JP2014062321A - Method of manufacturing reduced iron agglomerated product - Google Patents

Method of manufacturing reduced iron agglomerated product Download PDF

Info

Publication number
JP2014062321A
JP2014062321A JP2013173616A JP2013173616A JP2014062321A JP 2014062321 A JP2014062321 A JP 2014062321A JP 2013173616 A JP2013173616 A JP 2013173616A JP 2013173616 A JP2013173616 A JP 2013173616A JP 2014062321 A JP2014062321 A JP 2014062321A
Authority
JP
Japan
Prior art keywords
iron
agglomerate
reduced iron
reducing agent
carbonaceous reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013173616A
Other languages
Japanese (ja)
Inventor
Shoichi Kikuchi
晶一 菊池
Shoken Shimizu
正賢 清水
Takeshi Mimura
毅 三村
Shuzo Ito
修三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013173616A priority Critical patent/JP2014062321A/en
Publication of JP2014062321A publication Critical patent/JP2014062321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of improving yield of a reduced iron agglomerated product having a big particle diameter when the reduced iron agglomerated product is manufactured by heating an agglomerated product made from a raw material mixture containing an iron oxide-containing product, a carbonaceous reductant and a melting point moderator in a movable furnace floor type heating furnace and reduction melting iron oxide in the raw material mixture.SOLUTION: A method of manufacturing a reduced iron agglomerated product includes the step of charging an agglomerated product containing an iron oxide-containing product, a carbonaceous reductant and a melting point moderator onto a hearth of a movable furnace floor type heating furnace and heating it to reduce iron oxide in the agglomerated product, further heating and at least partially melting, and aggregating an iron component, and a carbonaceous reductant having an average particle diameter of 40 to 160 μm and containing 2 mass% or more of one having a particle diameter of 400 μm or more is used as the carbonaceous reductant.

Description

本発明は、酸化鉄含有物質、炭素質還元剤、および融点調整剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元溶融して還元鉄塊成物を製造する方法に関するものである。   In the present invention, an agglomerate made of a mixture containing an iron oxide-containing substance, a carbonaceous reducing agent, and a melting point modifier is charged on the hearth of a moving hearth-type heating furnace and heated. The present invention relates to a method for producing a reduced iron agglomerate by reducing and melting iron oxide in a product.

鉄鉱石や酸化鉄等の酸化鉄源(以下、「酸化鉄含有物質」ということがある)、炭素を含む還元剤(以下、「炭素質還元剤」ということがある)、および石灰石、蛍石、ドロマイト鉱石などの融点調整剤を含む原料混合物から、塊状(粒状も含む)の金属鉄(還元鉄)を得る直接還元製鉄法が開発されてきている。この製鉄法では、上記原料混合物を成形した塊成物を移動炉床式加熱炉の炉床上に装入し、炉内で加熱バーナーによるガス伝熱や輻射熱で加熱することによって、塊成物中の酸化鉄を炭素質還元剤で還元し、得られた還元鉄を続いて浸炭・溶融させ、次いで副生するスラグと分離しつつ塊状に凝集させた後、冷却凝固させて塊状の金属鉄(還元鉄塊成物)を得ている。   Iron oxide sources such as iron ore and iron oxide (hereinafter sometimes referred to as “iron oxide-containing substances”), carbon-containing reducing agents (hereinafter sometimes referred to as “carbonaceous reducing agents”), limestone, and fluorite In addition, a direct reduction iron manufacturing method has been developed to obtain massive (including granular) metallic iron (reduced iron) from a raw material mixture containing a melting point modifier such as dolomite ore. In this iron making method, the agglomerate formed from the above raw material mixture is placed on the hearth of a moving hearth-type heating furnace and heated in the agglomerate by gas heat transfer or radiant heat by a heating burner. The resulting reduced iron is subsequently carburized and melted, and then aggregated in a lump while separating from by-product slag, and then cooled and solidified to form a lump of metallic iron ( Reduced iron agglomerates).

こうした製鉄法は、高炉等の大規模な設備が不要なことや、コークスが不要になるなど資源面の柔軟性も高いことから、最近、実用化研究が盛んに行われている。しかし工業的規模で実施するには、操業安定性や安全性、経済性、生産性などを含めて更に改善しなければならない課題も多い。   Recently, practical research has been actively conducted on such iron making methods because large-scale facilities such as a blast furnace are not required and coke is not required. However, for implementation on an industrial scale, there are many problems that must be further improved, including operational stability, safety, economy, and productivity.

