JP2014072947A - Detection and removal device of single line-to-ground fault of distribution line - Google Patents

Detection and removal device of single line-to-ground fault of distribution line Download PDF

Info

Publication number
JP2014072947A
JP2014072947A JP2012215718A JP2012215718A JP2014072947A JP 2014072947 A JP2014072947 A JP 2014072947A JP 2012215718 A JP2012215718 A JP 2012215718A JP 2012215718 A JP2012215718 A JP 2012215718A JP 2014072947 A JP2014072947 A JP 2014072947A
Authority
JP
Japan
Prior art keywords
ground fault
phase
accident
detection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012215718A
Other languages
Japanese (ja)
Inventor
Naoki Masuda
直毅 増田
Toshio Nomura
俊夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012215718A priority Critical patent/JP2014072947A/en
Publication of JP2014072947A publication Critical patent/JP2014072947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a distribution system so that a photovoltaic power generator sustains power generation state, in the case of single line-to-ground fault of the distribution system.SOLUTION: Detection and removal devices 100a, 100b of single line-to-ground fault of a distribution line comprise: a detection unit 94 for detecting the phase of a ground fault upon occurrence of a single line-to-ground fault in a distribution line 12, and generating a single line open command for opening a single-phase switch 5 so as to interrupt a single line-to-ground phase thus detected; and a closing unit 95 outputting a command for closing the switch 5 of the ground fault phase after the switch 5 is opened. The detection unit 94 includes a ground fault detection unit 72 for detecting the ground fault phase of single line-to-ground fault of a distribution line 12, and a fault removal unit 28 for giving an open command so as to open the switch 5 of the ground fault phase, when the ground fault detection unit 72 detects the ground fault.

Description

本発明は、配電線の1線地絡事故の検出除去装置に関するものである。   The present invention relates to an apparatus for detecting and removing a one-line ground fault of a distribution line.

配電系統は従来、負荷だけが接続されていた。近年、家庭用の太陽光発電装置などが普及し始め、太陽光発電装置が配電線に接続されるようになっている。太陽光発電装置は炭酸ガスを発生させないで発電できるので、地球環境負荷低減意識(炭酸ガス排出量抑制)の高まりに伴い、普及が進んでいる。しかし、太陽光発電装置が配電線に接続されることに伴い、配電線の電圧上昇、電圧三相不平衡、上位系と分離した際の単独運転の発生、天候に依存した発電量の大きな変動などの、諸課題が発生している。   In the past, only the load was connected to the power distribution system. In recent years, home-use solar power generation devices and the like have begun to spread, and solar power generation devices are connected to distribution lines. Since solar power generation devices can generate electricity without generating carbon dioxide, they are becoming more widespread with increasing awareness of reducing the global environmental load (reducing carbon dioxide emissions). However, as the photovoltaic power generation equipment is connected to the distribution line, the voltage rise of the distribution line, voltage three-phase imbalance, single operation when separated from the host system, large fluctuations in the amount of power generation depending on the weather Various issues have occurred.

太陽光発電装置が接続された配電系統では、事故遮断や工事などのために開閉器が操作されて開放することなどにより、配電線が上位系統と分離した際に、配電線に接続された負荷と発電装置の発電量がほぼ同じ場合に配電線だけの単独系統が発生する可能性がある。このため、現状では事故遮断や工事による開閉器の開放による区間停電などの場合に、太陽光発電装置は配電系統から解列、すなわち離脱させるようになっている。これらの機能は太陽光発電装置側が持っている。   In a distribution system to which a photovoltaic power generation device is connected, the load connected to the distribution line when the distribution line is separated from the higher-level system, for example, by opening and closing the switch for accident interruption or construction. If the power generation amount of the generator is almost the same, a single system with only distribution lines may occur. For this reason, in the present situation, in the event of an accident interruption or a section power failure due to opening of a switch due to construction, the photovoltaic power generation apparatus is disconnected from the distribution system, that is, detached. These functions are possessed by the photovoltaic power generator.

特許文献1には、太陽光発電などの分散電源が接続された配電系統が、事故時に単独運転であるかどうかを検出する判定方法と、検出された単独運転状態を簡便に解消する方法が記載されている。特許文献1の分散電源の単独運転の判定方法は、遮断器が遮断状態(開放状態)となった場合において、複数の開閉器のうち第1、第2の開閉器がオフ状態であり、第1の開閉器の第2の開閉器に近接する側の配電線電圧が有電圧であり、第2の開閉器の第1の開閉器に近接する側の配電線電圧が有電圧である場合に、第1、第2の開閉器の間に1または複数の分散電源が単独運転する単独運転区間が存在すると判定するものである。この分散電源の単独運転の判定方法は、既存の配電自動化システムを利用して、開閉器の開閉状態および開閉器の両側の配電線電圧を検出することによって、低コストで簡単に分散電源の単独運転区間を判定していた。   Patent Document 1 describes a determination method for detecting whether or not a distribution system to which a distributed power source such as solar power generation is connected is in a single operation at the time of an accident, and a method for easily eliminating a detected single operation state. Has been. In the determination method of the isolated operation of the distributed power supply of Patent Document 1, when the circuit breaker is in the break state (open state), the first and second switches among the plurality of switches are in the off state, When the distribution line voltage on the side close to the second switch of the first switch is a voltage, and the distribution line voltage on the side close to the first switch of the second switch is a voltage It is determined that there is a single operation section in which one or a plurality of distributed power supplies operate independently between the first and second switches. This method of determining whether or not a distributed power source is operating independently uses an existing distribution automation system to detect the switching state of the switch and the distribution line voltage on both sides of the switch, thereby easily and inexpensively The driving section was judged.

また、特許文献1の配電系統の故障復旧方法は、複数の区間のうち、互いに隣接する第1、第2の区間のいずれか一方の区間が単独運転区間であり、他方の区間の配電線電圧が無電圧である場合に、第1、第2の区間を区分する開閉器を投入するものであり、また、複数の区間のうち、互いに隣接する第3、第4の区間の両方が単独運転区間である場合に、第3、第4の区間を区分する開閉器を開放するものである。この配電系統の故障復旧方法は、単独運転区間と隣接する区間との間の開閉器を開放または投入して、分散電源の発電量と負荷の消費量とのバランスを崩すことよって、分散電源ごとに個別に設けられた単独運転防止装置を正常に機能させ、簡便に単独運転状態を停止させようとしていた。   Moreover, the fault recovery method of the distribution system of patent document 1 is that the any one of the 1st and 2nd area adjacent to each other is a single operation area among a plurality of areas, and the distribution line voltage of the other area. When no voltage is applied, a switch for dividing the first and second sections is inserted, and among the plurality of sections, both the third and fourth sections adjacent to each other are operated independently. When it is a section, the switch that divides the third and fourth sections is opened. This power distribution system failure recovery method opens or closes a switch between an isolated operation section and an adjacent section, thereby breaking the balance between the power generation amount of the distributed power source and the load consumption amount. The individual operation prevention device provided individually for each is functioning normally, and the individual operation state is easily stopped.

特開2009−65799号公報(0011段〜0020段、図3、図6、図9)JP 2009-65799 A (Steps 0011 to 0020, FIGS. 3, 6, and 9)

配電系統では、高圧需要家構内事故と配電系統内の事故を識別するため、1線地絡事故の遮断時間に時限協調が取られており、1線地絡事故の遮断時間は時限遮断となる。すなわち、事故に対して、変電所の遮断器を遮断させる保護リレーは、需要家の受電遮断器を遮断する保護リレーよりも長い時限を待っている。変電所の遮断器を遮断させる保護リレーは、需要家が配電線に接続したまま所定の時間が経過すると、保護リレーが動作して変電所の遮断器が遮断する。変電所の遮断器が事故遮断をすると、一旦、配電系統は全停となる。   In the power distribution system, in order to distinguish between high-voltage customer premises accidents and accidents in the distribution system, timed coordination is taken during the cut-off time of the one-line ground fault accident, and the cut-off time of the one-line ground fault accident is timed cut-off . That is, the protection relay that shuts off the breaker of the substation in response to an accident is waiting for a longer time than the protection relay that shuts off the power receiving breaker of the customer. The protection relay that shuts off the circuit breaker at the substation is activated when a predetermined time elapses while the customer is connected to the distribution line, and the circuit breaker at the substation is cut off. Once the substation circuit breaker breaks down, the distribution system is temporarily stopped.

配電系統は一度事故遮断すると、当該遮断区間は約5分後に復旧するまで停電する。太陽光発電装置の接続された配電系統の電圧が復旧して、太陽光発電装置が配電系統にエネルギーを送り出すまでの時間は、3分程の時間が必要である。この結果、太陽光発電装置は、10分弱の間、発電を停止することになる。また、電圧が復旧した直後には太陽光発電装置が運転していないので、事故前の発電量が大きいと、事故後に配電線に過負荷が発生する場合がある。このように、復旧及び再発電までの間、太陽光発電装置を10分弱全停止するという問題点があった。   Once the power distribution system has been shut down, the power cuts out until the power is restored in about 5 minutes. It takes about 3 minutes for the voltage of the distribution system connected to the photovoltaic power generator to recover and for the photovoltaic power generator to send energy to the distribution system. As a result, the solar power generation device stops power generation for a little less than 10 minutes. Moreover, since the photovoltaic power generation apparatus is not operating immediately after the voltage is restored, if the amount of power generation before the accident is large, an overload may occur in the distribution line after the accident. Thus, there was a problem that the solar power generation device was completely stopped for less than 10 minutes until recovery and re-power generation.

非接地系の配電系統における1線地絡事故では、基幹系統と異なり、線間電圧及び電流はあまり変化せず、また電圧と負荷電流の位相差も事故の前後であまり変わらない。このため3相のうちいずれか2相の線間に接続された太陽光発電装置などの分散電源は、1線地絡事故を感知出来ず、変電所の遮断器がトリップして配電線が停電することを条件に、この配電線に接続されていた太陽光発電装置が離脱することになる。すなわち、太陽光発電装置は配電系統から解列される。このとき配電系統の需給が一致して、単独系統が発生する可能性がある。   In a one-line ground fault in a non-grounded distribution system, unlike the main system, the line voltage and current do not change much, and the phase difference between the voltage and load current does not change much before and after the accident. For this reason, a distributed power source such as a photovoltaic power generation device connected between any two of the three phases cannot detect a one-line ground fault, the substation breaker trips, and the distribution line fails. If it does, the solar power generation device connected to this distribution line will detach | leave. That is, the solar power generation device is disconnected from the distribution system. At this time, the supply and demand of the distribution system may coincide and a single system may be generated.

配電系統の配電線の事故で最も発生率の高いのは、1線地絡事故である。1線地絡事故で変電所の遮断器を3相遮断すると、配電系統内の需給の一致で、単独系統の発生確率も高くなる。単独系統が生じた場合は、停電と思っている作業員が感電したり、上位系との再接続がうまくできなかったりする可能性があるという問題があり、配電系統の1線地絡事故で単独系統を発生させないような抜本対策が望まれている。   The highest incidence of distribution line accidents in the distribution system is the one-wire ground fault. If the circuit breaker of a substation is interrupted in three phases in a one-line ground fault, the probability of occurrence of a single system increases due to the supply and demand matching in the distribution system. When a single system occurs, there is a problem that a worker who thinks that there is a power outage may get an electric shock, or the reconnection with the host system may not be successful. There is a need for drastic measures to prevent the generation of a single system.

特許文献1の分散電源の単独運転の判定方法や特許文献1の配電系統の故障復旧方法では、配電系統の事故の際に分散電源の単独運転を判定し、分散電源ごとに個別に設けられた単独運転防止装置を正常に機能させ、簡便に単独運転状態を停止させることはできるものの、配電系統の1線地絡事故の際に分散電源が単独運転になることなく発電状態を継続するように配電系統を制御していない。このため、特許文献1の技術において、配電系統の1線地絡事故の際に、太陽光発電装置からの電力供給が10分程度途絶する。   In the determination method of the independent operation of the distributed power supply of Patent Document 1 and the failure recovery method of the distribution system of Patent Document 1, the isolated operation of the distributed power supply is determined in the event of an accident in the distribution system, and each distributed power supply is provided individually. Although the isolated operation prevention device can function normally and the isolated operation state can be stopped easily, the power generation state is maintained without the distributed power supply becoming independent operation in the event of a one-line ground fault in the distribution system. The distribution system is not controlled. For this reason, in the technique of patent document 1, in the case of a 1-line ground fault of a distribution system, the electric power supply from a solar power generation device is interrupted for about 10 minutes.

本発明は、上記の点に鑑みなされたものであり、配電系統の事故で最も発生率の高い1線地絡事故の場合に、地絡相のみを開放し、地絡相以外の健全相の接続を維持することで、健全相に繋がる太陽光発電装置が配電系統に電力供給できることに注目し、太陽光発電装置の発電を継続させ、太陽光発電装置の出力を最大限に活用することを目的とする。   The present invention has been made in view of the above points, and in the case of a one-line ground fault with the highest occurrence rate in a power distribution system accident, only the ground fault phase is opened, and a healthy phase other than the ground fault phase is opened. Focusing on maintaining the connection, solar power generators connected to the healthy phase can supply power to the distribution system, and continue to generate power from the solar power generators to maximize the output of the solar power generators. Objective.

本発明に係る配電線の1線地絡事故の検出除去装置は、配電線の1線地絡事故の地絡相を検出する地絡相検出部と、地絡相検出部が地絡相を検出した場合に、地絡相の開閉器が開放するように開放指令を出す事故除去部と、開閉器が開放された後に、地絡相の開閉器を投入する投入指令を出す投入処理部とを備えたことを特徴とする。   An apparatus for detecting and removing a one-line ground fault of a distribution line according to the present invention includes a ground fault phase detecting unit that detects a ground fault phase of a one-line ground fault of a distribution line, and a ground fault phase detecting unit that detects a ground fault phase. An accident removal unit that issues an opening command to open the earth fault phase switch if detected, and an input processing unit that issues an input command to turn on the earth fault phase switch after the switch is opened It is provided with.

本発明によれば、地絡相が検出しされた場合に、地絡相の開閉器が開放するように開放指令を出すので、配電線を全停させないで1線地絡事故を除去できる。   According to the present invention, when a ground fault phase is detected, an open command is issued so that the switch of the ground fault phase is opened. Therefore, it is possible to eliminate a one-line ground fault without stopping all the distribution lines.

本発明による配電線の1線地絡事故の検出除去装置を含む配電系統の構成を示す図である。It is a figure which shows the structure of the power distribution system containing the detection removal apparatus of the 1 line | wire ground fault accident of the power distribution line by this invention. 本発明による配電線の1線地絡事故の検出除去装置が有する検出部の構成を示す図である。It is a figure which shows the structure of the detection part which the detection / removal apparatus of the 1 line | wire ground fault accident of the distribution line by this invention has. 本発明による配電線の1線地絡事故の検出除去装置が有する投入処理部の構成を示す図である。It is a figure which shows the structure of the input process part which the detection / removal apparatus of the 1 line | wire ground fault of a distribution line by this invention has. 本発明による配電線の1線地絡事故の検出除去装置が有する検出部の動作を説明するフロー図である。It is a flowchart explaining operation | movement of the detection part which the detection removal apparatus of the 1 line | wire ground fault of a distribution line by this invention has. 本発明による配電線の1線地絡事故の検出除去装置が有する投入処理部の動作を説明するフロー図である。It is a flowchart explaining operation | movement of the injection | throwing-in process part which the detection / removal apparatus of the 1 line | wire ground fault accident of the distribution line by this invention has. 1線地絡事故時の等価回路である。It is an equivalent circuit at the time of a 1-wire ground fault. A相の1線地絡事故時のベクトル図である。It is a vector diagram at the time of 1-line ground fault of A phase. A相の1線地絡事故の場合に地絡相を検出する原理を説明するベクトル図である。It is a vector diagram explaining the principle which detects a ground fault phase in the case of a 1-line ground fault of A phase. 本発明による配電線の1線地絡事故の検出除去装置が有する1線地絡相検出装置の構成を示す図である。It is a figure which shows the structure of the 1 wire ground fault detection apparatus which the detection removal apparatus of the 1 wire ground fault accident of the distribution line by this invention has. 1線地絡相検出原理を説明する波形図である。It is a wave form diagram explaining the 1 wire ground fault phase detection principle. 本発明による配電線の1線地絡事故の検出除去装置が有するアーク消滅確認回路を示す図である。It is a figure which shows the arc extinction confirmation circuit which the detection and removal apparatus of the 1 line | wire ground fault of a distribution line by this invention has. 1相欠相時の電圧と太陽光発電による電圧維持を説明する図である。It is a figure explaining the voltage maintenance by the voltage at the time of 1 phase open phase, and photovoltaic power generation. 本発明の実施の形態1による配電線の1線地絡事故の検出除去装置の制御手法を説明する図である。It is a figure explaining the control method of the detection removal apparatus of the 1 wire ground fault accident of the distribution line by Embodiment 1 of this invention.

