JP2014056799A - Bipolar secondary battery and method for manufacturing the same - Google Patents

Bipolar secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2014056799A
JP2014056799A JP2012202437A JP2012202437A JP2014056799A JP 2014056799 A JP2014056799 A JP 2014056799A JP 2012202437 A JP2012202437 A JP 2012202437A JP 2012202437 A JP2012202437 A JP 2012202437A JP 2014056799 A JP2014056799 A JP 2014056799A
Authority
JP
Japan
Prior art keywords
electrode
bipolar
secondary battery
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012202437A
Other languages
Japanese (ja)
Other versions
JP6050066B2 (en
Inventor
Takeshi Yamada
武司 山田
Hiroaki Kaneda
紘明 金田
Kenji Sasaki
憲司 佐々木
Hajime Yui
元 由井
Norihisa Waki
憲尚 脇
Yuji Muroya
祐二 室屋
Kazuki Miyatake
一希 宮竹
Gentaro Kano
巌大郎 狩野
Shiho Inoue
志保 井上
Yasuyuki Tanaka
康行 田中
Yoshio Shimoida
良雄 下井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Nissan Motor Co Ltd
Original Assignee
Nok Corp
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Nissan Motor Co Ltd filed Critical Nok Corp
Priority to JP2012202437A priority Critical patent/JP6050066B2/en
Publication of JP2014056799A publication Critical patent/JP2014056799A/en
Application granted granted Critical
Publication of JP6050066B2 publication Critical patent/JP6050066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bipolar secondary battery capable of sufficiently suppressing leakage of electrolytes that are enclosed in the battery.SOLUTION: A bipolar secondary battery in which electrolytes are enclosed comprises: bipolar electrodes each of which has a positive electrode on a first surface of a collector and a negative electrode on a second surface of the collector; separators each of which is sandwiched between the positive electrode and the negative electrode; sealing materials in frame-like shapes, surrounding peripheries of single cells each of which is constituted of the positive electrode, the negative electrode, and the separator, and being pressed between the collectors. The sealing materials surround the peripheries of the single cells, and partially include strongly press-bonded port which is divided.

Description

本発明は、双極型二次電池およびその製造方法に関する。本発明の双極型二次電池は例えば、電気自動車における走行用駆動源モータを駆動するために用いられる。   The present invention relates to a bipolar secondary battery and a method for manufacturing the same. The bipolar secondary battery of the present invention is used, for example, to drive a driving motor for traveling in an electric vehicle.

近年、電気自動車の普及に伴って様々な車載用電池が開発されており、例えば下記特許文献1では、片面のみに正極材層を配した電子伝導性を有する基板と、少なくとも一枚の、片面に正極材層、他の面に負極材層を配した電子伝導性を有する基板と、片面のみに負極材層を配した電子伝導性を有する基板とを、リチウムイオン伝導性電解質層を介して全ての正極材層が負極材層と対向し、且つそれぞれの基板同士及び正極材層と負極材層が直接接触しないよう積層した積層体を備え、前記積層体の少なくとも正極材層、負極材層、電解質層を外気から遮断する双極型二次電池が提案されている。   In recent years, various in-vehicle batteries have been developed along with the spread of electric vehicles. For example, in Patent Document 1 below, a substrate having electron conductivity in which a positive electrode material layer is disposed only on one surface, and at least one single surface. A positive electrode material layer, a substrate having electron conductivity with a negative electrode material layer disposed on the other surface, and a substrate having electron conductivity with a negative electrode material layer disposed on only one surface, via a lithium ion conductive electrolyte layer. All the positive electrode material layers are opposed to the negative electrode material layer, and each of the substrates and the laminated body laminated so that the positive electrode material layer and the negative electrode material layer do not directly contact each other, and at least the positive electrode material layer and the negative electrode material layer of the laminated body are provided. A bipolar secondary battery that shields the electrolyte layer from the outside air has been proposed.

特開平9−232003号公報JP 9-23003 A

車載用電池に求められる特性のひとつとして、電池の小型軽量化がある。車載用電池が小型軽量化されれば、電池搭載量が増え、これに伴って走行可能距離が延びる。   One of the characteristics required for an in-vehicle battery is a reduction in size and weight of the battery. If an in-vehicle battery is reduced in size and weight, the battery mounting amount increases, and accordingly the travelable distance is extended.

その中にあって双極型二次電池は、多数のスタック構成部品を積層する構造であるため、電池を小型軽量化しようとすると、各構成部品の厚みが薄肉化される傾向となる。一方、双極型二次電池はその内部に電解液が封入される。したがって各構成部品の厚みが薄肉化される状況下で、電解液の漏れが十分に抑制されなければならない。   Among them, the bipolar secondary battery has a structure in which a large number of stack components are stacked. Therefore, when the battery is reduced in size and weight, the thickness of each component tends to be reduced. On the other hand, an electrolyte solution is sealed in a bipolar secondary battery. Therefore, in the situation where the thickness of each component is reduced, leakage of the electrolyte must be sufficiently suppressed.

本発明は以上の点に鑑みて、電池内部に封入される電解液の漏れを十分に抑制することができる双極型二次電池とその製造方法を提供することを目的とする。   In view of the above, it is an object of the present invention to provide a bipolar secondary battery and a method for manufacturing the same that can sufficiently suppress leakage of an electrolyte solution enclosed in the battery.

上記目的を達成するため、本発明の請求項1による双極型二次電池は、集電体の一面に正極を設けるとともに他面に負極を設けた双極型電極と、正極および負極の間に挟まれたセパレータと、正極、負極およびセパレータによって構成された単電池の周囲を取り囲むとともに集電体の間に圧着された枠状のシール材とを含み、電解液を封入する双極型二次電池であって、前記枠状のシール材は、前記単電池の周囲を取り囲むとともにその一部が分断された高圧着部位を有することを特徴とする。   In order to achieve the above object, a bipolar secondary battery according to claim 1 of the present invention is sandwiched between a positive electrode provided on one surface of the current collector and a negative electrode on the other surface, and the positive electrode and the negative electrode. And a bipolar secondary battery that encloses an electrolyte and includes a separator, and a frame-shaped sealing material that surrounds a cell constituted by the positive electrode, the negative electrode, and the separator and is pressed between current collectors. And the said frame-shaped sealing material has the high crimping | compression-bonding site | part which enclosed the circumference | surroundings of the said cell and was partly divided | segmented.

