JP2014055524A - Exhaust gas treatment device of diesel engine - Google Patents

Exhaust gas treatment device of diesel engine Download PDF

Info

Publication number
JP2014055524A
JP2014055524A JP2012199352A JP2012199352A JP2014055524A JP 2014055524 A JP2014055524 A JP 2014055524A JP 2012199352 A JP2012199352 A JP 2012199352A JP 2012199352 A JP2012199352 A JP 2012199352A JP 2014055524 A JP2014055524 A JP 2014055524A
Authority
JP
Japan
Prior art keywords
combustible gas
catalyst
air
gas generating
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012199352A
Other languages
Japanese (ja)
Other versions
JP5859412B2 (en
Inventor
Toshio Nakahira
敏夫 中平
Mitsugi Okuda
貢 奥田
Keita Naito
慶太 内藤
Takayuki Onishi
崇之 大西
Norikazu Takemoto
能和 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012199352A priority Critical patent/JP5859412B2/en
Priority to EP13250094.3A priority patent/EP2706206B1/en
Priority to KR1020130102190A priority patent/KR102044560B1/en
Priority to US14/016,366 priority patent/US9353666B2/en
Priority to CN201310408230.7A priority patent/CN103670607B/en
Publication of JP2014055524A publication Critical patent/JP2014055524A/en
Application granted granted Critical
Publication of JP5859412B2 publication Critical patent/JP5859412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/20

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment device of a diesel engine capable of preventing thermal damage of a combustible gas production catalyst.SOLUTION: In an exhaust gas treatment device of a diesel engine in which a combustible gas is burned in oxygen in an exhaust gas, and a temperature of the exhaust gas is raised by the combustion heat to burn and remove PM accumulated in DPF by the heat of the exhaust gas 6, a heat insulating material 74 is disposed between an inner peripheral face 21a of a combustible gas production catalyst chamber 21 and an outer peripheral face 22a of the combustible gas production catalyst 22, in a state that the heat insulating material 74 does not exist between upper edge portions 21b and 22b of the inner peripheral face 21a and the outer peripheral face 22a, the upper edge portions 21b and 22b are closely kept into contact with each other, and catalyst reaction heat is radiated from the upper edge portion 22b of the outer peripheral face 22a of the combustible gas production catalyst 22 to the upper edge portion 21b of the inner peripheral face 21a of the combustible gas production catalyst chamber 21.

Description

本発明は、ディーゼルエンジンの排気処理装置に関し、詳しくは、可燃性ガス生成触媒の熱損傷を防止することができるディーゼルエンジンの排気処理装置に関する。   The present invention relates to an exhaust treatment apparatus for a diesel engine, and more particularly to an exhaust treatment apparatus for a diesel engine that can prevent thermal damage of a combustible gas generation catalyst.

従来、ディーゼルエンジンの排気処理装置として、可燃性ガス生成器に可燃性ガス生成触媒室を設け、この可燃性ガス生成触媒室に可燃性ガス生成触媒を収容し、可燃性ガス生成器の上部に空燃混合室を形成し、この空燃混合室に空気と液体燃料とを供給することにより、空燃混合室で空気と液体燃料との空燃混合物を形成し、この空燃混合物を空燃混合室の下端部から可燃性ガス生成触媒の上部中心の触媒入口部に供給し、可燃性ガス生成触媒で可燃性ガスを生成させ、この可燃性ガスを可燃性ガス生成触媒の下端部の触媒出口部から流出させ、
この可燃性ガスをDPFの上流で可燃性ガス放出口から排気通路に放出し、この可燃性ガスを排気中の酸素で燃焼させ、その燃焼熱で排気を昇温させ、排気の熱でDPFに溜まったPMを燃焼除去することができるようにしたものがある(例えば、特許文献1参照)。
この種の排気処理装置によれば、排気温度が低い場合にも、可燃性ガスで排気を昇温させ、DPFに溜まったPMを燃焼除去して、DPFを再生して再利用することができる利点がある。
しかし、この従来技術では、可燃性ガス生成触媒室の内周面と可燃性ガス生成触媒の外周面との間に断熱材を介在させるに当たり、これら内周面と外周面のうち、全面に断熱材を介在させた場合には、問題がある。
Conventionally, as an exhaust treatment device for a diesel engine, a combustible gas generating catalyst chamber is provided in a combustible gas generator, and the combustible gas generating catalyst is accommodated in the combustible gas generating catalyst chamber, and is disposed above the combustible gas generator. By forming an air-fuel mixing chamber and supplying air and liquid fuel to the air-fuel mixing chamber, an air-fuel mixture of air and liquid fuel is formed in the air-fuel mixing chamber, and this air-fuel mixture is air-fueled. Supply from the lower end of the mixing chamber to the catalyst inlet at the center of the upper part of the combustible gas generating catalyst, generate a combustible gas with the combustible gas generating catalyst, and use this combustible gas as the catalyst at the lower end of the combustible gas generating catalyst. Let it flow out of the outlet,
This flammable gas is discharged from the flammable gas outlet to the exhaust passage upstream of the DPF, this flammable gas is burned with oxygen in the exhaust gas, the exhaust gas is heated with the combustion heat, and the heat of the exhaust gas is converted into the DPF. There is one in which accumulated PM can be removed by combustion (see, for example, Patent Document 1).
According to this type of exhaust treatment device, even when the exhaust gas temperature is low, the exhaust gas can be heated with a combustible gas, the PM accumulated in the DPF can be burned and removed, and the DPF can be regenerated and reused. There are advantages.
However, in this prior art, when the heat insulating material is interposed between the inner peripheral surface of the combustible gas generating catalyst chamber and the outer peripheral surface of the combustible gas generating catalyst, the entire surface of the inner peripheral surface and the outer peripheral surface is insulated. There is a problem when a material is interposed.

特開2011−214439号公報(図3(B)参照)JP 2011-214439 A (see FIG. 3B)

《問題》 可燃性ガス生成触媒が熱損傷する場合がある。
可燃性ガス生成触媒室の内周面と可燃性ガス生成触媒の外周面との間に断熱材を介在させるに当たり、これら内周面と外周面のうち、全面に断熱材を介在させた場合には、可燃性ガス生成触媒の外周面の上縁部付近が過熱し、可燃性ガス生成触媒が熱損傷する場合がある。
その理由は、次のように推定される。
可燃性ガス生成触媒の上部中心の触媒入口に供給した空燃混合気のうち、比重の小さい空気は可燃性ガス生成触媒の外周面の上縁部付近に容易に到達するのに対し、比重の大きい液体燃料はその付近には到達しにくいため、その付近では空気過剰となり、触媒反応が過度に進行し、過大な触媒反応熱により、可燃性ガス生成触媒の外周面の上縁部付近が過熱し、可燃性ガス生成触媒が熱損傷する。
<Problem> The combustible gas generating catalyst may be thermally damaged.
When a heat insulating material is interposed between the inner peripheral surface of the combustible gas generating catalyst chamber and the outer peripheral surface of the combustible gas generating catalyst, when the heat insulating material is interposed between the inner peripheral surface and the outer peripheral surface. In some cases, the vicinity of the upper edge of the outer peripheral surface of the combustible gas generating catalyst is overheated and the combustible gas generating catalyst is thermally damaged.
The reason is estimated as follows.
Of the air-fuel mixture supplied to the catalyst inlet at the upper center of the combustible gas generating catalyst, air with a small specific gravity easily reaches near the upper edge of the outer peripheral surface of the combustible gas generating catalyst. Large liquid fuel is difficult to reach in the vicinity, so the air is excessive in the vicinity, the catalytic reaction proceeds excessively, and excessive heat of the catalytic reaction causes the vicinity of the upper edge of the outer peripheral surface of the combustible gas generating catalyst to overheat. As a result, the combustible gas generating catalyst is thermally damaged.

本発明の課題は、可燃性ガス生成触媒の熱損傷を防止することができるディーゼルエンジンの排気処理装置を提供することにある。   The subject of this invention is providing the exhaust-gas-treatment apparatus of the diesel engine which can prevent the thermal damage of a combustible gas production | generation catalyst.

