JP2014052133A - Bayonet coupler for cryogenic fluid - Google Patents

Bayonet coupler for cryogenic fluid Download PDF

Info

Publication number
JP2014052133A
JP2014052133A JP2012196707A JP2012196707A JP2014052133A JP 2014052133 A JP2014052133 A JP 2014052133A JP 2012196707 A JP2012196707 A JP 2012196707A JP 2012196707 A JP2012196707 A JP 2012196707A JP 2014052133 A JP2014052133 A JP 2014052133A
Authority
JP
Japan
Prior art keywords
heat insulating
low
temperature
cooled
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012196707A
Other languages
Japanese (ja)
Inventor
Norihide Saho
佐保典英
Mizue Ono
小野瑞絵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012196707A priority Critical patent/JP2014052133A/en
Publication of JP2014052133A publication Critical patent/JP2014052133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bayonet coupler for cryogenic fluid applied at a heat insulation refrigerant transfer pipe in which it shows a superior sealability at an extremity end cryogenic temperature connecting part and a heat loss can be reduced.SOLUTION: This invention relates to a bayonet coupler for cryogenic fluid connected to a heat insulation reciprocation passage for use in transferring refrigerant of low temperature and high pressure among a first heat insulation container storing a cooled body to be cooled to a low temperature, a refrigerator having a cooling stage for generating low temperature cold state and a low temperature cooling device of a second vacuum heat insulation container storing a heat exchanger for cooling refrigerant with cold state of the refrigerator in which a fitting or removing insertion tip low temperature part has a structure capable of having a sealing function with a coil spring pressure.

Description

本発明は、低温流体用バイヨネット継手係り、とくに、超電導バルク体等の被冷却体を含む断熱容器と、前記被冷却体を冷却する冷媒を寒冷発生手段で冷却し前記冷媒を循環手段で循環させる冷却源装置とを断熱管で連通し、前記断熱管を着脱可能に接続する接続部において、前記冷媒の良好な密封機能を有することにより前記冷媒の熱ロスを低減できる低温流体用バイヨネット継手に好適なものである。 The present invention relates to a bayonet joint for a cryogenic fluid, and in particular, a heat insulating container including an object to be cooled, such as a superconducting bulk body, and a refrigerant that cools the object to be cooled is cooled by a chill generating means and the refrigerant is circulated by a circulation means. Suitable for a low-temperature fluid bayonet joint that can reduce heat loss of the refrigerant by having a good sealing function of the refrigerant in a connecting portion that connects the cooling source device with a heat insulating pipe and removably connects the heat insulating pipe. It is a thing.

従来の磁性薬剤や磁性細胞を非接触誘導する磁気誘導装置に用いられる、液体ヘリウムや液体窒素等の液化ガスを使用しないで、ヘリウム冷凍機で冷却する冷凍機冷却型超電導コイル磁石や冷凍機冷却型超電導バルク磁石の低温冷却装置では、冷凍機と超電導磁石を同一断熱容器内に内蔵し冷凍機の冷却ステージと被冷却体である超電導巻線コイルや超電導バルク体を銅製やアルミニュウム製の熱伝導体で熱的に一体化する冷凍機直冷型の構成が特許公報第04512644号(特許文献1)に開示されている。 Refrigerator-cooled superconducting coil magnets and refrigerator cooling that are cooled in a helium refrigerator without using liquefied gas such as liquid helium or liquid nitrogen, which is used in conventional magnetic induction devices that non-contact induce magnetic drugs and magnetic cells Type of superconducting bulk magnet low-temperature cooling device, the refrigerator and superconducting magnet are built in the same insulated container, and the cooling stage of the refrigerator and the superconducting winding coil or superconducting bulk body to be cooled are made of copper or aluminum A structure of a refrigerator direct cooling type that is thermally integrated with the body is disclosed in Japanese Patent No. 0451644 (Patent Document 1).

いっぽう、冷凍機の冷凍機駆動モータの漏れ磁場の影響を避けることが必要な超電導磁石や走査型電子顕微鏡機器の低温冷却装置では、冷凍機を内蔵した冷却源と被冷却体を断熱移送管で連結し、移送管内を循環する冷媒で、被冷却体である信号受信用プローブや電子源を低温に、かつ低振動で冷却する構成が特許公報第4275640号(特許文献2)に開示されている。 On the other hand, in the low-temperature cooling system for superconducting magnets and scanning electron microscope equipment that needs to avoid the influence of the leakage magnetic field of the refrigerator drive motor of the refrigerator, the cooling source with the built-in refrigerator and the object to be cooled are connected by an adiabatic transfer pipe. Japanese Patent Publication No. 4275640 (Patent Document 2) discloses a configuration in which a signal receiving probe and an electron source, which are to be cooled, are cooled at a low temperature and with low vibration by a refrigerant that is connected and circulated in a transfer pipe. .

両者の場合、被冷却体をより低温に冷却することで、磁石の発生磁場を高めて磁気特性を向上でき、低温冷却装置の測定機能の向上や走査型電子顕微鏡機器の画像の画質を向上できる。 In both cases, by cooling the object to be cooled to a lower temperature, the magnetic field generated by the magnet can be increased to improve the magnetic properties, the measurement function of the low-temperature cooling device can be improved, and the image quality of the scanning electron microscope instrument can be improved. .

また、被冷却体を内蔵した断熱容器と前記断熱管先端を着脱可能にするバイヨネット継手の構造が公開特許公報2000−329269号(特許文献3)に開示されている。 Moreover, the structure of the bayonet coupling which makes the heat insulation container which incorporates the to-be-cooled body, and the said heat insulation pipe tip detachable is disclosed by Unexamined-Japanese-Patent No. 2000-329269 (patent document 3).

特許公報第04512644号Japanese Patent No. 04512644 特許公報第4275640号Japanese Patent No. 4275640 公開特許公報2000−329269号Published patent publication 2000-329269

しかしながら、特許文献1では、冷凍機が超電導巻線コイルや超電導バルク体の近傍に一体化されているため冷凍機部のサイズが大きく、目的位置に磁石を近づけて磁気誘導性能を向上させるために、体内等に連通した小径の細長い空洞内に磁場発生の磁石部分を挿入する必要がある際に、挿入できない問題があった。 However, in Patent Document 1, since the refrigerator is integrated in the vicinity of the superconducting winding coil and the superconducting bulk body, the size of the refrigerator is large, and in order to improve the magnetic induction performance by bringing the magnet closer to the target position When there is a need to insert a magnetic part for generating a magnetic field into a small-sized elongated cavity communicating with the body or the like, there has been a problem that it cannot be inserted.

いっぽう、特許文献2では、断熱移送管と被冷却体を内蔵した断熱容器の接続が容易な着脱構造では無いため、被冷却体の交換等で断熱管を前記断熱容器から外して再装着する必要がある場合、煩雑な作業が必要で、短時間での着脱ができない問題があった。 On the other hand, in Patent Document 2, since it is not an detachable structure that allows easy connection between a heat insulating transfer pipe and a heat insulating container with a body to be cooled, it is necessary to remove the heat insulating pipe from the heat insulating container and replace it with another object to be cooled. When there is, there is a problem that complicated work is required and the attachment / detachment in a short time is impossible.

また、特許文献3で記載の断熱移送管と被冷却体を内蔵した断熱容器の着脱が容易に行えるバイヨネット継手の構造では、挿入され断熱管先端の凸形状部と、断熱容器側の受手部の凹形状部にシール構造が無くて隙間が有り、特に、低温時の熱収縮により挿入方向の隙間が拡がり、その隙間に低温冷媒が漏れ込んで、特にバイヨネット継手が水平や先端が上向き姿勢である場合、低温流体の密度が大きいため、常温端側の水平方向もしくは重力方向に流動し、熱損失の熱ロスが発生し、供給する冷媒の温度が上昇して、被冷却体の温度が上昇し、被冷却体の低温での機能が低下する問題があった。 Moreover, in the structure of the bayonet joint which can attach and detach easily the heat insulation container which incorporated the heat insulation transfer pipe and the to-be-cooled body of patent document 3, the convex-shaped part of the heat insulation pipe tip inserted, and the receiving part by the side of a heat insulation container There is no seal structure in the concave shape part of the concave part, and there is a gap, in particular, the gap in the insertion direction widens due to thermal contraction at low temperature, and low temperature refrigerant leaks into the gap, especially the bayonet joint is horizontal and the tip is in an upward posture In some cases, the density of the cryogenic fluid is large, so it flows in the horizontal or gravitational direction at the normal temperature end, causing heat loss due to heat loss, increasing the temperature of the supplied refrigerant, and increasing the temperature of the cooled object However, there has been a problem that the function of the cooled object at low temperatures is reduced.

本発明の目的は、断熱冷媒移送管のバイヨネット継手部の先端の密閉性に優れ、熱ロスを低減できる低温流体用バイヨネット継手を提供することにある。 An object of the present invention is to provide a bayonet joint for a low-temperature fluid that is excellent in sealing at the tip of a bayonet joint portion of a heat insulating refrigerant transfer pipe and can reduce heat loss.

前述の目的を達成するために、本発明は、低温に冷却される被冷却体を内蔵する第1真空断熱容器と、低温の寒冷を発生する冷却ステージを有する冷凍機と、冷凍機の寒冷で冷媒を冷却する熱交換器を内蔵する第2真空断熱容器の低温冷却装置間を、低温、高圧の循環冷媒を移送させる冷媒移送用の断熱往復路管に接続した低温流体バイヨネット継手において、着脱挿入先端低温部に密封機能を得る構造を有するようにしたものである。 In order to achieve the above-described object, the present invention provides a first vacuum heat insulating container containing a body to be cooled that is cooled to a low temperature, a refrigerator having a cooling stage that generates low-temperature cold, and the coldness of the refrigerator. Insertion into and removal from a low-temperature fluid bayonet joint connected to a heat-insulating reciprocating circuit pipe for transferring low-temperature and high-pressure circulating refrigerant between the low-temperature cooling devices of the second vacuum insulation container containing a heat exchanger for cooling the refrigerant It has a structure that obtains a sealing function in the tip low-temperature part.