また、本発明の請求項2による双極型二次電池は、上記した請求項1記載の双極型二次電池において、前記双極型電極および枠状のシール材は平面四角形であって、その4辺のうち3辺で連続する高圧着部位を有することを特徴とする。   A bipolar secondary battery according to claim 2 of the present invention is the bipolar secondary battery according to claim 1, wherein the bipolar electrode and the frame-shaped sealing material are planar squares, and the four sides thereof. It has the high crimping | compression-bonding site | part which continues on three sides among these.

また、本発明の請求項3による双極型二次電池の製造方法は、集電体の一面に正極を設けるとともに他面に負極を設けた双極型電極と、正極および負極の間に挟まれるセパレータと、正極、負極およびセパレータによって構成される単電池の周囲を取り囲むとともに集電体の間に圧着される枠状のシール材とを積層する積層品形成工程と、前記枠状のシール材を双極型電極に溶着する圧着工程とを含み、前記圧着工程は、前記単電池の周囲を取り囲むとともにその一部が分断された部位を他の部位より高い圧力で加圧圧着することを特徴とする。   According to a third aspect of the present invention, there is provided a bipolar secondary battery manufacturing method comprising: a bipolar electrode having a positive electrode on one surface and a negative electrode on the other surface; and a separator sandwiched between the positive electrode and the negative electrode And a laminated product forming step of laminating a frame-shaped sealing material that surrounds a cell constituted by a positive electrode, a negative electrode, and a separator and is pressed between current collectors; and the frame-shaped sealing material is bipolar A crimping step of welding to the mold electrode, wherein the crimping step pressurizes and crimps a portion surrounding the unit cell and partly divided at a higher pressure than other portions.

また、本発明の請求項4による双極型二次電池の製造方法は、上記した請求項3記載の製造方法において、前記単電池の周囲を取り囲むとともにその一部が分断された部位に対応する位置に突起部を備えた熱プレス金型を用いて加圧圧着を行なうことを特徴とする。   A bipolar secondary battery manufacturing method according to claim 4 of the present invention is the manufacturing method according to claim 3, wherein the position surrounds the unit cell and corresponds to a part of the cell. A pressure press bonding is performed using a hot press mold provided with a protruding portion.

上記構成を備える本発明の双極型二次電池においては、電池内部の電解液をシールする枠状のシール材に、単電池の周囲を取り囲む高圧着部位が設けられているために、この高圧着部位が発揮するシール作用により電解液の漏れを十分に抑制することが可能とされる。ここで高圧着部位とは、他の部位より高い圧力で加圧圧着された部位のことを云う。ただし高圧着部位の形成は一般に電解液の注入前に行なわれるため、単電池の周囲全周に亙って高圧着部位を設けると電解液の注入作業を行なうことができない。そこで本発明では、高圧着部位を一部(単電池の周囲全周の一部)が分断された形状で設けることにし、一部が分断された部位を電解液注入時の電解液注入口として用いることにした。双極型電極や枠状のシール材が平面四角形である場合、高圧着部位はその4辺のうちの3辺で連続するように設けるのが製造工程および設備上好適であり、この場合、残る1辺が電解液注入時の電解液注入口とされる。   In the bipolar secondary battery of the present invention having the above-described configuration, the frame-shaped sealing material that seals the electrolytic solution inside the battery is provided with a high pressure bonding portion that surrounds the periphery of the unit cell. It is possible to sufficiently suppress leakage of the electrolyte due to the sealing action exhibited by the part. Here, the high pressure bonding portion refers to a portion that is pressure-bonded with a pressure higher than that of other portions. However, since the formation of the high pressure bonding portion is generally performed before the injection of the electrolytic solution, the injection operation of the electrolytic solution cannot be performed if the high pressure bonding portion is provided over the entire periphery of the unit cell. Therefore, in the present invention, the high pressure bonding part is provided in a shape in which a part (part of the entire circumference of the unit cell) is divided, and the part in which the part is divided is used as an electrolyte injection port at the time of electrolyte injection. I decided to use it. In the case where the bipolar electrode or the frame-shaped sealing material is a plane quadrangle, it is preferable in terms of manufacturing process and equipment that the high pressure bonding portion is continuously provided on three of the four sides. In this case, the remaining 1 The side is used as an electrolyte injection port when the electrolyte is injected.

枠状のシール材は、単電池の周囲を取り囲むとともに集電体の間に圧着された状態で組み付けられるため、この集電体の間に圧着されることにより電解液に対するシール作用を一応発揮する。しかしながらこの組み付けのための圧着は多数のスタック構成部品を積層一体化することを目的として行なわれるものであって、その圧着時のプレス圧力の大きさはこれらを一体化できる範囲内で設定されているところ、このようなプレス圧力の大きさでは電解液の漏れを十分に抑制するには不足することが懸念される。そこで本発明では、この組み付けのための圧着に加えて新たに高圧着部位を設けることにしたものであって、組み付けのための圧着によるシール作用に加えて新たに高圧着部位によるシール作用が発揮されるため、この加重的なシール作用の発揮によって電解液の漏れを十分に抑制することが可能とされる。高圧着部位は、他の部位より高いプレス圧力で形成されるので、他の部位よりシール材の厚みが減じられた形状として形成されることが多い。   Since the frame-shaped sealing material is assembled in such a manner that it surrounds the unit cell and is crimped between the current collectors, it exerts a sealing action against the electrolyte by being crimped between the current collectors. . However, the crimping for assembling is performed for the purpose of laminating and integrating a large number of stack components, and the size of the press pressure at the time of crimping is set within a range where these can be integrated. However, there is a concern that such a large pressing pressure is insufficient to sufficiently suppress leakage of the electrolyte. Therefore, in the present invention, in addition to the pressure bonding for the assembly, a new high pressure bonding portion is newly provided, and in addition to the sealing action by the pressure bonding for the assembly, a new sealing action by the high pressure bonding portion is exhibited. Therefore, it is possible to sufficiently suppress leakage of the electrolytic solution by exhibiting this weighted sealing action. Since the high pressure bonding portion is formed at a higher pressing pressure than the other portions, the high pressure bonding portion is often formed in a shape in which the thickness of the sealing material is reduced as compared with the other portions.