特に還元鉄塊成物の製造に当たっては、粒径の大きな還元鉄塊成物の歩留まりを向上させることが望まれている。こうした技術として、例えば特許文献1には、「金属酸化物含有物質と炭素質還元剤とを含む原料を加熱し、該原料中の金属酸化物を還元した後、生成する金属を更に加熱して溶融させると共に、副生するスラグ成分と分離させながら凝集させて粒状金属を生成する方法において、前記原料中に副生スラグの凝集促進剤を配合する粒状金属鉄の製造。」が提案されている。この文献に開示されている技術では、凝集促進剤(例えば、蛍石など)を配合することによって、粒径の大きな粒状金属が、ある程度高い歩留まりで製造できることが期待できる。しかしながら、こうした技術においても、歩留まり改善効果は飽和状態にあり、更なる効果の向上が望まれている。   Particularly in the production of reduced iron agglomerates, it is desired to improve the yield of reduced iron agglomerates having a large particle size. As such a technique, for example, Patent Document 1 discloses that “a raw material containing a metal oxide-containing substance and a carbonaceous reducing agent is heated, and after reducing the metal oxide in the raw material, the produced metal is further heated. In the method of melting and agglomerating while separating from by-product slag components to produce a granular metal, production of granular metallic iron in which a coagulation accelerator for by-product slag is blended in the raw material has been proposed. . In the technique disclosed in this document, it can be expected that a granular metal having a large particle diameter can be produced with a somewhat high yield by blending an aggregation accelerator (for example, fluorite). However, even in such a technique, the yield improvement effect is in a saturated state, and further improvement of the effect is desired.

特開2003−73722号公報JP 2003-73722 A

本発明は、この様な状況に鑑みてなされたものであり、その目的は、移動炉床式加熱炉で、酸化鉄含有物質、炭素質還元剤、および融点調整剤を含む混合物を原料とした塊成物を加熱し、原料混合物中の酸化鉄を還元溶融して還元鉄塊成物を製造するにあたり、粒径の大きな還元鉄塊成物の歩留まりを向上できる方法を提供することにある。   The present invention has been made in view of such a situation, and an object thereof is a moving hearth-type heating furnace using a mixture containing an iron oxide-containing substance, a carbonaceous reducing agent, and a melting point modifier as a raw material. An object of the present invention is to provide a method capable of improving the yield of reduced iron agglomerates having a large particle size in the production of reduced iron agglomerates by heating the agglomerates and reducing and melting iron oxide in the raw material mixture.

上記課題を解決することのできた本発明に係る還元鉄塊成物の製造方法とは、酸化鉄含有物質、炭素質還元剤、および融点調整剤を含んでなる塊成物を、移動炉床式加熱炉の炉床上に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して少なくとも部分的に溶融し、鉄成分を凝集させて還元鉄塊成物を製造する方法であり、前記炭素質還元剤として、平均粒径が40〜160μmで、且つ粒径が400μm以上のものを2質量%以上含む炭素質還元剤を用いる点に要旨を有している。   The method for producing a reduced iron agglomerate according to the present invention that has solved the above problems includes an agglomerate comprising an iron oxide-containing substance, a carbonaceous reducing agent, and a melting point regulator, and a moving hearth type By charging on the hearth of the heating furnace and heating, the iron oxide in the agglomerate is reduced, further heated to at least partially melt, and the iron component is agglomerated to reduce the reduced iron agglomerate. It is a manufacturing method, and the carbonaceous reducing agent is characterized in that a carbonaceous reducing agent having an average particle diameter of 40 to 160 μm and a particle diameter of 400 μm or more containing 2% by mass or more is used. .

前記酸化鉄含有物質としては、具体的には、鉄鉱石が挙げられる。前記塊成物に含まれる炭素量と全鉄量との比(炭素量/全鉄量)は、0.384以下であることが好ましい。   Specific examples of the iron oxide-containing substance include iron ore. The ratio of the amount of carbon and the amount of total iron contained in the agglomerate (carbon amount / total iron amount) is preferably 0.384 or less.

本発明によれば、酸化鉄含有物質、炭素質還元剤、および融点調整剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元溶融して還元鉄塊成物を製造するに際して、炭素質還元剤の平均粒径および粒度分布を適切に制御することによって、粒径の大きな還元鉄塊成物の歩留まりを向上できる。   According to the present invention, an agglomerate made from a mixture containing an iron oxide-containing substance, a carbonaceous reducing agent, and a melting point modifier is charged on the hearth of a moving hearth-type heating furnace and heated, When producing reduced iron agglomerates by reducing and melting iron oxide in the agglomerates, reduced iron agglomerates having a large particle size are appropriately controlled by appropriately controlling the average particle size and particle size distribution of the carbonaceous reducing agent. Yield can be improved.

還元鉄塊成物を製造するに際し、その原料である酸化鉄含有物質、炭素質還元剤、および融点調整剤を含む混合物からなる塊成物を形成するに当たっては、酸化鉄含有物質および炭素質還元剤は適度の粉砕が施されて、造粒しやすいように適度の大きさに揃えられている。しかしながら、これらの原料の大きさ(平均粒径)が還元鉄塊成物の歩留まりに与える影響については考慮されることはなかった。むしろ、特に粗大な炭素質還元剤を用いると、酸化鉄含有物質との接触が悪くなったり、炭素質還元剤の比表面積が減少し、炭素質還元剤のガス化速度が小さくなるため、還元鉄塊成物の歩留まりは低下すると考えられる。   In producing a reduced iron agglomerate, an iron oxide-containing substance and a carbonaceous reduction are used to form an agglomerate composed of a mixture containing an iron oxide-containing substance, a carbonaceous reducing agent, and a melting point modifier as raw materials. The agent is moderately pulverized and is sized to facilitate granulation. However, the influence of the size (average particle size) of these raw materials on the yield of reduced iron agglomerates has not been considered. Rather, when a coarse carbonaceous reducing agent is used, the contact with the iron oxide-containing substance is deteriorated, the specific surface area of the carbonaceous reducing agent is reduced, and the gasification rate of the carbonaceous reducing agent is reduced. The yield of iron agglomerates is thought to decrease.