請求項1に係る発明の発明特定事項は、次の通りである。
図1(A)に例示するように、可燃性ガス生成器(1)に可燃性ガス生成触媒室(21)を設け、この可燃性ガス生成触媒室(21)に可燃性ガス生成触媒(22)を収容し、可燃性ガス生成器(1)の上部に空燃混合室(24)を形成し、この空燃混合室(24)に空気(25)と図3に示す液体燃料(26)とを供給することにより、空燃混合室(24)で空気(25)と液体燃料(26)との空燃混合物(27)を形成し、この空燃混合物(27)を空燃混合室(24)の下端部から可燃性ガス生成触媒(22)の上部中心の触媒入口部(75)に供給し、可燃性ガス生成触媒(22)で可燃性ガス(2)を生成させ、この可燃性ガス(2)を可燃性ガス生成触媒(22)の下端部の触媒出口部(76)から流出させ、
図3に例示するように、この可燃性ガス(2)をDPF(7)の上流で可燃性ガス放出口(3)から排気通路(4)に放出し、この可燃性ガス(2)を排気(6)中の酸素で燃焼させ、その燃焼熱で排気(6)を昇温させ、排気(6)の熱でDPF(7)に溜まったPMを燃焼除去することができるようにした、ディーゼルエンジンの排気処理装置において、
図2(A)に例示するように、可燃性ガス生成触媒室(21)の内周面(21a)と可燃性ガス生成触媒(22)の外周面(22a)との間に断熱材(74)を介在させるに当たり、これら内周面(21a)と外周面(22a)のうち、各上端縁部(21b)(22b)間には断熱材(74)を介在させず、各上端縁部(21b)(22b)同士を密着させて、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)から可燃性ガス生成触媒室(21)の内周面(21a)の上端縁部(21b)に触媒反応熱が放熱されるようにした、ことを特徴とするディーゼルエンジンの排気処理装置。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 1A, a combustible gas generating catalyst chamber (21) is provided in a combustible gas generator (1), and a combustible gas generating catalyst (22) is provided in the combustible gas generating catalyst chamber (21). ), An air / fuel mixing chamber (24) is formed in the upper part of the combustible gas generator (1), air (25) and liquid fuel (26) shown in FIG. 3 are formed in the air / fuel mixing chamber (24). Is formed in the air / fuel mixing chamber (24) to form an air / fuel mixture (27) of air (25) and liquid fuel (26), and the air / fuel mixture (27) is formed into the air / fuel mixing chamber (27). 24) is supplied to the catalyst inlet (75) at the upper center of the combustible gas generating catalyst (22) from the lower end of the combustible gas generating catalyst (22) to generate the combustible gas (2). Let gas (2) flow out from the catalyst outlet (76) at the lower end of the combustible gas generating catalyst (22);
As illustrated in FIG. 3, the combustible gas (2) is discharged from the combustible gas discharge port (3) to the exhaust passage (4) upstream of the DPF (7), and the combustible gas (2) is exhausted. (6) Diesel that burns with oxygen in it, raises the temperature of the exhaust (6) with the heat of combustion, and allows the PM accumulated in the DPF (7) to be burned and removed by the heat of the exhaust (6) In an engine exhaust treatment device,
As illustrated in FIG. 2A, a heat insulating material (74) is provided between the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21) and the outer peripheral surface (22a) of the combustible gas generating catalyst (22). ) Between the upper end edges (21b) and (22b) of these inner peripheral surface (21a) and outer peripheral surface (22a), without interposing a heat insulating material (74), 21b) (22b) are brought into close contact with each other, and from the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22), the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21). An exhaust treatment apparatus for a diesel engine, characterized in that catalytic reaction heat is dissipated to the upper edge (21b).

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 可燃性ガス生成触媒の熱損傷を防止することができる。
図2(A)に例示するように、可燃性ガス生成触媒室(21)の内周面(21a)と可燃性ガス生成触媒(22)の外周面(22a)との間に断熱材(74)を介在させるに当たり、これら内周面(21a)と外周面(22a)のうち、各上端縁部(21b)(22b)間には断熱材(74)を介在させず、各上端縁部(21b)(22b)同士を密着させて、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)から可燃性ガス生成触媒室(21)の内周面(21a)の上端縁部(21b)に触媒反応熱が放熱されるようにしたので、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)付近で発生する過大な触媒反応熱は可燃性ガス生成触媒室(21)の室壁に放熱され、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)付近の過熱が抑制され、可燃性ガス生成触媒(22)の熱損傷を防止することができる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<Effect> Thermal damage of the combustible gas generating catalyst can be prevented.
As illustrated in FIG. 2A, a heat insulating material (74) is provided between the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21) and the outer peripheral surface (22a) of the combustible gas generating catalyst (22). ) Between the upper end edges (21b) and (22b) of these inner peripheral surface (21a) and outer peripheral surface (22a), without interposing a heat insulating material (74), 21b) (22b) are brought into close contact with each other, and from the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22), the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21). Since the catalytic reaction heat is dissipated to the upper edge (21b), the excessive catalytic reaction heat generated near the upper edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) is Heat is dissipated to the chamber wall of the combustible gas generating catalyst chamber (21), and overheating near the upper edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) is suppressed, and the combustible gas Thermal damage of the produced catalyst (22) can be prevented.

《効果》 可燃性ガスの生成効率を高めることができる。
図2(A)に例示するように、可燃性ガス生成触媒室(21)の内周面(21a)と可燃性ガス生成触媒(22)の外周面(22a)との間に断熱材(74)を介在させるので、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)以外の個所からは可燃性ガス生成触媒(22)の触媒反応熱が可燃性ガス生成触媒室(21)の室壁に放熱されにくく、可燃性ガス生成触媒(22)の活性化温度が維持され、可燃性ガス(2)の生成効率を高めることができる。
<Effect> The generation efficiency of the combustible gas can be increased.
As illustrated in FIG. 2A, a heat insulating material (74) is provided between the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21) and the outer peripheral surface (22a) of the combustible gas generating catalyst (22). ), The catalytic reaction heat of the combustible gas generating catalyst (22) is generated from the portion other than the upper edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22). Heat is not easily radiated to the chamber wall of the chamber (21), the activation temperature of the combustible gas generation catalyst (22) is maintained, and the generation efficiency of the combustible gas (2) can be increased.

(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 可燃性ガス生成触媒の熱損傷を防止することができる。
図1(A)に例示するように、液体燃料保持材(71)の下面にガイド板(73)を設け、液体燃料保持材(71)内を下降した空燃混合物(27)がガイド板(73)の上面に沿って、ガイド板(73)の周囲に流れ出るようにしたので、空燃混合物(27)がガイド板(73)の周囲に広く分散され、触媒反応熱の集中による過熱が起こりにくく、可燃性ガス生成触媒(22)の熱損傷を防止することができる。
《効果》 可燃性ガスの生成効率を高めることができる。
図1(A)に例示するように、液体燃料保持材(71)の下面にガイド板(73)を設け、液体燃料保持材(71)内を下降した空燃混合物(27)がガイド板(73)の上面に沿って、ガイド板(73)の周囲に流れ出るようにしたので、空燃混合物(27)が可燃性ガス生成触媒(22)の外周側の大容積部分にスムーズに供給され、この大容積部分が可燃性ガス(2)の生成に十分に活用され、可燃性ガス(2)の生成効率を高めることができる。
(Invention of Claim 2)
The invention according to claim 2 has the following effect in addition to the effect of the invention according to claim 1.
<Effect> Thermal damage of the combustible gas generating catalyst can be prevented.
As illustrated in FIG. 1 (A), a guide plate (73) is provided on the lower surface of the liquid fuel holding material (71), and the air-fuel mixture (27) lowered in the liquid fuel holding material (71) is moved to the guide plate ( 73), the air-fuel mixture (27) is widely dispersed around the guide plate (73), and overheating occurs due to concentration of catalytic reaction heat. It is difficult to prevent thermal damage to the combustible gas generating catalyst (22).
<Effect> The generation efficiency of the combustible gas can be increased.
As illustrated in FIG. 1 (A), a guide plate (73) is provided on the lower surface of the liquid fuel holding material (71), and the air-fuel mixture (27) lowered in the liquid fuel holding material (71) is moved to the guide plate ( 73), the air-fuel mixture (27) is smoothly supplied to the large volume portion on the outer peripheral side of the combustible gas generating catalyst (22). This large volume part is fully utilized for the production of the combustible gas (2), and the production efficiency of the combustible gas (2) can be increased.

《効果》 可燃性ガスの生成をスムーズに開始することができる。
図1(A)に例示するように、可燃性ガス生成開始時に放熱を行うヒータ(67)を触媒入口部(75)に進入させ、このヒータ(67)の周囲に液体燃料保持材(71)を外嵌させるので、ヒータ(67)の熱が液体燃料保持材(71)に保持された液体燃料(26)に集中的に伝わり、液体燃料(26)の温度を早期に高め、可燃性ガス生成触媒(22)による可燃性ガス(2)の生成をスムーズに開始することができる。
<Effect> Production of combustible gas can be started smoothly.
As illustrated in FIG. 1A, a heater (67) that dissipates heat at the start of combustible gas generation enters a catalyst inlet (75), and a liquid fuel holding material (71) is placed around the heater (67). Since the heat of the heater (67) is intensively transferred to the liquid fuel (26) held by the liquid fuel holding material (71), the temperature of the liquid fuel (26) is raised early, and the combustible gas is Production of the combustible gas (2) by the produced catalyst (22) can be started smoothly.

(請求項3に係る発明)
請求項3に係る発明は、請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 触媒温度検出手段による可燃性ガス生成触媒の温度検出を正確に行うことができる。
図1(A)に例示するように、ガイド板(73)の真下に触媒温度検出手段(20)の温度検出部(20a)を配置したので、触媒温度検出手段(20)が可燃性ガス生成触媒(22)の外周側の大容積部分に囲まれた中心部に位置し、触媒温度検出手段(20)による可燃性ガス生成触媒(22)の温度検出を正確に行うことができる。
(Invention of Claim 3)
The invention according to claim 3 has the following effect in addition to the effect of the invention according to claim 2.
<Effect> The temperature of the combustible gas generating catalyst can be accurately detected by the catalyst temperature detecting means.
As illustrated in FIG. 1 (A), since the temperature detection part (20a) of the catalyst temperature detection means (20) is disposed directly below the guide plate (73), the catalyst temperature detection means (20) generates combustible gas. The temperature of the combustible gas generating catalyst (22) can be accurately detected by the catalyst temperature detecting means (20), which is located in the center surrounded by the large volume portion on the outer peripheral side of the catalyst (22).