双極型二次電池の製造方法としては、枠状のシール材を双極型電極に溶着する圧着工程を行なう際に、単電池の周囲を取り囲むとともにその一部が分断された部位を他の部位より高い圧力で加圧圧着することにより高圧着部位を形成するのが好適であり、これによれば上記組み付けのための圧着と高圧着部位の形成が同時に行なわれるため、作業効率が良い。圧着に用いる熱プレス金型としては、単電池の周囲を取り囲むとともにその一部が分断された部位に対応する位置に突起部を備えた金型を用いるのが好適であり、これによれば上記組み付けのための圧着と高圧着部位の形成が同時に行なわれるため、作業効率が良い。   As a method for manufacturing a bipolar secondary battery, when performing a crimping process of welding a frame-shaped sealing material to a bipolar electrode, a part of the cell surrounding the cell and partially separated from other parts It is preferable to form a high pressure bonding part by pressurizing and pressing at a high pressure, and according to this, the pressure bonding for the assembly and the formation of the high pressure bonding part are performed at the same time, so that the work efficiency is good. As the heat press mold used for the crimping, it is preferable to use a mold that surrounds the unit cell and has a protrusion at a position corresponding to a part of the cell part. Since the pressure bonding for assembly and the formation of the high pressure bonding portion are performed at the same time, the work efficiency is good.

本発明は、以下の効果を奏する。   The present invention has the following effects.

すなわち本発明においては上記したように、電池内部の電解液をシールする枠状のシール材に単電池の周囲を取り囲む高圧着部位が設けられているため、この高圧着部位が発揮するシール作用により電解液の漏れを十分に抑制することができる。高圧着部位は一部が分断されているため、電解液の注入作業を妨げることがない。また本発明の製造方法によれば、組み付けのための圧着と高圧着部位の形成を同時に行なうことができ、作業効率が良い。   That is, in the present invention, as described above, the frame-shaped sealing material that seals the electrolyte inside the battery is provided with a high pressure bonding portion that surrounds the periphery of the unit cell. Electrolyte leakage can be sufficiently suppressed. Since a part of the high pressure bonding part is divided, the injection operation of the electrolytic solution is not hindered. Further, according to the manufacturing method of the present invention, the pressure bonding for assembling and the formation of the high pressure bonding portion can be performed simultaneously, and the working efficiency is good.

本発明の実施例に係る双極型二次電池における双極型電極、第1シール材および第2シール材の平面図、ならびにこれらを組み合わせた電極シートの平面図FIG. 2 is a plan view of a bipolar electrode, a first sealing material and a second sealing material in a bipolar secondary battery according to an embodiment of the present invention, and a plan view of an electrode sheet obtained by combining them. 電極シートの断面図Cross section of electrode sheet 双極型二次電池の積層構造を示す断面図Sectional drawing which shows the laminated structure of a bipolar secondary battery 双極型二次電池の平面図Plan view of bipolar secondary battery 高圧着部位の加工工程説明図Explanatory drawing of processing steps for high pressure bonding parts 双極型二次電池の製造工程説明図Manufacturing process explanatory diagram of bipolar secondary battery

本発明には、以下の実施形態が含まれる。
(1)双極型電極(電極付き集電箔)の厚み方向両面にシール材を貼り合わせて電極シートとし、複数の前記電極シートをセパレータを挟んだ状態で重ね合わせて積層品とし、前記積層品における電解液注入口以外の周縁部を熱プレス溶着(圧着)して積層品スタックとした双極型二次電池(リチウムイオン電池)において、前記熱プレス溶着した前記積層品スタックの周縁部は、前記積層品スタックの内部に注入する電解液の漏れをシールするための高圧着部位(シールライン)を備えることを特徴とする双極型二次電池(リチウムイオン電池)。
(2)上記(1)項記載の双極型二次電池(リチウムイオン電池)において、前記高圧着部位(シールライン)は、前記熱プレス溶着(圧着)のプレス圧力が他の部位より大きく設定されることにより前記他の部位より厚みを減じられた立体形状として形成されていることを特徴とする双極型二次電池(リチウムイオン電池)。
(3)上記(1)項または(2)項記載の双極型二次電池(リチウムイオン電池)を製造する方法において、前記高圧着部位(シールライン)に対応する部位に金型突起部分を備えた熱プレス金型をもって前記熱プレス溶着(圧着)を行なうことを特徴とする双極型二次電池(リチウムイオン電池)の製造方法。
The present invention includes the following embodiments.
(1) A bipolar electrode (current collector foil with electrode) is bonded to both sides in the thickness direction to form an electrode sheet, and a plurality of the electrode sheets are stacked with a separator interposed therebetween to form a laminate, and the laminate In a bipolar secondary battery (lithium ion battery) in which a peripheral part other than the electrolyte injection port in FIG. 2 is heat-press welded (crimped) to form a laminated product stack, the peripheral part of the laminated product stack that is hot-press welded is A bipolar secondary battery (lithium ion battery) comprising a high pressure bonding part (seal line) for sealing a leak of electrolyte injected into the laminated product stack.
(2) In the bipolar secondary battery (lithium ion battery) described in the above item (1), the high pressure bonding part (seal line) is set so that the press pressure of the hot press welding (crimping) is larger than other parts. Thus, the bipolar secondary battery (lithium ion battery) is formed as a three-dimensional shape having a thickness reduced from that of the other part.
(3) In the method of manufacturing the bipolar secondary battery (lithium ion battery) described in the above (1) or (2), a mold protrusion is provided at a portion corresponding to the high pressure bonding portion (seal line). A method of manufacturing a bipolar secondary battery (lithium ion battery), wherein the hot press welding (crimping) is performed using a hot press mold.

