JP2014067732A - Negative electrode for lithium secondary battery and lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP2014067732A
JP2014067732A JP2014009587A JP2014009587A JP2014067732A JP 2014067732 A JP2014067732 A JP 2014067732A JP 2014009587 A JP2014009587 A JP 2014009587A JP 2014009587 A JP2014009587 A JP 2014009587A JP 2014067732 A JP2014067732 A JP 2014067732A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
graphite particles
negative electrode
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014009587A
Other languages
Japanese (ja)
Other versions
JP5704473B2 (en
Inventor
Yoshito Ishii
義人 石井
Tatsuya Nishida
達也 西田
Atsushi Fujita
藤田  淳
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014009587A priority Critical patent/JP5704473B2/en
Publication of JP2014067732A publication Critical patent/JP2014067732A/en
Application granted granted Critical
Publication of JP5704473B2 publication Critical patent/JP5704473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium secondary battery suitable for a high-capacity lithium secondary battery, and to provide a high-capacity lithium secondary battery which is excellent in rapid charge-discharge characteristics and cycle characteristics.SOLUTION: In a negative electrode for a lithium secondary battery formed by integrating a mixture of graphite particles and an organic binder with a current collector, the negative electrode for the lithium secondary battery contains 3 to 20 wt.% of the organic binder in the mixture. In the lithium secondary battery, the negative electrode and a positive electrode for the lithium secondary battery are arranged facing each other via a separator, and an electrolyte is injected around the electrodes.

Description

本発明は、リチウム二次電池用負極及びその製造法並びにリチウム二次電池に関する。さらに詳しくは、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適な、急速充放電特性、サイクル特性等に優れたリチウム二次電池とそれを得るためのリチウム二次電池用負極及びその製造法並びにリチウム二次電池に関する。   The present invention relates to a negative electrode for a lithium secondary battery, a method for producing the same, and a lithium secondary battery. More specifically, a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics, etc., suitable for use in portable devices, electric vehicles, power storage, etc., and a negative electrode for lithium secondary batteries for obtaining the same, and production thereof And a lithium secondary battery.

従来のリチウム二次電池用負極は、例えば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕した黒鉛粒子、メソカーボンマイクロビーズを黒鉛化した球状粒子などを用いたものがある。これらの黒鉛粒子は、有機系結着剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾燥させてリチウム二次電池用負極として使用されている。例えば、特公昭62−23433号公報(特許文献1)に示されるように、負極に黒鉛を使用することでリチウムのデンドライトによる内部短絡の問題を解消し、サイクル特性の改良を図っている。   Conventional negative electrodes for lithium secondary batteries include natural graphite particles, artificial graphite particles graphitized with coke, organic polymer materials, artificial graphite particles graphitized with pitch, graphite particles obtained by pulverizing these, mesocarbon micro, etc. Some use spherical particles obtained by graphitizing beads. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste. The graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. . For example, as disclosed in Japanese Examined Patent Publication No. 62-23433 (Patent Document 1), the use of graphite for the negative electrode eliminates the problem of internal short circuit due to lithium dendrite and improves the cycle characteristics.

また、リチウム二次電池用負極に使用される有機系結着剤は、従来、黒鉛粒子と有機系結着剤の混合物に対して10重量%以下であった。有機系結着剤を添加する理由は、黒鉛粒子同士及び黒鉛粒子と集電体を結合させるためであり、有機系結着剤自体は、充放電は示さない。従って、作製するリチウム二次電池の充放電容量を大きくするためには、有機系結着剤の使用量がより少ない方が好ましいと考えられていた。高容量のリチウム二次電池を作製するためには、リチウム二次電池用負極に使用する黒鉛粒子と有機系結着剤の混合物の単位重量当たりの放電容量を大きくすることが必要とされていた。   Moreover, the organic binder used for the negative electrode for lithium secondary batteries was conventionally 10 weight% or less with respect to the mixture of a graphite particle and an organic binder. The reason for adding the organic binder is to bond the graphite particles to each other and the graphite particles and the current collector, and the organic binder itself does not show charge / discharge. Therefore, in order to increase the charge / discharge capacity of the lithium secondary battery to be produced, it has been considered that it is preferable that the amount of the organic binder used is smaller. In order to produce a high-capacity lithium secondary battery, it was necessary to increase the discharge capacity per unit weight of the mixture of graphite particles and organic binder used in the negative electrode for the lithium secondary battery. .

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433

請求項1及び2記載の発明は、高容量のリチウム二次電池に好適なリチウム二次電池用負極を提供するものである。請求項3記載の発明は、高容量で、サイクル特性に優れたリチウム二次電池に好適なリチウム二次電池用負極を提供するものである。請求項4記載の発明は、高容量で、急速充放電特性及びサイクル特性に優れたリチウム二次電池を提供するものである。   The invention described in claims 1 and 2 provides a negative electrode for a lithium secondary battery suitable for a high-capacity lithium secondary battery. The invention described in claim 3 provides a negative electrode for a lithium secondary battery suitable for a lithium secondary battery having a high capacity and excellent cycle characteristics. The invention described in claim 4 provides a lithium secondary battery having a high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics.

