JP2014052114A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014052114A
JP2014052114A JP2012195856A JP2012195856A JP2014052114A JP 2014052114 A JP2014052114 A JP 2014052114A JP 2012195856 A JP2012195856 A JP 2012195856A JP 2012195856 A JP2012195856 A JP 2012195856A JP 2014052114 A JP2014052114 A JP 2014052114A
Authority
JP
Japan
Prior art keywords
temperature
air
indoor air
indoor
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012195856A
Other languages
Japanese (ja)
Inventor
Shigeyuki Inoue
茂之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012195856A priority Critical patent/JP2014052114A/en
Publication of JP2014052114A publication Critical patent/JP2014052114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that achieves a comfortable humidity environment without using a humidity sensor by setting a comfortable dew point temperature as a piping temperature target value of an evaporator.SOLUTION: The air conditioner comprises: heat pump control means 20 for controlling an expansion valve opening and a compressor rotation speed of heat pump means; air volume correction means 16 for correcting the volume of air supplied into a room; indoor air temperature setting means 22 for setting a desired indoor air temperature; indoor air temperature detection means 13 for detecting a room temperature; piping temperature detection means 5 for detecting a piping temperature of an evaporation heat exchanger; and radiation temperature detection means 6 for detecting an activity level of the human body from a variation in indoor radiation temperature distribution during a predetermined time period. When the room temperature is close to the desired temperature, the heat pump control means and the air volume correction means function to make the piping temperature of the evaporation heat exchanger close to a desired dew point temperature, and the dew point temperature is corrected depending on the activity level of the human body.

Description

本発明は、冷凍サイクルを用いて室内空気の除湿を行う空気調和装置に関するものである。   The present invention relates to an air conditioner that dehumidifies indoor air using a refrigeration cycle.

従来より、圧縮機、凝縮用熱交換器、膨張弁、室内熱交換器、およびこれらを接続して冷媒が流れる配管を有する空気調和装置において、温度センサに加え湿度センサを用いて、室内空気温度と相対湿度を制御目標とし、圧縮機回転数等の制御をするものがある(例えば、特許文献1参照)。   Conventionally, in an air conditioner having a compressor, a heat exchanger for condensing, an expansion valve, an indoor heat exchanger, and a pipe through which refrigerant flows by connecting them, the indoor air temperature is measured using a humidity sensor in addition to the temperature sensor. And the relative humidity is a control target, and the number of rotations of the compressor is controlled (for example, see Patent Document 1).

図4は特許文献1に記載された空気調和装置であり、この空気調和装置は、温度センサ101と湿度センサ102からなる湿球温度検出手段と、室内空気の湿球温度を設定する湿球温度設定手段(リモコン)103とを備え、前記湿球温度検出手段による湿球温度と前記湿球温度設定手段103よる湿球温度設定値の差を縮めるように、圧縮機104の回転速度を制御する。さらにこの空気調和装置においては、温度設定手段と湿度設定手段が備えられ、温湿度設定値と室内温湿度との差が小さくなるように、送風機105の回転数を制御することが示されている。   FIG. 4 shows an air conditioner described in Patent Document 1. This air conditioner includes a wet bulb temperature detecting means including a temperature sensor 101 and a humidity sensor 102, and a wet bulb temperature for setting the wet bulb temperature of room air. Setting means (remote control) 103, and controls the rotational speed of the compressor 104 so as to reduce the difference between the wet bulb temperature by the wet bulb temperature detection means and the wet bulb temperature setting value by the wet bulb temperature setting means 103. . Further, this air conditioner is provided with a temperature setting means and a humidity setting means, and it is shown that the rotational speed of the blower 105 is controlled so that the difference between the temperature / humidity set value and the room temperature / humidity becomes small. .

特開2006−266677号公報JP 2006-266677 A

上記特許文献1に記載の従来の空気調和装置では、湿度センサ102を必要とすることで、空気調和装置のコストを上げるという課題を有する他、所望の湿度を制御目標とする相対湿度制御を行うが、この場合、例えば、室内の相対湿度50%rhを目標値とし、室内空気の相対湿度50%rhが達成されたとしても、この時、室内空気温度が異なれば、50%rhという同じ指標値にも関わらず、人体への熱的影響が等価にはならず、快適性が得られないという課題を有する。   The conventional air conditioner described in Patent Document 1 requires the humidity sensor 102 to increase the cost of the air conditioner, and performs relative humidity control with a desired humidity as a control target. However, in this case, for example, even if the indoor relative humidity is 50% rh when the indoor relative humidity is 50% rh, the same index of 50% rh is obtained if the indoor air temperature is different at this time. Regardless of the value, the thermal effect on the human body is not equivalent, and there is a problem that comfort cannot be obtained.

すなわち、温熱生理学的には、人体と空気の間で熱的平衡状態が成立し、体温調節に伴う生理的な負担が最も小さい状態が熱的中立状態と言われて快適な状態といえ、室内環境における快適性の一条件になっている。   That is, in terms of thermophysiology, a thermal equilibrium state is established between the human body and air, and a state where the physiological burden associated with body temperature regulation is the smallest is said to be a thermal neutral state, which is a comfortable state. It is a condition of environmental comfort.