実施の形態1.
図1は、本発明による配電線の1線地絡事故の検出除去装置を含む配電系統の構成を示す図である。図2は本発明による検出除去装置の検出部の構成を示す図であり、図3は本発明の実施の形態1による検出除去装置の投入処理部の構成を示す図である。3相交流により配電する配電系統120は、上位系統から受電して降圧する配電用変圧器の2次側に接続された母線2を有し、母線2には遮断器3を介して配電線12が接続されている。図1には、複数の配電線12が母線2に接続されている。3相の配電線12を相ごとに認識する場合は、配電線12a、12b、12cと表記する。図1では、3相一括で開閉する2個の区分開閉器4a、4bと、相ごとに開閉できる単相型区分開閉器5a、5b、5c、5d、5e、5fを図示している。単相型区分開閉器5a、5dが配電線12aを区分し、単相型区分開閉器5b、5eが配電線12bを区分し、単相型区分開閉器5c、5fが配電線12cを区分する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a power distribution system including a detection and removal device for a one-line ground fault of a distribution line according to the present invention. FIG. 2 is a diagram illustrating the configuration of the detection unit of the detection and removal apparatus according to the present invention, and FIG. 3 is a diagram illustrating the configuration of the input processing unit of the detection and removal apparatus according to Embodiment 1 of the present invention. A distribution system 120 that distributes power by three-phase alternating current has a bus 2 connected to a secondary side of a distribution transformer that receives power from a higher-level system and steps down the voltage. A distribution line 12 is connected to the bus 2 via a circuit breaker 3. Is connected. In FIG. 1, a plurality of distribution lines 12 are connected to the bus 2. When recognizing the three-phase distribution line 12 for each phase, it is expressed as distribution lines 12a, 12b, and 12c. In FIG. 1, two section switches 4a and 4b that are opened and closed in a three-phase manner and single-phase section switches 5a, 5b, 5c, 5d, 5e, and 5f that can be opened and closed for each phase are illustrated. Single-phase section switches 5a and 5d section the distribution line 12a, single-phase section switches 5b and 5e section the distribution line 12b, and single-phase section switches 5c and 5f section the distribution line 12c. .

この実施の形態1での配電系統制御システム110は、相ごとに開閉可能な区分開閉器の3相の組(A相、B相、C相)ごとに、1個の1線地絡事故の検出除去装置100を備える。図1では、配電系統制御システム110が2つの検出除去装置100a、100bを備えた例を示した。検出除去装置100a、100bは、配電系統120から系統情報を取得し、その系統情報に基づいて配電系統120を制御する制御情報を機器に送出する。なお、検出除去装置の符号は、総括的に100を用い、区別して説明する場合に100a、100bを用いる。   The distribution system control system 110 according to the first embodiment has one 1-wire ground fault for each of the three-phase groups (A phase, B phase, C phase) that can be switched for each phase. A detection and removal device 100 is provided. FIG. 1 shows an example in which the power distribution system control system 110 includes two detection removal devices 100a and 100b. The detection and removal devices 100a and 100b acquire system information from the power distribution system 120, and send control information for controlling the power distribution system 120 to the equipment based on the system information. In addition, the code | symbol of a detection removal apparatus uses 100 as a whole, and uses 100a and 100b when distinguishing and explaining.

検出除去装置100aは、通信線8を介して、電源側の情報取集及び電源側の機器の制御を行う。検出除去装置100bは、通信線8を介して、負荷側の情報取集及び負荷側の機器の制御を行う。上り情報は機器のON/OFF情報や電圧及び電流(電流センサーについては図示せず)などの数値情報などであり、下り情報はポーリング信号や制御信号などである。   The detection / removal device 100 a performs power source side information collection and power source side device control via the communication line 8. The detection / removal device 100 b performs load-side information collection and load-side device control via the communication line 8. The upstream information is device ON / OFF information, numerical information such as voltage and current (current sensor is not shown), and the downstream information is a polling signal, a control signal, and the like.

検出除去装置100aは、1端が配電線12a、12b、12cに接続されたコンデンサ型分圧変成器6a、6b、6cと、コンデンサ型分圧変成器6a、6b、6cのもう1端が接続する点と接地点の間に設けられた零相コンデンサ型分圧装置7、配電線12a、12b、12cに流れる電流を計測する変流器9a、9b、9cを有するモニター部91と、他の検出除去装置100b及び機器と通信する通信部である系統情報入出力部13と、日照判定部93と、検出部94と、投入処理部95を備える。   In the detection and removal device 100a, one end of each of the capacitor-type voltage dividers 6a, 6b, and 6c connected to the distribution lines 12a, 12b, and 12c is connected to the other end of the capacitor-type voltage dividers 6a, 6b, and 6c. A monitor unit 91 having current transformers 9a, 9b, 9c for measuring the current flowing in the zero-phase capacitor type voltage dividing device 7, the distribution lines 12a, 12b, 12c provided between the grounding point and the grounding point; A system information input / output unit 13 that is a communication unit that communicates with the detection / removal device 100b and the device, a sunshine determination unit 93, a detection unit 94, and an input processing unit 95 are provided.

コンデンサ型分圧変成器6a、6b、6cと零相コンデンサ型分圧装置7との接続点の情報は、信号線52を介して系統情報入出力部13に入力される。変流器9a、9b、9cが計測した電流の情報は、それぞれ信号線57a、57b、57cを介して系統情報入出力部13に入力される。コンデンサ型分圧変成器6a、6b、6cの情報は、それぞれ信号線50a、50b、50cを介して系統情報入出力部13に入力される。零相コンデンサ型分圧装置7の情報は、信号線51を介して系統情報入出力部13に入力される。図1において区間11は、1線地絡事故を含む区間である。   Information on connection points between the capacitor type voltage transformers 6 a, 6 b and 6 c and the zero-phase capacitor type voltage divider 7 is input to the system information input / output unit 13 via the signal line 52. Information on the current measured by the current transformers 9a, 9b, and 9c is input to the system information input / output unit 13 through signal lines 57a, 57b, and 57c, respectively. Information of the capacitor-type voltage dividers 6a, 6b, and 6c is input to the system information input / output unit 13 through the signal lines 50a, 50b, and 50c, respectively. Information of the zero-phase capacitor type voltage divider 7 is input to the system information input / output unit 13 via the signal line 51. In FIG. 1, a section 11 is a section including a one-line ground fault.

検出除去装置100bは、検出除去装置100aと同じ構成であるが、配電線12a、12b、12cに流れる電流を計測する3つの変流器が変流器9d、9e、9fである。以下の説明では基本的に検出除去装置100aの動作を説明するが、検出除去装置100bの動作は、変流器9a、9b、9cを変流器9d、9e、9fと読み替えればよい。   The detection / removal device 100b has the same configuration as that of the detection / removal device 100a, but the three current transformers that measure the current flowing through the distribution lines 12a, 12b, and 12c are the current transformers 9d, 9e, and 9f. In the following description, the operation of the detection / removal device 100a is basically described. However, the operation of the detection / removal device 100b may be obtained by replacing the current transformers 9a, 9b, and 9c with current transformers 9d, 9e, and 9f.

検出部94は、事故発生確認部14と、短絡優先判定部18と、地絡事故発生検出部19と、A相事故確認部20と、B相事故確認部21と、C相事故確認部22と、地絡相確定部23と、事故位置検出部45と、検出地絡情報伝達指令部24と、相手端情報受信部25と、一致判定部27と、開放指令送出部28を備える。短絡優先判定部18は、短絡事故確認部15と、地絡事故確認部16と、事故の進展の有無を確認するための時間待ち部44と、2線以上の事故検出部17を備える。地絡事故発生検出部19、A相事故確認部20、B相事故確認部21、C相事故確認部22、地絡相確定部23は、接地相検出部72を構成する。   The detection unit 94 includes an accident occurrence confirmation unit 14, a short circuit priority determination unit 18, a ground fault occurrence detection unit 19, a phase A accident confirmation unit 20, a phase B accident confirmation unit 21, and a phase C accident confirmation unit 22. A ground fault phase determination unit 23, an accident position detection unit 45, a detected ground fault information transmission command unit 24, a counterpart information reception unit 25, a coincidence determination unit 27, and an opening command transmission unit 28. The short-circuit priority determination unit 18 includes a short-circuit accident confirmation unit 15, a ground fault accident confirmation unit 16, a time waiting unit 44 for confirming whether or not an accident has progressed, and an accident detection unit 17 having two or more lines. The ground fault occurrence detection unit 19, the A phase accident confirmation unit 20, the B phase accident confirmation unit 21, the C phase accident confirmation unit 22, and the ground fault phase determination unit 23 constitute a ground phase detection unit 72.

投入処理部95は、開放指令確認部29と、機器不良表示部30と、地絡解消確認部33と、投入指令部34と、同期投入信号送出部35と、同期投入信号受信部36と、投入確認部37と、地絡事故確認部43を備える。   The input processing unit 95 includes an opening command confirmation unit 29, a device failure display unit 30, a ground fault elimination confirmation unit 33, a input command unit 34, a synchronous input signal transmission unit 35, a synchronous input signal reception unit 36, A loading confirmation unit 37 and a ground fault confirmation unit 43 are provided.

日照判定部93について説明する。日照がなく太陽光発電装置が発電していない場合には、太陽光発電装置を停止させることのデメリットが少なく、地絡相だけを開放すると、正相電圧と同じだけの逆相電圧が発生し、逆相電圧が電動機などに悪影響を与える。十分な日照があり、かつ太陽光発電装置が動作している場合には、配電系統の1線地絡事故の際に地絡相だけを開放して太陽光発電装置が発電を継続できるメリットが大きく、地絡相と地絡相でない相との間に接続された太陽光発電装置により逆相電圧は小さくなり、逆相電圧による電動機などへの悪影響も小さくなる。そこで、日照判定部93にて日照の有無を判定し、その判定に応じて検出部94及び投入処理部95の処理を変更する。   The sunshine determination unit 93 will be described. When there is no sunshine and the solar power generation device is not generating power, there are few demerits of stopping the solar power generation device, and if only the ground fault phase is opened, a negative phase voltage equivalent to the positive phase voltage is generated. The negative phase voltage adversely affects the motor. When there is sufficient sunshine and the solar power generation device is operating, there is a merit that the solar power generation device can continue power generation by opening only the ground fault phase in the event of a one-line ground fault in the distribution system Largely, the negative phase voltage is reduced by the photovoltaic power generation device connected between the ground fault phase and the phase that is not the ground fault phase, and the adverse effect of the negative phase voltage on the motor and the like is also reduced. Therefore, the sunshine determination unit 93 determines the presence or absence of sunshine, and changes the processing of the detection unit 94 and the input processing unit 95 according to the determination.

日照判定部93にて日照の有無を判定する方法は複数ある。例えば、3つの方法を示す。第1の方法は、タイマーを用いて所定の時間範囲を日照有とし、それ以外を日照無とするものである。例えば、日照有の判定条件を午前9時間から午後5時にする。この日照有の判定条件は、緯度や季節によって調整してもよい。緯度や季節によって調整することで、日照判定部93の精度を上げることができる。第2の方法は、日照センサーを用いて所定の日照量以上であれば日照有とし、所定の日照量より少なければ日照無とするものである。第3の方法は、気象データを用いて、例えば天気が晴れや薄曇りであれば日照有とし
、晴れや薄曇り以外の天気であれば日照無とするものである。第2の方法は、最も高精度に効果的な制御を行うことができる。第1の方法は、最も簡便であり、配電系統制御システム110の構成をシンプルにすることができる。
There are multiple methods for determining the presence or absence of sunshine in the sunshine determination unit 93. For example, three methods are shown. In the first method, a predetermined time range is set to have sunshine using a timer, and the others are set to have no sunshine. For example, the determination condition for sunshine is 9 am to 5 pm. The determination condition for the presence of sunlight may be adjusted according to the latitude and season. By adjusting according to the latitude and season, the accuracy of the sunshine determination unit 93 can be increased. The second method is to use sunshine sensors so that sunshine is present if the amount is greater than or equal to a predetermined amount of sunshine, and no sunshine if the amount is less than the predetermined amount of sunshine. The third method uses weather data, for example, having sunshine if the weather is sunny or lightly clouded, and having no sunshine if the weather is not sunny or lightly cloudy. The second method can perform effective control with the highest accuracy. The first method is the simplest and can simplify the configuration of the power distribution system control system 110.

実施の形態1では、日照判定結果が日照有の場合は1線地絡事故の程度が90%地絡以上で1相遮断を行い、日照判定結果が日照無の場合は1線地絡事故の程度が98%地絡以上で1相遮断を行うようにする。1線地絡事故の程度については、後述する。1線地絡事故の程度を地絡程度と略する。   In the first embodiment, when the sunshine determination result is sunshine present, the one-line ground fault accident is 90% ground fault or more and one-phase block is performed, and when the sunshine determination result is no sunshine, the one-line ground fault accident Make a one-phase block when the degree is over 98% ground fault. The degree of the 1-line ground fault will be described later. The degree of a one-line ground fault is abbreviated as a ground fault.

検出部94の動作を説明する。図4は、検出部の動作を説明するフロー図である。区分開閉器4a、4bや単相型区分開閉器5は、負荷電流は切れても短絡電流のような大きな電流は切れないので、短絡事故の存在する時は開放しないようにする必要がある。ステップS001にて、事故発生確認部14は系統情報入出力部13から取得した系統情報に基づいて事故発生の確認を行う。ステップS002にて、短絡事故確認部15は、短絡事故の有無を確認して、短絡事故が存在する場合はこのシーケンスを終了する。短絡事故確認部15は、短絡事故が存在しない場合はステップS003の処理へ進める。ステップS003にて、地絡事故確認部16は、地絡事故が存在しない場合は終了する。地絡事故確認部16は、地絡事故が存在する場合はステップS004の処理へ進める。また、地絡事故であっても2線地絡の場合もあり、短絡電流並みの電流が流れるのでるので、地絡事故確認部16は、この場合もこのシーケンスを終了する。   The operation of the detection unit 94 will be described. FIG. 4 is a flowchart for explaining the operation of the detection unit. The section switches 4a and 4b and the single-phase section switch 5 do not open a large current such as a short-circuit current even if the load current is cut off. In step S001, the accident occurrence confirmation unit 14 confirms the occurrence of the accident based on the system information acquired from the system information input / output unit 13. In step S002, the short-circuit accident confirmation unit 15 confirms the presence or absence of a short-circuit accident, and ends this sequence if a short-circuit accident exists. If there is no short circuit accident, the short circuit accident confirmation unit 15 proceeds to the process of step S003. In step S003, the ground fault accident confirmation unit 16 ends when there is no ground fault. If there is a ground fault, the ground fault accident confirmation unit 16 proceeds to the process of step S004. Moreover, even if it is a ground fault, there may be a two-wire ground fault, and a current similar to a short-circuit current flows. Therefore, the ground fault confirmation unit 16 also ends this sequence in this case.

1線地絡事故から2線地絡事故、3線地絡事故に進展することもあるので、ステップS004にて、この確認のために、時間待ち部44で短時間待ち、すなわち時限処理を行い、ステップS005の処理へ進める。ステップS005にて、2線以上の事故検出部17は、地絡相の数が2相以上あるか否かを確認する。2線以上の事故検出部17は、地絡相の数が2相以上になっていれば、すなわち進展事故(1線から2線以上の事故)になっていれば、このシーケンスを終了する。2線以上の事故検出部17は、地絡相の数が2相以上でない、すなわち1相である場合はステップS006の処理へ進める。このステップS002からステップS005までの一連の処理は、短絡優先判定部18が行う。   Since the 1-line ground fault accident may progress to the 2-line ground fault accident and the 3-line ground fault accident, in step S004, the time waiting unit 44 waits for a short time, that is, performs timed processing for this confirmation. The process proceeds to step S005. In step S005, the accident detection unit 17 for two or more wires confirms whether the number of ground fault phases is two or more. The accident detection unit 17 having two or more lines ends this sequence if the number of ground fault phases is two or more, that is, if it is a progressing accident (accident from one line to two or more lines). If the number of ground fault phases is not two or more, that is, one phase, the accident detection unit 17 having two or more wires proceeds to the process of step S006. The series of processing from step S002 to step S005 is performed by the short circuit priority determination unit 18.