上記の課題を解決するために、請求項1に記載の低温流体用バイヨネット継手は、前記第1真空断熱容器と冷媒移送往復路管との接続部における低温バイヨネット継手の低温挿入先端部に、弾性圧力で密着さて冷媒の密封機能を得る構造を有したものである。 In order to solve the above-described problem, the bayonet joint for low-temperature fluid according to claim 1 is elastically formed at a low-temperature insertion tip of the low-temperature bayonet joint at a connection portion between the first vacuum heat insulating container and the refrigerant transfer reciprocating pipe. It has a structure in which it is adhered by pressure to obtain a refrigerant sealing function.

本低温流体用バイヨネット継手によれば、前記冷媒が1MPaを超える高圧のヘリウムガスである場合においても、低温バイヨネット継手の低温挿入先端部において、冷媒を嵌合部での密着構造で密封できるので、バイヨネット継手の先端が水平や上向き姿勢である場合においても、密度が大きい低温流体が常温端側の水平方向もしくは重力方向に流動せず、熱ロスの発生を抑制し、供給する冷媒温度の上昇を防止して、被冷却体の冷却温度が上昇せず、被冷却体を良好に低温に冷却できる低温流体用バイヨネット継手が提供可能となる。 According to this bayonet joint for low-temperature fluid, even when the refrigerant is a high-pressure helium gas exceeding 1 MPa, the refrigerant can be sealed with a close contact structure at the low-temperature insertion tip of the low-temperature bayonet joint. Even when the tip of the bayonet joint is in a horizontal or upward position, a low-temperature fluid with high density does not flow in the horizontal direction or the gravitational direction on the normal temperature end side, suppressing the occurrence of heat loss and increasing the temperature of the supplied refrigerant. Therefore, it is possible to provide a bayonet joint for a low-temperature fluid that can cool the cooled object well at a low temperature without increasing the cooling temperature of the cooled object.

請求項2に記載の低温流体バイヨネット継手は、前記弾性圧力を発生させる弾性機構を、着脱する嵌合する雄側の断熱パイプ側に具備したことを特徴としている。
本低温流体バイヨネット継手によれば、バネ圧を調整する弾性機構を脱離させた雄側の断熱パイプ側で交換調整できる低温流体バイヨネット継手が提供可能となる。
The low-temperature fluid bayonet joint according to claim 2 is characterized in that the elastic mechanism for generating the elastic pressure is provided on the side of the male heat insulating pipe to be attached and detached.
According to this low-temperature fluid bayonet joint, it is possible to provide a low-temperature fluid bayonet joint that can be exchanged and adjusted on the male heat insulating pipe side from which the elastic mechanism for adjusting the spring pressure is detached.

請求項3に記載の低温流体バイヨネット継手は、バイヨネット継手内に前記被冷却体を冷却する低温流体の往復路を具備し、温度が異なる2流路間の少なくとも一部に断熱手段を具備したことを特徴としている。
本低温流体バイヨネット継手によれば、バイヨネット継手内に複数流路を互いに断熱的に配置することができるので、前記被冷却体を良好に冷却できる低温流体バイヨネット継手が提供可能となる。
The low-temperature fluid bayonet joint according to claim 3 is provided with a reciprocating path of a low-temperature fluid for cooling the object to be cooled in the bayonet joint, and a heat insulating means is provided at least at a part between two flow paths having different temperatures. It is characterized by.
According to this low-temperature fluid bayonet joint, a plurality of flow paths can be adiabatically arranged in the bayonet joint, so that it is possible to provide a low-temperature fluid bayonet joint that can cool the cooled object well.

請求項4に記載の低温流体バイヨネット継手は、低温流体の往復路を別々の単流路の低温流体用バイヨネット継手を具備したことを特徴としている。
本低温流体バイヨネット継手によれば、冷媒の往復路間の漏洩が無くなり、更に前記被冷却体を良好に冷却できる低温流体バイヨネット継手が提供可能となる。
According to a fourth aspect of the present invention, there is provided a cryogenic fluid bayonet joint including a cryogenic fluid bayonet joint having a separate single flow path for the reciprocating path of the cryogenic fluid.
According to this low-temperature fluid bayonet joint, it is possible to provide a low-temperature fluid bayonet joint that can eliminate the leakage of the refrigerant between the reciprocating paths and can further cool the cooled object.

本発明によれば、断熱冷媒移送管挿入先端の低温部での冷媒の密封性に優れ、熱ロスを低減できる低温流体用バイヨネット継手を提供することができる。 According to the present invention, it is possible to provide a bayonet joint for a low-temperature fluid that has excellent refrigerant sealing performance at a low-temperature portion at the tip of an adiabatic refrigerant transfer pipe insertion and that can reduce heat loss.

本発明の第1実施例の低温流体用バイヨネット継手を用いた低温冷却装置を示す構成図である。It is a block diagram which shows the low-temperature cooling device using the bayonet coupling for low-temperature fluids of 1st Example of this invention. 図1の低温流体用バイヨネット継手の長尺方向断面図である。It is a longitudinal direction sectional view of the bayonet joint for cryogenic fluids of FIG. 図1の断熱移送管の横断面図である。It is a cross-sectional view of the heat insulation transfer pipe of FIG. 図4は断熱移送管の長尺方向カット断面図である。FIG. 4 is a longitudinal sectional view of the heat insulating transfer pipe. 本発明の第2実施例の移送管の長尺方向カット断面図である。It is a longitudinal direction cut sectional view of a transfer pipe of the 2nd example of the present invention. 本発明の第3実施例の移送管の冷却装置側との連結端部構造の断面図である。It is sectional drawing of the connection end part structure with the cooling device side of the transfer pipe of 3rd Example of this invention. 断熱移送管である移送管の断面図である。It is sectional drawing of the transfer pipe which is an adiabatic transfer pipe.

以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

[実施例1] [Example 1]

本発明の第1実施例の低温流体用バイヨネット継手を用いた低温冷却装置について、図1から図4を参照しながら、さらに具体的に説明する。図1は本発明の第1実施例の低温流体用バイヨネット継手を用いた低温冷却装置を示す構成図、図2は低温流体用バイヨネット継手の長尺方向断面図、図3は図1の断熱移送管の横断面図、図4は断熱移送管の長尺方向カット断面図を示す。
また、図中矢印は、冷媒の流動方向を示す。
The low-temperature cooling apparatus using the bayonet joint for low-temperature fluid according to the first embodiment of the present invention will be described more specifically with reference to FIGS. 1 is a block diagram showing a cryogenic cooling device using a bayonet joint for cryogenic fluid according to a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of the bayonet joint for cryogenic fluid, and FIG. 3 is an adiabatic transfer of FIG. FIG. 4 is a cross-sectional view of the heat insulating transfer pipe in the longitudinal direction.
Moreover, the arrow in a figure shows the flow direction of a refrigerant | coolant.

本実施例における低温流体用バイヨネット継手を有する低温冷却装置は、超電導磁石の一種である超電導バルク磁石1の冷却装置として用いられるものである。この低温冷却装置は、従来技術の問題点の解決を図りつつ、装置の性能向上を図ったものであり、第1の真空断熱容器である細身の断熱真空容器2内に磁場発生手段となる被冷却体である高温超伝導バルク体3を内蔵し、これを低温に冷却する例えば高圧ヘリウムガスの冷媒を移送するため、前記直径が小さくて曲げ易い、リング状凹凸形状の真空ベロー管で構成した真空配管4f内に、2つの温度レベルの金属ベロー管で構成した低温冷媒の往復路管5f、6fを内蔵した断熱移送配管7を有するもので、超電導磁石の細長い空間へ挿入する等の良好な移動操作性を有している。 The low-temperature cooling device having a bayonet joint for low-temperature fluid in the present embodiment is used as a cooling device for a superconducting bulk magnet 1 which is a kind of superconducting magnet. This low-temperature cooling device is intended to improve the performance of the device while solving the problems of the prior art. The low-temperature cooling device is a first insulated vacuum vessel 2 which is a first insulated vacuum vessel and serves as a magnetic field generating means. A high-temperature superconducting bulk body 3 that is a cooling body is built in, and for example, a high-pressure helium gas refrigerant that cools it to a low temperature is transferred. The vacuum pipe 4f has a heat insulating transfer pipe 7 having a built-in low-temperature refrigerant reciprocating pipe 5f, 6f composed of metal bellows pipes of two temperature levels, and is excellent in being inserted into a slender space of a superconducting magnet. It has mobile operability.

さらに、本実施例の低温流体用バイヨネット継手を有する低温冷却装置は、移送する冷媒の温度を40K以下の低温にし、例えばイットリウムーバリウムー銅―酸素系の高温超電導バルク体3の冷却温度を77K以下(換言すれば、被冷却体の超伝導温度以下)にして、着磁用外部磁石9の磁場により、磁束密度の捕捉性能を向上させるようにしている。 Furthermore, the cryogenic cooling device having the bayonet joint for cryogenic fluid according to the present embodiment reduces the temperature of the refrigerant to be transferred to a low temperature of 40K or less, for example, the cooling temperature of the yttrium-barium-copper-oxygen high-temperature superconducting bulk body 3 is 77K. In the following (in other words, below the superconducting temperature of the object to be cooled), the magnetic flux density capturing performance is improved by the magnetic field of the magnetizing external magnet 9.