平均的な人体がこの熱的中立状態であるときの室内空気側の水蒸気分圧は約20hPaである。人体表面の境界層における平均気温と相対湿度をそれぞれ33℃、100%rhとした場合、水蒸気分圧は約50hPaなので、熱平衡状態における人体境界層と室内空気との水蒸気の分圧差は約30hPaである。水蒸気分圧差に依存して生じる、人体から空気側へ水分の移動は、感覚的には感知されないことから不感蒸泄とよばれ、人体の放熱の潜熱分を担っている。   The water vapor partial pressure on the indoor air side when the average human body is in this thermal neutral state is about 20 hPa. When the average temperature and relative humidity in the boundary layer on the human body surface are 33 ° C. and 100% rh, respectively, the water vapor partial pressure is about 50 hPa. is there. The movement of moisture from the human body to the air side, which occurs depending on the water vapor partial pressure difference, is not perceived sensorially, so it is called insensitive steaming, and bears the latent heat of heat release from the human body.

相対湿度制御では、同じ50%rhでも気温が29℃の場合、20hPa、気温が27℃なら約18hPaであり、この2℃の気温差によって分圧差は気温29℃の30hPaから27℃の場合32hPaへ約7%拡大する。皮膚血管の拡張あるいは収縮で29℃と27℃の環境における顕熱差に対しては熱的平衡が保たれる。一方、不感蒸泄の熱的平衡は、29℃なら適切な水蒸気分圧差である30hPaが保たれるが、室内空気温度27℃
では崩れ、体表面の水分蒸発による潜熱移動が増加することになる。この放熱が、冷房使用時の「冷え」や冷房の敬遠の一因にもなりえ、快適性を損ないうる。
In the relative humidity control, even if the air temperature is 29 ° C. even at the same 50% rh, it is 20 hPa, and if the air temperature is 27 ° C., it is about 18 hPa. Due to this 2 ° C. air temperature difference, the partial pressure difference is 30 hPa from 29 ° C. to 27 hPa. It expands to about 7%. Thermal equilibrium is maintained against the sensible heat difference in the environment of 29 ° C. and 27 ° C. due to expansion or contraction of the skin blood vessels. On the other hand, if the thermal equilibrium of insensitive digestion is 29 ° C, an appropriate water vapor partial pressure difference of 30 hPa is maintained, but the indoor air temperature is 27 ° C.
Then, it collapses and the latent heat transfer due to the evaporation of moisture on the body surface increases. This heat dissipation can contribute to "cooling" when using the air conditioner and to avoid the cooling, and can impair comfort.

特許文献1に記載の従来の空気調和装置のように一定の相対湿度を目標とする制御では、室内空気温度によって相対湿度の人体への影響が異なり、室内空気温度の設定値が比較的低い場合、不感蒸泄の平衡が崩れ、潜熱移動が増加して過度に体が冷却されるという課題がある。   In the control that targets a constant relative humidity as in the conventional air conditioner described in Patent Document 1, the influence of the relative humidity on the human body differs depending on the room air temperature, and the set value of the room air temperature is relatively low. There is a problem that the balance of insensitive digestion is lost, the latent heat transfer is increased, and the body is excessively cooled.

人体からの放熱を促進させる必要がある場合は相対湿度制御も問題はない。しかし、長時間空調環境に曝されたり、発汗が止まり熱的中立状態になった人体においては、不感蒸泄による潜熱移動も平衡に保たれなければならない。また、不感蒸泄は感覚的に感知されにくく、人間自身が生理的に制御することもできない。したがって、不感蒸泄による潜熱移動の平衡状態は空気調和に大きく依存するという特徴がある。   When it is necessary to promote heat dissipation from the human body, there is no problem with relative humidity control. However, in a human body that has been exposed to an air-conditioning environment for a long time or has sweated and is in a heat neutral state, the latent heat transfer due to insensitive steaming must be kept in equilibrium. Insensitive steaming is also difficult to perceive sensibly and cannot be physiologically controlled by humans. Therefore, the equilibrium state of latent heat transfer due to insensitive digestion is characterized by being largely dependent on air conditioning.

本発明はこのような点に鑑みてなしたもので、快適な露点温度を蒸発器の配管温度の目標値とすることで、湿度センサを用いることなく快適な湿度環境を実現できるようにすることを目的としたものである。   This invention is made in view of such a point, and makes it possible to implement | achieve a comfortable humidity environment, without using a humidity sensor by making comfortable dew point temperature into the target value of the piping temperature of an evaporator. It is aimed at.