本発明は、黒鉛粒子及び有機系結着剤の混合物を集電体と一体化してなるリチウム二次電池用負極において、有機系結着剤を該混合物に対して3〜20重量%含有してなるリチウム二次電池用負極に関する。また本発明は、有機系結着剤を該混合物に対して11〜20重量%含有してなる前記リチウム二次電池用負極に関する。また本発明は、前記黒鉛粒子の比表面積が8m/g以下であるリチウム二次電池用負極に関する。さらに本発明は、前記リチウム二次電池用負極と正極とをセパレータを介して対向して配置し、かつその周辺に電解液が注入されたリチウム二次電池に関する。 The present invention provides a negative electrode for a lithium secondary battery in which a mixture of graphite particles and an organic binder is integrated with a current collector, and the organic binder is contained in an amount of 3 to 20% by weight based on the mixture. The present invention relates to a negative electrode for a lithium secondary battery. Moreover, this invention relates to the said negative electrode for lithium secondary batteries which contains an organic binder 11 to 20weight% with respect to this mixture. The present invention also relates to a negative electrode for a lithium secondary battery, wherein the graphite particles have a specific surface area of 8 m 2 / g or less. Furthermore, the present invention relates to a lithium secondary battery in which the negative electrode for a lithium secondary battery and a positive electrode are arranged to face each other with a separator interposed therebetween and an electrolyte is injected into the periphery thereof.

本発明に用いる黒鉛粒子の走査型電子顕微鏡写真であり、(a)は粒子の外表面の写真、(b)は粒子の断面の写真である。It is a scanning electron micrograph of the graphite particle used for this invention, (a) is a photograph of the outer surface of particle | grains, (b) is a photograph of the cross section of particle | grains. 円筒型リチウム二次電池の一部断面正面図である。It is a partial cross section front view of a cylindrical lithium secondary battery. 本発明の実施例で、充放電特性及び不可逆容量の測定に用いたリチウム二次電池の概略図である。In the Example of this invention, it is the schematic of the lithium secondary battery used for the measurement of a charging / discharging characteristic and an irreversible capacity | capacitance.

本発明のリチウムイオン電池用負極は、有機系結着剤の配合量を、黒鉛粒子と有機系結着剤の混合物に対して、3〜20重量%、好ましくは11〜20重量%とすることを特徴とする。これにより作製するリチウム二次電池用負極の該混合物の重量当たりの放電容量を大きくすることができる。有機系結着剤の配合量は、黒鉛粒子と有機系結着剤の混合物に対して、より好ましくは12〜18重量%、さらに好ましくは12〜16重量%の範囲とされる。   In the negative electrode for a lithium ion battery according to the present invention, the blending amount of the organic binder is 3 to 20% by weight, preferably 11 to 20% by weight, based on the mixture of the graphite particles and the organic binder. It is characterized by. Thereby, the discharge capacity per weight of the mixture of the negative electrode for lithium secondary batteries to be produced can be increased. The blending amount of the organic binder is more preferably 12 to 18% by weight, and further preferably 12 to 16% by weight with respect to the mixture of the graphite particles and the organic binder.

有機系結着剤の配合量が3重量%未満では、黒鉛粒子間及び黒鉛粒子と集電体間の結合が弱い為、それぞれの界面での抵抗が大きくなり、作製するリチウム二次電池用負極の導電性が低下し、黒鉛粒子の重量当たりの放電容量及び黒鉛粒子と有機系結着剤の混合物の重量当たりの放電容量が低下する。また、黒鉛粒子は充放電により膨張、収縮し、充放電を繰り返すことによって、黒鉛粒子間及び黒鉛粒子と集電体との間に破壊が生じ易くなるため、サイクル特性も低下する。一方20重量%を超えると、黒鉛粒子間及び黒鉛粒子と集電体の間に導電性の低い有機系結着剤が多く介在することで負極の導電性が低下し、黒鉛粒子の重量当たりの放電容量が低下し、その結果黒鉛粒子と有機系結着剤の混合物の重量当たりの放電容量が低下する。さらに、有機系結着剤は、充放電は示さないため、有機系結着剤を20重量%を超える量を添加すると、黒鉛粒子の配合量が80重量%未満と少なくなるため、黒鉛粒子と有機系結着剤の混合物の重量当たりの放電容量が小さくなる。   When the amount of the organic binder is less than 3% by weight, since the bond between the graphite particles and between the graphite particles and the current collector is weak, the resistance at each interface increases, and the negative electrode for a lithium secondary battery to be produced As a result, the discharge capacity per weight of the graphite particles and the discharge capacity per weight of the mixture of the graphite particles and the organic binder are reduced. In addition, the graphite particles expand and contract by charge / discharge, and repeated charge / discharge makes it easy for breakage between the graphite particles and between the graphite particles and the current collector, so that the cycle characteristics also deteriorate. On the other hand, when it exceeds 20% by weight, the conductivity of the negative electrode is lowered due to the presence of a large amount of organic binder having low conductivity between the graphite particles and between the graphite particles and the current collector. The discharge capacity decreases, and as a result, the discharge capacity per weight of the mixture of graphite particles and organic binder decreases. Furthermore, since the organic binder does not show charging / discharging, if the organic binder is added in an amount exceeding 20% by weight, the blending amount of the graphite particles becomes less than 80% by weight. The discharge capacity per weight of the organic binder mixture is reduced.