ステップS006にて、地絡事故発生検出部19は地絡事故が発生しているかを再度確認し、地絡事故が発生している場合はステップS007の処理へ進める。地絡事故発生検出部19は、地絡事故が存在しない場合は終了する。ステップS007にて、A相事故確認部20は、A相事故か否かを確認する。A相事故確認部20は、A相事故の場合はステップS010の処理へ進め、A相事故でない場合はステップS008の処理へ進める。ステップS008にて、B相事故確認部21は、B相事故か否かを確認する。B相事故確認部21は、B相事故の場合はステップS010の処理へ進め、B相事故でない場合はステップS009の処理へ進める。ステップS009にて、C相事故確認部22は、C相事故か否かを確認する。C相事故確認部22は、C相事故の場合はステップS010の処理へ進め、C相事故でない場合は終了する。   In step S006, the ground fault occurrence detection unit 19 confirms again whether or not a ground fault has occurred. If a ground fault has occurred, the process proceeds to step S007. The ground fault occurrence detection unit 19 ends when there is no ground fault. In step S007, the A phase accident confirmation unit 20 confirms whether or not there is an A phase accident. The phase A accident confirmation unit 20 proceeds to the process of step S010 in the case of the phase A accident, and proceeds to the process of step S008 in the case of no phase A accident. In step S008, phase B accident confirmation unit 21 confirms whether or not there is a phase B accident. The B phase accident confirmation unit 21 proceeds to the process of step S010 in the case of a B phase accident, and proceeds to the process of step S009 in the case of no B phase accident. In step S009, the C-phase accident confirmation unit 22 confirms whether or not there is a C-phase accident. The C-phase accident confirmation unit 22 proceeds to the process of step S010 in the case of a C-phase accident, and ends if it is not a C-phase accident.

ステップS010にて、地絡相確定部23は、A相事故確認部20、B相事故確認部21、C相事故確認部22の判定結果に基づいて、接地された状態になった接地相、すなわち地絡の発生した地絡相を確定する。ステップS007、S008、S009、S010は、地絡相検出手順である。地絡相確定部23は、地絡相の1線地絡事故の程度を調べる。また、地絡相確定部23は、日照判定部93の日照判定結果を取得して、日照判定結果が日照有で、かつ1線地絡事故の程度が90%地絡以上の場合(条件1)はステップS011の処理へ進める。また、地絡相確定部23は、日照判定結果が日照無で、かつ1線地絡事故の程度が98%地絡以上の場合(条件2)はステップS011の処理へ進める。地絡相確定部23は、上記条件1または条件2に該当しない場合は、このシーケンスを終了する。上記条件1または条件2は、日照判定結果と1線地絡事故の程度とに基づいた条件である。90%が第1閾値であり、98%が第1閾値よりも大きく設定された第2閾値である。   In step S010, the ground fault phase determining unit 23 determines whether the ground phase is in a grounded state based on the determination results of the A phase accident confirmation unit 20, the B phase accident confirmation unit 21, and the C phase accident confirmation unit 22. That is, the ground fault phase in which the ground fault occurs is determined. Steps S007, S008, S009, and S010 are ground fault detection procedures. The ground fault phase determining unit 23 checks the degree of the ground fault phase 1-line ground fault. Further, the ground fault phase determination unit 23 acquires the sunshine determination result of the sunshine determination unit 93, the sunshine determination result is sunshine present, and the degree of the 1-line ground fault is 90% ground fault or more (condition 1) ) Proceeds to the process of step S011. The ground fault phase determination unit 23 proceeds to the process of step S011 when the sunshine determination result is no sunshine and the degree of the 1-line ground fault is equal to or greater than 98% ground fault (condition 2). The ground fault phase determining unit 23 ends this sequence when the condition 1 or the condition 2 is not satisfied. The condition 1 or the condition 2 is a condition based on the sunshine determination result and the degree of the 1-line ground fault. 90% is the first threshold value, and 98% is the second threshold value set larger than the first threshold value.

ステップS011では、変流器9a、9b、9cが計測した電流の和をとって零相電流を検出し、零相電流の方向から事故点が当該検出除去装置100よりも下流にあるかどうかを、事故位置検出部45が判断する。   In step S011, the sum of the currents measured by the current transformers 9a, 9b, and 9c is taken to detect the zero-phase current, and whether or not the accident point is downstream from the detection / removal device 100 in the direction of the zero-phase current. The accident position detection unit 45 determines.

ステップS012にて、検出地絡情報伝達指令部24は、事故相と事故点が下流かどうかという自端の判断結果を相手端に送る。自端が検出除去装置100aの場合、検出除去装置100aが相手端である検出除去装置100bおよび図示しない上流側の検出除去装置に判断結果を送る。ステップS013にて、相手端情報受信部25は、相手端の判断結果を入手する。自端が検出除去装置100aの場合、検出除去装置100aが相手端である検出除去装置100bおよび図示しない上流側の検出除去装置から判断結果を入手する。ここで、配電線上のある地点における上流と下流を、以下のように定義する。上流とは、配電線が接続された変電所の母線がある側であり、下流とは変電所の母線がない側である。   In step S012, the detected ground fault information transmission command unit 24 sends its own determination result whether the accident phase and the accident point are downstream or not to the other end. When the self-end is the detection / removal device 100a, the detection / removal device 100a sends the determination result to the detection / removal device 100b which is the counterpart end and an upstream detection / removal device (not shown). In step S013, the partner end information receiving unit 25 obtains the determination result of the partner end. When the self-end is the detection / removal device 100a, the determination result is obtained from the detection / removal device 100b whose detection / removal device 100a is the counterpart end and the upstream detection / removal device (not shown). Here, the upstream and downstream at a certain point on the distribution line are defined as follows. The upstream is the side where the bus of the substation to which the distribution line is connected, and the downstream is the side where there is no bus of the substation.

ステップS014にて、一致判定部27は、自端の結果と相手端の結果を比較し、一致している場合はステップS015の処理へ進める。一致とは、地絡相が同じで、かつ、自端で下流に事故点があると判断し、下流の相手端では下流にないと判断している場合、または、自端で下流に事故点がないと判断し、上流の相手端では下流にあると判断している場合のことである。これ以外の場合は、一致していないと判断する。例えば、一致判定部27で両端ともA相地絡を検出し、検出除去装置100aが下流に事故点があり、検出除去装置100bが下流に事故点がない場合には、一致と判断する。一致判定部27は、自端の結果と相手端の結果とが不一致の場合にはこのシーケンスを終了する。ステップS015にて、開放指令送出部28から地絡相の単相型区分開閉器5に開放信号が出される。例えば、A相が地絡相の場合、開放指令送出部28は、A相の単相型区分開閉器5aに開放信号(1線開放指令)が出される。ステップS015は、地絡相検出手順で検出された1線地絡相を遮断するように単相型区分開閉器5を開放するように単相型区分開閉器5に1線開放指令を送信する1線開放指令手順である。   In step S014, the coincidence determination unit 27 compares the result of the local end with the result of the counterpart end, and proceeds to the process of step S015 if they match. Match is the same when the ground fault phase is the same, and it is determined that there is an accident point downstream at its own end, and it is determined that it is not downstream at the other end of the downstream. This is a case where it is determined that there is no such thing and the upstream counterpart is determined to be downstream. Otherwise, it is determined that they do not match. For example, if the coincidence determination unit 27 detects an A-phase ground fault at both ends, the detection / removal device 100a has an accident point downstream, and the detection / removal device 100b does not have an accident point downstream, it is determined as coincidence. The coincidence determination unit 27 ends this sequence when the result of the local end and the result of the counterpart end do not match. In step S015, an open signal is output from the open command sending unit 28 to the single-phase type section switch 5 of the ground fault phase. For example, when the A phase is a ground fault phase, the opening command sending unit 28 issues an opening signal (one-wire opening command) to the A-phase single-phase section switch 5a. In step S015, a one-wire opening command is transmitted to the single-phase section switch 5 so as to open the single-phase section switch 5 so as to interrupt the one-wire ground fault phase detected in the ground fault phase detection procedure. This is a one-wire release command procedure.

投入処理部95の動作を説明する。図5は、投入処理部の動作を説明するフロー図である。ステップS101にて、開放指令確認部29は、単相型区分開閉器5の応答を取得する。ステップS102にて、開放指令確認部29は、単相型区分開閉器5の応答を確認する。開放指令確認部29は、開放が確認されればステップS106の処理へ進める。開放指令確認部29は、開放指令が出ても開放が確認されない場合はステップS103の処理へ進める。ステップS103にて、機器不良表示部30は警報表示などを行い、その後、処理を終了する。この場合、区分開閉器を地絡相だけ開放して1線地絡事故が除去できないことになるので、変電所の遮断器をトリップさせる地絡保護リレーの動作により事故除去される。   The operation of the input processing unit 95 will be described. FIG. 5 is a flowchart for explaining the operation of the input processing unit. In step S <b> 101, the opening command confirmation unit 29 acquires the response of the single-phase type segmental switch 5. In step S <b> 102, the opening command confirmation unit 29 confirms the response of the single-phase section switch 5. The release command confirmation unit 29 proceeds to the process of step S106 if the release is confirmed. The release command confirmation unit 29 proceeds to the process of step S103 when the release command is issued and the release is not confirmed. In step S103, the device failure display unit 30 displays an alarm or the like, and then ends the process. In this case, since the section switch is opened only for the ground fault phase and the one-wire ground fault cannot be removed, the fault is eliminated by the operation of the ground fault protection relay that trips the circuit breaker of the substation.

ステップS106にて、地絡解消確認部33は、これを確認する。地絡解消確認部33は、絶縁が回復していればステップS107の処理へ進め、絶縁が回復していなければステップS106の処理を繰り返す。ステップS107にて、投入指令部34は、投入指令を出す準備が行われる。投入指令部34は、準備が完了したらステップS108の処理へ進める。ステップS108にて、同期投入信号送出部35は、自端で地絡相開閉器を投入することを相手端に知らせるために、同期投入信号を相手端に送出する。相手端、例えば検出除去装置100bでは、同期投入信号受信部36で相手端(検出除去装置100a)がA相開閉器の投入準備をしていることを知る。ステップS109にて、同期投入信号受
信部36は、相手端から同期投入信号が送信されていれば、同期投入信号を受信する。
In step S106, the ground fault elimination confirmation unit 33 confirms this. The ground fault elimination confirmation unit 33 proceeds to the process of step S107 if the insulation has recovered, and repeats the process of step S106 if the insulation has not recovered. In step S107, the input command unit 34 is prepared to issue the input command. The input command unit 34 proceeds to the process of step S108 when the preparation is completed. In step S108, the synchronization input signal transmission unit 35 transmits a synchronization input signal to the other end in order to notify the other end that the ground fault phase switch is to be turned on at its own end. In the other end, for example, the detection / removal device 100b, the synchronous closing signal receiving unit 36 knows that the other end (the detection / removal device 100a) is preparing to turn on the A-phase switch. In step S109, the synchronization input signal receiving unit 36 receives the synchronization input signal if the synchronization input signal is transmitted from the other end.

ステップS108にて投入指令を出す準備が完了しているので、ステップS110にて、投入確認部37は、開放対象の単相型区分開閉器5、例えばA相の単相型区分開閉器5aに投入指令を出し、開放対象の単相型区分開閉器5が投入したか否かを確認する。投入確認部37は、投入されない場合にはステップS111の処理へ進める。投入確認部37は、投入されたことを確認した場合はステップS112の処理へ進める。ステップS111にて、機器不良表示部30は、警報表示を出し、処理を終了する。   Since preparation for issuing the input instruction is completed in step S108, the input confirmation unit 37 supplies the single-phase section switch 5 to be opened, for example, the A-phase single-phase section switch 5a, in step S110. An input command is issued, and it is confirmed whether or not the single-phase section switch 5 to be opened has been input. If the charging check unit 37 is not charged, the process proceeds to step S111. If the input confirming unit 37 confirms that the input has been made, the process proceeds to step S112. In step S111, the device defect display unit 30 issues an alarm display and ends the process.

ステップS106、S107、S108、S109、S110は、1線開放指令により遮断された1線地絡相の絶縁回復が確認された場合に、単相型区分開閉器5を投入するように単相型区分開閉器5に投入指令を送信する開閉器投入指令手順である。   Steps S106, S107, S108, S109, and S110 are a single-phase type so that the single-phase type section switch 5 is turned on when the insulation recovery of the one-wire ground fault phase blocked by the one-wire opening command is confirmed. This is a switch input instruction procedure for transmitting an input instruction to the section switch 5.

開放対象の単相型区分開閉器5、例えばA相の単相型区分開閉器5a、5dが投入された際に地絡事故が残っていればこれは永久事故なので、ステップS112にて、地絡事故確認部43は、地絡事故が有るか否かを確認する。地絡事故確認部43は、地絡事故有りを確認すると、処理を終了する。その後、変電所の遮断器をトリップさせる地絡保護リレーの動作により事故除去される。地絡事故確認部43は、地絡事故なしを確認すると、処理を終了する。   If there is a ground fault when the single-phase section switch 5 to be opened, for example, the A-phase single-phase section switches 5a and 5d is turned on, this is a permanent accident. The fault accident confirmation unit 43 checks whether or not there is a ground fault. When the ground fault accident confirmation unit 43 confirms that there is a ground fault, the process is terminated. After that, the accident is eliminated by the operation of the ground fault protection relay that trips the circuit breaker of the substation. When the ground fault accident confirmation unit 43 confirms that there is no ground fault, the process is terminated.

検出部94及び投入処理部95の動作説明において、両端(自端と相手端)で情報を交換するのは信頼度向上と出来るだけ地絡相の開閉の同期を取るためである。これは、電源側のみの判断で、相手端との情報交換を省略することがあってもよい。   In the description of the operations of the detection unit 94 and the input processing unit 95, information is exchanged between both ends (own end and counterpart end) in order to synchronize the opening and closing of the ground fault phase as much as possible to improve reliability. This may be determined only on the power source side, and information exchange with the other end may be omitted.

次に1線地絡事故について図6から図10を用いて説明する。図6は1線地絡事故時の等価回路である。図7はA相の1線地絡事故時のベクトル図である。図8は、A相の1線地絡事故の場合に地絡相を検出する原理を説明するベクトル図である。図9は、本発明による配電線の1線地絡事故の検出除去装置が有するA相の1線地絡相検出装置の構成を示す図である。図10は、1線地絡相検出原理を説明する波形図である。   Next, a one-line ground fault will be described with reference to FIGS. FIG. 6 is an equivalent circuit at the time of a one-line ground fault. FIG. 7 is a vector diagram at the time of an A-phase one-line ground fault. FIG. 8 is a vector diagram illustrating the principle of detecting the ground fault phase in the case of the A-line one-wire ground fault. FIG. 9 is a diagram showing a configuration of the A-phase 1-wire ground fault detection device included in the detection / removal device for a 1-wire ground fault of a distribution line according to the present invention. FIG. 10 is a waveform diagram for explaining the principle of detecting the one-wire ground fault phase.