すなわち、断熱移送配管7において、往路温度約35K用と復路温度約45K用の2つの温度レベルの低温冷媒の往復路管5f、6fを内蔵し、これを同軸管で構成することにより、(移送配管7の最外直径を小さくして曲げ半径を小さくすることができ、)曲げ易い断熱移送配管7を実現している。超電導バルク体3とその冷却ステージ8を細身の真空容器2内へ設置でき、冷媒を移送する断熱移送配管7を曲げ易い可撓性に優れたものにできるので、設置室が狭い場合でも断熱移送配管7を自由に曲げることにより超電導バルク磁石1を細長い空洞内に容易に設置できる。 That is, in the heat insulating transfer pipe 7, the reciprocating pipes 5f and 6f of low-temperature refrigerant having two temperature levels for the forward path temperature of about 35K and the return path temperature of about 45K are built in, and this is constituted by a coaxial pipe. The outermost diameter of the pipe 7 can be reduced to reduce the bending radius, and the heat-insulating transfer pipe 7 that is easy to bend is realized. The superconducting bulk body 3 and its cooling stage 8 can be installed in the thin vacuum vessel 2 and the heat insulating transfer pipe 7 for transferring the refrigerant can be easily bent and has excellent flexibility, so that the heat transfer can be performed even when the installation room is small. The superconducting bulk magnet 1 can be easily installed in an elongated cavity by bending the pipe 7 freely.

真空容器2内は、真空排気弁101、真空配管102を通じ外部の真空ポンプ100を使用して真空排気される。 The inside of the vacuum vessel 2 is evacuated using an external vacuum pump 100 through a vacuum exhaust valve 101 and a vacuum pipe 102.

1つまたは複数の高温超電導バルク体3を備えた超電導バルク磁石1において、超電導バルク体3は断熱のために大気と真空隔離した細身の真空容器2内に配置され、熱伝導率が小さいステンレス製のスリーブ10の先端部の熱伝導率が大きい銅製の冷却ステージ8上に、例えばアルミニウム合金製やステンレス製の保護リング11、取付フランジ12とともに熱的、機械的にボルト13で一体化されている。 In a superconducting bulk magnet 1 having one or a plurality of high-temperature superconducting bulk bodies 3, the superconducting bulk body 3 is disposed in a thin vacuum vessel 2 that is vacuum-isolated from the atmosphere for heat insulation, and is made of stainless steel having a low thermal conductivity. For example, an aluminum alloy or stainless steel protective ring 11 and a mounting flange 12 are thermally and mechanically integrated with a bolt 13 on a copper cooling stage 8 having a large thermal conductivity at the tip of the sleeve 10. .

第2の真空容器14を有する冷却装置99は、螺管式熱交換器15を熱的に一体化した冷凍機の冷却ステージ16を有するヘリウム低温冷凍機17を備えている。冷却装置99は、さらに、冷媒循環用の圧縮機18、向流式熱交換器19を備える。向流式熱交換器19では、往復路直管5s,6s内を流動するヘリウムガスの循環冷媒間で熱交換する。 The cooling device 99 having the second vacuum vessel 14 includes a helium low-temperature refrigerator 17 having a cooling stage 16 of a refrigerator in which the screw heat exchanger 15 is thermally integrated. The cooling device 99 further includes a compressor 18 for circulating the refrigerant and a countercurrent heat exchanger 19. In the counterflow heat exchanger 19, heat is exchanged between the circulating refrigerants of helium gas flowing in the reciprocating straight pipes 5s and 6s.

冷凍機17の低温部は真空容器14に気密的に固定され、冷凍機内を循環するヘリウムガスの作動流体は、圧縮機132から供給され、高圧ヘリウムガスは高圧配管133で冷凍機17に供給され、冷凍機内で断熱膨張して寒冷を発生し、膨張後の低圧ヘリウムガスは配管134で圧縮機に回収され、再度圧縮される。 The low temperature portion of the refrigerator 17 is hermetically fixed to the vacuum vessel 14, the working fluid of helium gas circulating in the refrigerator is supplied from the compressor 132, and the high pressure helium gas is supplied to the refrigerator 17 through the high pressure pipe 133. Then, adiabatic expansion occurs in the refrigerator to generate cold, and the expanded low-pressure helium gas is collected by the compressor through the pipe 134 and compressed again.

冷媒循環用の圧縮機18で加圧された、圧力約1MPaの高圧循環冷媒は、常温で冷却装置99に流入し、向流式熱交換器19の往路で向流式熱交換器19の復路内の低温の循環作動媒体と熱交換して温度約50Kとなり、次に冷凍機の寒冷発生部である冷却ステージ16で冷却された螺管式熱交換器15で熱交換し、温度約35Kとなる。 The high-pressure circulating refrigerant having a pressure of about 1 MPa, which is pressurized by the refrigerant circulation compressor 18, flows into the cooling device 99 at room temperature, and returns to the counter-current heat exchanger 19 in the forward path of the counter-current heat exchanger 19. The heat exchange with the low-temperature circulating working medium in the inside becomes a temperature of about 50K, and then the heat is exchanged by the screw-type heat exchanger 15 cooled by the cooling stage 16 which is the cold generation part of the refrigerator, and the temperature is about 35K. Become.

往路管5fに流入した低温高圧循環冷媒は、低温流体用バイヨネット継手を介して超電導バルク磁石1に流入し、低温流体用バイヨネット継手の循環冷媒供給直管20ラインの出口21から、スリーブ10先端の冷却ステージ8底面に吹きつけられ、冷却ステージ8を温度約40Kに冷却し、超電導バルク体3を約40Kに冷却する。 The low-temperature and high-pressure circulating refrigerant that has flowed into the outgoing pipe 5f flows into the superconducting bulk magnet 1 via the low-temperature fluid bayonet joint, and from the outlet 21 of the circulating refrigerant supply straight pipe 20 line of the low-temperature fluid bayonet joint, The cooling stage 8 is sprayed onto the bottom surface, the cooling stage 8 is cooled to about 40K, and the superconducting bulk body 3 is cooled to about 40K.

ここで、循環冷媒による寒冷輸送性能は、循環冷媒の比熱を大きくすることにより、少ない流量の循環冷媒で大きな寒冷量を輸送できるので有利であり、循環冷媒がヘリウムガスである場合は、圧力を高めて冷媒の比熱を高めることが有効である。 Here, the cold transport performance by the circulating refrigerant is advantageous because a large amount of cold can be transported with a small amount of circulating refrigerant by increasing the specific heat of the circulating refrigerant. If the circulating refrigerant is helium gas, the pressure is reduced. It is effective to increase the specific heat of the refrigerant.

循環冷媒供給直管20の外周部には、真空空間22を確保するために底付き円筒状隔壁23を設け、低温の循環冷媒供給直管20を真空断熱している。 A cylindrical partition wall 23 with a bottom is provided in the outer peripheral portion of the circulating refrigerant supply straight pipe 20 to secure the vacuum space 22, and the low-temperature circulating refrigerant supply straight pipe 20 is thermally insulated by vacuum.

低温流体用バイヨネット継手の循環冷媒供給直管20の出口部では、中央部に流路24を有した例えばフッ素樹脂製の雄ねじ25m付きの気密用シール駒25を柔軟に支持するネジ付きフランジ26を底付き円筒状隔壁23の先端部に気密的に一体化している。 At the outlet of the circulating refrigerant supply straight pipe 20 of the bayonet joint for low-temperature fluid, there is provided a threaded flange 26 that flexibly supports an airtight seal piece 25 having a flow path 24 at the center and having a male screw 25m made of, for example, fluororesin. The bottom end of the cylindrical partition wall 23 is airtightly integrated.

ネジ付きフランジ26の外周部には、ネジで支持された例えばエポキシ樹脂製の円盤状スペーサ27が装着されており、雄側の気密用シール駒25がスリーブ10の中央部に配置される。円盤状スペーサ27には、通気用の通気口28が設けられている。ネジ付きフランジ26と循環冷媒供給直管20と底付き円筒状隔壁23の先端部は、溶接や接着剤等で気密的に一体化されている。 A disk-like spacer 27 made of, for example, epoxy resin supported by a screw is mounted on the outer peripheral portion of the threaded flange 26, and the male airtight seal piece 25 is disposed at the center of the sleeve 10. The disk-shaped spacer 27 is provided with a ventilation hole 28 for ventilation. The distal ends of the threaded flange 26, the circulating refrigerant supply straight pipe 20, and the bottomed cylindrical partition wall 23 are airtightly integrated by welding, an adhesive, or the like.

いっぽう、スリーブ10の先端部には、気密用シール駒25の先端の凸状のテーパーに嵌合する凹状のテーパーを有し、金属ベロー管29を介して気密性を担保した移動可能なシール台座30を配置している。シール台座30は、摺動支持円筒体31に配置し、コイルばね32により、所定の圧力で気密用シール駒25側に押し付けられ、シール台座30とのシール性を担保している。さらに、コイルばね32に押し付け力により、気密用シール駒25とネジ付きフランジ26との接触部もシール性を担保している。 On the other hand, a movable seal pedestal having a concave taper that fits into a convex taper at the tip of the hermetic seal piece 25 at the tip of the sleeve 10 and that ensures hermeticity via a metal bellows tube 29. 30 is arranged. The seal pedestal 30 is disposed on the sliding support cylindrical body 31 and is pressed against the hermetic seal piece 25 side with a predetermined pressure by the coil spring 32 to secure the sealing performance with the seal pedestal 30. Further, due to the pressing force against the coil spring 32, the contact portion between the hermetic seal piece 25 and the threaded flange 26 also ensures sealing performance.