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

当該実施例は、双極型二次電池の一種であるリチウムイオン電池に係る。当該実施例に係るリチウムイオン電池は以下のように構成されている。   The embodiment relates to a lithium ion battery which is a kind of bipolar secondary battery. The lithium ion battery according to this example is configured as follows.

全体構成・・・・
すなわち図1および図2に示すように、双極型電極(電極付き集電箔)12の厚み方向両面にそれぞれ枠状のシール材16,17が貼り合わされることにより電極シート11が構成されており、図3に示すように、複数の電極シート11が間にセパレータ18を挟んだ状態で重ねられることにより電極シート11の積層品21Aが構成されており、図4に示すように、積層品21Aにおける電解液注入口23以外の周縁部が熱プレス溶着(圧着)されることにより電極シート11の積層品スタック21Bが構成されている。積層品21Aは熱プレス溶着する前の双極型二次電池であり、積層品スタック21Bは熱プレス溶着した後の双極型二次電池である。単電池としては図3に示すように、互いに重ねられる2組の電極シート(例えば11Dと11C)における一方の電極シート11Dの正極14、他方の電極シート11Cの負極15および両極14,15間のセパレータ18Cによって1つの単電池が構成されている。また図4に示すように、熱プレス溶着された積層品スタック21Bの周縁部に、積層品スタック21Bの内部に注入する電解液(図示せず)の漏れをシールするための高圧着部位(シールライン)24が形成されている。
overall structure····
That is, as shown in FIG. 1 and FIG. 2, the electrode sheet 11 is configured by sticking frame-shaped sealing materials 16 and 17 to both surfaces in the thickness direction of the bipolar electrode (current collector foil with electrode) 12. As shown in FIG. 3, a plurality of electrode sheets 11 are stacked with a separator 18 interposed therebetween to form a laminated product 21 </ b> A of electrode sheets 11. As shown in FIG. 4, a laminated product 21 </ b> A is formed. A laminated product stack 21B of the electrode sheet 11 is configured by hot press welding (crimping) the peripheral edge portion other than the electrolyte solution injection port 23 in FIG. The laminated product 21A is a bipolar secondary battery before hot press welding, and the laminated product stack 21B is a bipolar secondary battery after hot press welding. As shown in FIG. 3, the unit cell includes a positive electrode 14 of one electrode sheet 11 </ b> D, a negative electrode 15 of the other electrode sheet 11 </ b> C, and both electrodes 14, 15 in two sets of electrode sheets (for example, 11D and 11C) stacked on each other. One single battery is constituted by the separator 18C. Further, as shown in FIG. 4, a high pressure bonding part (seal) for sealing a leakage of an electrolyte solution (not shown) injected into the laminated product stack 21B at the peripheral portion of the hot-press welded laminated product stack 21B. Line) 24 is formed.

電極シート11の構成・・・
図1および図2に示す双極型電極12は、集電体(集電箔)13の厚み方向一方の面に正極14を配置するとともに他方の面に負極15を配置したものである。集電体13は、導電性ポリイミドに金属薄膜(Cu等)を被着した素材によって平面四角形(長方形)のフィルム状(約300×350×0.05mm)に成形され、その厚み方向一方の面の平面中央に正極14が固定されるとともに他方の面の平面中央に負極15が固定されている。
Configuration of electrode sheet 11
The bipolar electrode 12 shown in FIG. 1 and FIG. 2 has a current collector (current collector foil) 13 with a positive electrode 14 disposed on one surface in the thickness direction and a negative electrode 15 disposed on the other surface. The current collector 13 is formed into a planar quadrangular (rectangular) film shape (about 300 × 350 × 0.05 mm) from a material obtained by depositing a metal thin film (such as Cu) on conductive polyimide, and one surface in the thickness direction thereof. The positive electrode 14 is fixed at the center of the plane of the electrode, and the negative electrode 15 is fixed at the center of the plane of the other surface.

一方のシール材16は、熱硬化性樹脂および熱可塑性樹脂によって集電体13より一回り大きな平面四角形(長方形)のフィルム状に成形され、平面中央に厚み方向に貫通する中空部16bが形成されて枠状とされ、正極14の周りを囲むようにして集電体13の厚み方向一方の面に固定されている。他方のシール材17は、熱可塑性樹脂によって集電体13より一回り大きな平面四角形(長方形)のフィルム状に成形され、平面中央に厚み方向に貫通する中空部17bが形成されて枠状とされ、負極15の周りを囲むようにして集電体13の厚み方向他方の面に固定されている。これら枠状のシール材16,17は単電池の周囲を取り囲むとともに集電体13の間に溶着される。   One sealing material 16 is formed into a film shape of a plane square (rectangular) that is slightly larger than the current collector 13 by a thermosetting resin and a thermoplastic resin, and a hollow portion 16b penetrating in the thickness direction is formed at the center of the plane. The current collector 13 is fixed to one surface in the thickness direction so as to surround the positive electrode 14. The other sealing material 17 is formed into a frame-like shape by forming a flat square (rectangular) film that is slightly larger than the current collector 13 with a thermoplastic resin, and having a hollow portion 17b penetrating in the thickness direction at the center of the plane. The current collector 13 is fixed to the other surface in the thickness direction so as to surround the negative electrode 15. These frame-shaped sealing materials 16 and 17 surround the cell and are welded between the current collectors 13.

双極型電極12およびシール材16,17の平面上にはそれぞれ、これらを互いに重ねるときに平面上の位置合わせをするための、厚み方向に貫通する円形***状の位置決め穴12a,16a,17aが複数個所(2箇所)に亙って設けられており、双極型電極12およびシール材16,17はこの位置決め穴12a,16a,17aで位置を合わせて重ねられている。双極型電極12に対するシール材16,17の固定は例えば、複数個所におけるピンポイント溶着によって仮止め式に行なわれる。   Positioning holes 12a, 16a, and 17a in the form of circular small holes penetrating in the thickness direction are provided on the planes of the bipolar electrode 12 and the sealing materials 16 and 17 so as to align the planes when they are overlapped with each other. The bipolar electrode 12 and the sealing materials 16 and 17 are overlapped at the positions of the positioning holes 12a, 16a, and 17a. The sealing members 16 and 17 are fixed to the bipolar electrode 12 by, for example, temporarily fixing by pinpoint welding at a plurality of locations.

