration chamber 250, for example, 1 to 2 minutes). When the time has elapsed, the control means closes the opening / closing valve 260, and the initial cleaning step S140 ends. After the initial cleaning step S140 is completed, contact between the waste liquid and the concentrating chamber heat exchanger 320 is released in the waste liquid concentrating chamber 250, so that the heat of the heat medium is consumed in the concentrating chamber heat exchanger 320. Disappear. Therefore, when the steam chamber heat exchanger 330 can heat the steam chamber 200 and the temperature of the steam chamber 200 reaches a predetermined temperature due to the heat, the heater 202 is stopped.

(蒸気洗浄工程S150)
次に、制御手段は、開閉バルブ132を開弁して、蒸気室200において生成された蒸気を洗浄室102に供給する。このとき、蒸気の温度は、80℃〜140℃に制御されており、高温の蒸気が洗浄室102に充満する。
(Steam cleaning step S150)
Next, the control means opens the opening / closing valve 132 and supplies the steam generated in the steam chamber 200 to the cleaning chamber 102. At this time, the temperature of the steam is controlled to 80 ° C. to 140 ° C., and the high temperature steam fills the cleaning chamber 102.

洗浄室102に供給された蒸気がワークWの表面に付着すると、上述した初期洗浄工程S140と同様に、ワークWの温度が蒸気の温度に比べて低いことから、蒸気がワークWの表面で凝縮し、ワークWの表面に付着していた油脂類が、凝縮された炭化水素系洗浄剤によって溶解、流下され、ワークWが洗浄されることとなる。この蒸気洗浄工程S150は、ワークWの温度が、蒸気の温度(炭化水素系洗浄剤の沸点)である80℃〜140℃に到達するまで行われるとともに、ワークWの温度が蒸気の温度に到達したところで蒸気洗浄工程S150が終了となる。   When the vapor supplied to the cleaning chamber 102 adheres to the surface of the workpiece W, the vapor is condensed on the surface of the workpiece W because the temperature of the workpiece W is lower than the vapor temperature as in the above-described initial cleaning step S140. Then, the oils and fats adhering to the surface of the workpiece W are dissolved and flowed down by the condensed hydrocarbon cleaning agent, and the workpiece W is cleaned. This steam cleaning step S150 is performed until the temperature of the work W reaches 80 ° C. to 140 ° C., which is the temperature of the steam (boiling point of the hydrocarbon-based cleaning agent), and the temperature of the work W reaches the temperature of the steam. Then, the steam cleaning step S150 is completed.

(シャワー洗浄工程S160)
上記蒸気洗浄工程S150が終了すると、制御手段は、開閉バルブ126aを開弁し、シャワー部110を駆動して、洗浄剤貯留部124に貯留された凝縮洗浄剤をワークWに噴射する。こうして、蒸気洗浄工程S150で洗浄しきれなかったワークWの細部に付着した油脂類等が洗浄される。
(Shower washing process S160)
When the steam cleaning step S150 is completed, the control unit opens the opening / closing valve 126a, drives the shower unit 110, and injects the condensed cleaning agent stored in the cleaning agent storage unit 124 onto the workpiece W. In this way, oils and fats and the like adhering to the details of the workpiece W that could not be cleaned in the steam cleaning step S150 are cleaned.

(乾燥工程S170)
上記シャワー洗浄工程S160が終了すると、次に、洗浄の際にワークWに付着した炭化水素系洗浄剤を乾燥させる乾燥工程S170が行われる。この乾燥工程S170は、制御手段が開閉バルブ150を開弁して、洗浄室102と乾燥室152とを連通させることによって行われる。乾燥工程S170の開始時には、洗浄室102の温度が蒸気の温度である70℃〜150℃となっているのに対して、乾燥室152の温度は、温度保持装置154によって5℃〜50℃(より好ましくは5℃〜10℃)に維持されている。
(Drying step S170)
When the shower cleaning step S160 is completed, a drying step S170 for drying the hydrocarbon-based cleaning agent adhering to the workpiece W at the time of cleaning is then performed. This drying step S <b> 170 is performed by the control means opening the opening / closing valve 150 to cause the cleaning chamber 102 and the drying chamber 152 to communicate with each other. At the start of the drying step S170, the temperature of the cleaning chamber 102 is 70 ° C. to 150 ° C. which is the temperature of the steam, whereas the temperature of the drying chamber 152 is 5 ° C. to 50 ° C. ( More preferably, it is maintained at 5 ° C to 10 ° C.