上記目的を達成するために、本発明に係る空気調和装置は、回転速度可変の圧縮機と凝縮用熱交換器と膨張弁と室内に設置された蒸発用熱交換器を冷媒配管で結合し、前記冷媒配管内で冷媒を循環させて冷凍サイクルを構成するヒートポンプ手段と、入力された所望の室内空気温度を室内空気温度設定値として出力する室内空気温度設定手段と、室内空気温度を検出する室内空気温度検出手段と、前記蒸発用熱交換器に含まれる配管の配管温度を検出する配管温度検出手段と、室内における所望の水蒸気分圧を有する空気の露点温度を前記配管温度の目標値として設定し出力する配管温度設定手段と、所定の時間区間における室内の放射温度分布の変化から人体の活動水準を検出する放射温度検出手段と、前記室内空気温度と前記室内空気温度設定値とを比較し、かつ前記配管温度と前記目標値とを比較し、前記室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、前記配管温度を、前記目標値を基準とする所定の範囲内に保持するように前記ヒートポンプ手段の膨張弁開度と圧縮機回転数とを制御するヒートポンプ制御手段と、前記室内空気温度と前記室内空気温度設定値とを比較し、かつ前記配管温度と前記目標値とを比較し、前記室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、前記載送風手段から出力される風量を増加させる風量補正手段とを備え、前記放射温度検出手段が少なくとも放射温度分布の変化の有無を判別し、「有」とした場合、前記目標値を変更する構成としたものである。   In order to achieve the above object, an air conditioner according to the present invention combines a compressor with a variable rotation speed, a heat exchanger for condensation, an expansion valve, and an evaporation heat exchanger installed indoors with a refrigerant pipe, Heat pump means for constituting a refrigeration cycle by circulating refrigerant in the refrigerant pipe, indoor air temperature setting means for outputting an inputted desired indoor air temperature as an indoor air temperature set value, and an indoor for detecting the indoor air temperature Air temperature detection means, pipe temperature detection means for detecting the pipe temperature of the pipe included in the evaporation heat exchanger, and the dew point temperature of air having a desired water vapor partial pressure in the room is set as the target value of the pipe temperature Piping temperature setting means for outputting, radiation temperature detecting means for detecting the activity level of the human body from a change in indoor radiation temperature distribution in a predetermined time interval, the room air temperature and the room air temperature A set value is compared, the pipe temperature is compared with the target value, a difference between the indoor air temperature and the indoor air temperature set value is within a predetermined range, and the pipe temperature is the target value. In the following cases, the heat pump control means for controlling the expansion valve opening of the heat pump means and the compressor rotational speed so as to keep the pipe temperature within a predetermined range based on the target value; Comparing the air temperature and the indoor air temperature set value, comparing the pipe temperature and the target value, the difference between the indoor air temperature and the indoor air temperature set value is within a predetermined range, and When the pipe temperature is equal to or lower than the target value, the air volume correction means for increasing the air volume output from the air blowing means described above, the radiation temperature detection means determines at least whether there is a change in the radiation temperature distribution, "Yes" It is obtained by a structure in which to change the serial target value.

これにより、室内空気温度が室内空気温度設定値に到達した場合、配管温度が所望の露点温度である配管温度の目標値を下回れば、ヒートポンプ制御手段が膨張弁開度と圧縮機回転数を制御し、風量補正手段が吹出し風量を増加させるので、室温の上昇を抑えながらも、配管温度を上げて除湿を緩和させ、湿度センサを設けていなくても快適な空調が可能となる。特に本発明では、放射温度検出手段によって、所定の時間区間における室内の放射温度分布の変化から人体の労作の程度を示す活動水準を検出するため、人体の労作に合わせて、所望の露点温度すなわち蒸発器の配管温度目標値を変更することができ、より効果的に快適な空調が可能となる。   As a result, when the indoor air temperature reaches the indoor air temperature set value, the heat pump control means controls the expansion valve opening and the compressor rotation speed if the pipe temperature falls below the target value of the pipe temperature, which is a desired dew point temperature. Since the air volume correction means increases the blown air volume, it is possible to relax the dehumidification by increasing the piping temperature while suppressing the increase in the room temperature, and comfortable air conditioning is possible even if no humidity sensor is provided. Particularly in the present invention, the radiation temperature detecting means detects the activity level indicating the degree of effort of the human body from the change of the indoor radiation temperature distribution in a predetermined time interval. The pipe temperature target value of the evaporator can be changed, and comfortable air conditioning can be performed more effectively.

本発明の空気調和装置によれば、室内の空気の露点温度を略一定に保ち、その空気における水蒸気分圧も一定となるので、ほぼ一定水準の体表面境界層との水蒸気分圧差が拡大
することを防ぐことができる。特に、単位体積あたりの表面積の大きな手先、足先において過剰な冷却を防ぐことができ、しかも、人体の労作に合わせて、所望の露点温度すなわち蒸発器の配管温度目標値を変更することができ、湿度センサを搭載することなく、室内空気の水蒸気分圧を一定に保ち、快適な温湿度環境、すなわち、快適な空調を実現できる。
According to the air conditioner of the present invention, the dew point temperature of indoor air is kept substantially constant, and the water vapor partial pressure in the air is also constant, so that the water vapor partial pressure difference with the body surface boundary layer at a substantially constant level is expanded. Can be prevented. In particular, it is possible to prevent excessive cooling at the hands and toes with a large surface area per unit volume, and it is possible to change the desired dew point temperature, that is, the pipe temperature target value of the evaporator according to the work of the human body. Without installing a humidity sensor, the water vapor partial pressure of the room air can be kept constant, and a comfortable temperature / humidity environment, that is, comfortable air conditioning can be realized.

本発明の実施の形態1に係る空気調和装置の構成図The block diagram of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 同空気調和装置の制御ブロック図Control block diagram of the air conditioner 同空気調和装置の除湿緩和動作に至る流れ図Flow chart leading to dehumidification mitigation operation of the air conditioner 従来の空気調和装置を示す構成図Configuration diagram showing a conventional air conditioner