ところが、本発明者らは、上記目的に達成するために、様々な角度から検討した。特に、還元鉄塊成物を製造する際に用いる原料の平均粒径や粒度分布が、還元鉄塊成物の歩留まりに与える影響について検討した。その結果、原料のうち炭素質還元剤の平均粒径および粒度分布を適切に調整すれば、上記目的が見事に達成されることを見出し、本発明を完成した。以下、本発明について詳細に説明する。   However, the present inventors have studied from various angles in order to achieve the above object. In particular, the influence of the average particle size and particle size distribution of raw materials used when producing reduced iron agglomerates on the yield of reduced iron agglomerates was examined. As a result, the inventors have found that the above object can be achieved brilliantly by appropriately adjusting the average particle size and particle size distribution of the carbonaceous reducing agent in the raw material, and completed the present invention. Hereinafter, the present invention will be described in detail.

本発明では、塊成物に含まれる炭素質還元剤の平均粒径を40〜160μmとし、且つ炭素質還元剤の総量に対して粒径が400μm以上の炭素質還元剤を2質量%以上含む炭素質還元剤を用いる必要がある。尚、本明細書において、平均粒径とは、粒子サイズが小さいものから順に粒子の質量を測定したときに、積算値が50質量%に相当するときの粒径(以下、「D50」と記載することがある)を意味する。   In the present invention, the average particle size of the carbonaceous reducing agent contained in the agglomerate is 40 to 160 μm, and the carbonaceous reducing agent having a particle size of 400 μm or more with respect to the total amount of the carbonaceous reducing agent is contained by 2% by mass or more. It is necessary to use a carbonaceous reducing agent. In this specification, the average particle diameter is the particle diameter when the integrated value corresponds to 50% by mass (hereinafter referred to as “D50”) when the mass of the particles is measured in order from the smallest particle size. Mean).

上記炭素質還元剤の平均粒径は、好ましくは150μm以下、より好ましくは100μm以下であり、好ましくは50μm以上、より好ましくは60μm以上である。   The average particle diameter of the carbonaceous reducing agent is preferably 150 μm or less, more preferably 100 μm or less, preferably 50 μm or more, more preferably 60 μm or more.

上記粒径が400μm以上の炭素質還元剤は、炭素質還元剤の総量に対して5質量%以上含有していることが好ましく、より好ましくは10質量%以上、更に好ましくは20質量%以上である。   The carbonaceous reducing agent having a particle size of 400 μm or more is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more based on the total amount of the carbonaceous reducing agent. is there.

上記炭素質還元剤としては、炭素を含有する物質を用いればよく、例えば、石炭やコークスなどを用いればよい。   As the carbonaceous reducing agent, a substance containing carbon may be used. For example, coal or coke may be used.

本発明では、上記要件を満足する炭素質還元剤と、酸化鉄含有物質および融点調整剤を含む塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、還元鉄塊成物を製造する。   In the present invention, an agglomerate containing a carbonaceous reducing agent satisfying the above requirements, an iron oxide-containing substance and a melting point modifier is charged on the hearth of a moving hearth-type heating furnace and heated, and the reduced iron ingot Manufacture the composition.

上記酸化鉄含有物質としては、例えば、鉄鉱石や砂鉄、非鉄製錬残渣などを用いればよく、好ましくは鉄鉱石を用いるのがよい。   As the iron oxide-containing substance, for example, iron ore, iron sand, non-ferrous smelting residue or the like may be used, and iron ore is preferably used.

上記塊成物に含まれる炭素量と全鉄量との比(炭素量/全鉄量)は、0.384以下であることが好ましい。炭素量と全鉄量との比を0.384以下に抑えることにより、粒径の大きな還元鉄塊成物の歩留まりを向上でき、しかも還元鉄塊成物の品質も向上させることができる。即ち、還元鉄塊成物に含まれるS量を低減したり、C量を増加させて品質を向上させるには、炭素質還元剤の配合量を多くすることが考えられるが、炭素質還元剤の配合量を多くし過ぎると、粒径の大きな還元鉄塊成物の歩留まりは低下する傾向が認められた。そこで、本発明では、上述したように炭素質還元剤の平均粒径および粒度分布を調整したうえで、炭素質還元剤の配合量および酸化鉄含有物質の配合量を調整し、塊成物に含まれる炭素量と全鉄量との比を0.384以下とすることが好ましい。塊成物に含まれる炭素量と全鉄量との比は、より好ましくは0.380以下であり、更に好ましくは0.370以下である。   The ratio of the amount of carbon and the amount of total iron contained in the agglomerate (carbon amount / total iron amount) is preferably 0.384 or less. By suppressing the ratio of the carbon amount to the total iron amount to 0.384 or less, the yield of reduced iron agglomerates having a large particle size can be improved, and the quality of the reduced iron agglomerates can also be improved. That is, to reduce the amount of S contained in the reduced iron agglomerate or increase the amount of C to improve the quality, it is conceivable to increase the amount of the carbonaceous reducing agent. When the blending amount was too large, the yield of reduced iron agglomerates having a large particle size tended to decrease. Therefore, in the present invention, as described above, after adjusting the average particle size and particle size distribution of the carbonaceous reducing agent, the blending amount of the carbonaceous reducing agent and the blending amount of the iron oxide-containing substance are adjusted to obtain an agglomerate. The ratio of the amount of carbon contained and the amount of total iron is preferably 0.384 or less. The ratio of the amount of carbon contained in the agglomerate and the amount of total iron is more preferably 0.380 or less, and still more preferably 0.370 or less.