したがって、制御手段が開閉バルブ150を開弁すると、ワークWに付着している炭化水素系洗浄剤をはじめ、洗浄室102内に充満している蒸気は乾燥室152に移動して凝縮され、洗浄室102(ワークW)が短時間で乾燥する。   Therefore, when the control means opens the on-off valve 150, the hydrocarbon-based cleaning agent adhering to the workpiece W and the vapor filled in the cleaning chamber 102 move to the drying chamber 152 to be condensed and cleaned. The chamber 102 (work W) is dried in a short time.

(搬出工程S180)
上記のように、洗浄室102およびワークWの乾燥が完了したら、制御手段は、開閉バルブ150を閉弁して洗浄室102と乾燥室152とを遮断する。また、制御手段は、開閉バルブ142を開弁して、洗浄室102において生じた使用済み洗浄剤を蒸気室200に移動させ、移動が完了すると、開閉バルブ142を閉弁する。
(Unloading step S180)
As described above, when the drying of the cleaning chamber 102 and the workpiece W is completed, the control unit closes the opening / closing valve 150 to shut off the cleaning chamber 102 and the drying chamber 152. Further, the control means opens the opening / closing valve 142 to move the used cleaning agent generated in the cleaning chamber 102 to the vapor chamber 200, and closes the opening / closing valve 142 when the movement is completed.

そして、制御手段は、大気開放弁を開弁して洗浄室102を大気開放し、洗浄室102が大気圧まで復圧したところで、開閉扉を開放して開口からワークWを搬出する。   Then, the control means opens the air release valve to open the cleaning chamber 102 to the atmosphere, and when the cleaning chamber 102 has returned to atmospheric pressure, the control means opens the open / close door and unloads the workpiece W from the opening.

一方、蒸気洗浄工程S150、シャワー洗浄工程S160、乾燥工程S170、搬出工程S180と並行して、第2濃縮工程を行う。以下、第2濃縮工程について説明する。   On the other hand, the second concentration process is performed in parallel with the steam cleaning process S150, the shower cleaning process S160, the drying process S170, and the unloading process S180. Hereinafter, the second concentration step will be described.

(第2濃縮工程)
上記蒸気洗浄工程S150、シャワー洗浄工程S160、乾燥工程S170、搬出工程S180と並行して、制御手段は、開閉バルブ280を開弁して、廃液濃縮室250と凝縮室290とを連通する。上述したように、廃液濃縮室250の温度が蒸気の温度である80℃〜140℃となっているのに対して、凝縮室290の温度は、温度保持装置292によって、例えば、30℃に維持されている。したがって、制御手段が、開閉バルブ280を開弁すると、廃液濃縮室250に残留している蒸気は凝縮室290に移動して凝縮される。
(Second concentration step)
In parallel with the steam cleaning step S150, the shower cleaning step S160, the drying step S170, and the unloading step S180, the control unit opens the open / close valve 280 to connect the waste liquid concentration chamber 250 and the condensation chamber 290. As described above, the temperature of the waste liquid concentration chamber 250 is 80 ° C. to 140 ° C., which is the temperature of the steam, whereas the temperature of the condensing chamber 290 is maintained at, for example, 30 ° C. by the temperature holding device 292. Has been. Therefore, when the control means opens the opening / closing valve 280, the vapor remaining in the waste liquid concentration chamber 250 moves to the condensation chamber 290 and is condensed.

そして、搬出工程S180が終了すると、廃棄工程S190が遂行される。以下、廃棄工程S190について説明する。   Then, when the unloading step S180 is completed, a discarding step S190 is performed. Hereinafter, the disposal step S190 will be described.

(廃棄工程S190)
上記搬出工程S180が終了すると、制御手段は、開閉バルブ280を閉弁するとともに、開閉バルブ270を開弁して、廃液濃縮室250と乾燥室152とを連通させる。上述したように、廃液濃縮室250の温度が80℃〜140℃となっているのに対して、乾燥室152の温度は、温度保持装置154によって5℃〜50℃(より好ましくは5℃〜10℃)に維持されている。
(Disposal process S190)
When the unloading step S180 is completed, the control means closes the opening / closing valve 280 and opens the opening / closing valve 270 to connect the waste liquid concentrating chamber 250 and the drying chamber 152. As described above, the temperature of the waste liquid concentration chamber 250 is 80 ° C. to 140 ° C., whereas the temperature of the drying chamber 152 is 5 ° C. to 50 ° C. (more preferably 5 ° C. to 5 ° C.) by the temperature holding device 154. 10 ° C.).