シール台座30と摺動支持円筒体31にはそれぞれ通気口33、34が設けられ、冷却冷媒は漏れることなく出口21から、冷却空間35に流入し、冷却ステージ8を良好に冷却できる。ここで、気密性を担保した前記金属ベロー管29内は前記被冷却体を冷却する前の冷媒の圧力が、金属ベロー管29外は主に冷却した後の冷媒の圧力が作用するので、前記金属ベロー管内外の差圧は冷媒が空間37まで流動する圧力損失であり、この差圧は非常に小さい。したがって、前記金属ベロー管の板厚に作用する応力が小さいので、冷媒圧力が大きい場合においても金属ベロー管が破損することはない。 The sealing pedestal 30 and the sliding support cylindrical body 31 are provided with vent holes 33 and 34, respectively, and the cooling refrigerant flows into the cooling space 35 from the outlet 21 without leaking, so that the cooling stage 8 can be cooled well. Here, the pressure of the refrigerant before cooling the object to be cooled acts inside the metal bellows pipe 29 that ensures airtightness, and the pressure of the refrigerant after cooling mainly acts outside the metal bellows pipe 29. The differential pressure inside and outside the metal bellows pipe is a pressure loss at which the refrigerant flows to the space 37, and this differential pressure is very small. Therefore, since the stress acting on the thickness of the metal bellows tube is small, the metal bellows tube is not damaged even when the refrigerant pressure is large.

冷却ステージ8冷却後の冷媒は、通気口36を通り、次に空間37、通気口28、空間38、通気口39を通り、循環冷媒回収流路40に流入する。 The refrigerant after cooling the cooling stage 8 passes through the vent hole 36, then passes through the space 37, the vent hole 28, the space 38, and the vent hole 39 and flows into the circulating refrigerant recovery flow path 40.

循環冷媒回収流路40は、底付き円筒状隔壁23と底付き円筒状隔壁42の間に形成され、底付き円筒状隔壁42と底付き円筒状隔壁43の間には、真空空間22が形成され、低温の循環冷媒回収流路40を真空断熱している。 The circulating refrigerant recovery flow path 40 is formed between the bottomed cylindrical partition wall 23 and the bottomed cylindrical partition wall 42, and the vacuum space 22 is formed between the bottomed cylindrical partition wall 42 and the bottomed cylindrical partition wall 43. The low-temperature circulating refrigerant recovery flow path 40 is vacuum insulated.

また、スリーブ10の内壁と底付き円筒状隔壁43の間の空間44には、空間39の回収冷媒が円盤状スペーサ127との隙間から漏込み、回収冷媒がほぼ静止した充満している。空間44には、回収冷媒の流動を阻止するプラスチック製の海綿状の対流防止材を挿入しても良い。 Further, the space 44 between the inner wall of the sleeve 10 and the bottomed cylindrical partition wall 43 is filled with the recovered refrigerant in the space 39 leaking from the gap with the disk-shaped spacer 127, and the recovered refrigerant is almost stationary. A plastic sponge-like convection prevention material that prevents the flow of the recovered refrigerant may be inserted into the space 44.

スリーブ10の継ぎ目側端部では、バイヨネット雌フランジ45と溶接等で冶金的に気密一体化され、真空容器2のフランジ46と真空Oリング47でボルト62等により、バイヨネット雌フランジ45と真空締結されている。真空容器2の内部は、真空弁48、配管49を介して外部の真空ポンプ100を使用し、真空排気される。 At the seam side end of the sleeve 10, it is metallurgically integrated with the bayonet female flange 45 by welding or the like, and is vacuum-fastened with the bayonet female flange 45 by a bolt 62 or the like with the flange 46 and the vacuum O-ring 47 of the vacuum vessel 2. ing. The inside of the vacuum vessel 2 is evacuated using an external vacuum pump 100 through a vacuum valve 48 and a pipe 49.

低温流体用バイヨネット継手と断熱移送管7の継ぎ目部において、断熱移送管7内の金属ベロー管で構成した往路管5f端部と、循環冷媒供給直管20の端部とは、例えばステンレス製の端部フランジ50と溶接等で冶金的もしくは機械的に一体化され、往路管5f内の高圧の冷媒により金属ベロー管の往路管5fが伸びることを防止するため往路管5fの外周部にブレード5bを設け、その端部も例えばステンレス製の端部フランジ50と冶金的もしくは機械的に一体化されている。供給冷媒で低温に冷却された端部フランジ50は、断熱のために例えばプラスチック製のリング状のスペーサ51を介して、端部支持フランジ52と、接着剤やボルト(図示せず)等で一体化されている。 At the joint between the low-temperature fluid bayonet joint and the heat insulating transfer pipe 7, the end of the forward pipe 5f formed of a metal bellows pipe in the heat insulating transfer pipe 7 and the end of the circulating refrigerant supply straight pipe 20 are made of, for example, stainless steel. The end flange 50 is integrated with metallurgy or mechanically by welding or the like, and the blade 5b is disposed on the outer periphery of the forward pipe 5f in order to prevent the forward pipe 5f of the metal bellows pipe from being extended by the high-pressure refrigerant in the forward pipe 5f. , And its end is also integrated, for example, with an end flange 50 made of stainless steel, either metallurgically or mechanically. The end flange 50 cooled to a low temperature with the supplied refrigerant is integrated with the end support flange 52 with an adhesive, a bolt (not shown) or the like via a plastic ring-shaped spacer 51 for heat insulation. It has become.

いっぽう、端部支持フランジ52と底付き円筒状隔壁23の継ぎ目側端部は冶金的に気密一体化しており、通気口53で底付き円筒状隔壁23内側の真空空間22と、断熱移送管内7の真空空間22と連通している。 On the other hand, the end side support flange 52 and the bottom end of the cylindrical partition wall 23 with the bottom are metallurgically integrated in an airtight manner, and the vent 53 forms the vacuum space 22 inside the bottom cylindrical partition wall 23 and the heat insulating transfer pipe 7. It communicates with the vacuum space 22.

断熱移送管内7内の冷媒復路6fを構成する金属ベロー管54f、55fの端部は端部フランジ44と冶金的に気密一体化しており、金属ベロー管54f、55f管の間に構成されると冷媒復路6fと、循環冷媒回収流路出口部41は通気口56で連通している。 The ends of the metal bellows pipes 54f and 55f constituting the refrigerant return path 6f in the heat insulating transfer pipe 7 are metallurgically integrated with the end flange 44, and are configured between the metal bellows pipes 54f and 55f. The refrigerant return path 6f and the circulating refrigerant recovery flow path outlet 41 communicate with each other through a vent 56.

金属ベロー管55fの外周部には、ブレード55bを設け、その端部は端部フランジ44と冶金的もしくは機械的に一体化されている。 A blade 55b is provided on the outer peripheral portion of the metal bellows tube 55f, and its end is integrated with the end flange 44 in a metallurgical or mechanical manner.

往路管5fには、ブレード5bの外周部に熱伝導率が小さなプラスチック製の糸状スペーサ57を螺旋状に巻きつけて、より温度が高い復路管6fを構成する金属ベロー管46fの内周部と往路管5fが直接接触することを防止している。 A plastic thread spacer 57 having a low thermal conductivity is spirally wound around the outer peripheral portion of the blade 5b in the outward pipe 5f, and an inner peripheral portion of a metal bellows pipe 46f constituting the return pipe 6f having a higher temperature. The outward pipe 5f is prevented from coming into direct contact.

低温の復路管6fを構成する金属ベロー管55fのブレード55bの外周部には積層断熱材58を巻きつけ、常温の真空ベロー管4fからの往路管5fに侵入する輻射熱の侵入量を低減させる。真空ベロー管4fの外周にもブレード4bを装着し、真空ベロー管4fの端部は、バイヨネット雄フランジ59と冶金的に気密一体化しており、バイヨネット雄フランジ59とブレード4bの端部は、冶金的もしくは機械的に一体化されている。 A laminated heat insulating material 58 is wound around the outer peripheral portion of the blade 55b of the metal bellows pipe 55f constituting the low temperature return pipe 6f to reduce the amount of radiant heat entering the forward pipe 5f from the room temperature vacuum bellows pipe 4f. A blade 4b is also attached to the outer periphery of the vacuum bellows tube 4f, and the end of the vacuum bellows tube 4f is metallurgically integrated with the bayonet male flange 59, and the end of the bayonet male flange 59 and the blade 4b is metallurgical. Or mechanically integrated.

低温の端部支持フランジ52は、熱伝導率が小さな例えばエポキシ樹脂製の支持ロッド60で、断熱的にバイヨネット雄フランジ59と接着剤やボルト(図示せず)等で機械的に一体化されている。 The low-temperature end support flange 52 is a support rod 60 made of, for example, epoxy resin having a low thermal conductivity, and is mechanically integrated with a bayonet male flange 59 by an adhesive, a bolt (not shown), or the like in an adiabatic manner. Yes.

バイヨネット雌フランジ45とバイヨネット雄フランジ59とは、高圧用Oリング63を介し、ボルト64で気密的に締結している。 The bayonet female flange 45 and the bayonet male flange 59 are airtightly fastened with bolts 64 via a high-pressure O-ring 63.

復路管6fで回収された低温冷媒は、断熱移送管7内を通り冷却装置99に流入し、冷却装置99内の復路直管6sから向流式熱交換器19の復路に流入し、向流式熱交換器19内の往路の循環冷媒を冷却して向流式熱交換器19を出て常温となり、流量調整弁61を介して圧縮機18に流入し、再度加圧されて常温の高圧循環冷媒となり、冷却装置99内を循環する。 The low-temperature refrigerant recovered in the return pipe 6f passes through the adiabatic transfer pipe 7 and flows into the cooling device 99, flows from the return straight pipe 6s in the cooling device 99 into the return path of the countercurrent heat exchanger 19, and counterflows The refrigerant circulating in the forward path in the heat exchanger 19 is cooled, exits the counter-current heat exchanger 19 and reaches room temperature, flows into the compressor 18 through the flow regulating valve 61, and is pressurized again to be high pressure at room temperature. It becomes a circulating refrigerant and circulates in the cooling device 99.