図6は1線地絡発生時の等価回路としてよく技術書などに引用される図である。漏れインピーダンス202、203、204は、A相、B相、C相分の対地静電容量と線路の漏れ抵抗である。正相回路の電源200の発生電圧がE、故障点抵抗201の値はRg、漏れインピーダンスの対地静電容量の値と線路の漏れ抵抗の値がA相、B相、C相順に3Ca、ra/3、3Cb、rb/3、3Cc、rc/3、接地変圧器(GPT)制限抵抗205の値がRn、Rn両端の電圧が零相電圧V0である。1相分の対地静電容量の値はCa、Cb、Ccであり、1相分の線路の漏れ抵抗の値はra、rb、rcである。   FIG. 6 is a diagram often referred to as a technical document as an equivalent circuit when a one-line ground fault occurs. Leakage impedances 202, 203, and 204 are the ground capacitance for the A phase, B phase, and C phase and the leakage resistance of the line. The generated voltage of the power supply 200 of the positive phase circuit is E, the value of the fault point resistance 201 is Rg, the value of the ground capacitance of the leakage impedance and the value of the leakage resistance of the line are 3Ca, ra in the order of A phase, B phase, and C phase. / 3, 3Cb, rb / 3, 3Cc, rc / 3, the value of the grounding transformer (GPT) limiting resistor 205 is Rn, and the voltage across Rn is the zero-phase voltage V0. The values of the ground capacitance for one phase are Ca, Cb, and Cc, and the values of the leakage resistance of the line for one phase are ra, rb, and rc.

線路の漏れ抵抗ra/3、rb/3、rc/3は極めて大きいので、図には記載するが、計算を簡便にするために、これを無視して零相電圧V0、零相電流I0を求める。A相、B相、C相、故障点抵抗Rgから大地(接地)に向かう電流を、それぞれIa、Ib、Ic、Igとし、正相電圧分の基準となる仮想中性点の電位をVnとして式(1)〜式(4)を得る。   Since the leakage resistances ra / 3, rb / 3, and rc / 3 of the line are extremely large, they are shown in the figure, but in order to simplify the calculation, the zero-phase voltage V0 and the zero-phase current I0 are ignored. Ask. The currents from the A phase, B phase, C phase, and fault point resistance Rg to the ground (ground) are Ia, Ib, Ic, and Ig, respectively, and the potential of the virtual neutral point that is the reference for the positive phase voltage is Vn. Equations (1) to (4) are obtained.

Ia=j・ω・Ca・(Vn+Ea) ・・・(1)
Ib=j・ω・Cb・(Vn+Eb) ・・・(2)
Ic=j・ω・Cc・(Vn+Ec) ・・・(3)
Ig=(Vn+Ea)/Rg ・・・(4)
Ia = j · ω · Ca · (Vn + Ea) (1)
Ib = j · ω · Cb · (Vn + Eb) (2)
Ic = j · ω · Cc · (Vn + Ec) (3)
Ig = (Vn + Ea) / Rg (4)

キルヒホッフの電流則より下式を得る。
Ia+Ib+Ic+Ig=0 ・・・(5)
The following equation is obtained from Kirchhoff's current law.
Ia + Ib + Ic + Ig = 0 (5)

式(5)に式(1)〜(4)を代入して下式を得る。
jω{Ca+Cb+Cc+(1/Rg)}Vn+(Ca・Ea+Cb・Eb+Cc・Ec)}+(1/Rg)Ea=0 ・・・(6)
By substituting the equations (1) to (4) into the equation (5), the following equation is obtained.
jω {Ca + Cb + Cc + (1 / Rg)} Vn + (Ca · Ea + Cb · Eb + Cc · Ec)} + (1 / Rg) Ea = 0 (6)

Eが正相分の起電力なので、式(7)が成り立つ。
Ea+Eb+Ec=0 ・・・(7)
Ca=Cb=Cc=Cを仮定すると、式(6)に式(7)を代入して、式(8)を得る。
Vn=−(Ea/Rg)/{j3ωC+(1/Rg)}
=−Ea/(1+j・ω・3・C・Rg) ・・・(8)
Since E is the electromotive force for the positive phase, Equation (7) is established.
Ea + Eb + Ec = 0 (7)
Assuming that Ca = Cb = Cc = C, the equation (7) is substituted into the equation (6) to obtain the equation (8).
Vn = − (Ea / Rg) / {j3ωC + (1 / Rg)}
= −Ea / (1 + j · ω · 3 · C · Rg) (8)

各相の電圧をVa、Vb、Vcとし、3相の電圧の平均である零相電圧をV0とすると、自明ではあるが、下式を得る。
V0=(Va+Vb+Vc)/3
=(Vn+Ea+Vn+Eb+Vn+Ec)/3
=(3Vn+Ea+Eb+Ec)/3=Vn ・・・(9)
Assuming that the voltage of each phase is Va, Vb, and Vc, and the zero-phase voltage that is the average of the three-phase voltages is V0, the following equation is obtained, which is obvious.
V0 = (Va + Vb + Vc) / 3
= (Vn + Ea + Vn + Eb + Vn + Ec) / 3
= (3Vn + Ea + Eb + Ec) / 3 = Vn (9)

1線地絡電流は、下記として求まる。
Ig=(Vn+Ea)/Rg
=j・3・ω・C・Ea/(1+j3ωC) ・・・(10)
The 1-wire ground fault current is obtained as follows.
Ig = (Vn + Ea) / Rg
= J · 3 · ω · C · Ea / (1 + j3ωC) (10)

式(8)から、A相の一線地絡事故の時は仮想中性点の電圧Vnは、図7に示したANを直径とする円周上に有る。   From the equation (8), the voltage Vn at the virtual neutral point is on the circumference having the diameter AN as shown in FIG.

1線地絡事故検出用として、A相の1線地絡事故の時は、B相電圧とC相電圧の差である電圧Vbcが事故の前後で変化量が小さいので、電圧Vbcを1線地絡事故を判断する時の基準ベクトルとする。   For detecting a one-line ground fault, when a phase A one-line ground fault occurs, the voltage Vbc, which is the difference between the B-phase voltage and the C-phase voltage, has a small amount of change before and after the accident. The reference vector is used when judging a ground fault.

ここで、Va−k・3V0(kは整定値)を、演算ベクトルとする。事故が発生していない健全時には、V0又は零相電流I0は、対地静電容量の不平衡から発生する量だけであり、微弱である。小さい地絡事故点抵抗で地絡すると、V0とI0は次第に大きさを増し位相も変化する。他方Vaは、地絡点抵抗が小さくなるに従って、小さくなり、位相変化も伴う。この両ベクトルの組み合わせを、演算ベクトルとする。演算ベクトルは、健全時と事故時で大きさと位相が違うことになる。基準ベクトルが実部だけのベクトルで表現される場合に、すなわち基準ベクトルの位相をゼロとする場合に、演算ベクトルの虚部が負になる場合を、動作すべき1線地絡事故の地絡抵抗の大きさの範囲とする。整定値kは、演算ベクトルの虚部がゼロになる時の地絡点抵抗の大きさが適切になるように決める。   Here, Va−k · 3V0 (k is a set value) is used as an operation vector. At a healthy time when no accident has occurred, V0 or the zero-phase current I0 is only an amount generated from an unbalance of the ground capacitance, and is weak. When a ground fault occurs with a small ground fault point resistance, V0 and I0 gradually increase in magnitude and change in phase. On the other hand, Va becomes smaller as the ground fault resistance becomes smaller and is accompanied by a phase change. A combination of both vectors is an operation vector. The calculation vector is different in magnitude and phase between a healthy time and an accident time. When the reference vector is expressed by a vector of only the real part, that is, when the phase of the reference vector is zero, the case where the imaginary part of the operation vector becomes negative is the ground fault of the one-line ground fault to be operated. The resistance range. The settling value k is determined so that the magnitude of the ground fault resistance when the imaginary part of the operation vector becomes zero is appropriate.

1線地絡事故の大きさは、地絡点抵抗Rg=0で地絡相の電圧がゼロになる場合を100%地絡とし、地絡点抵抗Rgが無限大で地絡電流がゼロになる場合を0%とする。X%の地絡とは、100%地絡の時の零相電圧をV0maxとして、零相電圧V0が下記の式で
計算できるような地絡事故である。
V0=V0max×X/100 ・・・(11)
逆に言うと発生する零相電圧V0の大きさと、100%地絡の時の零相電圧をV0maxの比から地絡の程度X(%)が以下のように決まる。
X=100×V0/V0max ・・・(12)
The magnitude of the 1-line ground fault is 100% ground fault when the ground fault resistance Rg = 0 and the ground fault phase voltage becomes zero, the ground fault resistance Rg is infinite, and the ground fault current is zero. Is 0%. The X% ground fault is a ground fault where the zero phase voltage V0 can be calculated by the following equation, where the zero phase voltage at the time of 100% ground is V0max.
V0 = V0max × X / 100 (11)
In other words, the degree of ground fault X (%) is determined as follows from the ratio of the generated zero-phase voltage V0 and the zero-phase voltage V0max at the time of 100% ground fault.
X = 100 × V0 / V0max (12)

図7は、1線地絡事故時のベクトル図である。図7は、A相基準で示した、A相の1線地絡時のベクトル図である。電圧三角形の相がそれぞれA、B、Cであり、中性点がNである。Va+Vb+Vc=3V0を示すベクトルは、健全時の中性点Nから1相地絡事故時の中性点N2へ向かい、線分N−N2の3倍の大きさのベクトルであるである。図7に示す演算ベクトルは、Va−k・3V0(kは整定値)である。この演算ベクトルは、地絡点抵抗の値がかなり小さい場合のものであり、演算ベクトルの虚部が負になっている。   FIG. 7 is a vector diagram at the time of a one-line ground fault. FIG. 7 is a vector diagram at the time of A-line one-wire grounding, indicated by the A-phase reference. The phases of the voltage triangle are A, B, and C, respectively, and the neutral point is N. The vector indicating Va + Vb + Vc = 3V0 is a vector having a magnitude three times as large as the line segment N−N2 from the neutral point N in the healthy state to the neutral point N2 in the one-phase ground fault. The calculation vector shown in FIG. 7 is Va−k · 3V0 (k is a set value). This calculation vector is obtained when the value of the ground fault resistance is considerably small, and the imaginary part of the calculation vector is negative.

A相事故確認部20でA相が1線地絡相であるかを判定する場合は、ベクトルVaを想定地絡相ベクトルとする。A相事故確認部20は、演算ベクトルVa−k・3・V0の虚部が負の場合にA相が1線地絡相であると判定する。同様に、B相事故確認部21でB相が1線地絡相であるかを判定する場合は、ベクトルVbを想定地絡相ベクトルとする。B相事故確認部21は、演算ベクトルVb−k・3・V0の虚部が負の場合にB相が1線地絡相であると判定する。C相事故確認部22でC相が1線地絡相であるかを判定する場合は、ベクトルVcを想定地絡相ベクトルとする。C相事故確認部22は、演算ベクトルVc−k・3・V0の虚部が負の場合にC相が1線地絡相であると判定する。   When the phase A accident confirmation unit 20 determines whether the phase A is a one-wire ground fault phase, the vector Va is set as an assumed ground fault phase vector. The phase A accident confirmation unit 20 determines that the phase A is the one-wire ground fault phase when the imaginary part of the operation vector Va−k · 3 · V0 is negative. Similarly, when the B phase accident confirmation unit 21 determines whether the B phase is a one-wire ground fault phase, the vector Vb is set as an assumed ground fault phase vector. The B phase accident confirmation unit 21 determines that the B phase is a one-wire ground fault phase when the imaginary part of the calculation vector Vb−k · 3 · V0 is negative. When the C phase accident confirmation unit 22 determines whether the C phase is the 1-wire ground fault phase, the vector Vc is set as the assumed ground fault phase vector. The C phase accident confirmation unit 22 determines that the C phase is the 1-wire ground fault phase when the imaginary part of the operation vector Vc−k · 3 · V0 is negative.

演算ベクトルの虚部が負になるかどうかを、演算回路やマイクロプロセッサーなどを使って処理しようとする時、いくつかの手法がある。その一つが、電圧ベクトルで表現される正弦波が正の値を取る期間を正の値をとる矩形波に変換し、正弦波がゼロ以下の値をとる期間をゼロの値をとる矩形波に変換して、複数の電圧ベクトから生成した矩形波のどれかが正の値の場合に正の値を取る矩形波に途切れが発生するかどうかで、複数の電圧ベクトルが所定の関係を満たすかどうかを判断するものである。   When trying to process whether the imaginary part of the operation vector becomes negative using an arithmetic circuit or a microprocessor, there are several methods. One of them is converting the period in which the sine wave represented by the voltage vector takes a positive value into a square wave taking a positive value, and converting the period in which the sine wave takes a value less than zero into a rectangular wave taking a zero value. Whether or not multiple voltage vectors satisfy a predetermined relationship depending on whether or not a rectangular wave that takes a positive value when any of the rectangular waves generated from multiple voltage vectors has a positive value It is a judgment.

複数のベクトルとしては、演算ベクトルと、基準ベクトルVbcと、Vbcの位相を90+α°遅れさせた、第2基準ベクトルとを使用する。αは5〜10°の間の値である。   As the plurality of vectors, an operation vector, a reference vector Vbc, and a second reference vector obtained by delaying the phase of Vbc by 90 + α ° are used. α is a value between 5 ° and 10 °.

第2基準ベクトルの位相を90+α°として、αを持たせた意味を説明する。即ちαが無いと動作状態にあるベクトル関係でも、矩形波どうしが重ならず、端面が接触あるいは微小な間隔で離れるような状態になって、不動作状態に見える可能性がある。しかし、αがあると、これを避けることができる。   The meaning of giving α with the phase of the second reference vector being 90 + α ° will be described. In other words, even if there is no α, even in the vector relationship in the operating state, the rectangular waves do not overlap with each other, and the end faces may come into contact or be separated at a minute interval, which may appear inoperative. However, if α is present, this can be avoided.

図8は、A相の場合に、1線地絡相検出原理を説明するベクトル図であり、位相関係を主体に見た図である。図8において、ベクトル415は健全時の演算ベクトルであり、ベクトル416は基準ベクトルであり、ベクトル417は第2基準ベクトルである。詳細は後で説明するが、図に示した斜線域の中に演算ベクトルが存在する場合に、矩形波に途切れがなくなる。   FIG. 8 is a vector diagram for explaining the principle of detecting a one-wire ground fault phase in the case of the A phase, and is a diagram mainly showing the phase relationship. In FIG. 8, a vector 415 is a calculation vector at the time of soundness, a vector 416 is a reference vector, and a vector 417 is a second reference vector. Although details will be described later, when the operation vector exists in the hatched area shown in the figure, the rectangular wave is not interrupted.

図9は、本発明による配電線の1線地絡事故の検出除去装置が有するA相の1線地絡相検出装置の構成を示す図である。A相、B相、C相の1線地絡相検出装置は、それぞれ検出部94におけるA相事故確認部20、B相事故確認部21、C相事故確認部22に相当する。1線地絡相検出装置は、入力端子501、502、503と、入力変換回路504、505、506と、フェーズシフタ507と、タップ付き演算ベクトル合成回路508と、矩形波変換回路509、510、511と、演算回路512と、出力端子513を備える。   FIG. 9 is a diagram showing a configuration of the A-phase 1-wire ground fault detection device included in the detection / removal device for a 1-wire ground fault of a distribution line according to the present invention. The A-line, B-phase, and C-phase one-wire ground fault detection devices correspond to the A-phase accident confirmation unit 20, the B-phase accident confirmation unit 21, and the C-phase accident confirmation unit 22 in the detection unit 94, respectively. The one-wire ground fault phase detection device includes input terminals 501, 502, and 503, input conversion circuits 504, 505, and 506, a phase shifter 507, a tapped arithmetic vector synthesis circuit 508, and rectangular wave conversion circuits 509, 510, 511, an arithmetic circuit 512, and an output terminal 513.

A相の場合には、入力端子501〜503から、順にVbc、Va、3・V0が印加される。出力端子513は、開放指令送出部28の端子である。出力端子513から、それぞれ対応する相の単相型区分開閉器5に系統情報入出力部13を介して開放指令が送出される。図1の検出除去装置100aでは、出力端子513から、系統情報入出力部13を介してA相の単相型区分開閉器5aに開放指令が送出される。図1の検出除去装置100bでは、出力端子513から、系統情報入出力部13を介してA相の単相型区分開閉器5
dに開放指令が送出される。
In the case of the A phase, Vbc, Va, 3 · V0 are sequentially applied from the input terminals 501 to 503. The output terminal 513 is a terminal of the opening command sending unit 28. An open command is sent from the output terminal 513 to the single-phase type segmental switch 5 of the corresponding phase via the system information input / output unit 13. In the detection / removal device 100a of FIG. 1, an open command is sent from the output terminal 513 to the A-phase single-phase division switch 5a via the system information input / output unit 13. In the detection and removal apparatus 100b of FIG. 1, the A-phase single-phase section switch 5 is connected from the output terminal 513 via the system information input / output unit 13.
An open command is sent to d.