したがって、制御手段が、開閉バルブ270を開弁すると、廃液濃縮室250に残留している蒸気は乾燥室152に移動して凝縮される。   Therefore, when the control means opens the opening / closing valve 270, the steam remaining in the waste liquid concentration chamber 250 moves to the drying chamber 152 and is condensed.

そして、制御手段は、開閉バルブ270を閉弁するとともに、開閉バルブ296、開閉バルブ158を開弁して、凝縮した凝縮洗浄剤を蒸気室200へ送出する。また、制御手段は、廃液濃縮室250と外部とを接続する不図示のバルブを開弁して、廃液濃縮室250において濃縮された廃液を外部に廃棄し、廃棄が完了したらバルブを閉弁して、1のワークWに対する全工程が終了する。   Then, the control means closes the opening / closing valve 270 and opens the opening / closing valve 296 and the opening / closing valve 158 to deliver the condensed condensed cleaning agent to the vapor chamber 200. Further, the control means opens a valve (not shown) that connects the waste liquid concentration chamber 250 and the outside, discards the waste liquid concentrated in the waste liquid concentration chamber 250 to the outside, and closes the valve when the disposal is completed. Thus, all processes for one workpiece W are completed.

一方、真空洗浄装置100は、ユーザによって真空洗浄装置100の停止指示を受け付けると、停止割込処理を開始する。   On the other hand, when the vacuum cleaning apparatus 100 receives a stop instruction for the vacuum cleaning apparatus 100 by the user, the vacuum cleaning apparatus 100 starts a stop interrupt process.

(停止処理:ステップS200)
ユーザによって真空洗浄装置100の停止指示が入力されると、真空洗浄装置100は、現在駆動されている機能部(例えば、シャワー部110、ヒータ202、140a、ヒートポンプユニット300、昇降装置等)を停止させたり、駆動部(例えば、昇降装置等)所定の位置に戻したりして、停止処理を行う。
(Stop processing: Step S200)
When an instruction to stop the vacuum cleaning apparatus 100 is input by the user, the vacuum cleaning apparatus 100 stops the currently driven functional units (for example, the shower unit 110, the heaters 202 and 140a, the heat pump unit 300, and the lifting device). Or stop the drive unit (for example, a lifting device or the like) to a predetermined position.

上述したように、廃液濃縮室250において生成された蒸気は、洗浄室102、凝縮室290、乾燥室152のうち、まず、もっとも温度の高い洗浄室102に導入され(初期洗浄工程S140)、続いて、次に温度の高い凝縮室290に導入され(第2濃縮工程)、最後にもっとも温度の低い乾燥室152に導入される(廃棄工程S190)。これにより、廃液濃縮室250において生成された蒸気を、効率よく凝縮することができる。   As described above, the steam generated in the waste liquid concentrating chamber 250 is first introduced into the cleaning chamber 102 having the highest temperature among the cleaning chamber 102, the condensing chamber 290, and the drying chamber 152 (initial cleaning step S140). Then, it is introduced into the condensing chamber 290 having the next highest temperature (second concentration step), and finally introduced into the drying chamber 152 having the lowest temperature (disposing step S190). Thereby, the vapor | steam produced | generated in the waste liquid concentration chamber 250 can be condensed efficiently.

また、元来、ワークWの乾燥のために用いられる低温の乾燥室152を利用するため、凝縮室290の温度を極めて低くする必要がなく、大気(空気)を冷却媒体としても蒸気を十分に凝縮することができる。したがって、凝縮室290における、冷却媒体に要する費用や、温度保持装置292における炭化水素系洗浄剤の凝縮に要する熱エネルギーの消費を低減することが可能となる。   In addition, since the low temperature drying chamber 152 originally used for drying the workpiece W is used, it is not necessary to make the temperature of the condensing chamber 290 extremely low, and sufficient steam can be generated even if air (air) is used as a cooling medium. Can condense. Therefore, it is possible to reduce the cost required for the cooling medium in the condensing chamber 290 and the consumption of heat energy required for condensing the hydrocarbon-based cleaning agent in the temperature holding device 292.