上記融点調整剤としては、例えば、CaO供給物質、MgO供給物質、Al23供給物質、SiO2供給物質、蛍石、ドロマイト鉱石等を用いればよい。 As the melting point adjusting agent, for example, a CaO supply material, a MgO supply material, an Al 2 O 3 supply material, a SiO 2 supply material, fluorite, dolomite ore, etc. may be used.

上記CaO供給物質としては、例えば、生石灰(CaO)、消石灰[Ca(OH)2]や石灰石(主成分はCaCO3)などを用いることができる。上記MgO供給物質としては、例えば、MgO粉末や天然鉱石や海水などから抽出されるMg含有物質、或いは炭酸マグネシウム(MgCO3)などを用いることができる。上記Al23供給物質としては、例えば、Al23粉末、ボーキサイト、ベーマイト、ギブサイト、ダイアスポアなどを用いることができる。上記SiO2供給物質としては、例えば、SiO2粉末や珪砂などを用いることができる。上記ドロマイト鉱石とは、炭酸カルシウムと炭酸マグネシウムの複塩である。 As the CaO feed materials, for example, quick lime (CaO), slaked lime [Ca (OH) 2] or limestone (main component CaCO 3) or the like can be used. As the MgO feed materials, for example, Mg-containing substance to be extracted such as from MgO powder and natural ore or seawater, or magnesium carbonate (MgCO 3) or the like can be used. Examples of the Al 2 O 3 supply substance include Al 2 O 3 powder, bauxite, boehmite, gibbsite, and diaspore. As the SiO 2 supply substance, for example, SiO 2 powder or silica sand can be used. The dolomite ore is a double salt of calcium carbonate and magnesium carbonate.

上記原料混合物には、その他の成分として、バインダーなどを配合してもよい。バインダーとしては、例えば、多糖類(例えば、小麦粉等の澱粉など)などを用いることができる。   You may mix | blend a binder etc. with the said raw material mixture as another component. As the binder, for example, a polysaccharide (for example, starch such as wheat flour) can be used.

上記塊成物の形状は特に限定されず、例えば、ペレット状やブリケット状などであればよい。   The shape of the agglomerate is not particularly limited, and may be, for example, a pellet shape or a briquette shape.

上記塊成物の大きさも特に限定されないが、粒径(最大粒径)は50mm以下であることが好ましい。塊成物の粒径を過剰に大きくしようとすると、造粒効率が悪くなる。また、塊成物の下部への伝熱が悪くなり、生産性が低下する。なお、塊成物の粒径の下限値は5mm程度である。   The size of the agglomerate is not particularly limited, but the particle size (maximum particle size) is preferably 50 mm or less. If the particle size of the agglomerate is excessively increased, the granulation efficiency is deteriorated. In addition, heat transfer to the lower part of the agglomerate is deteriorated, and productivity is lowered. In addition, the lower limit of the particle size of the agglomerate is about 5 mm.

上記移動炉床式加熱炉とは、炉床がベルトコンベアのように炉内を移動する加熱炉であり、例えば、回転炉床炉やトンネル炉が挙げられる。   The moving hearth type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace.

上記回転炉床炉は、炉床の始点と終点が同じ位置になるように、炉床の外観形状が円形(ドーナツ状)に設計されており、炉床上に供給された塊成物は、炉内を一周する間に加熱還元されて(粒状)金属鉄を生成する。従って、回転炉床炉には、回転方向の最上流側に塊成物を炉内に供給する装入手段が設けられ、回転方向の最下流側(回転構造であるため、実際には装入手段の直上流側になる)に排出手段が設けられる。   The rotary hearth furnace is designed so that the outer shape of the hearth is circular (donut-shaped) so that the start point and end point of the hearth are in the same position. During one round of the inside, it is reduced by heating to produce (granular) metallic iron. Therefore, the rotary hearth furnace is provided with charging means for supplying the agglomerate into the furnace on the most upstream side in the rotation direction, and the most downstream side in the rotation direction (since it is a rotating structure, Discharging means is provided immediately upstream of the means).

上記トンネル炉とは、炉床が直線方向に炉内を移動する加熱炉である。   The tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.