第1の発明は、回転速度可変の圧縮機と凝縮用熱交換器と膨張弁と室内に設置された蒸発用熱交換器を冷媒配管で結合し、前記冷媒配管内で冷媒を循環させて冷凍サイクルを構成するヒートポンプ手段と、入力された所望の室内空気温度を室内空気温度設定値として出力する室内空気温度設定手段と、室内空気温度を検出する室内空気温度検出手段と、前記蒸発用熱交換器に含まれる配管の配管温度を検出する配管温度検出手段と、室内における所望の水蒸気分圧を有する空気の露点温度を前記配管温度の目標値として設定し出力する配管温度設定手段と、所定の時間区間における室内の放射温度分布の変化から人体の活動水準を検出する放射温度検出手段と、前記室内空気温度と前記室内空気温度設定値とを比較し、かつ前記配管温度と前記目標値とを比較し、前記室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、前記配管温度を、前記目標値を基準とする所定の範囲内に保持するように前記ヒートポンプ手段の膨張弁開度と圧縮機回転数とを制御するヒートポンプ制御手段と、前記室内空気温度と前記室内空気温度設定値とを比較し、かつ前記配管温度と前記目標値とを比較し、前記室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、前記載送風手段から出力される風量を増加させる風量補正手段とを備え、前記放射温度検出手段が少なくとも放射温度分布の変化の有無を判別し、「有」とした場合、前記目標値を変更する構成としたものである。   In the first invention, a compressor having a variable rotation speed, a heat exchanger for condensing, an expansion valve, and an evaporation heat exchanger installed in a room are connected by a refrigerant pipe, and the refrigerant is circulated in the refrigerant pipe for freezing. Heat pump means constituting the cycle, indoor air temperature setting means for outputting the input desired indoor air temperature as the indoor air temperature set value, indoor air temperature detecting means for detecting the indoor air temperature, and the heat exchange for evaporation A pipe temperature detecting means for detecting the pipe temperature of the pipe included in the vessel; a pipe temperature setting means for setting and outputting a dew point temperature of air having a desired water vapor partial pressure in the room as a target value of the pipe temperature; and a predetermined temperature Radiation temperature detection means for detecting the activity level of the human body from the change in indoor radiation temperature distribution in the time interval, comparing the indoor air temperature and the indoor air temperature set value, and comparing the piping temperature and the previous When the difference between the room air temperature and the room air temperature set value is within a predetermined range and the pipe temperature is equal to or lower than the target value, the pipe temperature is compared with the target value. The heat pump control means for controlling the expansion valve opening degree and the compressor rotational speed of the heat pump means so as to be held within a predetermined range with reference to the above, the indoor air temperature and the indoor air temperature set value are compared. And the pipe temperature is compared with the target value, the difference between the room air temperature and the room air temperature set value is within a predetermined range, and the pipe temperature is equal to or less than the target value. An air volume correcting means for increasing the air volume output from the air blowing means, and the radiation temperature detecting means determines at least whether or not there is a change in the radiation temperature distribution and changes the target value when it is determined to be “present” It is what

これにより、冷房運転の際、室内空気温度検出手段によって検出された室内空気温度と、室内空気温度設定値の比較を行い、室内空気温度が室内空気温度設定値に到達した場合、配管温度が所望の露点温度である配管温度の目標値を下回れば、ヒートポンプ制御手段が膨張弁開度と圧縮機回転数を制御し配管温度を上昇させ、風量補正手段が吹出し風量を増加させるので、室温の上昇を抑えながらも配管温度を上げて除湿を緩和させることができる。つまり、室内の空気の露点温度が所望の露点温度を下回る場合に、空気調和装置は顕熱比の高い高顕熱比冷房へ移行し、除湿を緩和することができる。また、露点温度を目標値とすることで、室内の空気の露点温度が所望の露点温度を上回る場合は所望の露点温度に達するまで除湿をすることが可能となり、空気調和装置により室内の空気の露点温度を目標の露点温度に近づけることが可能になる。   Thus, during the cooling operation, the indoor air temperature detected by the indoor air temperature detecting means is compared with the indoor air temperature set value, and when the indoor air temperature reaches the indoor air temperature set value, the pipe temperature is desired. If the temperature falls below the target value of the pipe temperature, which is the dew point temperature, the heat pump control means increases the pipe temperature by controlling the expansion valve opening and the compressor speed, and the air volume correction means increases the blown air volume. It is possible to reduce the dehumidification by raising the pipe temperature while suppressing the above. That is, when the dew point temperature of the indoor air is lower than the desired dew point temperature, the air conditioner shifts to high sensible heat ratio cooling with a high sensible heat ratio, and can reduce dehumidification. In addition, by setting the dew point temperature as the target value, if the dew point temperature of the indoor air exceeds the desired dew point temperature, dehumidification can be performed until the desired dew point temperature is reached. It is possible to bring the dew point temperature closer to the target dew point temperature.

この所望の露点温度は、熱的快適性の観点から使用者の状態によって変化するが、本発明では放射温度検出手段によって人体の労作の程度を示す活動水準を検出するため、人体の労作に合わせて、所望の露点温度すなわち蒸発器の配管温度目標値を変更することができ、快適な空調が可能となる。例えば暑い室外から入室したばかりの人体や、労作中の人体は、放熱に対して産熱が過剰な鬱熱状態であったことから、室内空気においては、比較的大きな水蒸気分圧差すなわち低い露点温度が好まれる。一方、人体の産熱と放熱が平衡している場合はその状態が維持されることが適切であることから、室内空気には、前記の鬱熱状態の時よりも小さな水蒸気分圧差が求められ、比較的大きな水蒸気分圧差は使用者
に不快と評価される。本発明の空気調和装置は放射温度検出手段によって、所定の時間区間における室内の放射温度分布の変化から人体の労作の程度を示す活動水準を検出するため、人体の労作に合わせて、所望の露点温度すなわち蒸発器の配管温度目標値を変更することができ、湿度センサを搭載することなく、快適な空調が可能となるのである。
This desired dew point temperature varies depending on the condition of the user from the viewpoint of thermal comfort, but in the present invention, the radiation level detection means detects the activity level indicating the degree of the human effort, so that it matches the human effort. Thus, the desired dew point temperature, that is, the pipe temperature target value of the evaporator can be changed, and comfortable air conditioning becomes possible. For example, a human body that has just entered the room from a hot outdoor place or a human body that is in the midst of working has been in a heated state with excessive heat production compared to heat dissipation. Liked. On the other hand, it is appropriate that the state is maintained when the heat generation and heat dissipation of the human body are in equilibrium, so the indoor air is required to have a smaller water vapor partial pressure difference than in the above-mentioned depressive state, A relatively large water vapor partial pressure difference is evaluated as uncomfortable by the user. The air conditioner according to the present invention detects the activity level indicating the degree of effort of the human body from the change of the indoor radiation temperature distribution in the predetermined time interval by the radiation temperature detecting means, so that a desired dew point is set according to the effort of the human body. The temperature, that is, the pipe temperature target value of the evaporator can be changed, and comfortable air conditioning becomes possible without mounting a humidity sensor.