図3中の記号4t、5t、54t、55t、は、ベロー管で構成した真空ベロー管4f、往路管5f、復路管6fを構成する金属ベロー管54f、55fの板厚断面を示している。 Symbols 4t, 5t, 54t, and 55t in FIG. 3 indicate the thickness cross sections of the metal bellows tubes 54f and 55f that constitute the vacuum bellows tube 4f, the forward tube 5f, and the return tube 6f that are formed of bellows tubes.

往路管5f、復路管6fの金属ベロー管55fとブレード5b、55bのそれぞれ間の空間22の排気はブレード5b、55bの網目の隙間から行われ、排気抵抗は大きいが、時間をかければ真空排気され、真空断熱の機能を生じる。 The space 22 between the metal bellows pipe 55f and the blades 5b and 55b of the forward pipe 5f and the return pipe 6f is exhausted from the gap between the meshes of the blades 5b and 55b, and the exhaust resistance is large. And produce the function of vacuum insulation.

ブレード4b、5bの外周部は、輻射熱を防止するため複層数の積層断熱材58が巻き付けられている(ブレード5bの外周の積層断熱材は図示せず)。 A multilayer heat insulating material 58 having a plurality of layers is wound around the outer periphery of the blades 4b and 5b to prevent radiant heat (the heat insulating material on the outer periphery of the blade 5b is not shown).

冷凍機17の低温部は真空容器14に気密的に固定され、冷凍機内を循環するヘリウムガスの作動流体は、圧縮機32から供給され、高圧ヘリウムガスは高圧配管33で冷凍機14に供給され、冷凍機内で断熱膨張して寒冷を発生し、膨張後の低圧ヘリウムガスは配管34で圧縮機に回収され、再度圧縮される。 The low temperature part of the refrigerator 17 is hermetically fixed to the vacuum vessel 14, the working fluid of helium gas circulating in the refrigerator is supplied from the compressor 32, and the high pressure helium gas is supplied to the refrigerator 14 through the high pressure pipe 33. Then, adiabatic expansion occurs in the refrigerator to generate cold, and the expanded low-pressure helium gas is collected by the compressor through the pipe 34 and compressed again.

また、真空容器14と断熱された移送配管7は冶金的、気密的にて一体化されており、それぞれ共通な真空空間22を共有している。 The vacuum vessel 14 and the insulated transfer pipe 7 are integrated in a metallurgical and airtight manner and share a common vacuum space 22.

高温超電導バルク体3の着磁手順を説明する。着磁用外部磁石9は例えばソレノイド超電導磁石で大気空間62内に数テスラの磁場を励磁し、室温の超電導バルク体を図1中の位置に挿入する。その後、冷却装置99内および冷却装置内と連通した移送配管7の真空空間22を外部の真空ポンプ100により真空配管101を通じて十分に真空排気し、断熱機能を確保する。 The magnetization procedure of the high temperature superconducting bulk body 3 will be described. The magnetizing external magnet 9 is, for example, a solenoid superconducting magnet that excites a magnetic field of several Tesla in the atmospheric space 62 and inserts a room temperature superconducting bulk body at the position shown in FIG. After that, the inside of the cooling device 99 and the vacuum space 22 of the transfer pipe 7 communicating with the inside of the cooling device are sufficiently evacuated by the external vacuum pump 100 through the vacuum piping 101 to ensure a heat insulating function.

その後、冷却装置99で高圧ヘリウムガスの循環冷媒を冷凍機17で冷却された向流式熱交換器19、螺管式熱交換器15で冷却され、断熱移送配管7を移送された低温冷媒で、冷却ステージ8が温度約40Kに冷却され、冷却ステージ8に熱的に一体化された高温超電導バルク体3は超電導臨界温度以下の温度約40Kに冷却される。 Thereafter, the circulating refrigerant of high-pressure helium gas is cooled by a counter-current heat exchanger 19 cooled by a refrigerator 17 and a screw heat exchanger 15 by a cooling device 99, and the low-temperature refrigerant transferred by the adiabatic transfer pipe 7 is used. The cooling stage 8 is cooled to a temperature of about 40K, and the high-temperature superconducting bulk body 3 thermally integrated with the cooling stage 8 is cooled to a temperature of about 40K below the superconducting critical temperature.

その後、着磁用外部磁石9の磁場を消磁すると、高温超電導バルク体3が磁場変化に伴ってバルク体内に誘導電流が生じ、その電流は冷却されている限り電気抵抗がゼロのバルク体内に流れ続き、ほぼ励磁された着磁用外部磁石9の数テスラのほぼ同じ磁場を捕捉し、強力な超超電導バルク磁石1となる。その後、着磁用外部磁石9を取り除く。高温超電導バルク体3の温度が低温であるほど、着磁用外部磁石9による捕捉磁場は大きくなり、より高い磁場を有する超電導バルク磁石1を提供できる。 Thereafter, when the magnetic field of the magnetizing external magnet 9 is degaussed, the high-temperature superconducting bulk body 3 generates an induced current in the bulk body as the magnetic field changes, and the current flows into the bulk body having zero electrical resistance as long as it is cooled. Subsequently, almost the same magnetic field of several Tesla of the magnetized external magnet 9 that has been substantially excited is captured, and a strong superconducting bulk magnet 1 is obtained. Thereafter, the magnetizing external magnet 9 is removed. As the temperature of the high-temperature superconducting bulk body 3 is lower, the trapping magnetic field by the magnetizing external magnet 9 becomes larger, and the superconducting bulk magnet 1 having a higher magnetic field can be provided.

以上、本実施例によれば、バイヨネット継手の先端部において、雌側のスリーブ10の先端部に備えた凹状のテーパーを有する、シール台座30に、低温の高圧循環冷媒を供給する雄側の気密用シール駒25の先端の凸状のテーパーに良好に嵌合し、かつシール台座30は金属ベロー管29を有したコイルばね32が具備されているので前記凹凸部の密着シール性が担保され、更に気密用シール駒25とネジ付きフランジ26との接触部もシール性が担保される。 As described above, according to the present embodiment, the male side air-tight supply supplying the low-temperature high-pressure circulating refrigerant to the seal pedestal 30 having the concave taper provided at the front end portion of the female sleeve 10 at the front end portion of the bayonet joint. Since the seal base 30 is provided with a coil spring 32 having a metal bellows tube 29, the seal pedestal 30 is fitted with a convex taper at the tip of the seal piece 25, so that the tight sealability of the concavo-convex portion is secured. Furthermore, the sealing property is also secured at the contact portion between the hermetic seal piece 25 and the threaded flange 26.

また、低温の循環冷媒供給直管20が熱収縮で挿入方向に数ミリメートル縮んでも、シール台座30はコイルばね32でその縮量を吸収しできるので、前記テーパー凹凸部と、気密用シール駒25とネジ付きフランジ26との密着シール性が担保される。 Further, even if the low-temperature circulating refrigerant supply straight pipe 20 is contracted by several millimeters in the insertion direction due to thermal contraction, the seal pedestal 30 can absorb the contracted amount by the coil spring 32. Therefore, the taper uneven portion and the airtight seal piece 25 And the threaded flange 26 are secured.

したがって、低温の高圧循環冷媒は漏れることなくほぼ供給される全量が出口21から、冷却空間35に流入し、冷却ステージ8を良好に冷却できるので、バイヨネット継手部の先端の密閉性に優れ、熱ロスを低減できる低温流体用バイヨネット継手を提供できる効果がある。 Therefore, almost all of the low-temperature high-pressure circulating refrigerant that is supplied without leaking flows into the cooling space 35 from the outlet 21 and can cool the cooling stage 8 satisfactorily. This has the effect of providing a bayonet joint for low-temperature fluid that can reduce loss.

また、特にバイヨネット継手が水平や先端が上向き姿勢で、冷媒が液体ヘリウムや液体窒素等の液化ガスである場合、低温流体の密度が大きいため、仮に前記シール部で低温冷媒が漏れば、空間37、空間38および空間44において、常温端側の水平方向もしくは重力方向に冷媒が流動し、液化ガスが蒸発して熱損失の熱ロスが発生し、供給する液化ガス量が減少し、超電導バルク体3の温度が上昇し、超電導バルク体3の低温での機能が低下するが、本実施例によれば 前記シール部のシール性が担保できるので、供給する冷媒温度上昇を防止して、超電導バルク体3を良好に冷却でき、非常に高い磁場を提供できる低温流体用バイヨネット継手を提供できる効果がある。 In particular, when the bayonet joint is horizontal or the tip is upward, and the refrigerant is a liquefied gas such as liquid helium or liquid nitrogen, the density of the low-temperature fluid is large. In the space 38 and the space 44, the refrigerant flows in the horizontal direction or the gravity direction on the normal temperature end side, the liquefied gas evaporates, heat loss of heat loss occurs, the amount of liquefied gas supplied decreases, and the superconducting bulk body However, according to this embodiment, since the sealing performance of the seal portion can be secured, the temperature of the refrigerant to be supplied is prevented from rising, and the superconducting bulk is reduced. There is an effect that it is possible to provide a bayonet joint for cryogenic fluid that can cool the body 3 well and provide a very high magnetic field.

また、本実施例において、冷媒圧力が大きい場合においても金属ベロー管が破損することはなく、バイヨネット継手部の先端の密閉性に優れ、熱ロスを低減できる低温流体用バイヨネット継手を提供できる効果がある。 Further, in this embodiment, even when the refrigerant pressure is high, the metal bellows pipe is not damaged, and the bayonet joint for cryogenic fluid can be provided that has excellent sealing performance at the tip of the bayonet joint and can reduce heat loss. is there.