以上説明したように、本実施形態にかかる真空洗浄装置100によれば、廃液濃縮室250において廃液(使用済みの洗浄剤)を短時間で蒸留、濃縮することができる。したがって、廃液濃縮室250において、単位時間あたりの蒸気の生成量を増加させることができ、廃液濃縮室250において生成された炭化水素系洗浄剤の蒸気を再度蒸気洗浄工程(初期洗浄工程S140)で利用することが可能となる。   As described above, according to the vacuum cleaning apparatus 100 according to the present embodiment, the waste liquid (used cleaning agent) can be distilled and concentrated in the waste liquid concentration chamber 250 in a short time. Therefore, the amount of steam generated per unit time can be increased in the waste liquid concentration chamber 250, and the hydrocarbon-based cleaning agent steam generated in the waste liquid concentration chamber 250 is again used in the steam cleaning step (initial cleaning step S140). It can be used.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、凝縮室熱交換器310および蒸気室熱交換器330によって、ヒータ202を備えずとも、蒸気室200において目的とする温度(80℃〜140℃、例えば、120℃)の蒸気を生成できれば、ヒータ202は初期稼働時のみに利用してもよい。   For example, if the condensation chamber heat exchanger 310 and the steam chamber heat exchanger 330 can generate steam at a target temperature (80 ° C. to 140 ° C., for example, 120 ° C.) without the heater 202, The heater 202 may be used only during initial operation.

また、本明細書の真空洗浄方法の各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、上述した実施形態において、第2濃縮工程が、蒸気洗浄工程S150、シャワー洗浄工程S160、乾燥工程S170、搬出工程S180と並行して行われる場合を例に挙げて説明した。しかし、第2濃縮工程は、廃棄工程S190を遂行する前に終了していればよく、蒸気洗浄工程S150、シャワー洗浄工程S160、乾燥工程S170、搬出工程S180のいずれかの工程と並行して行われてもよいし、搬出工程S180の後に行われてもよい。   In addition, each step of the vacuum cleaning method of the present specification does not necessarily have to be processed in time series in the order described as a flowchart. For example, in the above-described embodiment, the case where the second concentration process is performed in parallel with the steam cleaning process S150, the shower cleaning process S160, the drying process S170, and the unloading process S180 has been described as an example. However, the second concentration step only needs to be completed before the disposal step S190 is performed, and is performed in parallel with any of the steam cleaning step S150, the shower cleaning step S160, the drying step S170, and the unloading step S180. Or may be performed after the unloading step S180.

また、上述した実施形態において、廃液濃縮室250には、ヒータとして濃縮室熱交換器320が設けられている場合について説明したが、ヒータは、廃液濃縮室250において廃液を加熱できれば、電気ヒータ等であってもよい。   In the above-described embodiment, the case where the waste liquid concentration chamber 250 is provided with the concentration chamber heat exchanger 320 as a heater has been described. However, if the heater can heat the waste liquid in the waste liquid concentration chamber 250, an electric heater or the like can be used. It may be.

また、上述した実施形態において、洗浄室102においてワークWを洗浄することで生じる廃液は、蒸気室200を介して、間接的に廃液濃縮室250に導入される場合を例に挙げて説明した。しかし、洗浄室102においてワークWを洗浄することで生じる廃液は、廃液濃縮室250に直接導入されてもよい。   Further, in the above-described embodiment, the case where the waste liquid generated by cleaning the workpiece W in the cleaning chamber 102 is indirectly introduced into the waste liquid concentration chamber 250 through the vapor chamber 200 has been described as an example. However, the waste liquid generated by cleaning the workpiece W in the cleaning chamber 102 may be directly introduced into the waste liquid concentration chamber 250.

また、上述した実施形態では、洗浄室102において、シャワー部110から供給される凝縮洗浄剤による洗浄(シャワー洗浄工程S160)と、蒸気供給部130から供給される蒸気による洗浄(蒸気洗浄工程S150)が行われる真空洗浄装置100について説明した。しかし、例えば、真空容器104内の、洗浄室102の下方に浸漬室を設けておき、蒸気洗浄工程S150あるいはシャワー洗浄工程S160の後で、かかる浸漬室にワークWを浸漬することによって、ワークWをさらに洗浄してもよい。   Further, in the embodiment described above, in the cleaning chamber 102, cleaning with the condensed cleaning agent supplied from the shower unit 110 (shower cleaning step S160) and cleaning with steam supplied from the steam supply unit 130 (steam cleaning step S150). The vacuum cleaning apparatus 100 that performs the above has been described. However, for example, an immersion chamber is provided below the cleaning chamber 102 in the vacuum vessel 104, and the workpiece W is immersed in the immersion chamber after the steam cleaning step S150 or the shower cleaning step S160. May be further washed.