上記塊成物は、上記移動炉床式加熱炉内で、例えば、1300〜1500℃で加熱して加熱還元すればよい。   The agglomerate may be heated and reduced, for example, by heating at 1300 to 1500 ° C. in the moving hearth type heating furnace.

上記移動炉床式加熱炉の炉床上には、上記塊成物を炉内に装入するに先立って、床敷材を敷くことも好ましい態様である。床敷材を敷くことによって炉床を保護できる。   It is also a preferable aspect that a floor covering material is laid on the hearth of the moving hearth heating furnace prior to charging the agglomerate into the furnace. You can protect the hearth by laying the floor covering.

上記床敷材としては、上記炭素質還元剤として例示したものの他、耐火性粒子を用いることができる。   As the floor covering material, refractory particles can be used in addition to those exemplified as the carbonaceous reducing agent.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

(実施例1)
酸化鉄含有物質、炭素質還元剤、融点調整剤(石灰石、ドロマイトおよび蛍石)、およびバインダーを含む混合物を原料とした塊成物を作製し、この塊成物を、加熱炉に供給して加熱し、原料混合物中の酸化鉄を還元溶融させて還元鉄塊成物を製造した。
Example 1
An agglomerate made from a mixture containing an iron oxide-containing substance, a carbonaceous reducing agent, a melting point modifier (limestone, dolomite and fluorite), and a binder is prepared, and this agglomerate is supplied to a heating furnace. The mixture was heated to reduce and melt iron oxide in the raw material mixture to produce a reduced iron agglomerate.

上記酸化鉄含有物質としては、下記表1に示した成分組成の鉄鉱石を用いた。下記表1において、T.Feは全鉄を示している。上記炭素質還元剤としては、下記表2に示した成分組成の石炭を用いた。上記融点調整剤としては、下記表3に示した主たる成分組成の石灰石、下記表4に示した主たる成分組成のドロマイト、下記表5に示した主たる成分組成の蛍石を用いた。上記バインダーとしては、小麦粉を用いた。   As the iron oxide-containing substance, iron ore having the component composition shown in Table 1 below was used. In Table 1 below, T.W. Fe indicates total iron. As the carbonaceous reducing agent, coal having the component composition shown in Table 2 below was used. As the melting point adjusting agent, limestone having the main component composition shown in Table 3 below, dolomite having the main component composition shown in Table 4 below, and fluorite having the main component composition shown in Table 5 below were used. As the binder, flour was used.

鉄鉱石、石炭、石灰石、ドロマイト、蛍石、およびバインダー(小麦粉)を、下記表6に示す配合率で混合し、この混合物に適量の水を添加し、タイヤ型造粒機を用いて直径が19mmの生ペレットに造粒した。このとき石炭(炭素質還元剤)の平均粒径(D50)を変化させて生ペレットを造粒した。用いた石炭の平均粒径(D50)を下記表7に示す。また、下記表7には、用いた石炭の質量に対する、粒径が400μm以上の石炭の含有量(下記表7では、石炭中の+400μm含有量と表記)を示す。   Iron ore, coal, limestone, dolomite, fluorite, and binder (flour) are mixed at the blending ratio shown in Table 6 below, an appropriate amount of water is added to the mixture, and the diameter is reduced using a tire-type granulator. Granulated into 19 mm raw pellets. At this time, raw pellets were granulated by changing the average particle diameter (D50) of coal (carbonaceous reducing agent). The average particle size (D50) of the coal used is shown in Table 7 below. Table 7 below shows the content of coal having a particle size of 400 μm or more with respect to the mass of the coal used (in Table 7 below, expressed as +400 μm content in coal).

次に、得られた生ペレットを乾燥機に装入し、180℃で1時間加熱して付着水を除去してペレット状塊成物(球状の乾燥ペレット)を作製した。下記表7に、乾燥ペレットの一般的な性状として見掛け密度を測定した結果を示す。また、下記表7には、乾燥ペレットの分析値として、乾燥ペレットに含まれるT.Fe(全鉄量)も併せて示した。なお、乾燥ペレットの見掛け密度および分析値は、いずれも10個の乾燥ペレットについて測定した結果の平均値である。   Next, the obtained raw pellets were charged into a dryer and heated at 180 ° C. for 1 hour to remove the adhering water to produce pellet-like agglomerates (spherical dry pellets). Table 7 below shows the results of measuring the apparent density as a general property of the dried pellets. In Table 7 below, as an analysis value of the dry pellet, T.O. Fe (total iron amount) is also shown. Note that the apparent density and analysis value of the dry pellets are average values of the results of measurement for 10 dry pellets.

次に、得られた乾燥ペレットを、炭材(最大粒径が2mm以下の無煙炭)を敷いた加熱炉内へ装入し、1450℃の窒素雰囲気で加熱し、還元鉄塊成物を製造した。このとき還元溶融に必要な時間(反応時間)を測定した。結果を下記表7に示した。   Next, the obtained dry pellets were charged into a heating furnace laid with a carbonaceous material (anthracite having a maximum particle size of 2 mm or less) and heated in a nitrogen atmosphere at 1450 ° C. to produce a reduced iron agglomerate. . At this time, the time required for reductive melting (reaction time) was measured. The results are shown in Table 7 below.