第2の発明は、第1の発明において、放射温度検出手段が少なくとも放射温度分布の変化の有無を判別し、「有」とした場合、目標値は変更前よりも低くする構成としてある。   According to a second invention, in the first invention, when the radiation temperature detecting means determines at least whether or not there is a change in the radiation temperature distribution and sets it to “present”, the target value is set lower than before the change.

これにより、第1の発明のように、湿度センサを搭載することなく、快適な温湿度環境の実現すなわち快適な空調が可能となる。   As a result, as in the first aspect, it is possible to realize a comfortable temperature / humidity environment, that is, comfortable air conditioning without mounting a humidity sensor.

第3の発明は、第1または第2の発明において、ヒートポンプ手段は、除湿停止信号の出力を監視し、前記出力を検知した場合、配管温度を目標値を基準とする所定の範囲内に保持するように膨張弁を開き、圧縮機回転数を上昇させるように制御する構成としてある。   According to a third invention, in the first or second invention, the heat pump means monitors the output of the dehumidification stop signal, and when the output is detected, maintains the pipe temperature within a predetermined range based on the target value. Thus, the expansion valve is opened so as to increase the compressor rotational speed.

これにより、第1の発明のように、湿度センサを搭載することなく、快適な温湿度環境の実現すなわち快適な空調が可能となる。   As a result, as in the first aspect, it is possible to realize a comfortable temperature / humidity environment, that is, comfortable air conditioning without mounting a humidity sensor.

第4の発明は、第1〜第3の発明において、風量補正手段は、室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、室内空気温度を入力し、室内空気温度の時間微分値が0を含む所定の範囲内に収まるように風量を変化させる構成としてある。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the air volume correction means is such that the difference between the indoor air temperature and the indoor air temperature set value is within a predetermined range, and the pipe temperature is equal to or less than the target value. In this case, the room air temperature is input, and the air volume is changed so that the time differential value of the room air temperature falls within a predetermined range including zero.

これにより、室温を一定に保ちながらも、配管温度を上げて除湿を緩和し、空気調和装置により室内の空気の露点温度を目標の露点温度に近づけることが可能になる。室内の空気の露点温度が一定に保たれる場合、その空気における水蒸気分圧も一定となるので、ほぼ一定水準の体表面境界層との水蒸気分圧差が拡大することを防ぐことができる。特に、単位体積あたりの表面積の大きな手先、足先において過剰な冷却を防ぐことができ、湿度センサを搭載することなく、室内空気の水蒸気分圧を一定に保ち、快適な温湿度を実現できる。   Thus, while keeping the room temperature constant, the dehumidification can be reduced by raising the piping temperature, and the dew point temperature of the indoor air can be brought close to the target dew point temperature by the air conditioner. When the dew point temperature of the indoor air is kept constant, the water vapor partial pressure in the air is also constant, so that it is possible to prevent the water vapor partial pressure difference from the body surface boundary layer at a substantially constant level from expanding. In particular, it is possible to prevent excessive cooling at the hands and toes with a large surface area per unit volume, and it is possible to achieve a comfortable temperature and humidity by keeping the water vapor partial pressure of the room air constant without mounting a humidity sensor.

第5の発明は、第1〜第4の発明において、配管温度検出手段は、蒸発用熱交換器に含まれる配管のうち、冷媒の流れ方向に対して最下流の部位と、比較的上流の部位との少なくとも2箇所に設置された温度センサ群を備え、前記温度センサ群で検出された温度のうち、最低温度を配管温度として出力する構成としてある。   According to a fifth invention, in the first to fourth inventions, the pipe temperature detecting means is a part of the pipe included in the evaporating heat exchanger that is located on the most downstream side relative to the flow direction of the refrigerant and relatively upstream. Temperature sensor groups installed in at least two locations with respect to the part are provided, and the lowest temperature among the temperatures detected by the temperature sensor group is output as the pipe temperature.

これにより、蒸発器配管温度の代表値を蒸発器の最低温度とすることができ、この温度が配管温度目標値に達した場合、蒸発器の温度を全域にわたって露点よりも高く保ち、除湿を完全に停止することが可能になり、より快適な空調が可能となる。   As a result, the representative value of the evaporator pipe temperature can be set to the minimum temperature of the evaporator. When this temperature reaches the pipe temperature target value, the evaporator temperature is kept higher than the dew point over the entire area, and dehumidification is complete. This makes it possible to stop the air conditioner more quickly, and more comfortable air conditioning becomes possible.

以下、本発明に係る実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1に係る空気調和装置の構成図である。この図1は、冷房時の冷凍サイクル図となっている。図2は同空気調和装置の制御ブロック図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 1 is a refrigeration cycle diagram during cooling. FIG. 2 is a control block diagram of the air conditioner.