本発明のリチウム二次電池用負極に用いる黒鉛粒子は、前記範囲に密度を設定できるものであればよく、例えば天然黒鉛、人造黒鉛等を用いることができるが、これらの中で、比表面積が8m/g以下のものが好ましく、比表面積が5m/g以下のものがより好ましい。比表面積が、8m/gを超えると、黒鉛粒子間及び黒鉛粒子と集電体の間の結合力が低下し、作製するリチウム二次電池用負極の放電容量及びサイクル特性が低下する傾向がある。得られるリチウム二次電池の急速充放電特性、サイクル特性等がさらに良好な点から、比表面積は、1.5〜5m/gであることがさらに好ましく、2〜5m/gであることが極めて好ましい。比表面積の測定は、BET法(窒素ガス吸着法)などの既知の方法をとることができる。 The graphite particles used for the negative electrode for a lithium secondary battery of the present invention may be any particles as long as the density can be set in the above range. For example, natural graphite, artificial graphite and the like can be used. The thing of 8 m < 2 > / g or less is preferable, and a specific surface area of 5 m < 2 > / g or less is more preferable. When the specific surface area exceeds 8 m 2 / g, the bonding force between the graphite particles and between the graphite particles and the current collector decreases, and the discharge capacity and cycle characteristics of the negative electrode for a lithium secondary battery to be manufactured tend to decrease. is there. The specific surface area is more preferably 1.5 to 5 m 2 / g, more preferably 2 to 5 m 2 / g, from the viewpoint that the rapid charge / discharge characteristics, cycle characteristics, and the like of the obtained lithium secondary battery are further favorable. Is very preferred. The specific surface area can be measured by a known method such as the BET method (nitrogen gas adsorption method).

また本発明で用いる黒鉛粒子は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させた黒鉛粒子を用いることが好ましい。本発明において、扁平状の粒子とは、長軸と短軸を有する形状の粒子のことであり、完全な球状でないものをいう。例えば鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。黒鉛粒子において、複数の扁平状の粒子の配向面が非平行とは、それぞれの粒子の形状において有する扁平した面、換言すれば最も平らに近い面を配向面として、複数の扁平状の粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態をいう。   The graphite particles used in the present invention are preferably graphite particles in which a plurality of flat particles are aggregated or bonded so that their orientation planes are non-parallel. In the present invention, flat particles are particles having a major axis and a minor axis, and are not completely spherical. For example, those having a shape such as a scale shape, a scale shape, or a part of a lump shape are included. In graphite particles, the orientation planes of a plurality of flat particles are non-parallel. The flat surfaces in the shape of each particle, in other words, the plane that is closest to the plane is the orientation plane, and the plurality of flat particles are A state in which the orientation planes are gathered together in a certain direction.

この黒鉛粒子において扁平状の粒子は集合又は結合しているが、結合とは互いの粒子が、タール、ピッチ等のバインダーを炭素化した炭素質を介して、化学的に結合している状態をいい、集合とは互いの粒子が化学的に結合してはないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。機械的な強度の面から、結合しているものが好ましい。1つの黒鉛粒子において、扁平状の粒子の集合又は結合する数としては、3個以上であることが好ましい。個々の扁平状の粒子の大きさとしては、粒径で1〜100μmであることが好ましく、これらが集合又は結合した黒鉛粒子の平均粒径の2/3以下であることが好ましい。   In this graphite particle, the flat particles are aggregated or bonded, but the bond is a state in which the particles are chemically bonded through carbonaceous carbonized binder such as tar and pitch. The term “aggregate” refers to a state in which the particles are not chemically bonded, but the shape of the aggregate is maintained due to the shape and the like. From the viewpoint of mechanical strength, those bonded are preferable. In one graphite particle, the number of flat particles aggregated or bonded is preferably 3 or more. The size of the individual flat particles is preferably 1 to 100 μm in particle size, and preferably 2/3 or less of the average particle size of the aggregated or bonded graphite particles.

該黒鉛粒子を負極に使用すると、集電体上に黒鉛粒子が配向し難く、かつ、電解液との濡れ性が向上し、負極黒鉛にリチウムを吸蔵・放出し易くなるため、得られるリチウム二次電池の急速充放電特性及びサイクル特性を向上させることができる。なお、図1にこの黒鉛粒子の一例の粒子構造の走査型電子顕微鏡写真を示す。図1において、(a)は本発明になる黒鉛粒子の外表面の走査型電子顕微鏡写真、(b)は黒鉛粒子の断面の走査型電子顕微鏡写真である。(a)においては、細かな鱗片状の黒鉛粒子が数多く、それらの粒子の配向面を非平行にして結合し、黒鉛粒子を形成している様子が観察できる。   When the graphite particles are used for the negative electrode, the graphite particles are less likely to be oriented on the current collector, the wettability with the electrolyte is improved, and lithium is easily occluded / released into the negative electrode graphite. The rapid charge / discharge characteristics and cycle characteristics of the secondary battery can be improved. FIG. 1 shows a scanning electron micrograph of the particle structure of an example of the graphite particles. In FIG. 1, (a) is a scanning electron micrograph of the outer surface of the graphite particles according to the present invention, and (b) is a scanning electron micrograph of the cross section of the graphite particles. In (a), it can be observed that there are many fine scaly graphite particles that are bonded with the orientation planes of these particles non-parallel to form graphite particles.