得られた還元鉄塊成物について、直径が3.35mm以上の還元鉄塊成物の歩留まりを算出すると共に、還元鉄塊成物の分析値を測定した。   About the obtained reduced iron agglomerate, while calculating the yield of the reduced iron agglomerate whose diameter was 3.35 mm or more, the analytical value of the reduced iron agglomerate was measured.

[直径が3.35mm以上の還元鉄塊成物の歩留まり]
直径が3.35mm以上の還元鉄塊成物の歩留まりは、上記乾燥ペレット中の鉄分に対する、直径が3.35mm以上の還元鉄塊成物の質量の割合[即ち、+3.35mm還元鉄塊成物の質量/乾燥ペレット中の鉄分×100]で算出した。結果を下記表7に示す。下記表7では、直径が3.35mm以上の還元鉄塊成物の歩留まりを、「+3.35mm還元鉄塊成物の歩留まり」と表記した。また、以下では、直径が3.35mm以上の還元鉄塊成物の歩留まりを「製品回収率」と呼ぶことがある。
[Yield of reduced iron agglomerates with a diameter of 3.35 mm or more]
The yield of reduced iron agglomerates with a diameter of 3.35 mm or more is the ratio of the mass of reduced iron agglomerates with a diameter of 3.35 mm or more to the iron content in the dried pellet [ie +3.35 mm reduced iron agglomeration] Mass of product / Iron content in dry pellet × 100]. The results are shown in Table 7 below. In Table 7 below, the yield of reduced iron agglomerates having a diameter of 3.35 mm or more is represented as “+3.35 mm reduced iron agglomerate yield”. Hereinafter, the yield of reduced iron agglomerates having a diameter of 3.35 mm or more may be referred to as “product recovery rate”.

[還元鉄塊成物の分析値]
還元鉄塊成物の分析値として、還元鉄塊成物に含まれるC量を測定した。結果を下記表7に示す。
[Analytical value of reduced iron agglomerates]
As the analytical value of the reduced iron agglomerate, the amount of C contained in the reduced iron agglomerate was measured. The results are shown in Table 7 below.

下記表7から明らかなように、石炭(炭素質還元剤)の平均粒径(D50)を40〜160μmとすると共に、粒径が400μm以上のものの石炭中の含有量を2質量%以上とすることによって、還元鉄塊成物の歩留まりが85%以上に向上することが分かる。   As is apparent from Table 7 below, the average particle diameter (D50) of coal (carbonaceous reducing agent) is 40 to 160 μm, and the content in the coal having a particle diameter of 400 μm or more is 2 mass% or more. This shows that the yield of reduced iron agglomerates is improved to 85% or more.

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

(実施例2)
上記実施例1と同様、酸化鉄含有物質、炭素質還元剤、融点調整剤(石灰石、ドロマイトおよび蛍石)、およびバインダーを含む混合物を原料とした塊成物を作製し、この塊成物を、加熱炉に供給して加熱し、原料混合物中の酸化鉄を還元溶融させて還元鉄塊成物を製造した。但し、実施例2では、上記実施例1で用いた炭素質還元剤とは異なる種類の炭素質還元剤を用いると共に、鉄鉱石、石炭、石灰石、ドロマイト、蛍石、およびバインダー(小麦粉)の配合率を変えて製造した生ペレットを用いた。
(Example 2)
As in Example 1 above, an agglomerate was produced from a mixture containing an iron oxide-containing substance, a carbonaceous reducing agent, a melting point modifier (limestone, dolomite, and fluorite), and a binder. Then, it was supplied to a heating furnace and heated to reduce and melt the iron oxide in the raw material mixture to produce a reduced iron agglomerate. However, in Example 2, a carbonaceous reducing agent of a different type from the carbonaceous reducing agent used in Example 1 was used, and iron ore, coal, limestone, dolomite, fluorite, and a binder (wheat flour) were mixed. Raw pellets produced at different rates were used.

上記酸化鉄含有物質としては、下記表8に示した成分組成の鉄鉱石を用いた。上記炭素質還元剤としては、下記表9に示した成分組成の石炭を用いた。上記融点調整剤としては、下記表10に示した主たる成分組成の石灰石、下記表11に示した主たる成分組成のドロマイト、下記表12に示した主たる成分組成の蛍石を用いた。上記バインダーとしては、小麦粉を用いた。   As the iron oxide-containing substance, iron ore having the component composition shown in Table 8 below was used. As the carbonaceous reducing agent, coal having the component composition shown in Table 9 below was used. As the melting point modifier, limestone having the main component composition shown in Table 10 below, dolomite having the main component composition shown in Table 11 below, and fluorite having the main component composition shown in Table 12 below were used. As the binder, flour was used.