また、本実施例では、コイルばね32を金属ベロー管29の内部に配置した場合について説明したが、コイルばねを金属ベロー管29の外側、摺動支持円筒体3の内側に配置し、シール台座30に摺動支持円筒体3の内側でバネ圧を供与できるようにしても同様な効果が生じる。 In the present embodiment, the case where the coil spring 32 is disposed inside the metal bellows tube 29 has been described. However, the coil spring is disposed outside the metal bellows tube 29 and inside the sliding support cylindrical body 3, and the seal pedestal is arranged. Even if the spring pressure can be applied to the inner side of the sliding support cylinder 3 at 30, the same effect is produced.

また、本実施例では、気密用シール駒25とネジ付きフランジ26は気密一体化されていない場合で説明したが、両者のネジ部において接着剤等で気密一体化した場合においても、同様な効果が生じる。 Further, in the present embodiment, the case where the hermetic seal piece 25 and the threaded flange 26 are not airtightly integrated has been described. However, the same effect can be obtained when the screw portions of both the members are airtightly integrated with an adhesive or the like. Occurs.

[実施例2] [Example 2]

次に、本発明の第2実施例について図5を用いて説明する。図5は本発明の第2実施例の低温流体用バイヨネット継手先端部とスリーブ10の先端部を含む超電導バルク磁石1の断面図を示す。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a sectional view of the superconducting bulk magnet 1 including the tip of the bayonet joint for cryogenic fluid and the tip of the sleeve 10 according to the second embodiment of the present invention.

この第2実施例は、シール台座と気密用シール駒とのテーパー凹凸部において、押付け用バネ機構を、挿入する雄側のバイヨネット先端部に組込んだ点で第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。 This second embodiment differs from the first embodiment in that the pressing spring mechanism is incorporated in the tip of the bayonet on the male side to be inserted in the taper uneven portion of the seal pedestal and the airtight seal piece. The other points are basically the same as those of the first embodiment.

この第2実施例では、図5に示すように、凸側のテーパーを有した気密用シール駒65は、隔壁版66に溶接等で冶金的に一体化されている。 In the second embodiment, as shown in FIG. 5, an airtight seal piece 65 having a convex taper is integrally metallized with a partition plate 66 by welding or the like.

前記シール駒65の先端の凸状のテーパーに嵌合する凹状のテーパーを有したフッ素樹脂製等のシール台座67は、摺動支持円筒体68に配置し、気密性を有した金属ベロー管69の外周部に配置した金属製のコイルばね70により、所定の圧力で気密用シール駒65側に押し付けられ、シール台座67とのシール性を担保している。 A seal pedestal 67 made of a fluororesin or the like having a concave taper that fits into a convex taper at the tip of the seal piece 65 is disposed on a sliding support cylindrical body 68 and has a metal bellows tube 69 having airtightness. The metal coil spring 70 disposed on the outer peripheral portion of the metal plate is pressed against the hermetic seal piece 65 with a predetermined pressure to ensure the sealing performance with the seal pedestal 67.

気密用シール駒65とシール台座67には、それぞれ通気口71、72が設けられ、冷却冷媒は漏れることなく出口21から、冷却空間35に流入し、冷却ステージ8を良好に冷却できる。 The airtight seal piece 65 and the seal pedestal 67 are provided with vent holes 71 and 72, respectively, and the cooling refrigerant flows into the cooling space 35 from the outlet 21 without leaking, and the cooling stage 8 can be cooled well.

冷却ステージ8冷却後の冷媒は、通気口36を通り、次に空間37、プラスチック製のスペーサ73の通気口74、空間38、通気口39を通り、循環冷媒回収流路40に流入する。 The refrigerant after cooling the cooling stage 8 passes through the vent 36, and then flows through the space 37, the vent 74, the space 38, and the vent 39 of the plastic spacer 73 into the circulating refrigerant recovery passage 40.

本実施例によれば、バイヨネット継手の先端部の気密用シール駒65とシール台座67の凹凸状のテーパーが良好に嵌合し、かつシール部が一箇所のみで、更に良好なシール性が担保されるので、バイヨネット継手部の先端の密閉性が更に優れ、更に熱ロスを低減できる低温流体用バイヨネット継手を提供できる効果がある。 According to the present embodiment, the concave and convex taper of the airtight seal piece 65 and the seal pedestal 67 at the tip of the bayonet joint fits well, and the seal portion is only at one place, so that better sealing performance is ensured. Therefore, there is an effect that it is possible to provide a bayonet joint for cryogenic fluid that can further improve the sealing performance at the tip of the bayonet joint and further reduce heat loss.

[実施例3] [Example 3]

次に、本発明の第3実施例について図6、図7を用いて説明する。図6は前記断熱移送管7を断熱単流路移送管2本の低温流体用バイヨネット継手で構成した超電導バルク磁石200の断面図を示し、図7は図6の側面断面図を示す。 Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 6 shows a cross-sectional view of a superconducting bulk magnet 200 in which the heat insulating transfer pipe 7 is composed of two heat insulating single channel transfer pipes and a bayonet joint for cryogenic fluid, and FIG. 7 shows a side cross-sectional view of FIG.

この第3実施例では、断熱移送管を断熱往路管75、断熱復路管76で構成し、両管は同一構造である。 In this third embodiment, the heat insulating transfer pipe is composed of a heat insulating forward pipe 75 and a heat insulating return pipe 76, and both pipes have the same structure.

断熱往路管75の低温流体用バイヨネット継手の循環冷媒供給直管20の出口部では、中央部に流路24を有した例えばフッ素樹脂製の雄ねじ25m付きの気密用シール駒25をネジ付きフランジ77内で柔軟に支持している。 At the outlet of the circulating refrigerant supply straight pipe 20 of the low-temperature fluid bayonet joint of the heat insulation outgoing pipe 75, an airtight seal piece 25 having a flow path 24 at the center, for example, a male screw 25 m made of fluororesin, is provided with a threaded flange 77. Supports flexibly within.

ネジ付きフランジ77の外周部には、ネジで支持された例えばエポキシ樹脂製の円盤状スペーサ78が装着されており、雄側の気密用シール駒25がスリーブ79の中央部に配置される。ネジ付きフランジ77と循環冷媒供給直管20と底付き円筒状隔壁23の先端部は、溶接や接着剤等で気密的に一体化されている。 A disc-like spacer 78 made of, for example, epoxy resin supported by a screw is mounted on the outer peripheral portion of the threaded flange 77, and the male airtight seal piece 25 is disposed at the center of the sleeve 79. The distal ends of the threaded flange 77, the circulating refrigerant supply straight pipe 20, and the bottomed cylindrical partition wall 23 are airtightly integrated by welding, an adhesive, or the like.

いっぽう、スリーブ79の先端部には、気密用シール駒25の先端の凸状のテーパーに嵌合する凹状のテーパーを有し、金属ベロー管29を介して気密性を担保した移動可能なシール台座30を配置している。シール台座30は、摺動支持円筒体31に配置し、コイルばね32により、所定の圧力で気密用シール駒25側に押し付けられ、シール台座30とのシール性を担保している。さらに、コイルばね32に押し付け力により、気密用シール駒25とネジ付きフランジ77との接触部もシール性を担保している。 On the other hand, the sleeve 79 has a concave taper that fits into the convex taper at the tip of the airtight seal piece 25, and a movable seal base that ensures airtightness through the metal bellows tube 29. 30 is arranged. The seal pedestal 30 is disposed on the sliding support cylindrical body 31 and is pressed against the hermetic seal piece 25 side with a predetermined pressure by the coil spring 32 to secure the sealing performance with the seal pedestal 30. Furthermore, the contact portion between the hermetic seal piece 25 and the threaded flange 77 also ensures sealing performance by the pressing force against the coil spring 32.

シール台座30と摺動支持円筒体31にはそれぞれ通気口33、34が設けられ、冷却冷媒は漏れることなく出口21から、冷却空間80に流入し、冷却ステージ81を良好に冷却できる。 The sealing pedestal 30 and the sliding support cylindrical body 31 are provided with vent holes 33 and 34, respectively, and the cooling refrigerant flows into the cooling space 80 from the outlet 21 without leaking, and the cooling stage 81 can be cooled well.

断熱往路管75と低温流体用バイヨネット継手との継ぎ目部において、断熱往路管75内の金属ベロー管で構成した往路管5f端部と、循環冷媒供給直管20の端部とは、例えばステンレス製の端部支持フランジ82と溶接等で冶金的もしくは機械的に一体化され、往路管5f内の高圧の冷媒により金属ベロー管の往路管5fが伸びることを防止するため往路管5fの外周部にブレード5bを設け、その端部も例えばステンレス製の端部支持フランジ82と冶金的もしくは機械的に一体化されている。 At the joint between the heat-insulated forward pipe 75 and the bayonet joint for low-temperature fluid, the end of the forward pipe 5f formed of a metal bellows pipe in the heat-insulated forward pipe 75 and the end of the circulating refrigerant supply straight pipe 20 are made of, for example, stainless steel. It is metallurgically or mechanically integrated with the end support flange 82 of the metal pipe so as to prevent the forward pipe 5f of the metal bellows from being extended by the high-pressure refrigerant in the forward pipe 5f. A blade 5b is provided, and its end is also integrated with a stainless steel end support flange 82, either metallurgically or mechanically.

供給冷媒で低温に冷却された端部支持フランジ82は、断熱のために例えばプラスチック製の円筒状のスペーサ83を介して、バイヨネット雄フランジ84と、接着剤やボルト(図示せず)等で一体化されている。 The end support flange 82 cooled to a low temperature with the supplied refrigerant is integrated with a bayonet male flange 84 with an adhesive, a bolt (not shown), or the like, for example, via a plastic cylindrical spacer 83 for heat insulation. It has become.