積層品(溶着前の積層品)21Aの構成・・・
図3に示す積層品21Aは、4枚の電極シート11および3枚のセパレータ18が交互に重ねられることにより3層に亙る積層品として構成されている。電極シート11の平面上にはそれぞれ上記位置決め穴12a,16a,17aが重ねられたことによる電極シート11としての位置決め穴11a(図1参照)が設けられているので、電極シート11同士はこの位置決め穴11aで位置を合わせて重ねられている。一方、セパレータ18は平面積が比較的小さいので、電極シート11の平面***位置に配置されることにより位置合わせされており、位置決め穴による位置合わせには加えられていない。尚、積層数について上記3層としたのは単なる例示であって、4層以上例えば8層であっても良い。電極シート11には重ね合わせに先立ってそれぞれ、電圧監視用端子(FPC)25が取り付けられている。
Structure of laminated product (laminated product before welding) 21A ...
A laminated product 21A shown in FIG. 3 is configured as a laminated product having three layers by alternately stacking four electrode sheets 11 and three separators 18. Positioning holes 11a (see FIG. 1) as the electrode sheet 11 are provided on the plane of the electrode sheet 11 by overlapping the positioning holes 12a, 16a, and 17a. The holes 11a are overlapped at the same position. On the other hand, since the separator 18 has a relatively small plane area, it is aligned by being arranged at the center position on the plane of the electrode sheet 11 and is not added to the alignment by the positioning hole. Note that the above three layers in the number of stacked layers are merely examples, and may be four or more layers, for example, eight layers. Prior to superposition, voltage monitoring terminals (FPC) 25 are attached to the electrode sheets 11.

積層品スタック(溶着後の積層品)21Bの構成・・・
図4に示す積層品スタック21Bは、図3の積層品21Aを熱プレス溶着することによって作製されている。上記したように電極シート11およびこれを複数重ね合わせた積層品21Aは平面四角形(長方形)であって、その周縁部の4辺のうちの1辺は電解液注入口23とされ開口したままとされるので、積層品21Aは残りの3辺において熱プレス溶着され、図4では、この熱プレス溶着された領域を点々を付して示している。溶着領域内におけるシール材17は、双極型電極12と重なる部分において双極型電極12の集電体13に溶着され、双極型電極12と重ならない部分においてシール材16に溶着されている。
Structure of laminated product stack (laminated product after welding) 21B
The laminated product stack 21B shown in FIG. 4 is produced by hot press welding the laminated product 21A shown in FIG. As described above, the electrode sheet 11 and the laminated product 21A obtained by superimposing a plurality of the electrode sheets 11 are planar quadrangular (rectangular), and one side of the four sides of the peripheral portion is the electrolyte injection port 23 and remains open. Therefore, the laminated product 21A is hot press welded on the remaining three sides, and in FIG. 4, the hot press welded regions are indicated by dots. The sealing material 17 in the welding region is welded to the current collector 13 of the bipolar electrode 12 at a portion overlapping with the bipolar electrode 12, and is welded to the sealing material 16 at a portion not overlapping with the bipolar electrode 12.

また、図4では、高圧着部位24を黒太線をもって示しており、その配置から明らかなように高圧着部位24は、熱プレス溶着された周縁部の3辺に亙って連続する1本のライン状(帯状)に形成されている。高圧着部位24はシール材16,17の枠形状に沿ってシール材16,17の平面上に設けられ、単電池の周囲を取り囲むとともにその一部(単電池の周囲全周の一部、電解液注入口23に対応する部位)が分断された平面形状とされている。   Further, in FIG. 4, the high pressure bonding portion 24 is indicated by a thick black line, and as is clear from the arrangement, the high pressure bonding portion 24 is a single piece continuous over the three sides of the peripheral edge portion subjected to hot press welding. It is formed in a line shape (band shape). The high pressure bonding portion 24 is provided on the plane of the sealing materials 16 and 17 along the frame shape of the sealing materials 16 and 17 and surrounds the periphery of the unit cell and a part thereof (a part of the entire periphery of the unit cell, electrolytic The portion corresponding to the liquid injection port 23 is divided into a planar shape.

また、この高圧着部位24は、図5に示すように、熱プレス溶着時におけるプレス圧力が他の部位より大きく設定されることにより、他の部位より厚みを減じられた立体形状として形成されている。したがって高圧着部位24は、積層品スタック21Bの厚み方向一方の面で溝状に凹んだ形状とされ、または積層品スタック21Bの厚み方向一方の面で溝状に凹むとともに他方の面で畝状に***した形状とされ、または積層品スタック21Bの厚み方向一方および他方の面双方で溝状に凹んだ形状とされている。   Further, as shown in FIG. 5, the high pressure bonding portion 24 is formed as a three-dimensional shape having a thickness reduced from the other portions by setting the press pressure at the time of hot press welding larger than the other portions. Yes. Accordingly, the high pressure bonding portion 24 is formed in a groove-like shape on one surface in the thickness direction of the laminated product stack 21B, or is recessed in a groove shape on one surface in the thickness direction of the laminated product stack 21B and has a bowl shape on the other surface. Or a shape recessed in a groove shape on both one and other surfaces in the thickness direction of the laminated product stack 21B.

また、高圧着部位24は、図5に示すように、高圧着部位24に対応する部位に突起部32を備えた熱プレス金型31をもって熱プレス溶着を行なうことにより形成されている。突起部32は、電池における単電池の周囲を取り囲むとともにその一部が分断された部位に対応する位置に設けられている。また突起部32は、熱プレス金型31における一方の分割型に設けられ、または一方および他方の分割型の双方に設けられている。   Further, as shown in FIG. 5, the high pressure bonding portion 24 is formed by performing hot press welding with a hot press mold 31 provided with a protrusion 32 at a portion corresponding to the high pressure bonding portion 24. The protruding portion 32 is provided at a position corresponding to a part of the battery that surrounds the unit cell and is partially divided. Further, the protrusion 32 is provided on one split mold in the hot press mold 31 or is provided on both one and the other split mold.