入力変換回路504〜506は、入力信号の大きさを半導体回路にとって処理し易い大きさに変換している回路である。フェーズシフタ507は、基準波形1より90°+αの遅れ位相の波形を作っている。演算ベクトル合成回路508は、Va−3kV0を合成している。矩形波変換回路509〜511は、それぞれ入力された正弦波が正の値を取る期間に正の値を取り、正弦波がゼロ以下の値の期間にゼロの値をとる矩形波を出力する。演算回路512は、入力された3個の矩形波のどれかが正の値を取る状態が所定周期以上続いた場合に、出力端子513に開放指令を出力する。   The input conversion circuits 504 to 506 are circuits that convert the magnitude of an input signal to a magnitude that can be easily processed by a semiconductor circuit. The phase shifter 507 creates a waveform with a delayed phase of 90 ° + α from the reference waveform 1. The arithmetic vector synthesis circuit 508 synthesizes Va-3kV0. Each of the rectangular wave conversion circuits 509 to 511 outputs a rectangular wave that takes a positive value during a period when the input sine wave takes a positive value and takes a zero value during a period when the sine wave takes a value of zero or less. The arithmetic circuit 512 outputs an open command to the output terminal 513 when any of the three input rectangular waves has a positive value for a predetermined period or longer.

図10は1線地絡相検出原理を説明する波形図である。横軸は時間であり、縦軸は振幅である。図10の(a)〜(d)は正弦波の波形であり、(e)〜(h)は(a)〜(d)は正弦波を矩形波に変換した矩形波列であり、(i)、(j)は、複数の矩形波列を論理和“OR”的な捉え方をした矩形波列である。   FIG. 10 is a waveform diagram for explaining the principle of detecting a one-wire ground fault phase. The horizontal axis is time, and the vertical axis is amplitude. (A) to (d) in FIG. 10 are sine wave waveforms, (e) to (h) are (a) to (d), a rectangular wave train obtained by converting a sine wave into a rectangular wave, and (i ) And (j) are rectangular wave trains obtained by capturing a plurality of rectangular wave trains in a logical “OR” manner.

基準ベクトルVbcに対応する基準波形1は、波形401で示され、大きさ(振幅)が|Vbc|(対象座標法のA相基準で示す)である。第2基準ベクトルに対応する基準波形2は、波形402で示され基準波形1より位相が95°〜100°遅れている。健全時の演算波形は波形403で示され、1線地絡であると判断する場合の演算波形は、波形405で示される。基準波形1は、図10(e)に示すように矩形波列406に変換される。基準波形2は、図10(f)に示すように矩形波列407に変換される。健全時の演算波形は、図10(g)に示すように矩形波列408に変換される。1線地絡であると判断する場合の演算波形は、図10(h)に示すように矩形波列410で示される。1線地絡事故であると判断する場合のことを、1線地絡事故時と呼ぶ。   A reference waveform 1 corresponding to the reference vector Vbc is indicated by a waveform 401 and has a magnitude (amplitude) of | Vbc | (indicated by an A-phase reference in the target coordinate method). A reference waveform 2 corresponding to the second reference vector is indicated by a waveform 402 and is delayed in phase by 95 ° to 100 ° with respect to the reference waveform 1. The calculation waveform at the time of sound is indicated by a waveform 403, and the calculation waveform in the case of determining that it is a one-wire ground fault is indicated by a waveform 405. The reference waveform 1 is converted into a rectangular wave train 406 as shown in FIG. The reference waveform 2 is converted into a rectangular wave train 407 as shown in FIG. The calculation waveform at the time of sound is converted into a rectangular wave train 408 as shown in FIG. A calculation waveform in the case of determining that it is a one-line ground fault is indicated by a rectangular wave train 410 as shown in FIG. A case where it is determined that a one-line ground fault has occurred is referred to as a one-line ground fault.

健全時の断連続矩形波列は、矩形波列411で示される。A相の1線地絡時の断連続矩形波列は、矩形波列412で示される。矩形波列411は、1周期に1回途切れ目があり、不連続動作になっている。矩形波列412は、1周期において途切れ目がなく、連続動作になっている。矩形波列411はA相の1線地絡なしの場合であり、矩形波列412はA相の1線地絡ありの場合である。   The broken continuous rectangular wave train at the time of sound is indicated by a rectangular wave train 411. The broken continuous rectangular wave train at the time of the 1-line ground fault of the A phase is indicated by a rectangular wave train 412. The rectangular wave train 411 has a discontinuity once per cycle and is discontinuous. The rectangular wave train 412 is continuous in one cycle and is in continuous operation. The rectangular wave train 411 is a case where there is no A-line 1-wire ground fault, and the rectangular wave train 412 is a case where there is a A-phase 1-wire ground fault.

図10では基準ベクトルを基準にとった波形として示した。波形401より90°+α遅れた波形402が第2基準ベクトルである。健全時は、演算ベクトルの位相遅れは180°未満であり、波形図では403となる。A相の1線地絡事故時は、位相遅れ180°を越えて、波形図では405となる。   In FIG. 10, the waveform is shown based on the reference vector. A waveform 402 delayed by 90 ° + α from the waveform 401 is the second reference vector. When healthy, the phase lag of the operation vector is less than 180 °, which is 403 in the waveform diagram. In the case of the A-phase 1-line ground fault, the phase delay exceeds 180 ° and becomes 405 in the waveform diagram.

これらの波形401〜405を矩形波に直す。正の半波の時に“1”を、負の半波の時に“0”となるように変換する。基準波形1の波形401は矩形波列406に変換され、基準波形2の波形402は矩形波列407に変換される。健全時の演算波形403は408の矩形波列に変換され、1線地絡事故時の演算波形405は矩形波列410に変換される。   These waveforms 401 to 405 are converted into rectangular waves. Conversion is performed so that “1” is set to “1” in the case of the positive half wave and “0” in the case of the negative half wave. The waveform 401 of the reference waveform 1 is converted into a rectangular wave train 406, and the waveform 402 of the reference waveform 2 is converted into a rectangular wave train 407. The calculation waveform 403 at the time of sound is converted into a rectangular wave train 408, and the calculation waveform 405 at the time of a one-line ground fault is converted into a rectangular wave train 410.

基準波形1、2の矩形波列406、407と健全時の矩形波列408の3つを論理和“OR”的な捉え方をしたものが矩形波列411であり、1周期に1回途切れ目が生じている。同様に基準波形1、2の矩形波列406、407と1線地絡事故時の矩形波列410の3つを論理和“OR”的な捉え方をしたものが矩形波列412であり、途切れ目が存在していない。この二つ、すなわち矩形波列411、412を識別するのは容易で、充電回路を適用すればよい。つまり1周期に1回ずつ途切れ目がある場合は1周期に1回この充電回路がリセットされるが、途切れ目がない場合は充電が継続して出力の電位は上昇する。例えば1.5周期充電したときの電位で出力信号が出るように構成すればよい。   A rectangular wave train 411 is obtained by logically “ORing” the three rectangular wave trains 406 and 407 of the reference waveforms 1 and 2 and the rectangular wave train 408 in the normal state, and is interrupted once per cycle. I have eyes. Similarly, the rectangular wave train 412 is obtained by logically “ORing” the three rectangular wave trains 406 and 407 of the reference waveforms 1 and 2 and the rectangular wave train 410 at the time of the 1-line ground fault. There is no break. These two, that is, rectangular wave trains 411 and 412 are easy to identify, and a charging circuit may be applied. That is, if there is a break once every cycle, the charging circuit is reset once per cycle. If there is no break, charging continues and the output potential rises. For example, the output signal may be output at the potential when charging for 1.5 cycles.

なお、ここでは正の半波を基準に説明したが、負の半波も矩形波列に直して使えば、不1線地絡事故時の途切れは1周期に2度出来ることになる。   Although the positive half-wave is described here as a reference, if the negative half-wave is converted into a rectangular wave train, the interruption at the time of a non-first-line ground fault can be made twice per cycle.

図11は、本発明による配電線の1線地絡事故の検出除去装置が有するアーク消滅確認回路を示す図である。配電系統120の高圧三相配電線61A、61B、61Cに太陽光発電装置661、662が接続されている。太陽光発電装置661はAB相間に接続され、太陽光発電装置662はCA相間に接続されている。この図11は、A相の1線地絡事故区間が、単相型区分開閉器62P、62Lにより電源側、負荷側が開放された後を表している。符号62Pを付したものは電源側に配置された単相型区分開閉器であり、図1の単相型区分開閉器5aに相当する。符号62Lを付したものは負荷側に配置された単相型区分開閉器であり、図1の単相型区分開閉器5dに相当する。符号63A、63B、63Cを付したものは各相対地間仮想線であり、符号64A、64B、64Cを付したものは各相の対地充電容量である。符号65を付したものは、事故点抵抗とアーク抵抗を表現する仮想的な抵抗である。図11には、検出除去装置100のモニター部91を配置している。   FIG. 11 is a diagram showing an arc extinction confirmation circuit included in the one-line ground fault detection and removal apparatus for distribution lines according to the present invention. Solar power generation devices 661 and 662 are connected to the high-voltage three-phase distribution lines 61A, 61B, and 61C of the distribution system 120. The solar power generation device 661 is connected between the AB phases, and the solar power generation device 662 is connected between the CA phases. FIG. 11 shows the A-phase one-wire ground fault section after the power supply side and the load side are opened by the single-phase section switches 62P and 62L. A reference numeral 62P denotes a single-phase section switch disposed on the power supply side, and corresponds to the single-phase section switch 5a in FIG. A reference numeral 62L denotes a single-phase section switch arranged on the load side, and corresponds to the single-phase section switch 5d in FIG. Reference numerals 63A, 63B, and 63C are the virtual lines between the relative grounds, and reference numerals 64A, 64B, and 64C are the ground charge capacities of the respective phases. What is denoted by reference numeral 65 is a virtual resistance expressing the fault point resistance and the arc resistance. In FIG. 11, the monitor unit 91 of the detection and removal apparatus 100 is arranged.

零相コンデンサ型分圧装置7が検出する零相電圧が所定値以下になった時が、地絡のアークが消滅したと判断する。零相電圧が所定値以下になってから所定時間経過後に、単相型区分開閉器5に投入指令を出す。零相電流が所定値以下になった時をアーク消滅と判断するようにしてもよい。   When the zero-phase voltage detected by the zero-phase capacitor type voltage dividing device 7 becomes a predetermined value or less, it is determined that the ground fault arc has disappeared. When a predetermined time elapses after the zero-phase voltage becomes equal to or lower than a predetermined value, an input command is issued to the single-phase type segmental switch 5. When the zero-phase current becomes a predetermined value or less, it may be determined that the arc is extinguished.

図12は、1相欠相時の電圧と太陽光発電による電圧維持を説明する図である。接地相を区間の両端で開放した後の電圧三角形ABC(頂点がA、B、C)を示している。線間電圧Vbcは変電所と繋がっているので正規電圧になっており、夫々線間に負荷を持っているAB相、CA相は、頂点Aが線分BCの方に移動する。AB相、CA相の負荷がほぼ同じ場合は頂点Aが線分BCの中間に有る。低電圧であっても所定時間は運転を継続できる機能であるFRT(Fault Ride Through)機能付きの太陽光発電661、662が存在すると夫々の有効電力がAB相、CA相に供給されるので、頂点Aはその分持ち上がり、三角形を形成する。   FIG. 12 is a diagram for explaining voltage maintenance during one-phase phase loss and voltage maintenance by photovoltaic power generation. A voltage triangle ABC (vertices are A, B, C) after the ground phase is opened at both ends of the section is shown. The line voltage Vbc is a normal voltage because it is connected to the substation. In the AB phase and CA phase each having a load between the lines, the vertex A moves toward the line segment BC. When the loads of the AB phase and the CA phase are substantially the same, the vertex A is in the middle of the line segment BC. Since there is photovoltaic power generation 661, 662 with FRT (Fault Ride Through) function, which is a function that can continue operation for a predetermined time even at a low voltage, each active power is supplied to the AB phase and the CA phase. The vertex A is lifted accordingly and forms a triangle.

図13は、本発明の実施の形態1による配電線の1線地絡事故の検出除去装置の制御手法を説明する図であり、本発明の実施の形態1の主要部をまとめて説明するための図である。図13には、検出除去装置100の主要部と、単相型区分開閉器83が示されている。検出除去装置100の主要部は、事故検出部70、短絡優先部71、接地相検出部72、地絡位置検出部78、一致確認部73、単相型区分開閉器83に開放指令を出す開閉器開放指令部74、転送信号送出部75、相手端へ送信する情報送信部76、相手端よりの情報を受信する情報受信部77、アーク消滅確認部79、単相型区分開閉器83へ投入指令を出す開閉器投入指令部80である。   FIG. 13 is a diagram for explaining a control method of the detection / removal device for a one-line ground fault of a distribution line according to the first embodiment of the present invention, and collectively explains the main part of the first embodiment of the present invention. FIG. FIG. 13 shows a main part of the detection / removal device 100 and a single-phase section switch 83. The main parts of the detection / removal device 100 are an accident detection unit 70, a short-circuit priority unit 71, a ground phase detection unit 72, a ground fault position detection unit 78, a coincidence confirmation unit 73, and an open / close command for issuing an open command to the single-phase type section switch 83. Opening command unit 74, transfer signal sending unit 75, information transmitting unit 76 for transmitting to the other end, information receiving unit 77 for receiving information from the other end, arc extinction checking unit 79, and single-phase section switch 83 It is a switch input command unit 80 for issuing a command.

事故検出部70は、図2の事故発生確認部14に相当する。短絡優先部71は、図2の短絡事故確認部15、地絡事故確認部16、時間待ち部44、2線以上の事故検出部17に相当し、すなわち短絡優先判定部18に相当する。接地相検出部72は、図2の地絡事故発生検出部19、A相事故確認部20、B相事故確認部21、C相事故確認部22、地絡相確定部23に相当する。地絡位置検出部78は、図2の事故位置検出部45に相当する。転送信号送出部75及び情報送信部76は、図2の検出地絡情報伝達指令部24に相当する。一致確認部73は、図2の一致判定部27に相当する。開閉器開放指令部74は、図2の開放指令送出部28に相当する。情報受信部77は、図2の相手端情報受信部25に相当する。   The accident detection unit 70 corresponds to the accident occurrence confirmation unit 14 of FIG. The short circuit priority unit 71 corresponds to the short circuit accident confirmation unit 15, the ground fault accident confirmation unit 16, the time waiting unit 44, and the two or more line accident detection unit 17 in FIG. 2, that is, the short circuit priority determination unit 18. The ground phase detection unit 72 corresponds to the ground fault occurrence detection unit 19, the A phase accident confirmation unit 20, the B phase accident confirmation unit 21, the C phase accident confirmation unit 22, and the ground fault phase determination unit 23 of FIG. The ground fault position detection unit 78 corresponds to the accident position detection unit 45 of FIG. The transfer signal transmission unit 75 and the information transmission unit 76 correspond to the detected ground fault information transmission command unit 24 of FIG. The match confirmation unit 73 corresponds to the match determination unit 27 in FIG. The switch opening command unit 74 corresponds to the opening command sending unit 28 in FIG. The information receiving unit 77 corresponds to the counterpart information receiving unit 25 in FIG.

アーク消滅確認部79は、図3の地絡解消確認部33に相当する。開閉器投入指令部80は、図3の投入指令部34に相当する。接地相検出部72は、配電線の1線地絡事故の地絡相を検出する地絡相検出部である。また、開閉器開放指令部74は、地絡相検出部が地絡相を検出した場合に、地絡相の開閉器(単相型区分開閉器83)が開放するように開放指令を出す事故除去部である。つまり、事故除去部は、図2の構成要素では、開放指令送出部28である。情報送信部76と、情報受信部77は、隣接する検出除去装置との間で通信する通信部である。この通信部は、図2の構成要素では、検出地絡情報伝達指令部24、相手端情報受信部25に相当する。   The arc extinction confirmation unit 79 corresponds to the ground fault elimination confirmation unit 33 in FIG. The switch input command unit 80 corresponds to the input command unit 34 of FIG. The ground phase detection unit 72 is a ground fault phase detection unit that detects the ground fault phase of the one-line ground fault of the distribution line. In addition, the switch opening command unit 74 issues an opening command so that the ground fault phase switch (single phase type switch 83) opens when the ground fault detection unit detects the ground fault phase. It is a removal part. That is, the accident removal unit is the release command sending unit 28 in the components shown in FIG. The information transmission unit 76 and the information reception unit 77 are communication units that communicate with adjacent detection / removal devices. The communication unit corresponds to the detected ground fault information transmission command unit 24 and the counterpart information receiving unit 25 in the components shown in FIG.