図1、図2において、この空気調和装置は、大きくは室外機3と室内機1とそれらを接続する冷媒配管9から構成される。室内機1は、放射温度検出手段6と、蒸発用熱交換器
7と、送風手段11と室内マイコン15と室内空気温度検出手段13と配管温度検出手段5とを備える。室内マイコン15は本発明に係る風量補正手段16(図2参照)が含まれる。室外機3は圧縮機23とインバータ21と膨張弁17と凝縮用熱交換器27と室外マイコン19と室外送風機25とを備える。室外マイコン19は本発明に係るヒートポンプ制御手段20(図2参照)が含まれる。
1 and 2, the air conditioner is mainly composed of an outdoor unit 3, an indoor unit 1, and a refrigerant pipe 9 that connects them. The indoor unit 1 includes a radiation temperature detection means 6, an evaporation heat exchanger 7, a blower means 11, an indoor microcomputer 15, an indoor air temperature detection means 13, and a pipe temperature detection means 5. The indoor microcomputer 15 includes air volume correction means 16 (see FIG. 2) according to the present invention. The outdoor unit 3 includes a compressor 23, an inverter 21, an expansion valve 17, a condensation heat exchanger 27, an outdoor microcomputer 19, and an outdoor blower 25. The outdoor microcomputer 19 includes a heat pump control means 20 (see FIG. 2) according to the present invention.

室外機3の黒矢印は本発明の実施の形態に係る空気調和装置による冷房運転時の冷媒の流れを示す。圧縮機23の吐出口から吐出された冷媒は、凝縮用熱交換器27に至る。凝縮用熱交換器27において冷媒より低温の室外空気と熱交換して凝縮した冷媒は、膨張弁17に至る。膨張弁17において減圧し、温度低下した冷媒の蒸発用熱交換器7に至り、冷媒より高温の室内空気と熱交換して蒸発した冷媒は冷媒配管9を経て圧縮機23の吸入口に戻る。   The black arrow of the outdoor unit 3 indicates the flow of the refrigerant during the cooling operation by the air conditioner according to the embodiment of the present invention. The refrigerant discharged from the discharge port of the compressor 23 reaches the heat exchanger 27 for condensation. The refrigerant condensed by exchanging heat with outdoor air having a temperature lower than that of the refrigerant in the condensation heat exchanger 27 reaches the expansion valve 17. The refrigerant is reduced in pressure by the expansion valve 17 and reaches the heat exchanger 7 for evaporating the refrigerant, and the refrigerant evaporated by exchanging heat with indoor air having a temperature higher than that of the refrigerant returns to the suction port of the compressor 23 through the refrigerant pipe 9.

室内機1に設けられた室内空気温度検出手段13は、室内機1に取り込まれる吸込み空気の通過経路に設置され、吸込み空気の温度を室内空気温度として検出し、配管温度検出手段5は、蒸発用熱交換器7を貫く冷媒配管に設置され冷媒の流れに対して最下流に位置し、蒸発用熱交換器7における冷媒配管の最低温度を配管温度として検出する。また、室内マイコン15には図2に示すように本発明に係る室内空気温度設定手段22と配管温度設定手段24が含まれる。   The indoor air temperature detection means 13 provided in the indoor unit 1 is installed in the passage path of the intake air taken into the indoor unit 1, detects the temperature of the intake air as the indoor air temperature, and the pipe temperature detection means 5 evaporates. It is installed in the refrigerant pipe that penetrates the heat exchanger 7 and is located on the most downstream side with respect to the refrigerant flow, and detects the lowest temperature of the refrigerant pipe in the evaporating heat exchanger 7 as the pipe temperature. The indoor microcomputer 15 includes an indoor air temperature setting means 22 and a pipe temperature setting means 24 according to the present invention as shown in FIG.

室内空気温度設定手段22および配管温度設定手段24は、本実施の形態に係る空気調和装置の図示しないリモコンに含まれ、ユーザによって入力された室内空気温度設定値として、26℃が室内空気温度設定手段に記憶され、配管温度設定手段には、所望の配管温度の目標値として17.6℃という値が記憶されている。また室内マイコン15には、室内空気温度と室内空気温度設定値との許容差ΔTとして1.0℃という値が記憶されている。   The indoor air temperature setting means 22 and the pipe temperature setting means 24 are included in a remote controller (not shown) of the air conditioner according to the present embodiment, and 26 ° C. is set as the indoor air temperature setting value input by the user. The pipe temperature setting means stores a value of 17.6 ° C. as a desired pipe temperature target value. The indoor microcomputer 15 stores a value of 1.0 ° C. as a tolerance ΔT between the indoor air temperature and the indoor air temperature set value.

図3は本実施の形態1にかかる空気調和装置が除湿緩和動作に移行を開始するときの条件判断を示す流れ図である。   FIG. 3 is a flowchart showing a condition determination when the air-conditioning apparatus according to the first embodiment starts shifting to the dehumidification mitigation operation.