(請求項4に係る発明)
請求項4に係る発明は、請求項3に係る発明の効果に加え、次の効果を奏する。
《効果》 触媒成分を容易に触媒担体の内部まで含浸させることができる。
図1(A)、図2(B)に例示するように、可燃性ガス生成触媒(22)は、触媒担体(39)(39)に触媒成分を担持させたものであり、触媒担体(39)(39)は可燃性ガス生成触媒(22)の中心軸線(22c)に沿う垂直な分割面(40)で2分される2部品で構成したので、1部品で構成する場合に比べて分割面(40)の分だけ、触媒担体(39)(39)の表面積が広がり、触媒成分を容易に触媒担体(39)(39)の内部まで含浸させることができる。
(Invention of Claim 4)
The invention according to claim 4 has the following effect in addition to the effect of the invention according to claim 3.
<Effect> The catalyst component can be easily impregnated into the inside of the catalyst carrier.
As illustrated in FIGS. 1 (A) and 2 (B), the combustible gas generating catalyst (22) is obtained by supporting catalyst components on catalyst carriers (39) and (39). ) (39) is composed of two parts divided in two by a vertical dividing surface (40) along the central axis (22c) of the combustible gas generating catalyst (22), so that it is divided as compared with the case of comprising one part. The surface area of the catalyst carrier (39) (39) is increased by the amount of the surface (40), and the catalyst component can be easily impregnated into the inside of the catalyst carrier (39) (39).

《効果》 液体燃料保持材とガイド板とを可燃性ガス生成触媒内に容易に取り付けることができる。
図1(A)に例示するように、液体燃料保持材(71)とガイド板(73)とを触媒担体(39)(39)を構成する2部品の間に挟み付けて固定したので、液体燃料保持材(71)とガイド板(73)とを可燃性ガス生成触媒(22)内に容易に取り付けることができる。
<Effect> The liquid fuel holding material and the guide plate can be easily attached to the combustible gas generating catalyst.
As illustrated in FIG. 1 (A), the liquid fuel holding member (71) and the guide plate (73) are sandwiched and fixed between two parts constituting the catalyst carrier (39) (39), so that the liquid The fuel holding material (71) and the guide plate (73) can be easily mounted in the combustible gas generating catalyst (22).

(請求項5に係る発明)
請求項5に係る発明は、請求項4に係る発明の効果に加え、次の効果を奏する。
《効果》 可燃性ガス生成触媒の製造コストを安くすることができる。
図2(B)に例示するように、2部品で構成される触媒担体(39)(39)が同一形状となるようにしたので、同じ成形型で成形した同一形状の2部品を用いて触媒担体(39)(39)を構成することができ、可燃性ガス生成触媒(22)の製造コストを安くすることができる。
(Invention according to claim 5)
The invention according to claim 5 has the following effect in addition to the effect of the invention according to claim 4.
<Effect> The production cost of the combustible gas generating catalyst can be reduced.
As illustrated in FIG. 2 (B), since the catalyst carrier (39) (39) composed of two parts has the same shape, the catalyst using two parts of the same shape molded with the same mold. The carriers (39) and (39) can be configured, and the production cost of the combustible gas generating catalyst (22) can be reduced.

本発明の実施形態に係るディーゼルエンジンの排気処理装置を説明する図で、図1(A)は可燃性ガス生成器とその周辺部品の縦断面図、図1(B)は図1(A)のB−B線断面図、図1(C)は可燃性ガスノズルの変形例の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the exhaust-gas treatment apparatus of the diesel engine which concerns on embodiment of this invention, FIG. 1 (A) is a longitudinal cross-sectional view of a combustible gas generator and its peripheral components, FIG. 1 (B) is FIG. FIG. 1C is a longitudinal sectional view of a modification of the combustible gas nozzle. 図2(A)は図1(A)のIIA部の拡大図、図2(B)は図1(A)のIIB−IIB線断面図である。2A is an enlarged view of the IIA portion of FIG. 1A, and FIG. 2B is a cross-sectional view taken along the line IIB-IIB of FIG. 本発明の実施形態に係るディーゼルエンジンの排気処理装置の模式図である。1 is a schematic diagram of an exhaust treatment device for a diesel engine according to an embodiment of the present invention. 図4(A)は図1の排気処理装置で用いる二重ガスケットを蓋載置面に載置した平面図、図4図(B)は図1(A)のIVB部の拡大図である。4A is a plan view of the double gasket used in the exhaust treatment apparatus of FIG. 1 placed on the lid placement surface, and FIG. 4B is an enlarged view of the IVB portion of FIG. 1A. 図5(A)は図4(A)の縮小図、図5(B)は液体燃料出口を備えた下側のガスケットの平面図、図5(C)は空気出口を備えた上側のガスケットの平面図である。5A is a reduced view of FIG. 4A, FIG. 5B is a plan view of a lower gasket with a liquid fuel outlet, and FIG. 5C is an upper gasket with an air outlet. It is a top view. 図1の排気処理装置によるDPF再生のフローチャートである。2 is a flowchart of DPF regeneration by the exhaust treatment device of FIG. 1.

図1〜図6は本発明の実施形態に係るディーゼルエンジンの排気処理装置を説明する図である。   FIGS. 1-6 is a figure explaining the exhaust-gas treatment apparatus of the diesel engine which concerns on embodiment of this invention.

この排気処理装置の概要は、次の通りである。
図1(A)に示すように、可燃性ガス生成器(1)に可燃性ガス生成触媒室(21)を設け、この可燃性ガス生成触媒室(21)に可燃性ガス生成触媒(22)を収容し、可燃性ガス生成器(1)の上部に空燃混合室(24)を形成し、この空燃混合室(24)に空気(25)と液体燃料(26)とを供給することにより、空燃混合室(24)で空気(25)と図3に示す液体燃料(26)との空燃混合物(27)を形成し、この空燃混合物(27)を空燃混合室(24)の下端部から可燃性ガス生成触媒(22)の上部中心の触媒入口部(75)に供給し、可燃性ガス生成触媒(22)で可燃性ガス(2)を生成させ、この可燃性ガス(2)を可燃性ガス生成触媒(22)の下端部の触媒出口部(76)から流出させる。
可燃性ガス生成触媒(22)は酸化触媒である。液体燃料(26)にはディーゼルエンジンの燃料である軽油を用いている。可燃性ガス(2)は、空気(25)と液体燃料(26)と液体燃料(26)の熱分解成分の混合物であり、液体燃料(26)の一部が可燃性ガス生成触媒(22)で酸化され、その酸化熱で残りの液体燃料(26)が気化され、または熱分解されて得られる。触媒出口部(76)は可燃性ガス生成触媒(22)の下端の中央部にある。
The outline of this exhaust treatment apparatus is as follows.
As shown in FIG. 1A, a combustible gas generating catalyst chamber (21) is provided in the combustible gas generator (1), and the combustible gas generating catalyst (22) is provided in the combustible gas generating catalyst chamber (21). The air-fuel mixing chamber (24) is formed in the upper part of the combustible gas generator (1), and air (25) and liquid fuel (26) are supplied to the air-fuel mixing chamber (24). Thus, an air / fuel mixture (27) of air (25) and liquid fuel (26) shown in FIG. 3 is formed in the air / fuel mixing chamber (24), and this air / fuel mixture (27) is formed into the air / fuel mixing chamber (24). ) Is supplied to the catalyst inlet (75) at the upper center of the combustible gas generating catalyst (22), and combustible gas (2) is generated by the combustible gas generating catalyst (22). (2) is caused to flow out from the catalyst outlet (76) at the lower end of the combustible gas generating catalyst (22).
The combustible gas generating catalyst (22) is an oxidation catalyst. As the liquid fuel (26), diesel oil, which is a diesel engine fuel, is used. The combustible gas (2) is a mixture of pyrolysis components of air (25), liquid fuel (26), and liquid fuel (26), and a part of the liquid fuel (26) is a combustible gas generating catalyst (22). The remaining liquid fuel (26) is vaporized or thermally decomposed by the oxidation heat. The catalyst outlet (76) is in the center of the lower end of the combustible gas generating catalyst (22).

図3に示すように、この可燃性ガス(2)をDPF(7)の上流で可燃性ガス放出口(3)から排気通路(4)に放出し、この可燃性ガス(2)を排気(6)中の酸素で燃焼させ、その燃焼熱で排気(6)を昇温させ、排気(6)の熱でDPF(7)に溜まったPMを燃焼除去することができるようにしている。
このため、排気(6)の温度が低い場合にも、可燃性ガス(2)で排気(6)を昇温させ、DPF(7)に溜まったPMを燃焼除去させ、DPF(7)を再生して再利用することができる。
DPF(7)の上流には、燃焼触媒(5)を配置しており、可燃性ガス(2)は燃焼触媒(5)により排気(6)中の酸素で触媒燃焼される。燃焼触媒(5)はDOCである。
DPFは、ディーゼル・パティキュレート・フィルタの略称である。PMは粒子状物質の略称、DOCはディーゼル酸化触媒の略称である。
As shown in FIG. 3, this combustible gas (2) is discharged from the combustible gas discharge port (3) to the exhaust passage (4) upstream of the DPF (7), and this combustible gas (2) is exhausted ( 6) Combustion is performed using oxygen contained therein, the temperature of the exhaust (6) is raised by the heat of combustion, and PM accumulated in the DPF (7) can be burned and removed by the heat of the exhaust (6).
For this reason, even when the temperature of the exhaust (6) is low, the temperature of the exhaust (6) is raised by the combustible gas (2), and the PM accumulated in the DPF (7) is burned and removed to regenerate the DPF (7). And can be reused.
A combustion catalyst (5) is disposed upstream of the DPF (7), and the combustible gas (2) is catalytically combusted by oxygen in the exhaust (6) by the combustion catalyst (5). The combustion catalyst (5) is DOC.
DPF is an abbreviation for diesel particulate filter. PM is an abbreviation for particulate matter, and DOC is an abbreviation for diesel oxidation catalyst.