A相の1線地絡事故の発生を想定して、説明する。事故検出部70は、整定値を持ち、零相電圧発生を確認して整定値を超えていれば地絡事故発生を認識する。短絡優先部71は、短絡事故の存在する場合や進展事故で2線以上にわたる事故に進展した時はこのシーケンスを停止する。1線地絡で且つ何相の地絡事故であるのかを接地相検出部72で峻別する。また、接地相検出部72は、地絡相の1線地絡事故の程度を調べ、前述した日照判定部93の日照判定結果と1線地絡事故の程度とに基づいて、最終的な接地相(地絡相)を決定する。日照判定結果と1線地絡事故の程度とに基づいた条件が成立しない場合は、このシーケンスを終了する。日照判定結果と1線地絡事故の程度とに基づいた条件が成立した場合、地絡位置検出部78が、地絡が当該位置よりも下流にあるかどうかを判定する。そして、1線地絡を検出した端(検出除去装置100)から相手端(他の検出除去装置100)に向けて、「何相の1線接地であるか」の検出地絡相情報と「地絡位置が当該位置よりも下流かどうか」という地絡位置情報を、転送信号送出部75を介して、情報送信部76から送る。   A description will be given assuming that a phase A 1-line ground fault occurs. The accident detection unit 70 has a set value, confirms the occurrence of a zero-phase voltage, and recognizes the occurrence of a ground fault if it exceeds the set value. The short-circuit priority unit 71 stops this sequence when a short-circuit accident exists or when a progress accident causes a two-line or more accident. The ground phase detection unit 72 distinguishes one-phase ground fault and the number of phases of the ground fault accident. In addition, the ground phase detection unit 72 examines the degree of the 1-line ground fault of the ground fault phase, and determines the final ground based on the result of the sunshine determination of the sunshine determination unit 93 and the level of the 1-line ground fault. Determine the phase (earth fault phase). If the condition based on the sunshine determination result and the degree of the 1-line ground fault is not satisfied, this sequence is terminated. When the condition based on the sunshine determination result and the degree of the one-line ground fault is satisfied, the ground fault position detection unit 78 determines whether the ground fault is downstream of the position. Then, from the end (detection / removal device 100) that detects the one-wire ground fault to the other end (other detection / removal device 100), the detected ground fault phase information of “how many phases are one-wire grounding” and “ The ground fault position information “whether the ground fault position is downstream of the position or not” is sent from the information transmitter 76 via the transfer signal transmitter 75.

相手端からの同様の信号、すなわち検出地絡相情報と地絡位置情報を情報受信部77で受け、一致確認部73で確認する。相手端と自端で相互に一致確認を取り、接地相検出の信頼度を挙げる。不一致の時には制御シーケンスはこれを条件に止まって、変電所の地絡保護リレーが動作して通常の地絡事故遮断となる。両端で検出相の一致しており、相手端との間に地絡位置があることの確認が取れると、進展事故や、1線地絡事故から2線地絡事故又は、短絡を含んだ事故に進展する場合を想定して、線間電圧が整定値以下になったこと、あるいは大きな電流が流れていることを検出すると、短絡優先部71が作動して区分開閉器で短絡電流を開放しないように、このシーケンスをとめる。   A similar signal from the other end, that is, the detected ground fault phase information and the ground fault position information is received by the information receiving unit 77 and confirmed by the matching check unit 73. Check the matching between the other end and the other end, and raise the reliability of ground phase detection. When there is a discrepancy, the control sequence stops under this condition, and the substation ground fault protection relay operates and the normal ground fault is cut off. If the detection phases match at both ends and it is confirmed that there is a ground fault position with the other end, a progress accident, a one-wire ground fault accident to a two-wire ground fault accident, or an accident involving a short circuit If it is detected that the line voltage has fallen below the set value or that a large current is flowing, the short-circuit priority unit 71 is activated and does not open the short-circuit current with the section switch. Stop this sequence as follows.

1線地絡事故が継続していれば、単相型区分開閉器83の接地相に開放指令を開閉器開放指令部74から出す。単相型区分開閉器83はこの指令を受けて、当該相を開放する。電流がこのとき流れていても、負荷電流程度までは問題なく開放できる。区間の両端で接地相Aが解放されると、この区間よりも負荷側の健全区間も含めてA相欠相状態になる。しかし、B相及びC相の2相が繋がっているので、健全区間と欠相区間以降の位相の同期は確保されている。   If the one-line ground fault has continued, an opening command is issued from the switch opening command unit 74 to the ground phase of the single-phase section switch 83. In response to this command, the single-phase section switch 83 opens the phase. Even if current flows at this time, the load current can be released without any problem. When the ground phase A is released at both ends of the section, the phase A phase is lost including the healthy section on the load side from this section. However, since the two phases of the B phase and the C phase are connected, the synchronization of the phases after the healthy section and the open phase section is ensured.

3相による電力供給が2相になると、送れる電力は0.577倍になる。ここで基幹系統の送電線と配電系統の配電線では大きな違いが有る。基幹系統では対向端の間では中間介在の負荷は基本的に存在しない。これに比べて配電線では無負荷の場合でも複数台の柱上変圧器の1次巻き線は相間で繋がっている。従って欠相に絡む2相(AB相、CA相)は最小でもVbcの半電圧(1/2)Vbcになっている。「最小でも」の意味は、図12に示すように太陽光発電装置により半電圧よりも大きな電圧が発生できる場合があることを意味する。   When power supply by three phases becomes two phases, the power that can be sent is 0.577 times. Here, there is a big difference between the transmission line of the backbone system and the distribution line of the distribution system. In the backbone system, there is basically no intermediate load between the opposite ends. In contrast, the primary windings of the plurality of pole transformers are connected between the phases even when the distribution line is unloaded. Therefore, the two phases (AB phase and CA phase) involved in the open phase are at least a half voltage (1/2) Vbc of Vbc. The meaning of “at least” means that a voltage larger than half voltage may be generated by the photovoltaic power generation apparatus as shown in FIG.

将来的に太陽光発電装置の配電系統への接続容量が増え、且つFRT機能付きのものが増えてくると、1/2電圧程度でも十分に低出力発電を行うことになる。従って、FRT機能が継続している短時間は、(1/2)Vbc以上になっていることが期待される。こ
のFRT機能で発電機が運転を継続できる時間の長さであるFRT継続時間の間にアーク消滅を確認して、接地相の単相型区分開閉器83を投入すればA相とC相間(AC相)に接続された太陽光発電装置(図11の太陽光発電装置662)や、A相とC相間(BC相)に接続された太陽光発電装置は、配電系統から離脱せず、単相型区分開閉器83が投入された時点で全出力状態に近づく。
If the connection capacity of the photovoltaic power generation apparatus to the distribution system increases in the future, and the number with the FRT function increases, sufficiently low output power generation can be performed even at about 1/2 voltage. Therefore, it is expected that the short time during which the FRT function continues is (1/2) Vbc or more. If the arc extinction is confirmed during the FRT continuation time, which is the length of time that the generator can continue to operate with this FRT function, and the ground-phase single-phase section switch 83 is turned on, the phase between the A phase and the C phase ( The solar power generation device connected to (AC phase) (solar power generation device 662 in FIG. 11) and the solar power generation device connected between the A phase and the C phase (BC phase) do not leave the distribution system. When the phase type section switch 83 is turned on, it approaches the full output state.

地絡事故で絶縁破壊したA相のアークも6kV系なので、100ms以下で絶縁が回復する。従来、一般的な1線地絡事故の対処では、変電所の3相遮断で配電線は全停になる。しかし、本発明では、A相1線地絡の場合にVbcは正規電圧のまま残るので、BC相に接続された太陽光発電装置は配電系統から離脱しないで接続状態を継続する。   Since the A-phase arc that has undergone dielectric breakdown due to a ground fault is also a 6 kV system, the insulation recovers in 100 ms or less. Conventionally, in response to a general one-line ground fault, the distribution line is completely stopped by a three-phase interruption of the substation. However, in the present invention, in the case of the A-phase 1-wire ground fault, Vbc remains at the normal voltage, so that the photovoltaic power generator connected to the BC phase continues to be connected without being disconnected from the distribution system.

図13を用いて、A相1線地絡事故の発生を想定した説明をしたが、図1〜図3の機器を用いて以下に説明する。図1において、A相の1線地絡事故発生区間11の両端に設置された検出除去装置100a、100bは、それぞれのモニター部91から配電系統120に関する数値情報及び単相型区分開閉器5などのON/OFF情報を系統情報入出力部13に取り込む。系統情報入出力部13では、系統の電圧及び電流情報(電流センサーは図示せず)を受けてデータの妥当性を確認し、単相型区分開閉器5が3相とも開状態か閉状態のいずれにあるかを確認している。事故発生確認部14は、系統情報入出力部13から数値情報を受ける。具体的には、図2において点線枠で囲った短絡優先判定部18で、短絡か否かが短絡事故確認部15で判断される。線間電圧の低下がないかどうか、短絡電流がないかどうか(電流センサーは図示せず)を判定することになる。短絡事故の場合には、制御シーケンスは終了となる。   Although description was made assuming that an A-phase 1-line ground fault occurred using FIG. 13, this will be described below using the devices shown in FIGS. 1 to 3. In FIG. 1, detection and removal devices 100 a and 100 b installed at both ends of the A-phase one-wire ground fault occurrence section 11 are numerical information on the distribution system 120 from the respective monitor units 91, the single-phase section switch 5, etc. ON / OFF information is taken into the system information input / output unit 13. The system information input / output unit 13 receives the voltage and current information of the system (current sensor is not shown) and confirms the validity of the data, and the single-phase section switch 5 is in an open state or a closed state for all three phases. It is confirmed in either. The accident occurrence confirmation unit 14 receives numerical information from the system information input / output unit 13. Specifically, in the short-circuit priority determining unit 18 surrounded by a dotted frame in FIG. It is determined whether or not there is a drop in line voltage and whether or not there is a short-circuit current (current sensor is not shown). In the case of a short circuit accident, the control sequence ends.

短絡事故がない場合は、地絡事故があるかどうかが地絡事故確認部16で判断される。これは3・V0が所定の整定値を超えているか否かで判断する。地絡事故と判断しない場合は、制御シーケンスは終了となる。   If there is no short circuit accident, the ground fault confirmation unit 16 determines whether there is a ground fault. This is determined by whether or not 3 · V0 exceeds a predetermined settling value. If it is not determined that there is a ground fault, the control sequence ends.

地絡事故である場合には、時間待ち部44で時間待ちをする。これは進展事故対策であり、1線の絶縁破壊から2線の絶縁破壊に至るか否かを見ることで判断する。短絡優先判定部18は、若干の時間経過を含めた短絡事故優先を考慮したもので、単相型区分開閉器5の遮断部は小さい電流は切れても短絡電流のように大きな電流は遮断容量不足で遮断出来ないので、これに対する配慮をしたものである。   In case of a ground fault, the time waiting unit 44 waits for time. This is a countermeasure against a progressing accident, and it is determined by checking whether or not the breakdown of one line leads to the breakdown of two lines. The short-circuit priority determination unit 18 considers short-circuit accident priority including some time lapse, and even if the interrupting part of the single-phase type segmental switch 5 cuts off a small current, a large current such as a short-circuit current is interrupting capacity. Since it cannot be shut down due to shortage, this is considered.

地絡事故発生検出部19で地絡事故を確認する。地絡事故でない場合は系統情報入出力部へ戻る。地絡事故の場合は、何相の1線地絡かをA相事故確認部20、B相事故確認部21、C相事故確認部22で確認する。瞬間的に地絡事故が復帰したような場合も、系統情報入出力部13に戻る。   The ground fault accident detection unit 19 confirms the ground fault. If it is not a ground fault, return to the grid information input / output unit. In the case of a ground fault, the phase A accident confirmation unit 20, the phase B accident confirmation unit 21, and the phase C accident confirmation unit 22 confirm the number of one-line ground faults. Even when the ground fault is instantaneously restored, the system information input / output unit 13 is returned.

1線地絡相が地絡相確定部23で確定する。また、地絡相確定部23は、地絡相の1線地絡事故の程度を調べ、前述した日照判定部93の日照判定結果と1線地絡事故の程度とに基づいて、最終的な地絡相を決定する。日照判定結果と1線地絡事故の程度とに基づいた条件が成立しない場合は、このシーケンスを終了する。事故位置検出部45は、事故点が当該検出除去装置100よりも下流にあるかどうかを判断する。その後、相手端に有線や無線等の通信手段を使って、自端では何相の1線地絡相を検出したか、事故点が下流にあるかどうかを、検出地絡情報伝達指令部24で伝達する。同様に相手端からは何相の1線地絡であったか、事故点が下流にあるかどうかを相手端情報受信部25で受け取り、検出地絡相が一致しており、かつ相手との間に事故点があることの確認を一致判定部27で行う。不一致であればこの制御シーケンスを終わる。検出地絡相の一致が一致判定部27で確認されると、該当する相の単相型区分開閉器5に開放指令が開放指令送出部28から送出される。   The 1-line ground fault phase is determined by the ground fault phase determination unit 23. Further, the ground fault phase determination unit 23 examines the degree of the 1-line ground fault of the ground fault phase, and finally determines based on the result of the sunlight determination of the sun determination unit 93 and the level of the 1-line ground fault. Determine the ground fault phase. If the condition based on the sunshine determination result and the degree of the 1-line ground fault is not satisfied, this sequence is terminated. The accident position detection unit 45 determines whether or not the accident point is downstream of the detection and removal apparatus 100. Thereafter, using the communication means such as wired or wireless at the other end, the detected ground fault information transmission command unit 24 indicates how many phases of the one-line ground fault phase are detected at the own end and whether the accident point is downstream. Communicate with. Similarly, the other end information receiving unit 25 receives the number of phases of one-line ground fault from the other end and whether the accident point is downstream, and the detected ground fault phase coincides with the other end. The coincidence determination unit 27 confirms that there is an accident point. If they do not match, the control sequence ends. When the coincidence of the detected ground fault phase is confirmed by the coincidence determination unit 27, an open command is sent from the open command sending unit 28 to the single-phase type segmental switch 5 of the corresponding phase.

当該相が開放されたかどうかが開放指令確認部29で確認され、開放されていないときは、機器不良を出して変電所の遮断器のトリップを待つことになる。   Whether or not the phase has been opened is confirmed by the opening command confirmation unit 29. If the phase has not been opened, an equipment failure is issued and the trip of the circuit breaker at the substation is awaited.

絶縁回復を地絡解消確認部33で確認すると、該当する相の単相型区分開閉器5に投入指令を投入指令部34で与える。投入されたかどうかを投入確認部37で確認して、投入されない場合は、機器不良を出して、処理を終了する。単相型区分開閉器5が投入されると、事故前の状態に復したことになる。このとき事故が永久事故であったものとすると、地絡事故確認部43で零相電圧が確認され、地絡事故が残っていることが知れる。この場合には、変電所に設置された配電線の地絡保護リレーが動作して、変電所の遮断器をトリップさせて地絡事故を除去する。なお、単相型区分開閉器5が投入されない場合には欠相状態が継続するが、変電所に設置されたリレーが欠相状態の配電線を検知して変電所の遮断器をトリップさせて欠相状態を解消する。   When the insulation recovery is confirmed by the ground fault elimination confirming unit 33, the closing command unit 34 gives a closing command to the single-phase type segmental switch 5 of the corresponding phase. Whether or not it has been turned on is confirmed by the loading confirmation unit 37. If it has not been turned on, a device failure is issued and the process is terminated. When the single-phase section switch 5 is turned on, the state before the accident is restored. Assuming that the accident is a permanent accident at this time, the ground fault accident confirmation unit 43 confirms the zero-phase voltage, and it is known that the ground fault remains. In this case, the ground fault protection relay of the distribution line installed in the substation operates to trip the circuit breaker of the substation and eliminate the ground fault. If the single-phase section switch 5 is not turned on, the phase failure state will continue. However, the relay installed in the substation will detect the open phase distribution line and trip the substation circuit breaker. Eliminate the open phase condition.