つぎに、上記リチウムイオン電池の製造方法を説明する。   Next, a method for producing the lithium ion battery will be described.

図6(A)に示すように、所定の大きさの平面形状(四角形)にカットした集電体13を用意し、この集電体13の厚み方向一方の面に正極14を塗工するとともに他方の面に負極15を塗工して双極型電極12を作製する(図6(B))。
その一方で、図6(C)に示すように、所定の大きさの平面形状(四角形)にカットしたシール材16,17を用意し、このシール材16,17を打ち抜きプレスして枠状に加工する(図6(D))。
As shown in FIG. 6A, a current collector 13 cut into a predetermined planar shape (square) is prepared, and a positive electrode 14 is applied to one surface in the thickness direction of the current collector 13. The negative electrode 15 is applied to the other surface to produce the bipolar electrode 12 (FIG. 6B).
On the other hand, as shown in FIG. 6 (C), seal materials 16 and 17 cut into a planar shape (square) of a predetermined size are prepared, and the seal materials 16 and 17 are punched and pressed into a frame shape. Processing is performed (FIG. 6D).

次いで、図6(E)に示すように、上記双極型電極12と2枚のシール材16,17を重ね合わせ、熱プレス溶着で仮止めして電極シート11を作製する(図6(F))。重ね合わせ時にはその位置精度を確保して位置ズレ誤差を可及的に小さくするため、画像処理による位置合わせ手段を用いる。位置合わせには上記位置決め穴12a,16a,17aを用いる。   Next, as shown in FIG. 6 (E), the bipolar electrode 12 and the two sealing materials 16 and 17 are overlapped and temporarily fixed by hot press welding to produce the electrode sheet 11 (FIG. 6 (F)). ). At the time of superimposition, in order to ensure the positional accuracy and minimize the positional deviation error, an alignment means by image processing is used. The positioning holes 12a, 16a and 17a are used for alignment.

次いで、図6(G)に示すように、複数の電極シート11を間にセパレータ18を挟んだ状態で重ね合わせて積層品21Aとし、積層品21Aにおける電解液注入口23以外の周縁部3辺を金型31で熱プレス溶着して積層品スタック21Bを作製し(図6(H))、このとき同時に高圧着部位24を形成する。重ね合わせ時にはその位置精度を確保して位置ズレ誤差を可及的に小さくするため、画像処理による位置合わせ手段を用いる。位置合わせには上記位置決め穴11aを用いる。高圧着部位24は上記したように、高圧着部位24に対応する位置に突起部32を備えた熱プレス金型31をもって熱プレス溶着を行なうことにより形成する。また高圧着部位24は積層品21Aの熱プレス溶着を行なう際に、単電池の周囲を取り囲むとともにその一部が分断されたライン状の部位を他の部位より高い圧力で加圧圧着することにより形成する。次いで、図示はしないが、積層品スタック21Bの各層内に電解液を注入し、注入口23を閉塞し、完成に至る。   Next, as shown in FIG. 6 (G), a plurality of electrode sheets 11 are overlaid with a separator 18 sandwiched therebetween to form a laminated product 21A, and three peripheral edge portions other than the electrolyte solution inlet 23 in the laminated product 21A. Are heat-press welded with a mold 31 to produce a laminated product stack 21B (FIG. 6 (H)), and at this time, a high pressure bonding part 24 is formed. At the time of superimposition, in order to ensure the positional accuracy and minimize the positional deviation error, an alignment means by image processing is used. The positioning hole 11a is used for alignment. As described above, the high pressure bonding portion 24 is formed by performing hot press welding with the hot press mold 31 provided with the protrusion 32 at a position corresponding to the high pressure bonding portion 24. Further, the high pressure bonding portion 24 is formed by press-bonding a line-shaped portion surrounding the periphery of the unit cell and partly divided at a higher pressure than other portions when performing the hot press welding of the laminated product 21A. Form. Next, although not shown, an electrolytic solution is injected into each layer of the laminated product stack 21 </ b> B, and the injection port 23 is closed to complete.

尚、上記工程中、図6(E)から図6(G)に示す工程によって、請求項3に記載した「集電体の一面に正極を設けるとともに他面に負極を設けた複数の双極型電極と、前記複数の双極型電極の間に挟まれるセパレータと、前記正極、負極およびセパレータによって構成される単電池の周囲を取り囲むとともに前記集電体の間に圧着される枠状のシール材とを積層する積層品形成工程」が実施される(当該実施例では、シール材16,17が双極型電極12に仮止めされている)。また図6(H)に示す工程によって、請求項3に記載した「前記枠状のシール材を双極型電極に溶着する圧着工程」が実施される(当該実施例では、シール材16,17が双極型電極12に本止めされる)。   6E to 6G, the “multiple bipolar type in which a positive electrode is provided on one surface of the current collector and a negative electrode is provided on the other surface” according to the third aspect. An electrode, a separator sandwiched between the plurality of bipolar electrodes, a frame-shaped sealing material that surrounds a unit cell constituted by the positive electrode, the negative electrode, and the separator and is pressure-bonded between the current collectors A laminated product forming step of laminating the sealing material (in this embodiment, the sealing materials 16 and 17 are temporarily fixed to the bipolar electrode 12). 6 (H), the “crimping step of welding the frame-shaped sealing material to the bipolar electrode” described in claim 3 is performed (in this embodiment, the sealing materials 16 and 17 are This is fixed to the bipolar electrode 12).