図2(A)に示すように、可燃性ガス生成触媒室(21)の内周面(21a)と可燃性ガス生成触媒(22)の外周面(22a)との間に断熱材(74)を介在させるに当たり、これら内周面(21a)と外周面(22a)のうち、各上端縁部(21b)(22b)間には断熱材(74)を介在させず、各上端縁部(21b)(22b)同士を密着させて、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)から可燃性ガス生成触媒室(21)の内周面(21a)の上端縁部(21b)に触媒反応熱が放熱されるようにしている。   As shown in FIG. 2A, a heat insulating material (74) is provided between the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21) and the outer peripheral surface (22a) of the combustible gas generating catalyst (22). Of the inner peripheral surface (21a) and the outer peripheral surface (22a), the heat insulating material (74) is not interposed between the upper edge portions (21b) and (22b), and the upper edge portions (21b ) (22b) are brought into close contact with each other, and the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) to the upper end of the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21). The catalytic reaction heat is dissipated to the edge (21b).

これにより、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)付近で発生する過大な触媒反応熱は可燃性ガス生成触媒室(21)の室壁に放熱され、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)付近の過熱が抑制され、可燃性ガス生成触媒(22)の熱損傷を防止することができる。
また、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)以外の個所からは可燃性ガス生成触媒(22)の触媒反応熱が可燃性ガス生成触媒室(21)の室壁に放熱されにくく、可燃性ガス生成触媒(22)の活性化が維持され、可燃性ガス(2)の生成効率を高めることができる。
可燃性ガス生成触媒室(21)の天井面(21c)と可燃性ガス生成触媒(22)の上面(22d)との間にも断熱材(78)を介在させている。各断熱材(74)(78)はアルミナ繊維のマットでクッション材を兼ねている。
As a result, excessive catalytic reaction heat generated near the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) is radiated to the chamber wall of the combustible gas generating catalyst chamber (21), Overheating in the vicinity of the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) is suppressed, and thermal damage to the combustible gas generating catalyst (22) can be prevented.
Further, the heat of the catalytic reaction of the combustible gas generating catalyst (22) from the portion other than the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) is combustible gas generating catalyst chamber (21). It is difficult to dissipate heat to the chamber wall, the activation of the combustible gas generation catalyst (22) is maintained, and the generation efficiency of the combustible gas (2) can be increased.
A heat insulating material (78) is also interposed between the ceiling surface (21c) of the combustible gas generating catalyst chamber (21) and the upper surface (22d) of the combustible gas generating catalyst (22). Each of the heat insulating materials (74) (78) is an alumina fiber mat and also serves as a cushioning material.

図1(A)に示すように、可燃性ガス生成開始時に放熱を行うヒータ(67)を触媒入口部(75)に進入させ、このヒータ(67)の周囲に液体燃料保持材(71)を外嵌させるに当たり、液体燃料保持材(71)の下面にガイド板(73)を設け、液体燃料保持材(71)内を下降した空燃混合物(27)がガイド板(73)の上面に沿って、ガイド板(73)の周囲に流れ出るようにしている。
ヒータ(67)は、電熱式のグロープラグである。
液体燃料保持材(71)はアルミナ繊維のマットで、表面にロジウム触媒成分を担持させている。この液体燃料保持材(71)は、可燃性ガス生成触媒(22)に比べ、液体燃料の保持性が高い。
ガイド板(73)は、ステンレス鋼の平板で構成されている。
As shown in FIG. 1 (A), a heater (67) that dissipates heat at the start of combustible gas generation enters a catalyst inlet (75), and a liquid fuel holding material (71) is placed around the heater (67). For external fitting, a guide plate (73) is provided on the lower surface of the liquid fuel holding material (71), and the air / fuel mixture (27) lowered in the liquid fuel holding material (71) is along the upper surface of the guide plate (73). Thus, it flows out around the guide plate (73).
The heater (67) is an electrothermal glow plug.
The liquid fuel holding material (71) is an alumina fiber mat having a rhodium catalyst component supported on its surface. This liquid fuel holding material (71) has higher liquid fuel holding ability than the combustible gas generating catalyst (22).
The guide plate (73) is formed of a stainless steel flat plate.

図3に示すように、空気供給手段(18)と液体燃料供給手段(19)とを空燃混合室(24)に連通させ、可燃性ガス生成触媒(22)に触媒温度検出手段(20)の温度検出部(20a)を挿入し、触媒温度検出手段(20)を制御手段(11)を介して空気供給手段(18)と液体燃料供給手段(19)とに連携させ、触媒温度検出手段(20)で検出した可燃性ガス生成触媒(22)の温度に基づいて、制御手段(11)が空気供給手段(18)と液体燃料供給手段(19)で空燃混合室(24)への空気(25)と液体燃料(26)との供給量を調節して、可燃性ガス生成触媒(22)の温度を調節するに当たり、図1(A)に示すように、ガイド板(73)の真下に触媒温度検出手段(20)の温度検出部(20a)を配置している。
触媒温度検出手段(20)はサーミスタである。
As shown in FIG. 3, the air supply means (18) and the liquid fuel supply means (19) communicate with the air / fuel mixing chamber (24), and the combustible gas generating catalyst (22) has a catalyst temperature detection means (20). The temperature detector (20a) is inserted, and the catalyst temperature detection means (20) is linked to the air supply means (18) and the liquid fuel supply means (19) via the control means (11), and the catalyst temperature detection means. Based on the temperature of the combustible gas generating catalyst (22) detected in (20), the control means (11) is supplied to the air-fuel mixing chamber (24) by the air supply means (18) and the liquid fuel supply means (19). In adjusting the temperature of the combustible gas generation catalyst (22) by adjusting the supply amount of the air (25) and the liquid fuel (26), as shown in FIG. A temperature detection section (20a) of the catalyst temperature detection means (20) is arranged directly below.
The catalyst temperature detecting means (20) is a thermistor.

図1(A)、図2(B)に示すように、可燃性ガス生成触媒(22)は、触媒担体(39)(39)に触媒成分を担持させたものであり、触媒担体(39)(39)は可燃性ガス生成触媒(22)の中心軸線(22c)に沿う垂直な分割面(40)で2分される2部品で構成し、図1(A)に示すように、液体燃料保持材(71)とガイド板(73)とを触媒担体(39)(39)を構成する2部品の間に挟み付けて固定している。
触媒担体(39)(39)は、鉄クロム線を織って、円錐台の半割り形状としたもので、この触媒担体(39)(39)にはロジウム触媒成分を担持させている。
As shown in FIGS. 1 (A) and 2 (B), the combustible gas generating catalyst (22) is a catalyst carrier (39) (39) carrying a catalyst component, and the catalyst carrier (39) (39) is composed of two parts divided by a vertical dividing surface (40) along the central axis (22c) of the combustible gas generating catalyst (22). As shown in FIG. The holding member (71) and the guide plate (73) are sandwiched and fixed between two parts constituting the catalyst carrier (39) (39).
The catalyst carriers (39) and (39) are made by weaving iron-chromium wire into a half-conical truncated cone shape. The catalyst carriers (39) and (39) carry a rhodium catalyst component.

図2(B)に示すように、可燃性ガス生成触媒(22)に触媒温度検出手段(20)の温度検出部(20a)を挿入する挿入孔(77)を貫通状に設け、この挿通孔(77)の中心軸線(77a)を可燃性ガス生成触媒(22)の中心軸線(22c)と直交させ、かつ分割面(40)と平行な向きに沿わせることにより、2部品で構成される触媒担体(39)(39)が同一形状となるようにしている。   As shown in FIG. 2 (B), an insertion hole (77) for inserting the temperature detection part (20a) of the catalyst temperature detection means (20) is provided in the combustible gas generating catalyst (22) in a penetrating manner. The center axis (77a) of (77) is perpendicular to the center axis (22c) of the combustible gas generating catalyst (22) and is oriented in a direction parallel to the dividing surface (40). The catalyst carriers (39) and (39) have the same shape.

図1(A)に示すように、可燃性ガス生成触媒室(21)と可燃性ガス生成触媒(22)とを下窄まり形状として、可燃性ガス生成触媒室(21)に可燃性ガス生成触媒(22)を嵌入させている。
これにより、可燃性ガス生成触媒(22)の下寄り部は、径方向の断面積を比較的小さくすることができ、傾斜時に、可燃性ガス生成触媒(22)の下寄り部を通過する液体燃料(26)が、中心部から近い外周部と中心部とを偏りなく通過し、触媒反応熱による可燃性ガス生成触媒(22)の温度分布の不均一化が是正され、可燃性ガス生成触媒(22)の熱損傷を抑制することができる。
As shown in FIG. 1 (A), the combustible gas generation catalyst chamber (21) and the combustible gas generation catalyst (22) are constricted to form a combustible gas generation in the combustible gas generation catalyst chamber (21). A catalyst (22) is inserted.
As a result, the lower portion of the combustible gas generating catalyst (22) can have a relatively small radial cross-sectional area, and the liquid passing through the lower portion of the combustible gas generating catalyst (22) can be inclined. The fuel (26) passes through the outer peripheral portion and the central portion that are close to the center without any deviation, and the non-uniform temperature distribution of the combustible gas generating catalyst (22) due to the heat of catalytic reaction is corrected, and the combustible gas generating catalyst is corrected. The thermal damage of (22) can be suppressed.