またアスペクト比が5以下である黒鉛粒子は、集電体上で粒子が配向し難い傾向があり、上記と同様にリチウムを吸蔵・放出し易くなるので好ましい。アスペクト比は1.2〜5であることがより好ましい。アスペクト比が1.2未満では、粒子間の接触面積が減ることにより、導電性が低下する傾向にある。同様の理由で、さらに好ましい範囲の下限は1.3以上である。また、さらに好ましい範囲の上限は、3以下であり、アスペクト比がこれより大きくなると、急速充放電特性が低下し易くなる傾向がある。従って、特に好ましいアスペクト比は1.3〜3である。なお、アスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、顕微鏡で黒鉛粒子を拡大し、任意に100個の黒鉛粒子を選択し、A/Bを測定し、その平均値をとったものである。また、アスペクト比が5以下である黒鉛粒子の構造としては、より小さい黒鉛粒子の集合体又は結合体であることが好ましく、前記の、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させた黒鉛粒子を用いることがより好ましい。   Further, graphite particles having an aspect ratio of 5 or less are preferred because the particles tend not to be oriented on the current collector, and lithium can be easily inserted and extracted as described above. The aspect ratio is more preferably 1.2-5. If the aspect ratio is less than 1.2, the contact area between particles tends to decrease, and the conductivity tends to decrease. For the same reason, the lower limit of the more preferable range is 1.3 or more. Further, the upper limit of the more preferable range is 3 or less, and when the aspect ratio is larger than this, the rapid charge / discharge characteristics tend to be deteriorated. Therefore, a particularly preferable aspect ratio is 1.3 to 3. The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio in the present invention is obtained by enlarging graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value. Further, the structure of the graphite particles having an aspect ratio of 5 or less is preferably an aggregate or a combination of smaller graphite particles, and a plurality of the above-mentioned flat particles and the orientation planes are non-parallel. It is more preferable to use graphite particles aggregated or bonded to each other.

さらに、本発明で用いる各黒鉛粒子のX線広角回折における結晶の層間距離d(002)は3.38Å以下が好ましく、3.37Å以下であることがより好ましく、3.36Å以下であることがさらに好ましい。c軸方向の結晶子の大きさLc(002)は500Å以上が好ましく、1000〜10000Å以上であることがより好ましい。結晶の層間距離d(002)が小さくなるかc軸方向の結晶子の大きさLc(002)が大きくなると、放電容量が大きくなる傾向がある。   Further, the crystal interlayer distance d (002) in the X-ray wide angle diffraction of each graphite particle used in the present invention is preferably 3.38 mm or less, more preferably 3.37 mm or less, and 3.36 mm or less. Further preferred. The crystallite size Lc (002) in the c-axis direction is preferably 500 Å or more, and more preferably 1000 to 10000 Å. When the crystal interlayer distance d (002) decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity tends to increase.

本発明のリチウム二次電池用負極の製造法に特に制限はないが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに黒鉛化触媒を添加して混合し、焼成した後粉砕することによりまず黒鉛粒子を得、ついで、該黒鉛粒子に有機系結着剤及び溶剤を添加して混合し、該混合物を集電体に塗布し、乾燥している溶剤を除去した後、加圧して一体化して前記密度にすることによって得ることができる。   The method for producing the negative electrode for a lithium secondary battery of the present invention is not particularly limited, but a graphitizable aggregate or graphite and a graphitizable binder are mixed with a graphitization catalyst, mixed, fired and then pulverized. First, graphite particles are obtained, and then, an organic binder and a solvent are added to the graphite particles and mixed. The mixture is applied to a current collector, and the dried solvent is removed, followed by pressurization. It can be obtained by integrating the density.

黒鉛化可能な骨材としては、例えば、コークス粉末、樹脂の炭化物等が使用できるが、黒鉛化できる粉末材料であれば特に制限はない。中でも、ニードルコークス等の黒鉛化しやすいコークス粉末が好ましい。また黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末等が使用できるが粉末状であれば特に制限はない。黒鉛化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛粒子の粒径より小さいことが好ましい。   Examples of the aggregate that can be graphitized include coke powder and resin carbide, but there is no particular limitation as long as it is a powder material that can be graphitized. Among these, coke powder that is easily graphitized such as needle coke is preferable. As graphite, for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as it is powdery. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.

さらに黒鉛化触媒としては、例えば鉄、ニッケル、チタン、ケイ素、硼素等の金属、これらの炭化物、酸化物などの黒鉛化触媒が使用できる。これらの中で、ケイ素または硼素の炭化物または酸化物が好ましい。これらの黒鉛化触媒の添加量は、得られる黒鉛粒子に対して好ましくは1〜50重量%、より好ましくは5〜40重量%の範囲、さらに好ましくは5〜30重量%の範囲とされ、1重量%未満であると黒鉛粒子のアスペクト比及び比表面積が大きくなり黒鉛の結晶の発達が悪くなる傾向にあり、一方50重量%を超えると均一に混合することが困難で作業性が悪くなる傾向にある。   Further, as the graphitization catalyst, for example, a graphitization catalyst such as a metal such as iron, nickel, titanium, silicon, or boron, or a carbide or oxide thereof can be used. Of these, silicon or boron carbides or oxides are preferred. The addition amount of these graphitization catalysts is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, and further preferably 5 to 30% by weight with respect to the obtained graphite particles. If it is less than% by weight, the aspect ratio and specific surface area of the graphite particles tend to increase and the development of graphite crystals tends to deteriorate. On the other hand, if it exceeds 50% by weight, it is difficult to mix uniformly and workability tends to deteriorate. It is in.