上記構成を備えるリチウムイオン電池においては、電池内部の電解液をシールする枠状のシール材16,17に単電池の周囲を取り囲む高圧着部位24が設けられているため、この高圧着部位24が発揮するシール作用によって電解液の漏れを十分に抑制することができる。高圧着部位24はその一部が分断されているため、電解液の注入作業を妨げることがない。   In the lithium ion battery having the above configuration, since the high pressure bonding portion 24 surrounding the periphery of the unit cell is provided in the frame-shaped sealing materials 16 and 17 for sealing the electrolyte inside the battery, The leakage of the electrolytic solution can be sufficiently suppressed by the sealing action exerted. Since a part of the high pressure bonding portion 24 is divided, the electrolyte injection operation is not hindered.

また、リチウムイオン電池の製造方法として、積層品21Aの熱プレス溶着を行なう際に、単電池の周囲を取り囲むライン状の部位を他の部位より高い圧力で加圧圧着することにより高圧着部位24を形成するようにしたため、積層品21Aの熱プレス溶着と高圧着部位24の形成を同時に行なうことができる。したがって新たな工程を増やすことなく、シール性に優れた電池製品を製造することができる。   Further, as a method of manufacturing a lithium ion battery, when performing hot press welding of the laminated product 21A, a high pressure bonding portion 24 is formed by pressure-bonding a line-shaped portion surrounding the periphery of the unit cell at a pressure higher than other portions. Therefore, the hot press welding of the laminate 21A and the formation of the high pressure bonding portion 24 can be performed simultaneously. Therefore, a battery product excellent in sealing properties can be manufactured without increasing new processes.

11 電極シート
11a,12a,16a,17a 位置決め穴
12 双極型電極
13 集電体
14 正極
15 負極
16,17 シール材
16b,17b 中空部
18 セパレータ
21A 積層品
21B 積層品スタック
23 電解液注入口
24 高圧着部位
25 端子
31 熱プレス金型
32 突起部
DESCRIPTION OF SYMBOLS 11 Electrode sheet 11a, 12a, 16a, 17a Positioning hole 12 Bipolar electrode 13 Current collector 14 Positive electrode 15 Negative electrode 16, 17 Sealing material 16b, 17b Hollow part 18 Separator 21A Laminated product 21B Laminated product stack 23 Electrolyte inlet 24 High pressure Placement area 25 Terminal 31 Heat press mold 32 Protrusion

Claims (4)

集電体の一面に正極を設けるとともに他面に負極を設けた双極型電極と、正極および負極の間に挟まれたセパレータと、正極、負極およびセパレータによって構成された単電池の周囲を取り囲むとともに集電体の間に圧着された枠状のシール材とを含み、電解液を封入する双極型二次電池であって、
前記枠状のシール材は、前記単電池の周囲を取り囲むとともにその一部が分断された高圧着部位を有することを特徴とする双極型二次電池。
A bipolar electrode having a positive electrode on one surface of the current collector and a negative electrode on the other surface, a separator sandwiched between the positive electrode and the negative electrode, and surrounding a unit cell composed of the positive electrode, the negative electrode, and the separator A bipolar secondary battery including a frame-shaped sealing material that is crimped between current collectors and enclosing an electrolyte solution,
The frame-shaped sealing material has a high pressure bonding portion that surrounds the unit cell and is partially divided, and is a bipolar secondary battery.
前記双極型電極および枠状のシール材は平面四角形であって、その4辺のうち3辺で連続する高圧着部位を有することを特徴とする請求項1記載の双極型二次電池。   2. The bipolar secondary battery according to claim 1, wherein the bipolar electrode and the frame-shaped sealing material are planar quadrilaterals and have a high pressure bonding portion that is continuous on three of the four sides. 3. 集電体の一面に正極を設けるとともに他面に負極を設けた双極型電極と、正極および負極の間に挟まれるセパレータと、正極、負極およびセパレータによって構成される単電池の周囲を取り囲むとともに集電体の間に圧着される枠状のシール材とを積層する積層品形成工程と、前記枠状のシール材を双極型電極に溶着する圧着工程とを含み、
前記圧着工程は、前記単電池の周囲を取り囲むとともにその一部が分断された部位を他の部位より高い圧力で加圧圧着することを特徴とする双極型二次電池の製造方法。
A bipolar electrode having a positive electrode on one surface of the current collector and a negative electrode on the other surface, a separator sandwiched between the positive electrode and the negative electrode, and surrounding a unit cell constituted by the positive electrode, the negative electrode, and the separator. A laminated product forming step of laminating a frame-shaped sealing material to be crimped between electric bodies, and a pressure-bonding step of welding the frame-shaped sealing material to a bipolar electrode,
The method of manufacturing a bipolar secondary battery, wherein the crimping step includes pressurizing and crimping a portion of the cell surrounding the unit cell and a part of the cell being cut at a higher pressure than other portions.
前記単電池の周囲を取り囲むとともにその一部が分断された部位に対応する位置に突起部を備えた熱プレス金型を用いて加圧圧着を行なうことを特徴とする請求項3記載の双極型二次電池の製造方法。   4. The bipolar type according to claim 3, wherein pressure bonding is performed using a hot press mold that surrounds the unit cell and has a protrusion at a position corresponding to a part of the cell. A method for manufacturing a secondary battery.
JP2012202437A 2012-09-14 2012-09-14 Bipolar secondary battery and manufacturing method thereof Active JP6050066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202437A JP6050066B2 (en) 2012-09-14 2012-09-14 Bipolar secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202437A JP6050066B2 (en) 2012-09-14 2012-09-14 Bipolar secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014056799A true JP2014056799A (en) 2014-03-27
JP6050066B2 JP6050066B2 (en) 2016-12-21