鉄鉱石、石炭、石灰石、ドロマイト、蛍石、およびバインダー(小麦粉)を、下記表13に示す配合率で混合し、この混合物に適量の水を添加し、タイヤ型造粒機を用いて直径が19mmの生ペレットに造粒した。石炭(炭素質還元剤)としては、平均粒径(D50)が41μmまたは43μmのものを用いて生ペレットを造粒した。用いた石炭の平均粒径(D50)を下記表14に示す。また、下記表14には、用いた石炭の質量に対する、粒径が400μm以上の石炭の含有量(下記表14では、石炭中の+400μm含有量と表記)を示す。   Iron ore, coal, limestone, dolomite, fluorite, and binder (wheat flour) are mixed at a blending ratio shown in Table 13 below, an appropriate amount of water is added to the mixture, and the diameter is reduced using a tire-type granulator. Granulated into 19 mm raw pellets. Raw coal was granulated using coal (carbonaceous reducing agent) having an average particle size (D50) of 41 μm or 43 μm. The average particle size (D50) of the coal used is shown in Table 14 below. Table 14 below shows the content of coal having a particle size of 400 μm or more with respect to the mass of the coal used (in Table 14 below, expressed as +400 μm content in coal).

次に、得られた生ペレットを乾燥機に装入し、上記実施例1と同じ条件でペレット状塊成物(球状の乾燥ペレット)を作製した。下記表14に、乾燥ペレットの一般的な性状として見掛け密度を測定した結果を示す。また、下記表14には、乾燥ペレットの分析値として、乾燥ペレットに含まれるT.Fe(全鉄量)も併せて示した。また、下記表14には、乾燥ペレットの分析値として、乾燥ペレットに含まれるC量とT.Fe(全鉄量)との比も併せて示した。なお、乾燥ペレットの見掛け密度および分析値は、いずれも10個の乾燥ペレットについて測定した結果の平均値である。   Next, the obtained raw pellets were charged into a dryer, and pellet-like agglomerates (spherical dry pellets) were produced under the same conditions as in Example 1 above. Table 14 below shows the result of measuring the apparent density as a general property of the dried pellets. In Table 14 below, as an analysis value of the dry pellet, T.O. Fe (total iron amount) is also shown. Table 14 below shows the amount of C contained in the dried pellet and the T.O. as an analytical value of the dried pellet. The ratio with Fe (total iron amount) is also shown. Note that the apparent density and analysis value of the dry pellets are average values of the results of measurement for 10 dry pellets.

次に、得られた乾燥ペレットを、炭材(最大粒径が2mm以下の無煙炭)を敷いた加熱炉内へ装入し、1450℃で加熱し、還元鉄塊成物を製造した。加熱雰囲気は、窒素ガスが60体積%、二酸化炭素ガスが40体積%の混合ガス雰囲気下で行った。このとき還元溶融に必要な時間(反応時間)を測定した。結果を下記表14に示した。   Next, the obtained dry pellets were charged into a heating furnace laid with a carbonaceous material (anthracite having a maximum particle size of 2 mm or less) and heated at 1450 ° C. to produce a reduced iron agglomerate. The heating atmosphere was performed in a mixed gas atmosphere of 60% by volume of nitrogen gas and 40% by volume of carbon dioxide gas. At this time, the time required for reductive melting (reaction time) was measured. The results are shown in Table 14 below.

得られた還元鉄塊成物について、直径が3.35mm以上の還元鉄塊成物の歩留まりを上記実施例1と同じ手順で算出すると共に、還元鉄塊成物の分析値を上記実施例1と同じ手順で測定した。結果を下記表14に示す。   For the obtained reduced iron agglomerates, the yield of reduced iron agglomerates having a diameter of 3.35 mm or more is calculated in the same procedure as in Example 1 above, and the analytical value of the reduced iron agglomerates is calculated in Example 1 above. Measured in the same procedure as The results are shown in Table 14 below.

下記表14から明らかなように、No.11〜17は、石炭(炭素質還元剤)の平均粒径(D50)を40〜160μmとすると共に、粒径が400μm以上のものの石炭中の含有量を2質量%以上としているため、還元鉄塊成物の歩留まりを85%以上に向上できた。また、No.12〜17の結果について比較すると、これらの例は、いずれも、石炭の平均粒径(D50)が43μmで、粒径が400μm以上のものの石炭中の含有量が6.36質量%であり、これらの中でもNo.12〜16は、乾燥ペレット中に含有される炭素量と全鉄量との比を0.384以下としているため、還元鉄塊成物の歩留まりを90%以上に向上できることが分かる。また、乾燥ペレット中に含有される炭素量と全鉄量との比を小さくするほど、還元鉄塊成物に含まれるC量は増加する傾向が読み取れる。   As apparent from Table 14 below, Nos. 11 to 17 have an average particle diameter (D50) of coal (carbonaceous reducing agent) of 40 to 160 μm and a content of coal having a particle diameter of 400 μm or more in the coal of 2% by mass or more. The yield of agglomerates was improved to 85% or more. No. When comparing the results of 12 to 17, all of these examples have an average particle diameter (D50) of coal of 43 μm, and the content in the coal having a particle diameter of 400 μm or more is 6.36% by mass, Among these, No. In Nos. 12 to 16, since the ratio of the amount of carbon contained in the dry pellets to the total amount of iron is 0.384 or less, it can be seen that the yield of reduced iron agglomerates can be improved to 90% or more. Further, it can be seen that the amount of C contained in the reduced iron agglomerate tends to increase as the ratio of the amount of carbon contained in the dry pellets and the amount of total iron is reduced.