バインダとしては、例えば、タール、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が好ましい。バインダの配合量は、扁平状の黒鉛化可能な骨材又は黒鉛に対し、5〜80重量%添加することが好ましく、10〜80重量%添加することがより好ましく、15〜80重量%添加することがさらに好ましい。バインダの量が多すぎたり少なすぎると、作製する黒鉛粒子のアスペクト比及び比表面積が大きくなり易いという傾向がある。黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、ニーダー等を用いて行われるが、バインダの軟化点以上の温度で混合することが好ましい。具体的にはバインダがピッチ、タール等の際には、50〜300℃が好ましく、熱硬化性樹脂の場合には、20〜100℃が好ましい。   As the binder, for example, an organic material such as a thermosetting resin and a thermoplastic resin is preferable in addition to tar and pitch. The blending amount of the binder is preferably 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 80% by weight based on the flat graphitizable aggregate or graphite. More preferably. If the amount of the binder is too large or too small, the aspect ratio and specific surface area of the graphite particles to be produced tend to increase. The method for mixing the graphitizable aggregate or graphite and the binder is not particularly limited and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, 50 to 300 ° C is preferable, and when the binder is a thermosetting resin, 20 to 100 ° C is preferable.

次に上記の混合物を焼成し、黒鉛化処理を行う。なお、この処理の前に上記混合物を所定形状に成形しても良い。さらに、成形後、黒鉛化前に粉砕し、粒径を調整した後、黒鉛化を行っても良い。焼成は前記混合物が酸化し難い条件で焼成することが好ましく、例えば窒素雰囲気中、アルゴンガス雰囲気中、真空中で焼成する方法が挙げられる。黒鉛化の温度は、2000℃以上が好ましく、2500℃以上であることがより好ましく、2800℃〜3200℃であることがさらに好ましい。黒鉛化の温度が低いと、黒鉛の結晶の発達が悪く、放電容量が低くなる傾向があると共に添加した黒鉛化触媒が作製する黒鉛粒子に残存し易くなる傾向がある。黒鉛化触媒が、作製する黒鉛粒子中に残存すると、放電容量が低下する。黒鉛化の温度が高すぎると、黒鉛が昇華することがある。   Next, the above mixture is fired and graphitized. In addition, you may shape | mold the said mixture in a predetermined shape before this process. Furthermore, after forming and pulverizing before graphitization to adjust the particle size, graphitization may be performed. Firing is preferably performed under conditions where the mixture is not easily oxidized, and examples thereof include a method of baking in a nitrogen atmosphere, an argon gas atmosphere, and in a vacuum. The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C. When the graphitization temperature is low, the development of graphite crystals tends to be poor, the discharge capacity tends to be low, and the added graphitization catalyst tends to remain in the graphite particles produced. When the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.

次に、得られた黒鉛化物を粉砕することが好ましい。但し、黒鉛化前に粉砕し、粒度を調整してある場合は、粉砕する必要はない。黒鉛化物の粉砕方法は、特に制限はないが、例えばジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法をとることができる。粉砕後の粒径は、平均粒径が1〜100μmが好ましく、10〜50μmであることがより好ましい。平均粒径が大きくなりすぎる場合は作製する電極の表面に凹凸ができ易くなる傾向がある。なお、本発明において平均粒径は、レーザー回折粒度分布計により測定することができる。   Next, it is preferable to grind the obtained graphitized material. However, if the particle size is adjusted by pulverization before graphitization, it is not necessary to pulverize. The method for pulverizing the graphitized material is not particularly limited, and known methods such as a jet mill, a vibration mill, a pin mill, a hammer mill and the like can be used. As for the particle size after pulverization, the average particle size is preferably 1 to 100 μm, and more preferably 10 to 50 μm. If the average particle size becomes too large, the surface of the electrode to be produced tends to be uneven. In the present invention, the average particle diameter can be measured with a laser diffraction particle size distribution meter.

本発明は、上記に示す工程を経ることにより、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させることができ、またアスペクト比が5以下の黒鉛粒子を得ることができ、さらに比表面積が8m/g以下の黒鉛粒子を得ることができる。 In the present invention, by passing through the steps shown above, a plurality of flat particles can be assembled or combined so that the orientation planes are non-parallel, and graphite particles having an aspect ratio of 5 or less can be obtained. Further, graphite particles having a specific surface area of 8 m 2 / g or less can be obtained.

得られた前記黒鉛粒子は、有機系結着剤及び溶剤を含む材料を混合して、シート状、ペレット状等の形状に成形される。有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物等が使用できる。本発明においてイオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。これらの中では、イオン伝導率の大きな高分子化合物が好ましく、ポリフッ化ビニリデンが特に好ましい。   The obtained graphite particles are formed into a sheet shape, a pellet shape or the like by mixing a material containing an organic binder and a solvent. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a high molecular compound having high ionic conductivity, and the like can be used. In the present invention, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used as the polymer compound having a high ionic conductivity. Among these, a polymer compound having a high ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

有機系結着剤との混合比率は、前記の通りである。溶剤としては特に制限はなく、N−メチル2−ピロリドン、ジメチルホルムアミド、イソプロパノール等が用いられる。溶剤の量に特に制限はなく、所望の粘度に調整できればよいが、混合物に対して、30〜70重量%用いられることが好ましい。   The mixing ratio with the organic binder is as described above. There is no restriction | limiting in particular as a solvent, N-methyl 2-pyrrolidone, a dimethylformamide, isopropanol etc. are used. There is no restriction | limiting in particular in the quantity of a solvent, Although it should just be able to adjust to a desired viscosity, It is preferable to use 30 to 70 weight% with respect to a mixture.