次に実施の形態1の配電系統制御システム110について、図13の用語及び符号を用いてまとめる。まず、このシステムの事故検出部70が地絡事故を検出すると、単相型区分開閉器83には電流を切る時に容量的な限界があるため1線故障か、2線以上の故障かを短絡優先部71で識別し、このとき若干の時間待ちをして1線事故から2線以上の事故になったかどうかの確認をする。その後、接地相検出部72が接地相検出要素を用いて何相の事故であるのかを識別する。この接地相検出はA相検出の装置ではBC相の線間電圧Vbcを基準ベクトルとし、相電圧A相と零相電圧k・3・V0(kは整定値)から演算ベクトルとしてVa−k3V0を作り出している。   Next, the power distribution system control system 110 according to the first embodiment will be summarized using the terms and symbols in FIG. First, when the fault detection unit 70 of this system detects a ground fault, the single-phase section switch 83 has a capacity limit when the current is cut off, so it is short-circuited between one-line fault or two-line fault or more. The priority part 71 identifies and waits for a short time at this time, and confirms whether the accident of two or more lines has been changed from the one line accident. Thereafter, the ground phase detection unit 72 identifies the phase of the accident using the ground phase detection element. In the ground phase detection device, in the phase A detection apparatus, the line voltage Vbc of the BC phase is used as a reference vector, and Va−k3V0 is calculated as an operation vector from the phase voltage A phase and the zero phase voltage k · 3 · V0 (k is a set value). Producing.

接地相検出部72は、地絡相の1線地絡事故の程度を調べ、前述した日照判定部93の日照判定結果と1線地絡事故の程度とに基づいて、最終的な接地相(地絡相)を決定する。   The ground phase detection unit 72 examines the degree of the 1-line ground fault of the ground fault phase, and determines the final ground phase (based on the sun determination result of the sun determination unit 93 and the level of the 1-line ground fault as described above. (Ground fault phase).

次いで区間の両端(電源側と負荷側)が地絡相および事故位置を伝送しあって、お互いに同じ相を事故と判断すればほぼ同時に単相型区分開閉器83を開く。図1においては、電源側の検出除去装置100aと負荷側の検出除去装置100bが地絡相を伝送しあって、お互いに同じ相を事故と判断すればほぼ同時に単相型区分開閉器5aと単相型区分開閉器5dを開くことになる。このとき機器不良などで単相型区分開閉器83が開かない時は、変電所の地絡保護リレーが動作して変電所の遮断器が3相遮断される。単相遮断(1相遮断)できなくて、変電所で3相遮断してしまうと全停となって、貴重な太陽光発電の出力は途絶してしまう。地絡相のA相だけを取り除けば電圧Vbcは正規電圧を維持しているのでこれに接続されている太陽光発電は出力を継続することができる。   Next, both ends (power supply side and load side) of the section transmit the ground fault phase and the accident position, and if the same phase is determined to be an accident, the single-phase type section switch 83 is opened almost simultaneously. In FIG. 1, if the detection / removal device 100a on the power source side and the detection / removal device 100b on the load side transmit ground fault phases and determine that the same phase is an accident, the single-phase type section switch 5a and The single-phase section switch 5d is opened. At this time, when the single-phase type switch 83 does not open due to equipment failure or the like, the ground fault protection relay of the substation operates and the substation circuit breaker is shut off in three phases. If single-phase shut-off (one-phase shut-off) cannot be performed and three-phase shut-off occurs at a substation, the output of valuable solar power generation is interrupted. If only the A phase of the ground fault phase is removed, the voltage Vbc maintains the normal voltage, so that the photovoltaic power generation connected thereto can continue its output.

AB相、CA相は柱上変圧器と負荷の存在で大きさは共に(1/2)Vbc以上になっている。FRT機能付きの太陽光発電装置は電圧低下の場合でも2〜300ms間は出力低減状態を続ける。このため3相配電が2相配電になったことで伝達出来る電力は0.577倍に落ち込んでいるが、太陽光発電装置の正規出力及び低減出力分が不足電力を補い、出力量に応じて電圧は上がることになる。なお、単相型区分開閉器83で地絡相を開放しているが、変電所側で遮断器を各相型に変えて1線地絡地絡相を遮断することも本発明の趣旨と同じである。その場合には、相手端と情報を送受することは、不要である。   The AB phase and the CA phase are both (1/2) Vbc or more due to the presence of the pole transformer and the load. The photovoltaic power generation apparatus with the FRT function continues to be in an output reduced state for 2 to 300 ms even when the voltage drops. For this reason, the electric power that can be transmitted by changing the three-phase power distribution to the two-phase power distribution has dropped by 0.577 times, but the regular output and reduced output of the photovoltaic power generator make up for the insufficient power and according to the output amount The voltage will go up. In addition, although the ground fault phase is open | released by the single phase type division | segmentation switch 83, changing the circuit breaker into each phase type on the substation side and interrupting the one-wire ground fault phase is also the purpose of the present invention. The same. In that case, it is not necessary to send / receive information to / from the other end.

零相電圧が事故前の残留零相電圧に戻っていれば、アークが消滅して、事故点の絶縁が回復したことになる。両端と連絡を取り合ってほぼ同時にA相の単相型区分開閉器83を投入する。図1においては、電源側の検出除去装置100aと負荷側の検出除去装置100b連絡を取り合ってほぼ同時にA相の単相型区分開閉器5aと単相型区分開閉器5dを投入する。このとき零相電圧V0が検出されれば、永久事故である。変電所に設置された
地絡保護リレーが事故を検出して、事故が起きた配電線の遮断器を3相開放する。
If the zero-phase voltage has returned to the residual zero-phase voltage before the accident, the arc has disappeared and the insulation at the accident point has been restored. At the same time, the A-phase single-phase section switch 83 is put in contact with both ends. In FIG. 1, the detection / removal device 100a on the power supply side and the detection / removal device 100b on the load side are kept in contact with each other, and the A-phase single-phase section switch 5a and the single-phase section switch 5d are turned on almost simultaneously. If the zero-phase voltage V0 is detected at this time, it is a permanent accident. The ground fault protection relay installed at the substation detects the accident and opens the three-phase circuit breaker of the distribution line where the accident occurred.

このように、実施の形態1の配電系統制御システム110は、地絡事故の時に積極的に健全相を残すようにし、健全相に繋がる太陽光発電装置が配電系統から脱落することを防止するようにした。実施の形態1の配電系統制御システム110においては、地絡が発生した当該1線地絡相のみを区間の両端で引き外すので、1相の健全相が残り、すなわちA相に地絡事故が発生した場合のBC相が健全相として残り、この健全相(BC相)に接続されている太陽光発電装置は発電を続けるとともに、地絡相を含む2相(AB相、CA相)の太陽光発電装置のFRT機能を活用して、1線地絡相の絶縁が回復するまでの間、太陽光発電装置の離脱を防ぐようにした。さらに、実施の形態1の配電系統制御システム110においては、3相配電が2相配電になったことによる有効電力不足の一部を、太陽光発電装置の出力を活用して負荷側の電圧低減分を補うようにした。したがって、1線地絡事故遮断で太陽光発電装置が発電を継続でき、エネルギーの途絶を防止できるほか逆相電流を軽減できる。このとき1線地絡事故の開放は時限協調が取られているので、下記の通りとする。   As described above, the distribution system control system 110 according to the first embodiment actively leaves a healthy phase at the time of a ground fault, and prevents the photovoltaic power generation apparatus connected to the healthy phase from falling out of the distribution system. I made it. In the distribution system control system 110 according to the first embodiment, only the one-wire ground fault phase in which the ground fault has occurred is tripped at both ends of the section, so that one healthy phase remains, that is, there is a ground fault in the A phase. When generated, the BC phase remains as a healthy phase, and the solar power generation apparatus connected to the healthy phase (BC phase) continues to generate power and the two-phase (AB phase, CA phase) sun including the ground fault phase By utilizing the FRT function of the photovoltaic power generation device, the photovoltaic power generation device is prevented from detaching until the insulation of the one-wire ground fault phase is restored. Furthermore, in the distribution system control system 110 according to the first embodiment, a part of the shortage of the effective power due to the three-phase distribution becoming the two-phase distribution is used to reduce the voltage on the load side by using the output of the photovoltaic power generation device. I made up for the minute. Therefore, the photovoltaic power generation device can continue to generate power by cutting off the one-line ground fault, preventing energy disruption and reducing the reverse phase current. At this time, the opening of the 1-line ground fault has been coordinated with time.

需要家構内事故の場合は、需要家の保護リレーの動作時限よりも遅く整定されている、配電系統制御システム110は0.6秒以内に事故遮断し、変電所側は0.9秒遮断に制定されている。FRT機能が継続している間が肝心なので、配電系統制御システム110による事故遮断の開始は早いほうが良い。したがって、本発明は変電所の遮断器がトリップする前に配電系統内の1線地絡事故に対処する必要があるので、配電系統制御システム110は、変電所の遮断器がトリップする前に配電系統内の1線地絡事故に対処している。   In the case of a customer premises accident, the distribution system control system 110, which is set later than the operation time of the protection relay of the customer, shuts down the accident within 0.6 seconds, and the substation side shuts off for 0.9 seconds. It has been enacted. Since it is important that the FRT function continues, it is better to start the accident interruption by the power distribution system control system 110 earlier. Therefore, since the present invention needs to cope with a one-line ground fault in the distribution system before the substation circuit breaker trips, the distribution system control system 110 can distribute power before the substation circuit breaker trips. Dealing with a one-line ground fault in the system.

実施の形態1の検出除去装置100は、日照判定部93を備えたので、日照判定部93の日照判定結果に基づいて、太陽光発電装置の出力を十分に活用することができる。実施の形態1の検出除去装置100は、日照判定結果が日照有で、かつ1線地絡事故の程度が90%地絡以上の場合(条件1)、または日照判定結果が日照無で、かつ1線地絡事故の程度が98%地絡以上の場合(条件2)に、最終的な接地相(地絡相)を決定する。そして、実施の形態1の検出除去装置100は、地絡が発生した限定した区間における1線地絡相のみを開放するようにした。検出除去装置100は、十分な日照があり、かつ太陽光発電装置が動作している場合には、配電系統の1線地絡事故の際に太陽光発電装置が発電状態を継続することができる。   Since the detection / removal apparatus 100 of Embodiment 1 includes the sunshine determination unit 93, the output of the photovoltaic power generation apparatus can be fully utilized based on the sunshine determination result of the sunshine determination unit 93. Detection / removal device 100 of Embodiment 1 has a sunshine determination result when sunshine is present and the degree of a one-line ground fault is 90% or more (condition 1), or the sunshine determination result is no sunshine, and When the degree of the one-line ground fault is 98% or more (condition 2), the final ground phase (ground fault phase) is determined. And the detection removal apparatus 100 of Embodiment 1 was made to open | release only the 1 line | wire ground fault phase in the limited area where the ground fault generate | occur | produced. When there is sufficient sunshine and the solar power generation device is operating, the detection and removal device 100 can continue the power generation state in the event of a one-line ground fault in the distribution system. .

十分な日照がない場合には、太陽光発電装置を停止させることのデメリットが少なく、地絡相だけを開放すると、正相電圧と同じだけの逆相電圧が発生し、逆相電圧が電動機などに悪影響を与える。地絡の程度が小さい場合には、地絡事故が自然に消滅する場合があり、自然消滅する場合には、1相開放することは不要動作になる。したがって、日照が無い場合には、1相開放する地絡の程度を大きくする。
日照がある場合は、配電系統の1線地絡事故の際に地絡相だけを開放して太陽光発電装置が発電を継続できるメリットが大きく、地絡相と地絡相でない相との間に接続された太陽光発電装置により逆相電圧は小さくなり、逆相電圧による電動機などへの悪影響も小さくなる。事故が自然消滅する場合でもデメリットが少ないので、日照が無い場合よりも程度が小さい地絡でも1相動作させる。
When there is not enough sunshine, there are few demerits of stopping the photovoltaic power generator, and if only the ground fault phase is opened, a negative phase voltage equal to the positive phase voltage will be generated, and the negative phase voltage will be Adversely affects. When the degree of ground fault is small, the ground fault accident may disappear naturally, and when it disappears naturally, opening one phase becomes unnecessary operation. Therefore, when there is no sunshine, the degree of ground fault that opens one phase is increased.
When there is sunshine, there is a great merit that the photovoltaic power generation device can continue power generation by opening only the ground fault phase in the event of a one-line ground fault in the distribution system, between the ground fault phase and the phase that is not the ground fault phase. The negative phase voltage is reduced by the solar power generation device connected to, and the adverse effect of the negative phase voltage on the motor and the like is also reduced. Even if the accident disappears naturally, there are few disadvantages, so one-phase operation is performed even with a ground fault that is less severe than when there is no sunshine.

したがって、複数の検出除去装置100を備えた配電系統制御システム110は、日照判定結果によって1相遮断を実施する閾値を変更することで、十分な日照がある場合には、地絡事故の際に積極的に健全相を残すようにし、健全相に繋がる太陽光発電装置が配電系統から脱落することを防止でき、十分な日照がない場合には、結果的に不要であるような1相だけの配電線の開放を少なくすることができる。このように、実施の形態1の配電
系統制御システム110は、太陽光発電装置が繋がった配電系統120を日照判定結果によって適切に制御することができ、十分な日照がある場合に太陽光発電装置の出力を十分に活用することができる。
Therefore, the distribution system control system 110 including the plurality of detection and removal devices 100 changes the threshold value for performing the one-phase cutoff according to the sunshine determination result, and when there is sufficient sunshine, Actively leave a healthy phase, can prevent the photovoltaic power generation device connected to the healthy phase from falling off the distribution system, and if there is not enough sunlight, only one phase that is unnecessary as a result Opening of distribution lines can be reduced. As described above, the power distribution system control system 110 according to the first embodiment can appropriately control the power distribution system 120 connected to the solar power generation apparatus based on the result of the sunshine determination, and the solar power generation apparatus when there is sufficient sunshine. Can be fully utilized.

以上のように、実施の形態1の配電系統制御システム110によれば、配電系統120に地絡事故が発生した際に地絡事故の相を検出し、検出された1線地絡相を遮断するように相ごとに開閉が可能な単相型開閉器(単相型区分開閉器5)を開放する1線開放指令を生成する検出部94と、1線開放指令により遮断された1線地絡相の絶縁回復が確認された場合に、単相型開閉器(単相型区分開閉器5)を投入する投入指令を生成する投入処理部95を有する検出除去装置100を備えたので、3相型電系統の1線地絡事故の際に、地絡相のみを開放し、積極的に健全相を残すことができ、配電系統120の1線地絡事故の際に太陽光発電装置が発電状態を継続することができる。   As described above, according to the distribution system control system 110 of the first embodiment, when a ground fault occurs in the distribution system 120, the phase of the ground fault is detected and the detected one-wire ground fault phase is cut off. The detecting unit 94 for generating a one-line opening command for opening a single-phase type switch (single-phase type segmented switch 5) that can be opened and closed for each phase, and a one-wire ground blocked by the one-line opening command When the insulation recovery of the intertwining phase is confirmed, the detection / removal device 100 having the input processing unit 95 that generates the input command to input the single-phase type switch (single-phase type divisional switch 5) is provided. In the event of a one-line ground fault in the phase-type power system, only the ground fault phase can be opened and a healthy phase can be left active. The power generation state can be continued.