図3に示すように、燃焼触媒(5)の上流で排気通路(4)に可燃性ガス供給通路(8)を連通させ、この可燃性ガス供給通路(8)に二次空気供給手段(9)と着火手段(10)とを設け、この二次空気供給手段(9)と着火手段(10)とを制御手段(11)に連携させている。着火手段(10)は電熱式のグロープラグである。図中の符号(72)は板材に多数の孔をあけた保炎スクリーンであり、排気ガス(4)による燃焼火炎の消炎を抑制する。
図3に示すように、排気温度が所定温度よりも低い場合には、制御手段(11)が二次空気供給手段(9)で可燃性ガス(2)に二次空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で排気通路(4)中の排気(6)を昇温させるようにしている。
これにより、エンジン始動直後や軽負荷運転時等、本来的に排気温度が燃焼触媒(5)の活性化温度に達しない場合でも、可燃性ガス(2)の火炎燃焼の熱で排気(6)の温度を昇温させ、排気温度を燃焼触媒(5)の活性化温度に到達させることが可能となり、エンジン始動直後や軽負荷運転時でもDPF(7)に溜まったPMの燃焼、或いは、排気浄化触媒の活性化を図ることができる。
As shown in FIG. 3, a combustible gas supply passage (8) is connected to the exhaust passage (4) upstream of the combustion catalyst (5), and secondary air supply means (9) is connected to the combustible gas supply passage (8). ) And ignition means (10), and the secondary air supply means (9) and ignition means (10) are linked to the control means (11). The ignition means (10) is an electrothermal glow plug. Reference numeral (72) in the figure denotes a flame-holding screen having a large number of holes in the plate material, which suppresses the extinction of the combustion flame caused by the exhaust gas (4).
As shown in FIG. 3, when the exhaust gas temperature is lower than the predetermined temperature, the control means (11) supplies the secondary air (12) to the combustible gas (2) by the secondary air supply means (9). At the same time, the combustible gas (2) is ignited by the ignition means (10) to combust the combustible gas (2), and the heat (6) in the exhaust passage (4) is exhausted by the heat of the flame combustion. The temperature is raised.
As a result, even when the exhaust temperature does not reach the activation temperature of the combustion catalyst (5), such as immediately after starting the engine or during light load operation, the exhaust (6) is generated by the heat of flame combustion of the combustible gas (2). It is possible to raise the temperature of the exhaust gas so that the exhaust temperature reaches the activation temperature of the combustion catalyst (5). Combustion of PM accumulated in the DPF (7) or exhaust immediately after engine startup or during light load operation The purification catalyst can be activated.

図1(A)に示すように、排気通路(4)と可燃性ガス供給通路(8)とを並設し、可燃性ガス供給通路(8)の下流側で、排気通路(4)と可燃性ガス供給通路(8)の境界に放熱口(13)をあけ、この放熱口(13)で排気通路(4)と可燃性ガス供給通路(8)とを連通させ、この放熱口(13)に可燃性ガス供給通路(8)の下流側に配置した着火手段(10)を臨ませている。
これにより、可燃性ガス供給通路(8)や着火手段(10)により排気通路(4)の排気(6)の流れが邪魔されることがなく、排圧を上昇させることがない。また、可燃性ガス(2)の燃焼火炎で排気(6)が直接に昇温され、排気(6)の昇温効率が高い。
図1(A)に示すように、排気通路(4)の下側に可燃性ガス供給通路(8)を並設し、排気通路(4)の周面下側に放熱口(13)をあけている。これにより、可燃性ガス(2)の燃焼火炎の熱気が排気通路(4)に浮上し、排気通路(4)の排気(6)の温度を高め、排気(6)の昇温効率がより高まる。
As shown in FIG. 1 (A), the exhaust passage (4) and the combustible gas supply passage (8) are arranged in parallel, and the exhaust passage (4) and the combustible gas are provided downstream of the combustible gas supply passage (8). A heat radiation port (13) is opened at the boundary of the combustible gas supply passage (8), and the heat radiation port (13) communicates the exhaust passage (4) with the combustible gas supply passage (8). The igniting means (10) arranged on the downstream side of the combustible gas supply passage (8) is faced.
Thereby, the flow of the exhaust (6) in the exhaust passage (4) is not obstructed by the combustible gas supply passage (8) and the ignition means (10), and the exhaust pressure is not increased. Further, the temperature of the exhaust (6) is directly raised by the combustion flame of the combustible gas (2), and the temperature raising efficiency of the exhaust (6) is high.
As shown in FIG. 1 (A), a combustible gas supply passage (8) is arranged in parallel below the exhaust passage (4), and a heat radiation port (13) is opened below the peripheral surface of the exhaust passage (4). ing. Thereby, the hot air of the combustion flame of the combustible gas (2) rises to the exhaust passage (4), raises the temperature of the exhaust (6) in the exhaust passage (4), and increases the temperature raising efficiency of the exhaust (6). .

図1(A)(B)に示すように、着火手段(10)の上流で可燃性ガス供給通路(8)に沿って可燃性ガス(2)と二次空気(12)の混合室(14)を形成し、この混合室(14)に可燃性ガスノズル(15)と空気供給管(16)とを設け、可燃性ガスノズル(15)は混合室(14)の形成方向に沿う向きで混合室(14)の中心部に配置し、この可燃性ガスノズル(15)の周面に複数の可燃性ガス出口(17)をあけ、空気供給管(16)は混合室(14)の内周面の周方向に沿う向きで混合室(14)の内周面部に配置し、空気供給管(16)から供給した二次空気(12)を可燃性ガスノズル(15)の周囲で混合室(14)の内周面に沿って旋回させている。
この旋回する二次空気(12)に可燃性ガス出口(17)から混合室(14)の径方向に供給した可燃性ガス(2)を混合させるようにしている。これにより、可燃性ガス(2)と二次空気(12)との混合性が良好で、可燃性ガス(2)の着火により高い放熱量が得られる。
尚、図1(C)に示すように、可燃性ガスノズル(15)にキャップ(15a)を被せ、このキャップ(15a)の周壁にも周方向に可燃性ガス出口(17)をあけ、可燃性ガスノズル(15)からキャップ(15a)内に流出させた可燃性ガス(2)をキャップ(15a)の可燃性ガス出口(17)から混合室(14)の径方向に供給してもよい。
As shown in FIGS. 1 (A) and 1 (B), a combustible gas (2) and secondary air (12) mixing chamber (14) along the combustible gas supply passage (8) upstream of the ignition means (10). ) And a combustible gas nozzle (15) and an air supply pipe (16) are provided in the mixing chamber (14), and the combustible gas nozzle (15) is oriented in a direction along the forming direction of the mixing chamber (14). A plurality of combustible gas outlets (17) are opened on the peripheral surface of the combustible gas nozzle (15), and the air supply pipe (16) is disposed on the inner peripheral surface of the mixing chamber (14). The secondary air (12) supplied from the air supply pipe (16) is arranged around the combustible gas nozzle (15) in the mixing chamber (14) by being arranged on the inner peripheral surface portion of the mixing chamber (14) in the direction along the circumferential direction. It is swung along the inner peripheral surface.
The swirling secondary air (12) is mixed with the combustible gas (2) supplied in the radial direction of the mixing chamber (14) from the combustible gas outlet (17). Thereby, the mixability of combustible gas (2) and secondary air (12) is favorable, and high heat dissipation is obtained by ignition of combustible gas (2).
As shown in FIG. 1 (C), a flammable gas nozzle (15) is covered with a cap (15a), and a flammable gas outlet (17) is opened in the circumferential direction on the peripheral wall of the cap (15a). The combustible gas (2) discharged from the gas nozzle (15) into the cap (15a) may be supplied from the combustible gas outlet (17) of the cap (15a) in the radial direction of the mixing chamber (14).

図3に示すように、可燃性ガス生成器(1)に液体燃料(26)と空気(25)とを供給して可燃性ガス生成触媒(22)で可燃性ガス(2)を生成するに当たり、可燃性ガス生成触媒(22)の温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に二次空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で可燃性ガス生成器(1)から流出した液体成分を気化させるようにしている。これにより、排気通路(4)内に可燃性ガス生成器(1)から流出した液体成分が付着せず、エンジン始動時に白煙が発生するのを防止することができる。   As shown in FIG. 3, when the liquid fuel (26) and the air (25) are supplied to the combustible gas generator (1) and the combustible gas generating catalyst (22) generates the combustible gas (2). When the temperature of the combustible gas generating catalyst (22) is lower than the predetermined temperature, the control means (11) supplies the secondary air (12) to the combustible gas (2) by the air supply means (9). In addition, the combustible gas (2) is ignited by the ignition means (10), the combustible gas (2) is flame-combusted, and the liquid that has flowed out of the combustible gas generator (1) with the heat of this flame combustion. The ingredients are vaporized. Thereby, the liquid component which flowed out from the combustible gas generator (1) does not adhere in the exhaust passage (4), and white smoke can be prevented from being generated when the engine is started.