また、上述した実施形態において、廃液濃縮室250で生成された蒸気は、洗浄室102、凝縮室290、乾燥室152の順に導入されるが、廃液濃縮室250で生成された蒸気は、少なくとも洗浄室102に導入すればよく、凝縮室290および乾燥室152のいずれか一方に導入されてもよい。   In the above-described embodiment, the steam generated in the waste liquid concentrating chamber 250 is introduced in the order of the cleaning chamber 102, the condensing chamber 290, and the drying chamber 152, but the steam generated in the waste liquid concentrating chamber 250 is at least washed. What is necessary is just to introduce | transduce into the chamber 102, and you may introduce into any one of the condensing chamber 290 and the drying chamber 152. FIG.

本発明は、減圧下にある洗浄室に炭化水素系洗浄剤の蒸気を供給してワークを洗浄する真空洗浄装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a vacuum cleaning apparatus that supplies a hydrocarbon-based cleaning agent vapor to a cleaning chamber under reduced pressure to clean a workpiece.

100 …真空洗浄装置
102 …洗浄室
120 …凝縮室(第3の凝縮室)
150 …開閉バルブ(第3の開閉手段)
152 …乾燥室(第2の凝縮室)
154 …温度保持装置(第2の温度保持手段)
200 …蒸気室
250 …廃液濃縮室
260 …開閉バルブ(第1の開閉手段)
270 …開閉バルブ(第4の開閉手段)
280 …開閉バルブ(第2の開閉手段)
290 …凝縮室(第1の凝縮室)
292 …温度保持装置(第1の温度保持手段)
310 …凝縮室熱交換器(第1の熱交換器)
320 …濃縮室熱交換器(第2の熱交換器)
330 …蒸気室熱交換器(第3の熱交換器)
350 …圧縮機
360 …減圧部
100 ... Vacuum cleaning device 102 ... Cleaning chamber 120 ... Condensing chamber (third condensing chamber)
150. Opening / closing valve (third opening / closing means)
152 ... drying chamber (second condensing chamber)
154 ... Temperature holding device (second temperature holding means)
200 ... Steam chamber 250 ... Waste liquid concentration chamber 260 ... Open / close valve (first opening / closing means)
270 ... Opening / closing valve (fourth opening / closing means)
280 ... Opening / closing valve (second opening / closing means)
290 ... Condensing chamber (first condensing chamber)
292 ... temperature holding device (first temperature holding means)
310 ... Condensing chamber heat exchanger (first heat exchanger)
320 ... Concentration chamber heat exchanger (second heat exchanger)
330 ... steam chamber heat exchanger (third heat exchanger)
350 ... Compressor 360 ... Decompression unit

Claims (7)