集電体としては、例えばニッケル、銅等の箔、メッシュなどの金属集電体が使用できる。なお一体化は、例えばロール、プレス等の成形法で行うことができ、またこれらを組み合わせて一体化してもよい。このようにして得られた負極はセパレータを介して正極を対向して配置し、かつ電解液を注入することにより、従来の炭素材料を負極に使用したリチウム二次電池に比較して、急速充放電特性及びサイクル特性に優れ、かつ不可逆容量が小さいリチウム二次電池を作製することができる。   As the current collector, for example, a metal current collector such as a foil or mesh of nickel, copper or the like can be used. The integration can be performed by a molding method such as a roll or a press, or these may be combined and integrated. The negative electrode obtained in this manner is disposed more quickly than the lithium secondary battery using a conventional carbon material for the negative electrode by placing the positive electrode opposite to each other with a separator and injecting an electrolyte. A lithium secondary battery having excellent discharge characteristics and cycle characteristics and a small irreversible capacity can be produced.

本発明におけるリチウム二次電池の正極に用いられる材料については特に制限はなく、LiNiO、LiCoO、LiMn等を単独又は混合して使用することができる。電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン等の非水系溶剤に溶解したいわゆる有機電解液を使用することができる。 There is no particular limitation on the material used for a cathode of a lithium secondary battery of the present invention may be used alone or as a mixture of LiNiO 2, LiCoO 2, LiMn 2 O 4 or the like. As an electrolytic solution, a so-called organic solution in which a lithium salt such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 is dissolved in a nonaqueous solvent such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, or the like. An electrolytic solution can be used.

セパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はこれらを組み合わせたものを使用することができる。なお、図2に円筒型リチウム二次電池の一例の一部断面正面図を示す。図2に示す円筒型リチウム二次電池は、薄板状に加工された正極1と、同様に加工された負極2が、ポリエチレン製微孔膜等のセパレータ3を介して重ね合わせたものを捲回し、これを金属製等の電池缶7に挿入し、密閉化されている。正極1は正極タブ4を介して正極蓋6に接合され、負極2は負極タブ5を介して電池底部へ接合されている。正極蓋6はガスケット8にて電池缶7へ固定されている。   As the separator, for example, a nonwoven fabric, a cloth, a microporous film, or a combination of these having a polyolefin such as polyethylene or polypropylene as a main component can be used. FIG. 2 shows a partial cross-sectional front view of an example of a cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 2 is formed by winding a thin plate-like positive electrode 1 and a similarly processed negative electrode 2 with a separator 3 such as a polyethylene microporous membrane overlaid. This is inserted into a battery can 7 made of metal or the like and sealed. The positive electrode 1 is bonded to the positive electrode lid 6 via the positive electrode tab 4, and the negative electrode 2 is bonded to the battery bottom via the negative electrode tab 5. The positive electrode lid 6 is fixed to the battery can 7 with a gasket 8.

以下、本発明の実施例を図面を引用し説明する。
実施例1
平均粒径が10μmのコークス粉末50重量部、タールピッチ20重量部、炭化ケイ素5重量部及びコールタール15重量部を混合し、100℃で1時間撹拌した。次いで、窒素雰囲気中で3000℃で焼成した後粉砕し、平均粒径が25μmの黒鉛粒子を得た。得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、1.3であった。また得られた黒鉛粒子のBET法による比表面積は、1.9m/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.36Å及び結晶子の大きさLc(002)は1000Å以上であった。さらに、得られた黒鉛粒子の走査型電子顕微鏡写真(SEM写真)によれば、この黒鉛粒子は、扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしていた。
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
50 parts by weight of coke powder having an average particle size of 10 μm, 20 parts by weight of tar pitch, 5 parts by weight of silicon carbide, and 15 parts by weight of coal tar were mixed and stirred at 100 ° C. for 1 hour. Subsequently, it was fired at 3000 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle diameter of 25 μm. As a result of arbitrarily selecting 100 pieces of the obtained graphite particles and measuring the average value of the aspect ratio, it was 1.3. Further, the specific surface area of the obtained graphite particles by the BET method is 1.9 m 2 / g, and the interlayer distance d (002) of the crystals by X-ray wide angle diffraction of the graphite particles is 3.36 mm and the crystallite size Lc. (002) was 1000 kg or more. Furthermore, according to the scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were assembled or bonded so that a plurality of orientation planes were non-parallel. .

次いで得られた黒鉛粒子89重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で11重量%加えて混練し、黒鉛ペーストを得た。この黒鉛ペーストを厚さが10μmの圧延銅箔に塗布し、さらに乾燥して、ローラーで圧縮し、黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。 Subsequently, 11% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to the obtained graphite particles (89% by weight) in a solid content and kneaded to obtain a graphite paste. This graphite paste is applied to a rolled copper foil having a thickness of 10 μm, further dried, compressed with a roller, and a sample electrode having a mixture layer of graphite particles and PVDF having a thickness of 80 μm and a density of 1.5 g / cm 3 Got.