図1(A)に示すように、可燃性ガス生成器(1)に可燃性ガス生成触媒室(21)を設け、この可燃性ガス生成触媒室(21)に可燃性ガス生成触媒(22)を収容し、可燃性ガス生成触媒室(21)の上端部に環状壁(23)を配置し、この環状壁(23)の内側に空燃混合室(24)を形成し、この空燃混合室(24)に空気(25)と液体燃料(26)とを供給することにより、空燃混合室(24)で空燃混合ガス(27)を形成し、この空燃混合ガス(27)を可燃性ガス生成触媒(22)に供給し、可燃性ガス生成触媒(22)で可燃性ガス(2)を生成させるに当たり、次のようにしている。
図4(B)に示すように、環状壁(23)の始端部に蓋(28)を配置し、環状壁(23)の始端部に環状の蓋載置面(29)を設け、蓋(28)に被載置面(30)を設け、環状壁(23)の蓋載置面(29)に環状のガスケット(31)(32)を介して蓋(28)の被載置面(30)を載置固定した。
As shown in FIG. 1A, a combustible gas generating catalyst chamber (21) is provided in the combustible gas generator (1), and the combustible gas generating catalyst (22) is provided in the combustible gas generating catalyst chamber (21). An annular wall (23) is disposed at the upper end of the combustible gas generating catalyst chamber (21), and an air / fuel mixing chamber (24) is formed inside the annular wall (23). By supplying air (25) and liquid fuel (26) to the chamber (24), an air-fuel mixture gas (27) is formed in the air-fuel mixture chamber (24), and this air-fuel mixture gas (27) is When the combustible gas generating catalyst (22) is supplied and the combustible gas generating catalyst (22) generates the combustible gas (2), the following is performed.
As shown in FIG. 4 (B), a lid (28) is arranged at the start end of the annular wall (23), and an annular lid placement surface (29) is provided at the start end of the annular wall (23). 28) is provided with a placement surface (30), and the placement surface (30) of the lid (28) is provided on the lid placement surface (29) of the annular wall (23) via the annular gaskets (31) and (32). ) Was fixed.

図4(A)に例示するように、ガスケット(31)にその周方向に所定間隔を保持して複数の液体燃料入口(33)と液体燃料出口(34)とを設け、液体燃料出口(34)は各液体燃料入口(33)からガスケット(31)の内側に向けて導出している。
図4(B)に例示するように、環状壁(23)の蓋載置面(29)と蓋(28)の被載置面(30)のいずれかの面にその周方向に沿う液体燃料ガイド溝(35)を凹設し、この液体燃料ガイド溝(35)の開口に各液体燃料入口(33)を連通させ、液体燃料ガイド溝(35)に供給された液体燃料(26)が各液体燃料入口(33)を介して液体燃料出口(34)から空燃混合室(24)に流出するようにしている。
これにより、環状壁(23)内に液体燃料ガイド通路や液体燃料出口を形成する場合に比べ、環状壁(23)の加工を容易にすることができる。
図4(A)に示すように、空燃混合室(24)で空気(25)を旋回させるに当たり、液体燃料出口(34)を空燃混合室(24)の空気旋回方向の下流側に方向付けている。これにより、空燃混合室(24)での空気(25)と液体燃料(26)の混合が均一になる。
As illustrated in FIG. 4A, the gasket (31) is provided with a plurality of liquid fuel inlets (33) and liquid fuel outlets (34) while maintaining a predetermined interval in the circumferential direction thereof. ) Is led out from each liquid fuel inlet (33) toward the inside of the gasket (31).
As illustrated in FIG. 4 (B), the liquid fuel along the circumferential direction on one of the lid placement surface (29) of the annular wall (23) and the placement surface (30) of the lid (28). A guide groove (35) is provided in the recess, and each liquid fuel inlet (33) is communicated with the opening of the liquid fuel guide groove (35). The liquid fuel (26) supplied to the liquid fuel guide groove (35) is The liquid fuel outlet (34) flows out from the liquid fuel inlet (33) into the air / fuel mixing chamber (24).
Thereby, compared with the case where a liquid fuel guide channel | path and a liquid fuel exit are formed in an annular wall (23), the process of an annular wall (23) can be made easy.
As shown in FIG. 4A, when the air (25) is swirled in the air / fuel mixing chamber (24), the liquid fuel outlet (34) is directed downstream of the air swirling direction of the air / fuel mixing chamber (24). Attached. Thereby, the mixing of the air (25) and the liquid fuel (26) in the air-fuel mixing chamber (24) becomes uniform.

図4(A)に示すように、ガスケット(32)にその周方向に所定間隔を保持して複数の空気入口(36)と空気出口(37)とを設け、空気出口(37)は各空気入口(36)からガスケット(32)の内側に向けて導出し、図4(B)に例示するように、環状壁(23)の蓋載置面(29)と蓋(28)の被載置面(30)のいずれかの面にその周方向に沿う空気ガイド溝(38)を凹設し、この空気ガイド溝(38)の開口に各空気入口(36)を連通させ、空気ガイド溝(38)に供給された空気(25)が各空気入口(36)を介して空気出口(37)から空燃混合室(24)に流出するようにしている。
これにより、環状壁(23)内に空気ガイド通路や空気出口を形成する場合に比べ、環状壁(23)の加工を容易にすることができる。
図4(A)に示すように、空燃混合室(24)で空気(25)を旋回させるに当たり、空気出口(37)を空燃混合室(24)の空気旋回方向の下流側に方向付けている。これにより、空燃混合室(24)で容易に空気(25)を旋回させることができる。
図4(B)に示すように、ガスケット(31)にその周方向に一定間隔を保持して、4個の液体燃料出口(34)を配置している。
As shown in FIG. 4 (A), the gasket (32) is provided with a plurality of air inlets (36) and air outlets (37) while maintaining a predetermined interval in the circumferential direction thereof. Derived from the inlet (36) toward the inside of the gasket (32), as illustrated in FIG. 4B, the lid placement surface (29) of the annular wall (23) and the placement of the lid (28) An air guide groove (38) extending in the circumferential direction is formed in any one of the surfaces (30), and each air inlet (36) is communicated with the opening of the air guide groove (38), so that the air guide groove ( The air (25) supplied to 38) flows out from the air outlet (37) to the air-fuel mixing chamber (24) through each air inlet (36).
Thereby, compared with the case where an air guide channel | path and an air exit are formed in an annular wall (23), the process of an annular wall (23) can be made easy.
As shown in FIG. 4 (A), when the air (25) is swirled in the air / fuel mixing chamber (24), the air outlet (37) is directed downstream of the air / fuel mixing chamber (24) in the air swirling direction. ing. Thereby, air (25) can be easily swirled in the air-fuel mixing chamber (24).
As shown in FIG. 4 (B), four liquid fuel outlets (34) are arranged in the gasket (31) at a constant interval in the circumferential direction.

DPF再生の制御は、次のようにして行う。
図3に示すエンジンECU(61)は、PM堆積量推定手段(62)とPM再生制御手段(63)とを備えている。エンジンECUはエンジン電子制御ユニットの略称である。
PM堆積量推定手段(62)は、エンジンECU(61)の所定の演算部であり、エンジン負荷、エンジン回転数、DPF上流側排気温度センサ(64)による検出排気温度、DPF上流側排気圧センサ(65)によるDPF(7)上流側の排気圧、差圧センサ(66)によるDPF(7)の上流と下流の差圧等に基づいて、予め実験的に求めたマップデータからPM堆積量を推定する。
Control of DPF regeneration is performed as follows.
The engine ECU (61) shown in FIG. 3 includes PM accumulation amount estimation means (62) and PM regeneration control means (63). Engine ECU is an abbreviation for engine electronic control unit.
The PM accumulation amount estimation means (62) is a predetermined calculation unit of the engine ECU (61), and is engine load, engine speed, detected exhaust temperature by the DPF upstream exhaust temperature sensor (64), and DPF upstream exhaust pressure sensor. Based on the map pressure data obtained experimentally in advance based on the exhaust pressure upstream of the DPF (7) by (65), the differential pressure upstream and downstream of the DPF (7) by the differential pressure sensor (66), etc. presume.

PM堆積量推定手段(62)によりPM堆積量推定値が所定の再生開始値に至ると、PM再生制御手段(63)は、ヒータ(67)を発熱させ、液体燃料ポンプ(42)とブロワ(48)のモータ(46)とを駆動する。これにより、空燃混合室(24)に液体燃料(26)と空気(25)が供給され、可燃性ガス生成触媒(22)で可燃性ガス(2)が発生する。ヒータ(67)の周囲は液体燃料を保持できる液体燃料保持材(71)で囲まれ、液体燃料保持材(71)に保持された液体燃料にヒータ(67)の熱が集中的に供給され、可燃性ガス(2)の生成が速やかに開始される。
可燃性(4)の生成開始の初期には、所定時間、ヒータ(67)を発熱させるが、可燃性ガス(4)の生成が開始されると、可燃性ガス生成触媒(13)は発熱反応によって温度が上昇するため、可燃性ガス(4)の生成が開始されてから所定時間経過した場合には、タイマによりヒータ(67)の発熱を停止する。
When the PM accumulation amount estimation value reaches a predetermined regeneration start value by the PM accumulation amount estimation means (62), the PM regeneration control means (63) causes the heater (67) to generate heat, and the liquid fuel pump (42) and the blower ( 48) motor (46) is driven. Thereby, liquid fuel (26) and air (25) are supplied to the air-fuel mixing chamber (24), and combustible gas (2) is generated by the combustible gas generation catalyst (22). The heater (67) is surrounded by a liquid fuel holding material (71) capable of holding liquid fuel, and the heat of the heater (67) is concentratedly supplied to the liquid fuel held by the liquid fuel holding material (71). Production of the combustible gas (2) is started immediately.
The heater (67) is heated for a predetermined time at the beginning of the generation of the combustible gas (4). When the generation of the combustible gas (4) is started, the combustible gas generating catalyst (13) reacts exothermically. Therefore, when a predetermined time has elapsed after the generation of the combustible gas (4) is started, the heat generation of the heater (67) is stopped by the timer.