いっぽう、バイヨネット雄フランジ84と底付き円筒状隔壁23の継ぎ目側端部は冶金的に気密一体化しており、通気口85で底付き円筒状隔壁23内側の真空空間22と、断熱往路管75の真空空間22と連通している。 On the other hand, the seam side end of the bayonet male flange 84 and the bottomed cylindrical partition wall 23 is metallurgically and airtightly integrated, and the vacuum space 22 inside the bottomed cylindrical partition wall 23 and the heat-insulating forward pipe 75 are ventilated. It communicates with the vacuum space 22.

往路管5f外周部には積層断熱材86を巻きつけ、常温の真空ベロー管87fからの往路管5fに侵入する輻射熱の侵入量を低減させる。真空ベロー管87fの外周にもブレード87bを装着し、真空ベロー管87fの端部は、バイヨネット雄フランジ84と冶金的に気密一体化しており、バイヨネット雄フランジ84とブレード87bの端部は、冶金的もしくは機械的に一体化されている。 A laminated heat insulating material 86 is wound around the outer periphery of the outward pipe 5f to reduce the amount of radiant heat entering the outward pipe 5f from the vacuum bellows pipe 87f at room temperature. A blade 87b is also attached to the outer periphery of the vacuum bellows tube 87f, and the end of the vacuum bellows tube 87f is metallurgically integrated with the bayonet male flange 84, and the end of the bayonet male flange 84 and the blade 87b is metallurgical. Or mechanically integrated.

バイヨネット雌フランジ88とバイヨネット雄フランジ84とは、高圧用Oリング89を介し、ボルト90で気密的に締結している。 The bayonet female flange 88 and the bayonet male flange 84 are fastened together with bolts 90 via a high-pressure O-ring 89.

また、スリーブ79の内壁と底付き円筒状隔壁23の間の空間91には、冷媒がほぼ静止した充満しており、空間91には冷媒の流動を阻止するプラスチック製の海綿状の対流防止材92を挿入する。スリーブ79は、バイヨネット雌フランジ88と冶金的に気密一体化されている。 Further, the space 91 between the inner wall of the sleeve 79 and the bottomed cylindrical partition wall 23 is filled with the refrigerant in a substantially stationary manner, and the space 91 is a plastic sponge-like convection prevention material that prevents the refrigerant from flowing. 92 is inserted. The sleeve 79 is metallurgically integrated with the bayonet female flange 88.

バイヨネット雌フランジ88と真空容器93の真空フランジ94とは、真空Oリング95でボルト96等により真空締結されている。真空容器93の内部は、真空弁48、配管49を介して外部の真空ポンプ100を使用し、空間97を真空排気される。 The bayonet female flange 88 and the vacuum flange 94 of the vacuum vessel 93 are vacuum-fastened by a bolt 96 or the like with a vacuum O-ring 95. The inside of the vacuum vessel 93 is evacuated from the space 97 using an external vacuum pump 100 via a vacuum valve 48 and a pipe 49.

冷却ステージ81冷却後の冷媒は、冷却空間80を通り、次に通気口98から断熱復路管76側の循環冷媒回収流路110に流入し、断熱復路管76内の金属ベロー管で構成した復路管6fに流入し、冷却装置99の復路直管6sに回収される。断熱復路管76内および低温流体用バイヨネット継手の構造は、断熱往路管75と低温流体用バイヨネット継手の組合せ構造と同一である。復路管6fの外周には、ブレード6bが取り付けられている。ここで、空間111は大気空間である。 The refrigerant after cooling the cooling stage 81 passes through the cooling space 80, then flows from the vent 98 into the circulating refrigerant recovery passage 110 on the side of the heat insulating return pipe 76, and is formed by a metal bellows pipe in the heat insulating return pipe 76. It flows into the pipe 6f and is collected in the return straight pipe 6s of the cooling device 99. The structures of the heat insulating return pipe 76 and the low temperature fluid bayonet joint are the same as the combined structure of the heat insulating forward pipe 75 and the low temperature fluid bayonet joint. A blade 6b is attached to the outer periphery of the return pipe 6f. Here, the space 111 is an atmospheric space.

本実施例によれば、冷媒の往復路をそれぞれ単独に分離して設けることにより、往復路間での漏洩がなく、冷媒の全量で冷却ステージ81を良好に冷却できるで、冷却ステージ81を更に低温に冷却できる低温流体用バイヨネット継手を提供できる効果がある。 According to the present embodiment, by providing the refrigerant reciprocating paths separately, there is no leakage between the reciprocating paths, and the cooling stage 81 can be satisfactorily cooled with the entire amount of the refrigerant. There is an effect that a bayonet joint for a low temperature fluid that can be cooled to a low temperature can be provided.

また、以上の実施例では、低温冷却装置の被冷却体が超電導磁石を構成する超電導バルク体である場合について説明したが、被冷却体が超電導磁石を構成する超電導コイル巻線体、超電導送電装置を構成し断熱冷媒移送管中に長尺に渡って配置された超電導線、磁気計測装置のSQUID素子、コンピュータの電子素子、NMR受信・照射用のコイル、であっても同様の作用、効果を生じる。 Moreover, although the above-mentioned Example demonstrated the case where the to-be-cooled body of a low-temperature cooling device was a superconducting bulk body which comprises a superconducting magnet, the to-be-cooled body comprised the superconducting coil winding body which comprises a superconducting magnet, and a superconducting power transmission apparatus Even if it is a superconducting wire, a SQUID element of a magnetic measuring device, an electronic element of a computer, and a coil for NMR reception / irradiation, which are arranged over a long length in a heat insulating refrigerant transfer pipe Arise.

また、以上の実施例では、冷媒が高圧のヘリウムガスである場合について説明したが、移送する冷媒が低温状態の液体窒素等の液化ガスであっても、低温流体用バイヨネット継手において、同様の作用、効果を生じる。 In the above embodiments, the case where the refrigerant is high-pressure helium gas has been described. However, even if the refrigerant to be transferred is a liquefied gas such as liquid nitrogen in a low temperature state, the same effect can be obtained in a bayonet joint for low temperature fluid. Produce an effect.

また、以上の実施例では、低温流体用バイヨネット継手の雄雌フランジの締結部にOリングとフランジと締結ボルトによる気密結合構造を用いて気密性を付与する場合について説明したが、フランジ締結の代わりに、雌シール台座とシール材と雄シール台座とこれら3部材をネジ締め込み圧を作用させる袋ナットを用いて気密締結構造を形成しても、同様の作用、効果を生じる。 In the above embodiment, the case where the hermeticity is imparted to the fastening portion of the male and female flanges of the bayonet joint for cryogenic fluid using an airtight coupling structure using an O-ring, a flange, and a fastening bolt is described. Even if the hermetic fastening structure is formed by using the female seal base, the seal material, the male seal base, and the cap nut that applies the screw tightening pressure to these three members, the same operation and effect are produced.

また、以上の実施例では、シール部の構造を凹凸の嵌合するテーパー面とした構造について説明したが、片方のシール面がフラットで、他方のシール面がリング状の凸部を有するフラット面で、リング状の凸部の全周でシールする構造で形成する場合であっても同様の作用、効果を生じる。 Further, in the above-described embodiments, the structure of the seal portion is described as a tapered surface that fits unevenness. However, one seal surface is flat and the other seal surface is a flat surface having a ring-shaped convex portion. Thus, even if it is formed with a structure that seals the entire circumference of the ring-shaped convex portion, the same action and effect are produced.

1…超電導バルク磁石、2…断熱真空容器、3…高温超伝導バルク体、4b…ブレード、4f…真空ベロー管、5f…低温冷媒の往路管、6f…低温冷媒の復路管、5b、6b…ブレード、7…断熱移送管、9…着磁用外部磁石、8…冷却ステージ、10…スリーブ、14…真空容器、15…螺管式熱交換器、16…冷却ステージ、17…ヘリウム低温冷凍機、18…圧縮機、19…向流式熱交換器、20…循環冷媒供給直管、22…真空空間、22…真空空間、25…気密用シール駒、26…ネジ付きフランジ、29…金属ベロー管、30…シール台座、31…摺動支持円筒体、32…コイルばね、40…循環冷媒回収流路、45…バイヨネット雌フランジ、59…バイヨネット雄フランジ、60…支持ロッド、63…高圧用Oリング、65…気密用シール駒、66…隔壁版、67…シール台座、68…摺動支持円筒体、70…コイルばね、75…断熱往路管、76…断熱復路管、81…冷却ステージ、84…バイヨネット雄フランジ、88…バイヨネット雌フランジ、89…高圧用Oリング、93…真空容器、94…真空フランジ、97…空間、99…冷却装置、100…真空ポンプ、200…超電導バルク磁石。 DESCRIPTION OF SYMBOLS 1 ... Superconducting bulk magnet, 2 ... Adiabatic vacuum vessel, 3 ... High-temperature superconducting bulk body, 4b ... Blade, 4f ... Vacuum bellows tube, 5f ... Low temperature refrigerant forward tube, 6f ... Low temperature refrigerant return tube, 5b, 6b ... Blade 7, heat insulating transfer pipe 9, magnetizing external magnet 8, cooling stage 10, sleeve 14, vacuum container 15, screw heat exchanger 16, cooling stage 17, helium cryogenic refrigerator , 18 ... Compressor, 19 ... Countercurrent heat exchanger, 20 ... Circulating refrigerant supply straight pipe, 22 ... Vacuum space, 22 ... Vacuum space, 25 ... Airtight seal piece, 26 ... Screw flange, 29 ... Metal bellows Pipe 30, seal pedestal 31, sliding support cylindrical body 32, coil spring 40, circulating refrigerant recovery channel 45, bayonet female flange 59 59 bayonet male flange 60 60 support rod 63 63 high pressure O Ring, 65 ... for airtightness Seal piece, 66 ... partition plate, 67 ... seal pedestal, 68 ... sliding support cylindrical body, 70 ... coil spring, 75 ... heat insulation outward pipe, 76 ... heat insulation return pipe, 81 ... cooling stage, 84 ... bayonet male flange, 88 DESCRIPTION OF SYMBOLS ... Bayonet female flange, 89 ... High pressure O-ring, 93 ... Vacuum container, 94 ... Vacuum flange, 97 ... Space, 99 ... Cooling device, 100 ... Vacuum pump, 200 ... Superconducting bulk magnet.