本実施の形態1にかかる空気調和装置において、室外マイコン19に含まれるヒートポンプ制御手段20と、室内マイコン15に含まれる風量補正手段16は、開始S0とともに、室内空気温度設定手段22および配管温度設定手段24から出力される、室内空気温度設定値(26℃)と配管温度目標値(17.6℃)を入力し(S1)、室内空気温度検出手段13によって検出された室内空気温度と、配管温度検出手段5で検出された蒸発用熱交換器7の室内配管温度を入力し(S3)、室内空気温度と室内空気温度設定値、室内配管温度と配管温度の目標値との比較を行い(S4)、室内空気温度と室内空気温度設定値との差が1.0℃未満で、かつ、室内配管温度が配管温度目標値17.6℃を下回る場合に除湿緩和動作(S5)として、室内機の送風手段11の回転数を増大させ風量を補正する。ヒートポンプ制御手段20は、同様に除湿緩和動作(S5)として、膨張弁17の開度を上げ、補正後の風量に合わせて室内配管温度が配管温度目標値17.6℃に近似するように圧縮機23の回転数を制御する。   In the air conditioning apparatus according to the first embodiment, the heat pump control means 20 included in the outdoor microcomputer 19 and the air volume correction means 16 included in the indoor microcomputer 15 together with the start S0, the indoor air temperature setting means 22 and the piping temperature setting. The indoor air temperature set value (26 ° C.) and the piping temperature target value (17.6 ° C.) output from the means 24 are input (S1), the indoor air temperature detected by the indoor air temperature detecting means 13, and the piping The indoor pipe temperature of the evaporating heat exchanger 7 detected by the temperature detecting means 5 is input (S3), and the indoor air temperature and the indoor air temperature set value are compared with the target values of the indoor pipe temperature and the pipe temperature ( S4) Dehumidification mitigation operation (S5) when the difference between the indoor air temperature and the indoor air temperature set value is less than 1.0 ° C. and the indoor piping temperature is below the pipe temperature target value of 17.6 ° C. , To correct the air amount to increase the rotational speed of the blower unit 11 of the indoor unit. Similarly, as the dehumidifying and mitigating operation (S5), the heat pump control means 20 increases the opening degree of the expansion valve 17 and compresses the indoor pipe temperature so as to approximate the pipe temperature target value of 17.6 ° C. according to the corrected air volume. The number of revolutions of the machine 23 is controlled.

室内空気温度30℃、相対湿度90%rh(露点温度28.2℃)から、本実施の形態にかかる空気調和装置による冷房運転を開始し、運転開始と共にS0が実行されS1からS3までの入力処理が実行される。このとき、冷房運転開始直後は室内空気温度設定値26℃と室内空気温度30℃との差は許容差1.0℃以上になるので、冷房運転は変更されることなく処理はS3にもどされ引き続き室内空気温度と室内配管温度の監視が実行される。この状態では室内配管温度は配管温度目標値17.6℃を下回っても許容され比較的に潜熱比の高い冷房運転が実行され、室内空気からの除湿も進行する。   From the indoor air temperature of 30 ° C. and the relative humidity of 90% rh (dew point temperature of 28.2 ° C.), the cooling operation by the air conditioner according to the present embodiment is started, S0 is executed at the start of the operation, and inputs from S1 to S3 Processing is executed. At this time, immediately after the start of the cooling operation, the difference between the indoor air temperature set value of 26 ° C. and the indoor air temperature of 30 ° C. is a tolerance of 1.0 ° C. or more, so the cooling operation is not changed and the process is returned to S3. Subsequently, the indoor air temperature and the indoor piping temperature are monitored. In this state, the indoor piping temperature is allowed even if it falls below the pipe temperature target value of 17.6 ° C., the cooling operation with a relatively high latent heat ratio is executed, and the dehumidification from the indoor air also proceeds.

冷房運転の継続と共に室温も下がり27.0℃以下となり、かつ配管温度が17.6℃を下回っている場合、ヒートポンプ制御手段20は膨張弁開度を上げて膨張弁17を開き蒸発用熱交換器7への冷媒供給量を増やす。同時に風量補正手段16は送風手段11の回転数を上げて、風量を増加させる。この時、ヒートポンプ制御手段20は圧縮機23の回転数を制御することにより、配管温度が17.6℃を下回らない水準に移行させる。   When the cooling operation is continued, the room temperature decreases to 27.0 ° C. or lower and the piping temperature is lower than 17.6 ° C., the heat pump control means 20 increases the opening degree of the expansion valve and opens the expansion valve 17 to exchange heat for evaporation. Increase the amount of refrigerant supplied to the vessel 7. At the same time, the air volume correcting means 16 increases the rotational speed of the air blowing means 11 to increase the air volume. At this time, the heat pump control means 20 controls the rotational speed of the compressor 23 to shift the pipe temperature to a level not lower than 17.6 ° C.

以上のヒートポンプ制御手段20および風量補正手段16の除湿緩和動作により、蒸発圧力は上がり、蒸発用熱交換器7の配管温度を17.6℃に近づけることができる。このとき吹出し温度は上昇し、室内空気と吹出し空気のエンタルピー差は小さくなるが、風量補正手段16の除湿緩和動作の結果として、吹出し空気の風量は増大するので、室温の上昇を押さえることができる。   By the dehumidifying and mitigating operation of the heat pump control means 20 and the air volume correction means 16 described above, the evaporation pressure is increased, and the piping temperature of the evaporation heat exchanger 7 can be brought close to 17.6 ° C. At this time, the blowing temperature rises and the enthalpy difference between the room air and the blowing air becomes small. However, as a result of the dehumidification mitigation operation of the air volume correction means 16, the air volume of the blowing air increases, so that an increase in room temperature can be suppressed. .

また、この時風量補正手段16において、室内空気温度の監視を行い、一定の時間間隔における室内空気温度の変化率が0になるように風量を制御することによって、室内空気温度を除湿動作開始後も一定に保持することができる。この時、室内空気の露点温度が17.6℃以上の場合は、引き続き本実施の形態にかかる空気調和装置では除湿が行われるが、17.6℃を下回る場合は顕熱冷房となり除湿が停止される。つまり室内の空気の露点温度においては約17.6℃となり、空気温度26℃で水蒸気分圧を20.1hPaに保つことができ、人体境界層との水蒸気分圧差を約30hPaの快適な水準に保つことができる。   Also, at this time, the air volume correction means 16 monitors the room air temperature, and controls the air volume so that the rate of change of the room air temperature at a constant time interval becomes 0, whereby the room air temperature is reduced after the dehumidifying operation is started. Can also be held constant. At this time, if the dew point temperature of the indoor air is 17.6 ° C. or higher, the air conditioner according to the present embodiment continues to dehumidify, but if it falls below 17.6 ° C., it becomes sensible heat cooling and dehumidification stops. Is done. In other words, the dew point temperature of the indoor air is about 17.6 ° C., the water vapor partial pressure can be maintained at 20.1 hPa at an air temperature of 26 ° C., and the water vapor partial pressure difference with the human body boundary layer is at a comfortable level of about 30 hPa. Can keep.