炭化水素系洗浄剤の蒸気を生成する蒸気室と、
前記蒸気室に接続され、該蒸気室から供給される炭化水素系洗浄剤の蒸気によって減圧下でワークを洗浄可能な洗浄室と、
前記洗浄室において前記ワークを洗浄することで生じる、凝縮された炭化水素系洗浄剤を含む廃液を収容する廃液濃縮室と、
前記廃液濃縮室に設けられ、該廃液濃縮室に収容された廃液を加熱することで、炭化水素系洗浄剤の蒸気を生成して、該廃液を濃縮するヒータと、
前記廃液濃縮室と前記洗浄室とを連通、もしくは、その連通を遮断するとともに、前記廃液濃縮室と前記洗浄室との連通状態において、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記洗浄室に導入する第1の開閉手段と、
を備えたことを特徴とする真空洗浄装置。
A steam chamber for generating hydrocarbon-based cleaning agent steam;
A cleaning chamber connected to the steam chamber and capable of cleaning the workpiece under reduced pressure by the steam of the hydrocarbon-based cleaning agent supplied from the steam chamber;
A waste liquid concentrating chamber containing waste liquid containing a condensed hydrocarbon-based cleaning agent produced by cleaning the workpiece in the cleaning chamber;
A heater that is provided in the waste liquid concentration chamber and heats the waste liquid stored in the waste liquid concentration chamber to generate a hydrocarbon-based cleaning agent vapor and concentrate the waste liquid;
The waste liquid concentration chamber and the cleaning chamber communicate with each other, or the communication between the waste liquid concentration chamber and the cleaning chamber, and the hydrocarbon-based cleaning agent vapor generated in the waste liquid concentration chamber in the communication state between the waste liquid concentration chamber and the cleaning chamber. A first opening / closing means for introducing into the cleaning chamber;
A vacuum cleaning apparatus comprising:
前記廃液濃縮室に接続され、該廃液濃縮室で生成された炭化水素系洗浄剤の蒸気が導入される第1の凝縮室と、
前記第1の凝縮室を前記廃液濃縮室よりも低い温度に保持する第1の温度保持手段と、
前記廃液濃縮室と前記第1の凝縮室とを連通、もしくは、その連通を遮断するとともに、前記第1の凝縮室と前記廃液濃縮室との連通状態において、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第1の凝縮室に導入する第2の開閉手段と、
を備えたことを特徴とする請求項1に記載の真空洗浄装置。
A first condensing chamber connected to the waste liquid concentrating chamber, into which a hydrocarbon-based cleaning agent vapor generated in the waste liquid concentrating chamber is introduced;
First temperature holding means for holding the first condensing chamber at a temperature lower than that of the waste liquid concentration chamber;
The waste liquid concentration chamber and the first condensing chamber are communicated with or disconnected from each other, and the carbonization generated in the waste liquid concentrating chamber in the communication state between the first condensing chamber and the waste liquid concentrating chamber. A second opening / closing means for introducing hydrogen-based cleaning agent vapor into the first condensing chamber;
The vacuum cleaning apparatus according to claim 1, further comprising:
前記第1の開閉手段を遮断状態から連通状態とし、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記洗浄室に導入させ、前記第1の開閉手段を連通状態から遮断状態とし、前記第2の開閉手段を遮断状態から連通状態として、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第1の凝縮室に導入させる制御手段を備えたことを特徴とする請求項2に記載の真空洗浄装置。   The first opening / closing means is changed from the shut-off state to the communicating state, the hydrocarbon cleaning agent vapor generated in the waste liquid concentrating chamber is introduced into the cleaning chamber, and the first opening / closing means is changed from the communicating state to the shut-off state. And a control means for introducing the hydrocarbon-based cleaning agent vapor generated in the waste liquid concentrating chamber into the first condensing chamber by switching the second opening / closing means from the shut-off state to the communicating state. The vacuum cleaning apparatus according to claim 2. 前記洗浄室に接続され、減圧状態に保持される第2の凝縮室と、
前記第2の凝縮室を前記洗浄室よりも低い温度に保持する第2の温度保持手段と、
前記第2の凝縮室と前記洗浄室とを連通させ、または、その連通を遮断する第3の開閉手段と、
前記廃液濃縮室と前記第2の凝縮室とを連通、もしくは、その連通を遮断するとともに、前記第2の凝縮室と前記廃液濃縮室との連通状態において、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第2の凝縮室に導入する第4の開閉手段と、
を備えたことを特徴とする請求項1または2に記載の真空洗浄装置。
A second condensing chamber connected to the cleaning chamber and maintained in a reduced pressure state;
Second temperature holding means for holding the second condensing chamber at a temperature lower than that of the cleaning chamber;