Claims (4)

被冷却体を内蔵する真空容器に取り付けるとともに、前記被冷却体を冷却する低温流体を移送するための低温流体用バイヨネット継手であって、前記冷温流体を大気と気密的に移送可能である、雌側の固定断熱スリーブおよびこのスリーブに対して密着するとともに着脱する雄側の断熱パイプを備え、前記被冷却体は前記固定断熱スリーブの低温部と熱的に接続され、前記固定断熱スリーブを真空容器の取付け孔に取り付けるとともに、前記断熱パイプの低温部に、シール部材を具備し、前記固定断熱スリーブの低温部に、前記シール部材と密着するとともに移動可能なシール台座部材を具備し、前記シール台座部材は、前記移動可能な空間の気密性を維持するベロー管内に配置されるとともに弾性部材で前記シール部材側に押付け力を付与し、前記ベロー管外に前記被冷却体を冷却する前もしくは冷却した後の前記低温流体の圧力が作用できるように形成されていることを特徴とする低温流体用バイヨネット継手。 A female bayonet joint for attaching a cooled object to a vacuum vessel and transferring a low-temperature fluid for cooling the cooled object, wherein the cold-temperature fluid can be airtightly transferred to the atmosphere. A fixed heat insulating sleeve on the side and a male heat insulating pipe to be attached to and detached from the sleeve, and the cooled object is thermally connected to a low temperature portion of the fixed heat insulating sleeve, and the fixed heat insulating sleeve is connected to a vacuum container. A seal member is provided in a low temperature portion of the heat insulation pipe, and a seal base member that is in close contact with the seal member and is movable is provided in a low temperature portion of the fixed heat insulation sleeve. The member is arranged in a bellows tube that maintains the airtightness of the movable space and gives a pressing force to the seal member side by an elastic member. , Cryogenic fluid bayonet coupling, characterized in that the pressure of the cryogen after before or cooled cooling the cooled body to the bellows tube outside are formed so can act. 被冷却体を内蔵する真空容器に取り付けるとともに、前記被冷却体を冷却する低温流体を移送するための低温流体用バイヨネット継手であって、前記冷温流体を大気と気密的に移送可能である、雌側の固定断熱スリーブおよびこのスリーブに対して密着するとともに着脱する雄側の断熱パイプを備え、前記被冷却は前記固定断熱スリーブの低温部と熱的に接続され、前記固定断熱スリーブを真空容器の取付け孔に取り付けるとともに、前記固定断熱スリーブの低温部に、シール部材を具備し、前記雄側の断熱パイプの低温部に、前記シール部材と密着するとともに移動可能なシール台座部材を具備し、前記シール台座部材は、前記移動可能な空間の気密性を維持するベロー管内に配置されるとともに弾性部材で前記シール部材側に押付け力を付与できるように形成し、前記ベロー管外に前記被冷却体を冷却する前もしくは冷却した後の前記低温流体の圧力が作用できるように形成されていることを特徴とする低温流体用バイヨネット継手。 A female bayonet joint for attaching a cooled object to a vacuum vessel and transferring a low-temperature fluid for cooling the cooled object, wherein the cold-temperature fluid can be airtightly transferred to the atmosphere. A fixed heat insulating sleeve on the side and a male heat insulating pipe that is attached to and detachable from the sleeve, and the cooled object is thermally connected to a low temperature portion of the fixed heat insulating sleeve, and the fixed heat insulating sleeve is attached to a vacuum container. Attached to the attachment hole, and provided with a seal member in the low temperature part of the fixed heat insulating sleeve, and provided with a seal pedestal member in close contact with the seal member and movable at the low temperature part of the heat insulating pipe on the male side, The seal pedestal member is disposed in a bellows tube that maintains the airtightness of the movable space and exerts a pressing force on the seal member side by an elastic member. Formed to be given, it said cold fluid bayonet joint pressure of the cryogen after before or cooling, characterized in that it is formed to allow the action to cool the cooled body to a bellows tube outside. 前記低温流体用バイヨネット継手内に、前記被冷却体を冷却する低温流体の往復路を具備し、温度が異なる2流路間の少なくとも一部に断熱手段を具備したことを特徴とする請求項1および請求項2記載の低温流体用バイヨネット継手。 2. The low-temperature fluid bayonet joint is provided with a low-temperature fluid reciprocating path for cooling the object to be cooled, and at least part of two flow paths having different temperatures are provided with heat insulating means. A bayonet joint for cryogenic fluid according to claim 2. 前記真空容器に前記往復路の別々の単流路の低温流体用バイヨネット継手を具備したことを特徴とする請求項1および請求項2記載の低温流体用バイヨネット継手。 The bayonet joint for cryogenic fluid according to claim 1 or 2, wherein the vacuum vessel is provided with a bayonet joint for cryogenic fluid of separate single flow paths of the reciprocating path.
JP2012196707A 2012-09-07 2012-09-07 Bayonet coupler for cryogenic fluid Pending JP2014052133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196707A JP2014052133A (en) 2012-09-07 2012-09-07 Bayonet coupler for cryogenic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196707A JP2014052133A (en) 2012-09-07 2012-09-07 Bayonet coupler for cryogenic fluid

Publications (1)

Publication Number Publication Date
JP2014052133A true JP2014052133A (en) 2014-03-20

Family

ID=50610760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196707A Pending JP2014052133A (en) 2012-09-07 2012-09-07 Bayonet coupler for cryogenic fluid

Country Status (1)

Country Link
JP (1) JP2014052133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509375A (en) * 2016-01-08 2016-04-20 浙江大学 Heat regenerator using acoustic power transmission components capable of stopping flow and pulse tube refrigerator
CN105509361A (en) * 2016-01-08 2016-04-20 浙江大学 Multistage heat-regeneration refrigerator with acoustic power transmission components capable of stopping flow
CN105783319A (en) * 2016-01-08 2016-07-20 浙江大学 Regenerative cooler precooling low-temperature J-T cooler
CN110440477A (en) * 2019-08-26 2019-11-12 西南交通大学 A kind of plug type low-temperature (low temperature) vessel
CN112415302A (en) * 2020-10-27 2021-02-26 西安电子科技大学 Operation and test device and method for conduction cooling high-temperature superconducting cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509375A (en) * 2016-01-08 2016-04-20 浙江大学 Heat regenerator using acoustic power transmission components capable of stopping flow and pulse tube refrigerator
CN105509361A (en) * 2016-01-08 2016-04-20 浙江大学 Multistage heat-regeneration refrigerator with acoustic power transmission components capable of stopping flow
CN105783319A (en) * 2016-01-08 2016-07-20 浙江大学 Regenerative cooler precooling low-temperature J-T cooler
CN105783319B (en) * 2016-01-08 2018-01-02 浙江大学 The low temperature J T j-t refrigerators of philip refrigerator precooling
CN110440477A (en) * 2019-08-26 2019-11-12 西南交通大学 A kind of plug type low-temperature (low temperature) vessel
JP2021032555A (en) * 2019-08-26 2021-03-01 サウスウェスト ジャオトン ユニバーシティSouthwest Jiaotong University Insertable/withdrawable cryostat
CN110440477B (en) * 2019-08-26 2024-05-28 西南交通大学 Pluggable low-temperature container
CN112415302A (en) * 2020-10-27 2021-02-26 西安电子科技大学 Operation and test device and method for conduction cooling high-temperature superconducting cable

Similar Documents

Publication Publication Date Title
JP2014052133A (en) Bayonet coupler for cryogenic fluid
JP2008111666A (en) Cryogenic cooler
CN100430672C (en) Pulse tube refrigerator
US11573279B2 (en) Displacer in magnetic resonance imaging system
JP5839734B2 (en) Evaporative gas reliquefaction equipment for low temperature liquefied gas
JP2015117778A (en) Vacuum heat insulation pipe and vacuum heat insulation transfer tube
US10162023B2 (en) Apparatus for reducing vibrations in a pulse tube refrigerator such as for magnetic resonance imaging systems
JP6588264B2 (en) Cryogenic refrigerant supply system
JP2008306060A (en) Extremely low temperature containment cooling system and its operating method
JP4275640B2 (en) Cryogenic cooling device
JPH0429376B2 (en)
JP2014081016A (en) Heat insulation film spacer and vacuum heat insulation low temperature apparatus
CN109243752B (en) Auxiliary cooling device and cooling equipment
JP2014059022A (en) Heat insulation support spacer in vacuum heat insulation low temperature equipment
JP6164409B2 (en) NMR system
JP2016211795A5 (en)
JP2014037932A (en) Flexible heat insulation transfer pipe and flexible low temperature cooling device
JP2008116171A (en) Gas heat transfer device and superconductive device using the same
US11977139B2 (en) Accelerated cooldown of low-cryogen magnetic resonance imaging (MRI) magnets
JP2007078310A (en) Cryogenic cooling device
JP2004116914A (en) Cooling pipe and cryogenic cryostat using it
JP7208914B2 (en) Thermal bath heat exchanger for superconducting magnets
JP2009267183A (en) Superconductive magnet
JP2014211194A (en) Flexible transfer tube having heat insulation spacer
WO2014203827A1 (en) Mri system