得られた試料電極を3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行った。図3はリチウム二次電池の既略図であり、試料電極の評価は、図3に示すようにガラスセル9に、電解液10としてLiPFをエチレンカーボネート(EC)及びジメチルカーボネート(DMC)(ECとDMCは体積比で1:1)の混合溶媒に1モル/リットルの濃度になるように溶解した溶液を入れ、試料電極11、セパレータ12及び対極13を積層して配置し、さらに参照極14を上部から吊るしてリチウム二次電池を作製して行った。なお、対極13及び参照極14には金属リチウムを使用し、セパレータ12にはポリエチレン微孔膜を使用した。また得られたリチウム二次電池を用いて試料電極11と対極13の間に、試料電極の黒鉛粒子とPVDFの混合物の面積に対して、0.3mA/cmの定電流で5mV(VVS.Li/Li)まで充電し、0.3mA/cmの定電流で1V(VVS.Li/Li)まで放電する試験を繰り返した。このときの黒鉛粒子の重量当たりの放電容量、黒鉛粒子とPVDFの混合物の重量当たりの放電容量及び50サイクル後の黒鉛粒子とPVDFの混合物の重量当たりの放電容量を表1に示す。また、急速充放電特性評価として0.3mA/cmの定電流で充電し、放電電流を3.0mA/cmに変化させたときの黒鉛粒子とPVDFの混合物の重量当たりの放電容量を表1に合わせて示す。 The obtained sample electrode was subjected to constant current charge / discharge by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 3 is a schematic diagram of a lithium secondary battery, and the evaluation of the sample electrode was performed by using LiPF as an electrolyte 10 and ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and EC) as shown in FIG. DMC is put in a mixed solvent of 1: 1) in a volume ratio so that a solution dissolved to a concentration of 1 mol / liter is placed, the sample electrode 11, the separator 12 and the counter electrode 13 are laminated and arranged, and the reference electrode 14 is further arranged. A lithium secondary battery was produced by hanging from the top. Metal lithium was used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous film was used for the separator 12. Further, using the obtained lithium secondary battery, 5 mV (VVS.V) at a constant current of 0.3 mA / cm 2 between the sample electrode 11 and the counter electrode 13 with respect to the area of the mixture of graphite particles and PVDF of the sample electrode. Li / Li + ) was charged, and the test of discharging to 1 V (VVS.Li/Li + ) at a constant current of 0.3 mA / cm 2 was repeated. Table 1 shows the discharge capacity per weight of the graphite particles, the discharge capacity per weight of the mixture of graphite particles and PVDF, and the discharge capacity per weight of the mixture of graphite particles and PVDF after 50 cycles. Further, Table discharge capacity per weight of the rapid charge-discharge characteristics evaluation was charged at a constant current of 0.3 mA / cm 2 as a mixture of graphite particles and PVDF when the discharge current was changed to 3.0 mA / cm 2 This is shown together with 1.

実施例2
実施例1で得た黒鉛粒子87重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で13重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Example 2
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 87% by weight of the graphite particles obtained in Example 1 at a solid content of 13% by weight and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. Thereafter, a lithium secondary battery was manufactured through the same process as in Example 1, and the same test as in Example 1 was performed. The results are shown in Table 1.

実施例3
実施例1で得た黒鉛粒子85重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で15重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Example 3
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 85% by weight of the graphite particles obtained in Example 1 at a solid content of 15% by weight and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. Thereafter, a lithium secondary battery was manufactured through the same process as in Example 1, and the same test as in Example 1 was performed. The results are shown in Table 1.

実施例4
実施例1で得た黒鉛粒子82重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で18重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経てリチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Example 4
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 82% by weight of the graphite particles obtained in Example 1 in a solid content and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. A lithium secondary battery was produced through the same steps as in Example 1 and the same test as in Example 1 was performed. The results are shown in Table 1.

実施例5
実施例1で得た黒鉛粒子80重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で20重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Example 5
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 80% by weight of the graphite particles obtained in Example 1 in a solid content and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. Thereafter, a lithium secondary battery was manufactured through the same process as in Example 1, and the same test as in Example 1 was performed. The results are shown in Table 1.

実施例6
実施例1で得た黒鉛粒子92重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で8重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Example 6
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 92% by weight of the graphite particles obtained in Example 1 in a solid content and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. Thereafter, a lithium secondary battery was manufactured through the same process as in Example 1, and the same test as in Example 1 was performed. The results are shown in Table 1.

比較例1
実施例1で得た黒鉛粒子97.5重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で2.5重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経てリチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Comparative Example 1
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 97.5% by weight of the graphite particles obtained in Example 1 in a solid content of 2.5% by weight and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. A lithium secondary battery was produced through the same steps as in Example 1 and the same test as in Example 1 was performed. The results are shown in Table 1.

比較例2
実施例1で得た黒鉛粒子78重量%にN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で22重量%加えて混練し、黒鉛ペーストを得た。以下実施例1と同様の工程を経て黒鉛粒子とPVDFの混合物層の厚さが80μm及び密度が1.5g/cmの試料電極を得た。以下実施例1と同様の工程を経てリチウム二次電池を作製し、実施例1と同様の試験を行った。その結果を表1に示す。
Comparative Example 2
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 78% by weight of the graphite particles obtained in Example 1 in a solid content and kneaded to obtain a graphite paste. Thereafter, a sample electrode having a thickness of 80 μm and a density of 1.5 g / cm 3 of the mixture layer of graphite particles and PVDF was obtained through the same steps as in Example 1. A lithium secondary battery was produced through the same steps as in Example 1 and the same test as in Example 1 was performed. The results are shown in Table 1.

表1に示されるように、本発明のリチウム二次電池は高容量で、急速充放電特性及びサイクル特性に優れることが明らかである。   As shown in Table 1, it is clear that the lithium secondary battery of the present invention has a high capacity and is excellent in rapid charge / discharge characteristics and cycle characteristics.