実施の形態1の検出除去装置100は、配電線12の1線地絡事故の地絡相を検出する地絡相検出部(接地相検出部72)と、地絡相検出部(接地相検出部72)が地絡相を検出した場合に、地絡相の開閉器(単相型区分開閉器5)が開放するように開放指令を出す事故除去部(開放指令送出部28、開閉器開放指令部74)と、開閉器(単相型区分開閉器5)が開放された後に、地絡相の開閉器(単相型区分開閉器5)を投入する投入指令を出す投入処理部95とを備えたので、配電線12を全停させないで1線地絡事故を除去できる。   The detection / removal device 100 according to the first embodiment includes a ground fault phase detection unit (ground phase detection unit 72) that detects a ground fault phase of a one-line ground fault of the distribution line 12, and a ground fault phase detection unit (ground phase detection). When the unit 72) detects a ground fault phase, an accident removal unit (open command sending unit 28, switch opening) issues an open command so that the ground fault phase switch (single-phase section switch 5) opens. A command unit 74), and a closing processing unit 95 for issuing a closing command for switching on the ground fault phase switch (single phase type segmental switch 5) after the switch (single phase type segmental switch 5) is opened. Therefore, it is possible to eliminate a one-line ground fault without stopping the distribution line 12 completely.

実施の形態2.
実施の形態1では日照判定結果によって1相遮断を実施する地絡事故の程度の閾値を変更したが、実施の形態2では日照が十分でない場合に、変電所の地絡保護リレーにより変電所の遮断器が3相遮断する。
Embodiment 2. FIG.
In the first embodiment, the threshold value of the degree of ground fault that implements the one-phase interruption is changed according to the sunshine judgment result. However, in the second embodiment, when the sunshine is not enough, the substation ground fault protection relay Circuit breaker breaks three phases.

実施の形態2における日照判定結果と1線地絡事故の程度とに基づいた条件を、説明する。上記1相遮断条件は、日照判定結果が日照有で、かつ1線地絡事故の程度が90%地絡以上となる場合(条件1)である。その他の場合は、変電所の地絡保護リレーにより変電所の遮断器が3相遮断する。実施の形態2の配電系統制御システム110は、日照有で配電系統の1線地絡事故の際に太陽光発電装置が発電状態を継続することができる。   The conditions based on the sunshine determination result and the degree of the one-line ground fault in Embodiment 2 will be described. The one-phase blocking condition is when the sunshine determination result is sunshine present and the degree of the one-line ground fault is 90% or more (condition 1). In other cases, the substation circuit breaker is three-phase interrupted by the substation ground fault protection relay. The distribution system control system 110 according to the second embodiment allows the photovoltaic power generation apparatus to continue the power generation state in the case of a one-line ground fault in the distribution system with sunshine.

この実施の形態2では、日照が無い場合には、結果的に不要であるような1相だけの配電線の開放をなくすることができる。日照がある場合に、太陽光発電装置の出力を十分に活用することができることは、実施の形態1の場合と同じである。   In the second embodiment, when there is no sunshine, it is possible to eliminate the opening of the distribution line of only one phase which is unnecessary as a result. The fact that the output of the solar power generation device can be fully utilized when there is sunshine is the same as in the first embodiment.

なお、実施の形態1および2では、単相型区分開閉器5で地絡相を開放するようにしたが、単相型区分開閉器5の変わりに変電所の遮断器を各相型にして、1線地絡相だけを遮断するようにしてもよい。この場合も、太陽光発電装置が発電を継続できる。また、1相遮断や3相遮断を行う1線地絡事故の程度は、実施の形態1および2に記載した例でなくてもよい。また、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。   In the first and second embodiments, the ground fault phase is opened by the single-phase section switch 5. However, instead of the single-phase section switch 5, the substation circuit breaker is changed to each phase type. Only the 1-wire ground fault phase may be blocked. Also in this case, the solar power generation device can continue power generation. The degree of the one-line ground fault that performs the one-phase cutoff or the three-phase cutoff may not be the example described in the first and second embodiments. Further, the present invention can be combined with each other within the scope of the invention, or can be appropriately modified or omitted from each embodiment.

5、5a、5b、5c、5d、5e、5f…単相型区分開閉器、12、12a、12b、12c…配電線、24…検出地絡情報伝達指令部、25…相手端情報受信部、28…開放指令送出部、74…開閉器開放指令部、76…情報送信部、77…情報受信部、83…単相型区分開閉器、93…日照判定部、95…投入処理部、100、100a、100b…検出除去装置、661、662…太陽光発電装置。   5, 5a, 5b, 5c, 5d, 5e, 5f ... single-phase type section switch, 12, 12a, 12b, 12c ... distribution line, 24 ... detected ground fault information transmission command unit, 25 ... mating end information receiving unit, 28 ... Opening command sending unit, 74 ... Switch opening commanding unit, 76 ... Information transmitting unit, 77 ... Information receiving unit, 83 ... Single phase type section switch, 93 ... Sunlight determining unit, 95 ... Input processing unit, 100, 100a, 100b ... detection and removal device, 661, 662 ... solar power generation device.

Claims (11)

相ごとに開閉が可能な開閉器が設けられた3相の配電線の1線地絡事故を検出して除去する配電線の1線地絡事故の検出除去装置であって、
前記配電線の1線地絡事故の地絡相を検出する地絡相検出部と、
前記地絡相検出部が前記地絡相を検出した場合に、前記地絡相の前記開閉器が開放するように開放指令を出す事故除去部と、
前記開閉器が開放された後に、前記地絡相の前記開閉器を投入する投入指令を出す投入処理部とを備えた配電線の1線地絡事故の検出除去装置。
A detection and removal device for a 1-wire ground fault of a distribution line that detects and removes a 1-line ground fault of a 3-phase distribution line provided with a switch that can be opened and closed for each phase,
A ground fault phase detection unit for detecting a ground fault phase of the one-line ground fault of the distribution line;
When the ground fault phase detection unit detects the ground fault phase, an accident removal unit that issues an opening command so that the switch of the ground fault phase is opened,
An apparatus for detecting and removing a one-line ground fault of a distribution line, comprising: an input processing unit that issues an input command to input the switch in the ground fault phase after the switch is opened.
前記配電線が存在する地域の日照有無を判定する日照判定部を備え、
前記地絡相検出部は、前記地絡相の地絡程度を検出し、前記日照判定部が日照有と判定し、かつ前記地絡程度が第1閾値より大きい場合に前記開放指令を出すことを特徴とする請求項1に記載の配電線の1線地絡事故の検出除去装置。
A sunshine determination unit that determines the presence or absence of sunshine in the area where the distribution line exists,
The ground fault detection unit detects a ground fault level of the ground fault phase, the sunshine determination unit determines that there is sunshine, and issues the release command when the ground fault level is greater than a first threshold. The apparatus for detecting and removing a one-wire ground fault of a distribution line according to claim 1.
前記地絡相検出部は、前記日照判定部が日照無と判定し、かつ前記地絡程度が第1閾値より大きい第2閾値より大きい場合に前記開放指令を出すことを特徴とする請求項2に記載の配電線の1線地絡事故の検出除去装置。   The ground fault phase detection unit issues the release command when the sunshine determination unit determines that there is no sunshine and the ground fault level is greater than a second threshold value that is greater than a first threshold value. 1-line ground fault detection and removal device for distribution lines as described in 1. 前記地絡相検出部が、前記配電線の各相の電圧から1線地絡事故の地絡相を検出することを特徴とする請求項1ないし請求項3の何れか1項に記載の配電線の1線地絡事故の検出除去装置。   4. The distribution according to claim 1, wherein the ground fault phase detection unit detects a ground fault phase of a one-wire ground fault from the voltage of each phase of the distribution line. Detection and removal device for 1-wire ground faults of electric wires. 前記配電線の各相の電流から事故が当該検出除去装置よりも下流にあるかどうか検出する事故位置検出部と、
隣接する検出除去装置との間で通信する通信部とを備え、
前記事故位置検出部が下流に事故有と検出し、かつ下流側で隣接する前記検出除去装置の前記事故位置検出部が下流に事故無と検出し、かつ当該検出除去装置および下流側で隣接する前記検出除去装置の前記地絡相検出部が同じ相を地絡相とする場合、または、前記事故位置検出部が下流に事故無と検出し、かつ上流側で隣接する前記検出除去装置の前記事故位置検出部が下流に事故有と検出し、かつ当該検出除去装置および上流側で隣接する前記検出除去装置の前記地絡相検出部が同じ相を地絡相とする場合に、前記事故除去部が前記開放指令を出すことを特徴とする請求項4に記載の配電線の1線地絡事故の検出除去装置。
An accident position detector that detects whether an accident is downstream of the detection and removal device from the current of each phase of the distribution line;
A communication unit that communicates with an adjacent detection and removal device,
The accident position detection unit detects that there is an accident downstream, and the accident position detection unit of the detection and removal device adjacent on the downstream side detects that there is no accident downstream and is adjacent to the detection and removal device and the downstream side. When the ground fault phase detection unit of the detection and removal device uses the same phase as the ground fault phase, or the accident position detection unit detects that there is no accident downstream and the upstream of the detection and removal device adjacent to the detection fault removal device When the accident position detection unit detects that there is an accident downstream, and the ground fault phase detection unit of the detection and removal device adjacent on the upstream side makes the same phase as the ground fault phase, the accident removal 5. The apparatus for detecting and removing a one-wire ground fault of a distribution line according to claim 4, wherein the unit issues the opening command.
前記開閉器が変電所の遮断器であることを特徴とする請求項4に記載の配電線の1線地絡事故の検出除去装置。   The apparatus for detecting and removing a one-wire ground fault of a distribution line according to claim 4, wherein the switch is a circuit breaker of a substation. 前記開閉器が前記配電線の区分開閉器であることを特徴とする請求項5に記載の配電線の1線地絡事故の検出除去装置。   The apparatus for detecting and removing a one-wire ground fault of a distribution line according to claim 5, wherein the switch is a section switch of the distribution line. 前記投入処理部が、前記配電線の零相電圧が所定値より小さくなってから所定時間が経過した時に前記投入指令を出すことを特徴とする請求項1ないし請求項7の何れか1項に記載の配電線の1線地絡事故の検出除去装置。   8. The method according to claim 1, wherein the input processing unit issues the input command when a predetermined time elapses after the zero-phase voltage of the distribution line becomes smaller than a predetermined value. The detection removal apparatus of the 1 wire ground fault accident of the distribution line of description. 前記投入処理部が、前記配電線の零相電流が所定値より小さくなってから所定時間が経過した時に前記投入指令を出すことを特徴とする請求項1ないし請求項7の何れか1項に記載の配電線の1線地絡事故の検出除去装置。   8. The method according to claim 1, wherein the input processing unit issues the input command when a predetermined time elapses after the zero-phase current of the distribution line becomes smaller than a predetermined value. The detection removal apparatus of the 1 wire ground fault accident of the distribution line of description. 前記投入処理部が、前記開閉器が開放されてから所定時間が経過した時に前記投入指令を出すことを特徴とする請求項1ないし請求項7の何れか1項に記載の配電線の1線地絡事故の検出除去装置。   The distribution line according to any one of claims 1 to 7, wherein the input processing unit issues the input command when a predetermined time has elapsed since the switch was opened. Ground fault accident detection and removal device. 前記投入処理部は、前記開閉器が開放されてから前記配電線に接続する太陽光発電装置のFRT継続時間までに、前記開閉器を投入することを特徴とする請求項8ないし請求項10の何れか1項に記載の配電線の1線地絡事故の検出除去装置。   The said input processing part throws in the said switch by the FRT continuation time of the photovoltaic power generation apparatus connected to the said distribution line after the said switch is open | released, The Claims 10 thru | or 10 characterized by the above-mentioned. The detection removal apparatus of the 1 wire ground fault of the distribution line of any one of Claims 1.
JP2012215718A 2012-09-28 2012-09-28 Detection and removal device of single line-to-ground fault of distribution line Pending JP2014072947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215718A JP2014072947A (en) 2012-09-28 2012-09-28 Detection and removal device of single line-to-ground fault of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215718A JP2014072947A (en) 2012-09-28 2012-09-28 Detection and removal device of single line-to-ground fault of distribution line

Publications (1)

Publication Number Publication Date
JP2014072947A true JP2014072947A (en) 2014-04-21

Family

ID=50747699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215718A Pending JP2014072947A (en) 2012-09-28 2012-09-28 Detection and removal device of single line-to-ground fault of distribution line

Country Status (1)

Country Link
JP (1) JP2014072947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776283A (en) * 2018-04-04 2018-11-09 国家电网公司 A kind of CT not exclusively lower power distribution network single-phase disconnection fault judgment method of configuration with judge system
CN112262511A (en) * 2018-05-09 2021-01-22 仁泰株式会社 Universal power distribution system for detecting and repairing electrical faults and construction method thereof
CN112433127A (en) * 2020-11-13 2021-03-02 珠海许继电气有限公司 Fault type identification method and device based on platform area intelligent fusion terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284984A (en) * 1996-04-08 1997-10-31 Mitsubishi Electric Corp Ground detection circuit and circuit breaker having ground detection circuit
JP2001095145A (en) * 1999-09-21 2001-04-06 San'eisha Mfg Co Ltd Overhead distribution line system monitor device
JP2002369375A (en) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp Distribution line supervisory control device
JP2007336711A (en) * 2006-06-15 2007-12-27 Chugoku Electric Power Co Inc:The Digital protection relay incorporating phase control
JP2011101455A (en) * 2009-11-04 2011-05-19 Tokyo Electric Power Co Inc:The Device for controlling photovoltaic power generation facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284984A (en) * 1996-04-08 1997-10-31 Mitsubishi Electric Corp Ground detection circuit and circuit breaker having ground detection circuit
JP2001095145A (en) * 1999-09-21 2001-04-06 San'eisha Mfg Co Ltd Overhead distribution line system monitor device
JP2002369375A (en) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp Distribution line supervisory control device
JP2007336711A (en) * 2006-06-15 2007-12-27 Chugoku Electric Power Co Inc:The Digital protection relay incorporating phase control
JP2011101455A (en) * 2009-11-04 2011-05-19 Tokyo Electric Power Co Inc:The Device for controlling photovoltaic power generation facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776283A (en) * 2018-04-04 2018-11-09 国家电网公司 A kind of CT not exclusively lower power distribution network single-phase disconnection fault judgment method of configuration with judge system
CN108776283B (en) * 2018-04-04 2020-06-05 国家电网公司 Power distribution network single-phase disconnection fault judgment method and system under incomplete CT configuration
CN112262511A (en) * 2018-05-09 2021-01-22 仁泰株式会社 Universal power distribution system for detecting and repairing electrical faults and construction method thereof
CN112433127A (en) * 2020-11-13 2021-03-02 珠海许继电气有限公司 Fault type identification method and device based on platform area intelligent fusion terminal

Similar Documents

Publication Publication Date Title
US10910826B2 (en) Voltage derivative and zero-sequence broken conductor detection
Zamani et al. A communication-assisted protection strategy for inverter-based medium-voltage microgrids
Meghwani et al. A new protection scheme for DC microgrid using line current derivative
Lagos et al. Microgrid protection against internal faults: Challenges in islanded and interconnected operation
CN101917064B (en) Back-up protection processing method of digital substation transformer based on GOOSE mode
CN104251959B (en) A kind of system for detecting and positioning one-phase earthing failure in electric distribution network
CN103022993B (en) Adaptive cascade direction interlocking relaying method based on GOOSE (Generic Object Oriented Substation Event)
CN116995681A (en) Nested micro-grid control system
CN105207178B (en) A kind of based on the DG Distribution Network Failure accessed location and isolated island division methods
US9784781B2 (en) Islanding detection reliability in electricity distribution network
US9494635B2 (en) Islanding detection in electricity distribution network
KR20170015913A (en) Fault protection in converter-based dc distribution systems
WO2018052067A1 (en) Dc power transmission system
CN103618377A (en) Automatic bus transfer equipment system and automatic bus transfer method used for transformer substation to which small power supply is connected
Mohamed et al. A review on the proposed solutions to microgrid protection problems
WO2009052862A1 (en) Differential protection method, system and device
CN105024363A (en) No-channel single-phase earth fault self-healing method for power distribution network
CN109964382A (en) Protection for HVDC network
CN104377690A (en) Control and protection system for thyristor controlled phase shifter of supergrid
CN104377691A (en) Control and protection method for thyristor controlled phase shifter of supergrid
Memon et al. Microgrid protection with conventional and adaptive protection schemes
CN106786473A (en) A kind of arc suppression coil earthing system distribution line single-phase earth fault isolation method
JP2014072947A (en) Detection and removal device of single line-to-ground fault of distribution line
CN204651919U (en) A kind of 10kV neutral point of electric network joint grounding device
CN111864703B (en) Device and method for realizing direct-current networking of ship electric propulsion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223