A third opening / closing means for communicating the second condensing chamber and the cleaning chamber, or blocking the communication;
The waste liquid concentrating chamber and the second condensing chamber communicate with each other, or the communication between the second condensing chamber and the second condensing chamber is cut off, and the carbonization generated in the waste liquid concentrating chamber in the communicating state between the second condensing chamber and the waste liquid concentrating chamber. A fourth opening / closing means for introducing a hydrogen-based cleaning agent vapor into the second condensing chamber;
The vacuum cleaning apparatus according to claim 1, further comprising:
前記第1の開閉手段を遮断状態から連通状態とし、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記洗浄室に導入させ、前記第1の開閉手段を連通状態から遮断状態とし、前記第4の開閉手段を遮断状態から連通状態として、前記廃液濃縮室で生成された炭化水素系洗浄剤の蒸気を前記第2の凝縮室に導入させる制御手段を備えたことを特徴とする請求項4に記載の真空洗浄装置。   The first opening / closing means is changed from the shut-off state to the communicating state, the hydrocarbon cleaning agent vapor generated in the waste liquid concentrating chamber is introduced into the cleaning chamber, and the first opening / closing means is changed from the communicating state to the shut-off state. And a control means for bringing the steam of the hydrocarbon-based cleaning agent produced in the waste liquid concentrating chamber into the second condensing chamber by switching the fourth opening / closing means from the shut-off state to the communicating state. The vacuum cleaning apparatus according to claim 4. 前記蒸気室に接続され、前記炭化水素系洗浄剤の蒸気を凝縮する第3の凝縮室と、
前記第3の凝縮室において、前記蒸気室から導入された蒸気と熱媒体とで熱交換を行うことにより、該蒸気を凝縮して炭化水素系洗浄剤にするとともに、該熱媒体を加熱する第1の熱交換器と、
前記第1の熱交換器で加熱された熱媒体を断熱圧縮し、さらに昇温する圧縮機と、
前記廃液濃縮室において、前記圧縮機によって昇温された熱媒体と、前記炭化水素系洗浄剤とで熱交換を行うことで、該炭化水素系洗浄剤を気化させて蒸気を生成するとともに、該熱媒体を冷却する、前記ヒータを構成する第2の熱交換器と、
前記第2の熱交換器と前記第1の熱交換器との間に設けられ、該第2の熱交換器で冷却された熱媒体を減圧膨張させてさらに冷却して、前記第1の熱交換器に送出する減圧部と、
を備えたことを特徴とする請求項1から5のいずれか1項に記載の真空洗浄装置。
A third condensing chamber connected to the vapor chamber and condensing the hydrocarbon-based cleaning agent vapor;
In the third condensing chamber, heat exchange is performed between the steam introduced from the steam chamber and the heat medium, thereby condensing the steam into a hydrocarbon-based cleaning agent and heating the heat medium. 1 heat exchanger,
A compressor that adiabatically compresses the heat medium heated in the first heat exchanger and further raises the temperature;
In the waste liquid concentrating chamber, heat exchange is performed between the heat medium heated by the compressor and the hydrocarbon-based cleaning agent to vaporize the hydrocarbon-based cleaning agent and generate steam, A second heat exchanger constituting the heater for cooling the heat medium;
The first heat exchanger is provided between the second heat exchanger and the first heat exchanger, and the heat medium cooled by the second heat exchanger is expanded under reduced pressure to further cool the first heat exchanger. A decompression section for sending to the exchanger;
The vacuum cleaning apparatus according to any one of claims 1 to 5, further comprising:
前記蒸気室において、前記第2の熱交換器の下流側と、前記第1の熱交換器の上流側との間を流通する熱媒体と、前記炭化水素系洗浄剤とで熱交換を行うことで、該炭化水素系洗浄剤を気化させて蒸気を生成するとともに、該熱媒体を冷却する第3の熱交換器をさらに備えたことを特徴とする請求項6に記載の真空洗浄装置。   In the steam chamber, heat exchange is performed between the downstream side of the second heat exchanger and the upstream side of the first heat exchanger and the hydrocarbon-based cleaning agent. The vacuum cleaning apparatus according to claim 6, further comprising a third heat exchanger that vaporizes the hydrocarbon-based cleaning agent to generate steam and cools the heat medium.
JP2012221960A 2012-10-04 2012-10-04 Vacuum cleaning device Active JP5756072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221960A JP5756072B2 (en) 2012-10-04 2012-10-04 Vacuum cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221960A JP5756072B2 (en) 2012-10-04 2012-10-04 Vacuum cleaning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015087436A Division JP5945349B2 (en) 2015-04-22 2015-04-22 Vacuum cleaning device