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Figure 2014062321
Figure 2014062321

Claims (3)

酸化鉄含有物質、炭素質還元剤、および融点調整剤を含んでなる塊成物を、移動炉床式加熱炉の炉床上に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して少なくとも部分的に溶融し、鉄成分を凝集させて還元鉄塊成物を製造する方法であって、
前記炭素質還元剤として、平均粒径が40〜160μmで、且つ粒径が400μm以上のものを2質量%以上含む炭素質還元剤を用いることを特徴とする還元鉄塊成物の製造方法。
An agglomerate comprising an iron oxide-containing substance, a carbonaceous reducing agent, and a melting point modifier is charged on the hearth of a moving hearth-type heating furnace and heated to thereby heat the iron oxide in the agglomerate. A reduced iron agglomerate by further heating and at least partially melting to agglomerate iron components,
A method for producing a reduced iron agglomerate, comprising using, as the carbonaceous reducing agent, a carbonaceous reducing agent having an average particle size of 40 to 160 μm and a particle size of 2% by mass or more containing 400 μm or more.
前記酸化鉄含有物質は、鉄鉱石である請求項1に記載の還元鉄塊成物の製造方法。   The method for producing a reduced iron agglomerate according to claim 1, wherein the iron oxide-containing substance is iron ore. 前記塊成物に含まれる炭素量と全鉄量との比(炭素量/全鉄量)が0.384以下である請求項1または2に記載の還元鉄塊成物の製造方法。   3. The method for producing a reduced iron agglomerate according to claim 1, wherein a ratio of a carbon amount and a total iron amount (carbon amount / total iron amount) contained in the agglomerate is 0.384 or less.
JP2013173616A 2012-08-28 2013-08-23 Method of manufacturing reduced iron agglomerated product Pending JP2014062321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173616A JP2014062321A (en) 2012-08-28 2013-08-23 Method of manufacturing reduced iron agglomerated product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012188051 2012-08-28
JP2012188051 2012-08-28
JP2013173616A JP2014062321A (en) 2012-08-28 2013-08-23 Method of manufacturing reduced iron agglomerated product

Publications (1)

Publication Number Publication Date
JP2014062321A true JP2014062321A (en) 2014-04-10

Family

ID=50183401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173616A Pending JP2014062321A (en) 2012-08-28 2013-08-23 Method of manufacturing reduced iron agglomerated product

Country Status (2)

Country Link
JP (1) JP2014062321A (en)
WO (1) WO2014034589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197384A (en) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 Method for smelting oxide ore
US10683562B2 (en) 2015-05-28 2020-06-16 Kobe Steel, Ltd. Reduced iron manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234210A (en) * 1999-12-15 2001-08-28 Kawasaki Steel Corp Producing method for sponge iron
JP4341415B2 (en) * 2003-01-31 2009-10-07 Jfeスチール株式会社 Manufacturing method of high purity sponge iron
JP4797388B2 (en) * 2005-01-31 2011-10-19 Jfeスチール株式会社 Method for producing semi-reduced sintered ore
JP2011252226A (en) * 2010-05-06 2011-12-15 Kobe Steel Ltd Manufacturing method of metal iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683562B2 (en) 2015-05-28 2020-06-16 Kobe Steel, Ltd. Reduced iron manufacturing method
JP2018197384A (en) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 Method for smelting oxide ore

Also Published As

Publication number Publication date
WO2014034589A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5503420B2 (en) Method for producing granular metal
US10144981B2 (en) Process for manufacturing reduced iron agglomerates
JP6460531B2 (en) Method for producing reduced iron
US10407744B2 (en) Production method of granular metallic iron
JP6014009B2 (en) Method for producing reduced iron
JP5420935B2 (en) Manufacturing method of granular metallic iron
JP2014062321A (en) Method of manufacturing reduced iron agglomerated product
JP6043271B2 (en) Method for producing reduced iron
JP6235439B2 (en) Manufacturing method of granular metallic iron
WO2014129282A1 (en) Method for manufacturing reduced iron
WO2014065240A1 (en) Process for manufacturing reduced iron
JP2009007621A (en) Method for producing granular metallic iron
JP5671426B2 (en) Manufacturing method of granular metallic iron
JP6250482B2 (en) Manufacturing method of granular metallic iron
JP2015074809A (en) Method for producing granular metal iron
WO2014132762A1 (en) Method for producing reduced iron agglomerate
JP2013142167A (en) Method for producing granular metal iron
JP2014167164A (en) Method for manufacturing reduced iron
JP2015209570A (en) Production method of reduced iron
JP2015196900A (en) Method for manufacturing reduced iron
JP2015101740A (en) Method for manufacturing reduced iron
JP5096811B2 (en) Manufacturing method of granular metallic iron