Family

ID=50613941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202437A Active JP6050066B2 (en) 2012-09-14 2012-09-14 Bipolar secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6050066B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681115A (en) * 2016-08-01 2018-02-09 北京好风光储能技术有限公司 A kind of negative plate of lithium slurry battery
CN107681114A (en) * 2016-08-01 2018-02-09 北京好风光储能技术有限公司 A kind of positive plate and preparation technology and the lithium slurry battery containing the positive plate
CN108242530A (en) * 2016-12-23 2018-07-03 北京好风光储能技术有限公司 A kind of lithium slurry battery and its negative plate
WO2018123503A1 (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Electricity storage module, and method for manufacturing electricity storage module
JP2018125213A (en) * 2017-02-02 2018-08-09 三洋化成工業株式会社 Lithium ion battery
JP2019514180A (en) * 2016-04-18 2019-05-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrochemical cell with electrode isolation frame
JP2020030962A (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
US10868337B2 (en) 2016-03-08 2020-12-15 Beijing Hawaga Power Storage Technology Company Ltd Cell-core for lithium slurry battery, and lithium slurry battery module
US10910644B2 (en) 2017-02-15 2021-02-02 Kabushiki Kaisha Toyota Jidoshokki Power storage device
US11233276B2 (en) 2017-04-07 2022-01-25 Beijing Hawaga Power Storage Technology Company Ltd. Lithium slurry battery system
US11936046B2 (en) 2017-12-07 2024-03-19 Kabushiki Kaisha Toyota Jidoshokki Electricity storage device, method for producing electricity storage device, and electrolytic plating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123538A (en) * 1990-09-14 1992-04-23 Nippon Telegr & Teleph Corp <Ntt> Fading simulator
JPH07211425A (en) * 1994-01-25 1995-08-11 Sony Corp Thermo-compression bonding device
JPH087926A (en) * 1994-06-16 1996-01-12 Sony Corp Nonaqueous electrolytic secondary cell
US20030194605A1 (en) * 2002-04-10 2003-10-16 Fauteux Denis G. Rechargeable high power electrochemical device
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2008027607A (en) * 2006-07-18 2008-02-07 Nec Tokin Corp Electric power storage device, cell for electric power storage device, and its manufacturing method
JP2011009039A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Bipolar secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123538A (en) * 1990-09-14 1992-04-23 Nippon Telegr & Teleph Corp <Ntt> Fading simulator
JPH07211425A (en) * 1994-01-25 1995-08-11 Sony Corp Thermo-compression bonding device
JPH087926A (en) * 1994-06-16 1996-01-12 Sony Corp Nonaqueous electrolytic secondary cell
US20030194605A1 (en) * 2002-04-10 2003-10-16 Fauteux Denis G. Rechargeable high power electrochemical device
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2008027607A (en) * 2006-07-18 2008-02-07 Nec Tokin Corp Electric power storage device, cell for electric power storage device, and its manufacturing method
JP2011009039A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Bipolar secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868337B2 (en) 2016-03-08 2020-12-15 Beijing Hawaga Power Storage Technology Company Ltd Cell-core for lithium slurry battery, and lithium slurry battery module
JP2019514180A (en) * 2016-04-18 2019-05-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrochemical cell with electrode isolation frame
CN107681114B (en) * 2016-08-01 2020-08-14 北京好风光储能技术有限公司 Positive plate, preparation process and lithium slurry battery containing positive plate
CN107681114A (en) * 2016-08-01 2018-02-09 北京好风光储能技术有限公司 A kind of positive plate and preparation technology and the lithium slurry battery containing the positive plate
CN107681115A (en) * 2016-08-01 2018-02-09 北京好风光储能技术有限公司 A kind of negative plate of lithium slurry battery
CN107681115B (en) * 2016-08-01 2020-08-04 北京好风光储能技术有限公司 Negative plate of lithium slurry battery
CN108242530A (en) * 2016-12-23 2018-07-03 北京好风光储能技术有限公司 A kind of lithium slurry battery and its negative plate
CN108242530B (en) * 2016-12-23 2022-02-22 北京好风光储能技术有限公司 Lithium slurry battery and negative plate thereof
WO2018123503A1 (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Electricity storage module, and method for manufacturing electricity storage module
JP2018125213A (en) * 2017-02-02 2018-08-09 三洋化成工業株式会社 Lithium ion battery
US10910644B2 (en) 2017-02-15 2021-02-02 Kabushiki Kaisha Toyota Jidoshokki Power storage device
US11233276B2 (en) 2017-04-07 2022-01-25 Beijing Hawaga Power Storage Technology Company Ltd. Lithium slurry battery system
US11936046B2 (en) 2017-12-07 2024-03-19 Kabushiki Kaisha Toyota Jidoshokki Electricity storage device, method for producing electricity storage device, and electrolytic plating method
JP2020030962A (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JP7074614B2 (en) 2018-08-22 2022-05-24 株式会社豊田自動織機 Power storage module

Also Published As

Publication number Publication date
JP6050066B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6050066B2 (en) Bipolar secondary battery and manufacturing method thereof
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
KR101883914B1 (en) Battery having position alignment portion and alignment guide portion
WO2018055858A1 (en) Electricity storage device and method for manufacturing electricity storage device
KR101609424B1 (en) Method of manufacturing electrode assembly
CN105609693B (en) Electrode assembly and battery pack having the same
CN104756297B (en) Membrane electrode assembly, there is the fuel cell of this component and have the automobile of this fuel cell
JP2011192540A (en) Bipolar secondary battery
WO2013002139A1 (en) Electricity storage device and method for producing same
WO2020145177A1 (en) All-solid-state battery and method for manufacturing all-solid-state battery
JPWO2013002138A1 (en) Electric storage device and manufacturing method thereof
JP2016171035A (en) Laminate type battery and method of manufacturing the same
JP3877968B2 (en) Electric double layer capacitor
JP2014232765A (en) Power storage device
JP2006164784A (en) Film-armored electric device
JP6017237B2 (en) Bipolar secondary battery
JP2019194946A (en) Laminate type battery and method for manufacturing laminate type battery
JP6560876B2 (en) Laminated battery and method of manufacturing the same
JP7132168B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP7299816B2 (en) Stacked battery manufacturing method, stacked battery manufacturing apparatus, and stacked battery
KR102205425B1 (en) Electrode assembly for secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
JP6497994B2 (en) Method for producing electrochemical cell
JP2016031909A (en) Electrode assembly and method for manufacturing electrode assembly
JP2019220333A (en) Stacked battery and method for manufacturing stacked battery
JP2020107418A (en) Manufacturing method for power storage module and power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250