Publications (2)

Publication Number Publication Date
JP2014073453A true JP2014073453A (en) 2014-04-24
JP5756072B2 JP5756072B2 (en) 2015-07-29

Family

ID=50748060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221960A Active JP5756072B2 (en) 2012-10-04 2012-10-04 Vacuum cleaning device

Country Status (1)

Country Link
JP (1) JP5756072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760124B1 (en) * 2014-06-30 2015-08-05 株式会社Ihi Condenser and cleaning device
WO2016002811A1 (en) * 2014-06-30 2016-01-07 株式会社Ihi Condenser and washing device
JP2016013536A (en) * 2015-03-20 2016-01-28 株式会社Ihi Condenser and washing device
JP2017000996A (en) * 2015-06-15 2017-01-05 株式会社Ihi Condenser and washing equipment
WO2018055934A1 (en) * 2016-09-21 2018-03-29 株式会社Ihi Cleaning device
US10118204B2 (en) 2014-06-30 2018-11-06 Ihi Corporation Cleaning apparatus
CN110833273A (en) * 2019-11-16 2020-02-25 湖南新元素智慧医疗科技有限公司 Medical multifunctional instrument cabinet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989100U (en) * 1982-12-06 1984-06-16 ジャパン・フイ−ルド株式会社 cleaning equipment
JPS6418483A (en) * 1987-07-10 1989-01-23 Takuma Kk Heat pump type steam washer
JPH02100682U (en) * 1989-01-27 1990-08-10
JPH08252546A (en) * 1995-03-16 1996-10-01 Chugai Ro Co Ltd Washing device using organic solvent
JPH1071370A (en) * 1996-08-29 1998-03-17 Ii M Ii:Kk Completely hermetic washing apparatus
JP2009119392A (en) * 2007-11-16 2009-06-04 Nidec Sankyo Corp Washing apparatus and method for controlling washing apparatus
JP2010234193A (en) * 2009-03-30 2010-10-21 Japan Field Kk Cleaning method of material to be cleaned and apparatus of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989100U (en) * 1982-12-06 1984-06-16 ジャパン・フイ−ルド株式会社 cleaning equipment
JPS6418483A (en) * 1987-07-10 1989-01-23 Takuma Kk Heat pump type steam washer
JPH02100682U (en) * 1989-01-27 1990-08-10
JPH08252546A (en) * 1995-03-16 1996-10-01 Chugai Ro Co Ltd Washing device using organic solvent
JPH1071370A (en) * 1996-08-29 1998-03-17 Ii M Ii:Kk Completely hermetic washing apparatus
JP2009119392A (en) * 2007-11-16 2009-06-04 Nidec Sankyo Corp Washing apparatus and method for controlling washing apparatus
JP2010234193A (en) * 2009-03-30 2010-10-21 Japan Field Kk Cleaning method of material to be cleaned and apparatus of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760124B1 (en) * 2014-06-30 2015-08-05 株式会社Ihi Condenser and cleaning device
WO2016002811A1 (en) * 2014-06-30 2016-01-07 株式会社Ihi Condenser and washing device
US10118204B2 (en) 2014-06-30 2018-11-06 Ihi Corporation Cleaning apparatus
US10676858B2 (en) 2014-06-30 2020-06-09 Ihi Corporation Condenser and cleaning device
JP2016013536A (en) * 2015-03-20 2016-01-28 株式会社Ihi Condenser and washing device
JP2017000996A (en) * 2015-06-15 2017-01-05 株式会社Ihi Condenser and washing equipment
WO2018055934A1 (en) * 2016-09-21 2018-03-29 株式会社Ihi Cleaning device
CN110833273A (en) * 2019-11-16 2020-02-25 湖南新元素智慧医疗科技有限公司 Medical multifunctional instrument cabinet

Also Published As

Publication number Publication date
JP5756072B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5756072B2 (en) Vacuum cleaning device
JP2021183331A (en) Vacuum cleaning device and vacuum cleaning method
US20120060868A1 (en) Microscale fluid delivery system
JP2008109086A (en) Substrate processing apparatus
JP5977572B2 (en) Vacuum cleaning device
JP5945349B2 (en) Vacuum cleaning device
WO2014168117A1 (en) Heat pump unit and heat pump unit operation method
US20070107748A1 (en) Vacuum cavitational streaming
JP2015020109A (en) Vacuum cleaning device
JP2014117627A (en) Vacuum cleaning apparatus
JP3806110B2 (en) Vacuum drying equipment
CN107790423B (en) Substrate cleaning device
JP6526858B2 (en) Cleaning solution distillation regenerating apparatus, parts cleaning apparatus, and method for regenerating distillation of cleaning solution
JP2006212563A (en) Washing method of material to be washed, washing system, and drying apparatus
JP2013030690A (en) Substrate processing apparatus, filter cleaning method, and filter cleaning apparatus
JP6320969B2 (en) Cleaning liquid distillation regeneration device and parts cleaning device
KR101446121B1 (en) Cleaning apparatus having quick drying means
JP3445496B2 (en) Parts cleaning equipment
JP2015020116A (en) Vacuum cleaning device
JP2015020108A (en) Vacuum cleaning device
JP5995276B2 (en) Vacuum cooling device
JP2019107599A (en) Vacuum vapor cleaning method
JP6830237B2 (en) Vacuum cooling device
JP2004353992A (en) Drier and drying method
JP2016161166A (en) Steam heating system and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150528

R150 Certificate of patent or registration of utility model

Ref document number: 5756072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250