(発明の効果)
請求項1及び2記載のリチウム二次電池用負極は、高容量のリチウム二次電池に好適である。請求項3記載のリチウム二次電池用負極は、高容量で、サイクル特性に優れたリチウム二次電池に好適なものである。請求項4記載のリチウム二次電池は、高容量で、急速充放電特性及びサイクル特性に優れるものである。
(Effect of the invention)
The negative electrode for a lithium secondary battery according to claims 1 and 2 is suitable for a high-capacity lithium secondary battery. The negative electrode for a lithium secondary battery according to claim 3 is suitable for a lithium secondary battery having a high capacity and excellent cycle characteristics. The lithium secondary battery according to claim 4 has a high capacity and is excellent in rapid charge / discharge characteristics and cycle characteristics.

1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
9 ガラスセル
10 電解液
11 試料電極(負極)
12 セパレータ
13 対極(正極)
14 参照極
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolytic solution 11 Sample electrode (negative electrode)
12 Separator 13 Counter electrode (positive electrode)
14 Reference pole

Claims (4)

黒鉛粒子及び有機系結着剤の混合物を集電体と一体化してなるリチウム二次電池用負極において、有機系結着剤を該混合物に対して3〜20重量%含有してなるリチウム二次電池用負極。   In a negative electrode for a lithium secondary battery in which a mixture of graphite particles and an organic binder is integrated with a current collector, a lithium secondary containing 3 to 20% by weight of an organic binder with respect to the mixture Battery negative electrode. 有機系結着剤を該混合物に対して11〜20重量%含有してなる請求項1記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein the organic binder is contained in an amount of 11 to 20% by weight based on the mixture. 黒鉛粒子の比表面積が8m/g以下である請求項1記載のリチウム二次電池用負極。 2. The negative electrode for a lithium secondary battery according to claim 1, wherein the specific surface area of the graphite particles is 8 m 2 / g or less. 請求項1、2又は3記載のリチウム二次電池用負極と正極とをセパレータを介して対向して配置し、かつその周辺に電解液が注入されたリチウム二次電池。   A lithium secondary battery in which the negative electrode for a lithium secondary battery and the positive electrode according to claim 1, 2, or 3 are arranged to face each other with a separator interposed therebetween, and an electrolyte is injected into the periphery thereof.
JP2014009587A 1996-12-04 2014-01-22 Negative electrode for lithium secondary battery and lithium secondary battery Expired - Lifetime JP5704473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009587A JP5704473B2 (en) 1996-12-04 2014-01-22 Negative electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1996323921 1996-12-04
JP32392196 1996-12-04
JP2014009587A JP5704473B2 (en) 1996-12-04 2014-01-22 Negative electrode for lithium secondary battery and lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010175047A Division JP5534440B2 (en) 1996-12-04 2010-08-04 Negative electrode for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014067732A true JP2014067732A (en) 2014-04-17
JP5704473B2 JP5704473B2 (en) 2015-04-22

Family

ID=43420368

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010175047A Expired - Lifetime JP5534440B2 (en) 1996-12-04 2010-08-04 Negative electrode for lithium secondary battery and lithium secondary battery
JP2014009587A Expired - Lifetime JP5704473B2 (en) 1996-12-04 2014-01-22 Negative electrode for lithium secondary battery and lithium secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010175047A Expired - Lifetime JP5534440B2 (en) 1996-12-04 2010-08-04 Negative electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (2) JP5534440B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295725A (en) * 1993-04-02 1994-10-21 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH07226204A (en) * 1994-02-10 1995-08-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH0831455A (en) * 1994-07-13 1996-02-02 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH0883608A (en) * 1994-09-13 1996-03-26 Toshiba Battery Co Ltd Lithium secondary battery
JPH08213048A (en) * 1995-02-03 1996-08-20 Toyobo Co Ltd Nonaqueous electrolyte secondary battery
JPH08315817A (en) * 1995-05-17 1996-11-29 Sony Corp Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery
JPH09190821A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Lithium secondary battery
WO1997042671A1 (en) * 1996-05-07 1997-11-13 Toyo Tanso Co., Ltd. Cathode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295725A (en) * 1993-04-02 1994-10-21 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH07226204A (en) * 1994-02-10 1995-08-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH0831455A (en) * 1994-07-13 1996-02-02 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH0883608A (en) * 1994-09-13 1996-03-26 Toshiba Battery Co Ltd Lithium secondary battery
JPH08213048A (en) * 1995-02-03 1996-08-20 Toyobo Co Ltd Nonaqueous electrolyte secondary battery
JPH08315817A (en) * 1995-05-17 1996-11-29 Sony Corp Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery
JPH09190821A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Lithium secondary battery
WO1997042671A1 (en) * 1996-05-07 1997-11-13 Toyo Tanso Co., Ltd. Cathode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same

Also Published As

Publication number Publication date
JP5534440B2 (en) 2014-07-02
JP2010272538A (en) 2010-12-02
JP5704473B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
KR100446828B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP3582336B2 (en) Manufacturing method of graphite powder
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery
JP2001006669A (en) Graphite particles for lithium secondary battery negative electrode, manufacture of the particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JPH10223231A (en) Anode for lithium secondary battery and lithium secondary battery
JP2008016455A (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

EXPY Cancellation because of completion of term