PM再生制御手段(63)には、可燃性ガス生成触媒(22)の温度センサ(68)と燃焼触媒(5)の入口側温度センサ(69)を連携させ、可燃性ガス生成触媒(22)の温度や、燃焼触媒(5)の入口側温度が所定温度よりも低い場合には、着火手段(10)で可燃性ガス(2)に着火させる。
PM再生制御手段(63)には、DPF(7)の出口側温度センサ(70)を連携させ、DPF(7)の出口側温度が異常に高い場合には、緊急に再生を中止する。
The PM regeneration control means (63) is linked with the temperature sensor (68) of the combustible gas generation catalyst (22) and the inlet side temperature sensor (69) of the combustion catalyst (5), so that the combustible gas generation catalyst (22). Or the combustion catalyst (5) has an inlet side temperature lower than a predetermined temperature, the ignition means (10) ignites the combustible gas (2).
The PM regeneration control means (63) is linked with the outlet side temperature sensor (70) of the DPF (7), and when the outlet side temperature of the DPF (7) is abnormally high, the regeneration is stopped urgently.

DPF再生のフローは次の通りである。
図6に示すように、ステップ(S1)でPM堆積推定値が再生開始値に至ったか否かが判定され、判定が肯定されると、ステップ(S2)で可燃性ガス生成を開始し、ステップ(S3)で燃焼触媒(5)の入口側排気温度が250°C以上かどうかが判定され、判定が肯定の場合にはステップ(S4)で可燃性ガス生成触媒(22)の温度が400°C以上か否かが判定され、判定が肯定の場合には、ステップ(S5)で可燃性ガス(2)に着火せず、可燃性ガス(2)を排気通路(4)に供給し、ステップ(S6)でPM堆積推定値が再生終了値に至ったか否かが判定され、判定が肯定の場合には、ステップ(S7)で可燃性ガス生成を終了し、DPFの再生を終了する。
ステップ(S6)での判定が否定の場合には、ステップ(S3)に戻る。ステップ(S3)とステップ(S4)の判定が否定の場合には、いずれの場合にもステップ(S8)で可燃性ガス(2)に着火して、火炎燃焼の熱を排気通路(4)に供給する。
The flow of DPF regeneration is as follows.
As shown in FIG. 6, it is determined in step (S1) whether or not the PM accumulation estimated value has reached the regeneration start value. If the determination is affirmative, in step (S2), combustible gas generation is started. In (S3), it is determined whether or not the exhaust gas temperature on the inlet side of the combustion catalyst (5) is 250 ° C or higher. If the determination is affirmative, the temperature of the combustible gas generating catalyst (22) is 400 ° in step (S4). If it is determined whether or not it is C or more and the determination is affirmative, in step (S5), the combustible gas (2) is not ignited, and the combustible gas (2) is supplied to the exhaust passage (4). In (S6), it is determined whether or not the PM accumulation estimated value has reached the regeneration end value. If the determination is affirmative, the combustible gas generation is terminated in step (S7), and the regeneration of the DPF is terminated.
If the determination in step (S6) is negative, the process returns to step (S3). If the determinations in step (S3) and step (S4) are negative, the combustible gas (2) is ignited in step (S8) in both cases, and the heat of flame combustion is transferred to the exhaust passage (4). Supply.

(1) 可燃性ガス生成器
(2) 可燃性ガス
(3) 可燃性ガス放出口
(4) 排気通路
(6) 排気
(7) DPF
(11) 制御手段
(18) 空気供給手段
(19) 液体燃料供給手段
(20) 触媒温度検出手段
(20a) 温度検出部
(21) 可燃性ガス生成触媒室
(21a) 内周面
(21b) 上縁部
(22) 可燃性ガス生成触媒
(22a) 外周面
(22b) 上縁部
(22c) 中心軸線
(24) 空燃混合室
(25) 空気
(26) 液体燃料
(27) 空燃混合物
(39) 触媒担体
(40) 分割面
(67) ヒータ
(71) 液体燃料保持材
(73) ガイド板
(74) 断熱材
(75) 触媒入口部
(76) 触媒出口部
(77) 挿入孔
(77a) 中心軸線
(1) Combustible gas generator
(2) Combustible gas
(3) Combustible gas outlet
(4) Exhaust passage
(6) Exhaust
(7) DPF
(11) Control means
(18) Air supply means
(19) Liquid fuel supply means
(20) Catalyst temperature detection means
(20a) Temperature detector
(21) Combustible gas generation catalyst chamber
(21a) Inner peripheral surface
(21b) Upper edge
(22) Combustible gas generation catalyst
(22a) Outer peripheral surface
(22b) Upper edge
(22c) Center axis
(24) Air-fuel mixing chamber
(25) Air
(26) Liquid fuel
(27) Air-fuel mixture
(39) Catalyst carrier
(40) Dividing plane
(67) Heater
(71) Liquid fuel holding material
(73) Guide plate
(74) Insulation
(75) Catalyst inlet
(76) Catalyst outlet
(77) Insertion hole
(77a) Center axis

Claims (5)

可燃性ガス生成器(1)に可燃性ガス生成触媒室(21)を設け、この可燃性ガス生成触媒室(21)に可燃性ガス生成触媒(22)を収容し、可燃性ガス生成器(1)の上部に空燃混合室(24)を形成し、この空燃混合室(24)に空気(25)と液体燃料(26)とを供給することにより、空燃混合室(24)で空気(25)と液体燃料(26)との空燃混合物(27)を形成し、この空燃混合物(27)を空燃混合室(24)の下端部から可燃性ガス生成触媒(22)の上部中心の触媒入口部(75)に供給し、可燃性ガス生成触媒(22)で可燃性ガス(2)を生成させ、この可燃性ガス(2)を可燃性ガス生成触媒(22)の下端部の触媒出口部(76)から流出させ、
この可燃性ガス(2)をDPF(7)の上流で可燃性ガス放出口(3)から排気通路(4)に放出し、この可燃性ガス(2)を排気(6)中の酸素で燃焼させ、その燃焼熱で排気(6)を昇温させ、排気(6)の熱でDPF(7)に溜まったPMを燃焼除去することができるようにした、ディーゼルエンジンの排気処理装置において、
可燃性ガス生成触媒室(21)の内周面(21a)と可燃性ガス生成触媒(22)の外周面(22a)との間に断熱材(74)を介在させるに当たり、これら内周面(21a)と外周面(22a)のうち、各上端縁部(21b)(22b)間には断熱材(74)を介在させず、各上端縁部(21b)(22b)同士を密着させて、可燃性ガス生成触媒(22)の外周面(22a)の上端縁部(22b)から可燃性ガス生成触媒室(21)の内周面(21a)の上端縁部(21b)に触媒反応熱が放熱されるようにした、ことを特徴とするディーゼルエンジンの排気処理装置。
The combustible gas generator (1) is provided with a combustible gas generating catalyst chamber (21), and the combustible gas generating catalyst chamber (21) accommodates the combustible gas generating catalyst (22), and the combustible gas generator ( 1) An air / fuel mixing chamber (24) is formed at the top of the air / fuel mixture chamber (24), and air (25) and liquid fuel (26) are supplied to the air / fuel mixing chamber (24). An air / fuel mixture (27) of air (25) and liquid fuel (26) is formed, and this air / fuel mixture (27) is introduced into the combustible gas generating catalyst (22) from the lower end of the air / fuel mixing chamber (24). It is supplied to the catalyst inlet (75) in the upper center, and the combustible gas generating catalyst (22) generates the combustible gas (2). The combustible gas (2) is generated at the lower end of the combustible gas generating catalyst (22). Out of the catalyst outlet part (76) of the part,
This combustible gas (2) is discharged from the combustible gas discharge port (3) to the exhaust passage (4) upstream of the DPF (7), and this combustible gas (2) is burned with oxygen in the exhaust (6). In the exhaust treatment device for a diesel engine, the temperature of the exhaust (6) is raised by the combustion heat, and PM accumulated in the DPF (7) can be burned and removed by the heat of the exhaust (6).
When the heat insulating material (74) is interposed between the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21) and the outer peripheral surface (22a) of the combustible gas generating catalyst (22), these inner peripheral surfaces ( 21a) and the outer peripheral surface (22a), without interposing the heat insulating material (74) between the upper end edges (21b) (22b), the upper end edges (21b) (22b) are brought into close contact with each other, The catalytic reaction heat is generated from the upper end edge (22b) of the outer peripheral surface (22a) of the combustible gas generating catalyst (22) to the upper end edge (21b) of the inner peripheral surface (21a) of the combustible gas generating catalyst chamber (21). An exhaust treatment device for a diesel engine, characterized in that heat is dissipated.
請求項1に記載したディーゼルエンジンの排気処理装置において、
可燃性ガス生成開始時に放熱を行うヒータ(67)を触媒入口部(75)に進入させ、このヒータ(67)の周囲に液体燃料保持材(71)を外嵌させるに当たり、
液体燃料保持材(71)の下面にガイド板(73)を設け、液体燃料保持材(71)に保持された液体燃料(26)がガイド板(73)の上面に沿って、ガイド板(73)の周囲に流れ出るようにした、ことを特徴とするディーゼルエンジンの排気処理装置。
In the exhaust treatment device of the diesel engine according to claim 1,
When the heater (67) that dissipates heat at the start of combustible gas generation enters the catalyst inlet (75) and the liquid fuel holding material (71) is fitted around the heater (67),
A guide plate (73) is provided on the lower surface of the liquid fuel holding material (71), and the liquid fuel (26) held by the liquid fuel holding material (71) is guided along the upper surface of the guide plate (73). Diesel engine exhaust treatment device, characterized in that it flows out around
請求項2に記載したディーゼルエンジンの排気処理装置において、
空気供給手段(18)と液体燃料供給手段(19)とを空燃混合室(24)に連通させ、可燃性ガス生成触媒(22)に触媒温度検出手段(20)の温度検出部(20a)を挿入し、触媒温度検出手段(20)を制御手段(11)を介して空気供給手段(18)と液体燃料供給手段(19)とに連携させ、触媒温度検出手段(20)で検出した可燃性ガス生成触媒(22)の温度に基づいて、制御手段(11)が空気供給手段(18)と液体燃料供給手段(19)で空燃混合室(24)への空気(25)と液体燃料(26)との供給量を調節して、可燃性ガス生成触媒(22)の温度を調節するに当たり、
ガイド板(73)の真下に触媒温度検出手段(20)の温度検出部(20a)を配置した、ことを特徴とするディーゼルエンジンの排気処理装置。
In the exhaust treatment device for a diesel engine according to claim 2,
The air supply means (18) and the liquid fuel supply means (19) are communicated with the air-fuel mixing chamber (24), and the temperature detection unit (20a) of the catalyst temperature detection means (20) is connected to the combustible gas generation catalyst (22). The catalyst temperature detection means (20) is linked to the air supply means (18) and the liquid fuel supply means (19) via the control means (11), and the combustible gas detected by the catalyst temperature detection means (20) is detected. Based on the temperature of the catalytic gas generating catalyst (22), the control means (11) uses the air supply means (18) and the liquid fuel supply means (19) to supply air (25) and liquid fuel to the air-fuel mixing chamber (24). In adjusting the supply amount with (26) and adjusting the temperature of the combustible gas generating catalyst (22),
An exhaust treatment apparatus for a diesel engine, characterized in that a temperature detection part (20a) of the catalyst temperature detection means (20) is arranged directly under the guide plate (73).
請求項3に記載したディーゼルエンジンの排気処理装置において、
可燃性ガス生成触媒(22)は、触媒担体(39)(39)に触媒成分を担持させたものであり、触媒担体(39)(39)は可燃性ガス生成触媒(22)の中心軸線(22c)に沿う垂直な分割面(40)で2分される2部品で構成し、
液体燃料保持材(71)とガイド板(73)とを触媒担体(39)(39)を構成する2部品の間に挟み付けて固定した、ことを特徴とするディーゼルエンジンの排気処理装置。
In the exhaust treatment device for a diesel engine according to claim 3,
The combustible gas generating catalyst (22) is obtained by supporting catalyst components on catalyst carriers (39) and (39), and the catalyst carriers (39) and (39) are center axes of the combustible gas generating catalyst (22) ( 22c) composed of two parts divided in two by a vertical dividing plane (40),
An exhaust treatment apparatus for a diesel engine, characterized in that a liquid fuel holding member (71) and a guide plate (73) are sandwiched and fixed between two parts constituting a catalyst carrier (39) (39).
請求項4に記載したディーゼルエンジンの排気処理装置において、
可燃性ガス生成触媒(22)に触媒温度検出手段(20)の温度検出部(20a)を挿入する挿入孔(77)を貫通状に設け、この挿通孔(77)の中心軸線(77a)を可燃性ガス生成触媒(22)の中心軸線(22c)と直交させ、かつ分割面(40)と平行な向きに沿わせることにより、2部品で構成される触媒担体(39)(39)が同一形状となるようにした、ことを特徴とするディーゼルエンジンの排気処理装置。
The exhaust gas treatment apparatus for a diesel engine according to claim 4,
An insertion hole (77) for inserting the temperature detection part (20a) of the catalyst temperature detection means (20) is provided in the combustible gas generation catalyst (22) in a penetrating manner, and a central axis (77a) of the insertion hole (77) is formed. The catalyst carrier (39) (39) composed of two parts is the same by being orthogonal to the central axis (22c) of the combustible gas generating catalyst (22) and along the direction parallel to the dividing surface (40). An exhaust treatment apparatus for a diesel engine, characterized by having a shape.
JP2012199352A 2012-09-11 2012-09-11 Diesel engine exhaust treatment equipment Active JP5859412B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012199352A JP5859412B2 (en) 2012-09-11 2012-09-11 Diesel engine exhaust treatment equipment
EP13250094.3A EP2706206B1 (en) 2012-09-11 2013-08-21 Exhaust treatment device for a diesel engine
KR1020130102190A KR102044560B1 (en) 2012-09-11 2013-08-28 Exhaust treatment device of diesel engine
US14/016,366 US9353666B2 (en) 2012-09-11 2013-09-03 Exhaust treatment device of diesel engine
CN201310408230.7A CN103670607B (en) 2012-09-11 2013-09-10 Exhaust treatment device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199352A JP5859412B2 (en) 2012-09-11 2012-09-11 Diesel engine exhaust treatment equipment

Publications (2)

Publication Number Publication Date
JP2014055524A true JP2014055524A (en) 2014-03-27
JP5859412B2 JP5859412B2 (en) 2016-02-10

Family

ID=50613057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199352A Active JP5859412B2 (en) 2012-09-11 2012-09-11 Diesel engine exhaust treatment equipment

Country Status (1)

Country Link
JP (1) JP5859412B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008535A (en) * 2014-06-24 2016-01-18 株式会社クボタ Engine exhaust treatment device
US9416704B2 (en) 2013-10-30 2016-08-16 Kubota Corporation Exhaust gas treatment device of engine
JP2017066872A (en) * 2015-09-28 2017-04-06 株式会社クボタ diesel engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249406A (en) * 2009-04-15 2010-11-04 Ihi Corp Ignition device and burner device
JP2011214439A (en) * 2010-03-31 2011-10-27 Kubota Corp Exhaust gas treatment device for diesel engine
JP2011214441A (en) * 2010-03-31 2011-10-27 Kubota Corp Exhaust gas treatment device for diesel engine
JP2014055522A (en) * 2012-09-11 2014-03-27 Kubota Corp Exhaust gas treatment device of diesel engine, and combustible gas production catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249406A (en) * 2009-04-15 2010-11-04 Ihi Corp Ignition device and burner device
JP2011214439A (en) * 2010-03-31 2011-10-27 Kubota Corp Exhaust gas treatment device for diesel engine
JP2011214441A (en) * 2010-03-31 2011-10-27 Kubota Corp Exhaust gas treatment device for diesel engine
JP2014055522A (en) * 2012-09-11 2014-03-27 Kubota Corp Exhaust gas treatment device of diesel engine, and combustible gas production catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416704B2 (en) 2013-10-30 2016-08-16 Kubota Corporation Exhaust gas treatment device of engine
JP2016008535A (en) * 2014-06-24 2016-01-18 株式会社クボタ Engine exhaust treatment device
JP2017066872A (en) * 2015-09-28 2017-04-06 株式会社クボタ diesel engine

Also Published As

Publication number Publication date
JP5859412B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5081848B2 (en) Diesel engine exhaust system
JP2009074533A (en) Exhaust system for diesel engine
KR101676070B1 (en) Exhaust gas treatment device for diesel engine
JP5520860B2 (en) Engine exhaust treatment equipment
KR101782663B1 (en) Exhaust gas treatment device for diesel engine
JP6209467B2 (en) Engine exhaust treatment equipment
JP5859412B2 (en) Diesel engine exhaust treatment equipment
JP2012188971A (en) Exhaust gas processing device of engine
JP5750389B2 (en) Engine exhaust treatment equipment
JP5750416B2 (en) Diesel engine exhaust treatment equipment
JP2013189955A (en) Exhaust treatment device for engine
JP5470136B2 (en) Diesel engine exhaust treatment equipment
JP5462823B2 (en) Engine exhaust treatment equipment
KR102044560B1 (en) Exhaust treatment device of diesel engine
JP4794594B2 (en) Diesel engine exhaust system
JP5959464B2 (en) Engine exhaust treatment equipment
JP5167215B2 (en) Diesel engine exhaust treatment equipment
JP6051144B2 (en) Engine exhaust treatment equipment
JP5167217B2 (en) Diesel engine exhaust treatment equipment
JP2011052601A (en) Device for treating exhaust gas from diesel engine
JP2014196723A (en) Exhaust treatment device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151216

R150 Certificate of patent or registration of utility model

Ref document number: 5859412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150