除湿緩和動作において、冷房能力が冷房負荷に不足する場合があり得るが、その場合、許容差「1.0℃」を設けたことによって除湿緩和動作を停止させることができる。除湿緩和動作を停止したのちは再び配管温度が配管温度目標値未満でも許容され、ヒートポンプ制御手段20は、膨張弁開度を下げて蒸発器の配管温度を低下させ、室温の過昇を防ぐ。   In the dehumidification mitigation operation, the cooling capacity may be insufficient for the cooling load. In this case, the dehumidification mitigation operation can be stopped by providing the tolerance “1.0 ° C.”. After the dehumidification mitigation operation is stopped, the pipe temperature is allowed again even if the pipe temperature is lower than the pipe temperature target value, and the heat pump control means 20 reduces the opening temperature of the expansion valve to lower the pipe temperature of the evaporator, thereby preventing the room temperature from rising excessively.

ここで、本実施の形態の放射温度検出手段6は、室内機1に設置され、樹脂製の集光用フレネルレンズ、およびグリッド状に配列された5行3列、計15個の単素子とからなる焦電型赤外線センサと、10秒毎に焦電型赤外線センサからの出力を監視し、使用者の活動の有無を判定し出力する信号処理部から構成され、前記信号処理部は室内マイコン15に含まれる。フレネルレンズは視野角70℃の視野角を有しており、空気調和の対象である室内空間の大半をカバーする領域から集光した赤外線放射を焦電型赤外センサの配列に照射することで、本実施の形態においては室内空間を15分割した各領域毎に放射温度の検出が可能である。   Here, the radiation temperature detecting means 6 of the present embodiment is installed in the indoor unit 1 and is made of a resin condensing Fresnel lens and a total of 15 single elements in 5 rows and 3 columns arranged in a grid. A pyroelectric infrared sensor comprising: a signal processing unit that monitors the output from the pyroelectric infrared sensor every 10 seconds, determines the presence or absence of the user's activity, and outputs the signal processing unit; 15 included. The Fresnel lens has a viewing angle of 70 ° C., and by irradiating the array of pyroelectric infrared sensors with infrared radiation collected from a region covering most of the indoor space that is the subject of air conditioning. In the present embodiment, it is possible to detect the radiation temperature for each region obtained by dividing the indoor space into 15 regions.

焦電型赤外線センサはその特性から、入射する赤外線に変化があった場合のみその電気特性が変化することから、各素子毎に端子間電圧の変化を検知することで放射熱源の空間分布の変化を検出できる。すなわち、10秒間隔で監視する赤外線放射の空間分布において、20分以上放射熱源の空間分布に変化がない場合、本実施の形態においては、使用者の状態について「安静状態」または「不在」と判定する。また、10秒の時間間隔で、端子間電圧の変化する素子がある場合は使用者が室内において「活動中」と判定する。   The pyroelectric infrared sensor changes its electrical characteristics only when there is a change in the incident infrared rays, so the change in the spatial distribution of the radiant heat source is detected by detecting the change in the voltage between terminals for each element. Can be detected. That is, in the spatial distribution of infrared radiation monitored at intervals of 10 seconds, when there is no change in the spatial distribution of the radiant heat source for 20 minutes or more, in this embodiment, the user's state is “resting state” or “absent”. judge. If there is an element whose voltage between terminals changes at a time interval of 10 seconds, the user determines that the user is “active” in the room.

この判定結果を受けて、本実施の形態に係るヒートポンプ制御手段20と風量補正手段16は、安静状態を基準として配管温度の目標値を17.6℃とし、「活動中」は配管温度の目標値をそこから2℃下げて、上記同様の除湿緩和動作をおこなう。このとき、室内の空気の露点温度は最終的に15.6℃となり、空気温度26℃で水蒸気分圧は17.7hPaとなり、目標値を2℃低下させたことにより水蒸気分圧差は約8%拡大し、活動中の人体により適した空気調和が可能になる。   In response to the determination result, the heat pump control unit 20 and the air volume correction unit 16 according to the present embodiment set the target value of the pipe temperature to 17.6 ° C. based on the rest state, and “active” indicates the target of the pipe temperature. The value is lowered by 2 ° C., and the same dehumidifying and mitigating action is performed. At this time, the dew point temperature of the indoor air finally becomes 15.6 ° C., the water vapor partial pressure becomes 17.7 hPa at an air temperature of 26 ° C., and the target partial pressure is lowered by 2 ° C., so that the water vapor partial pressure difference is about 8%. Expands and enables better air conditioning for the active human body.

なお、前記配管温度検出手段5は、蒸発用熱交換器に含まれる配管のうち、冷媒の流れ方向に対して最下流の部位と、比較的上流の部位との少なくとも2箇所に設置し、前記2箇所の温度センサー群で検出された温度のうち、最低温度を配管温度として出力するように構成すると、蒸発器配管温度の代表値を蒸発器の最低温度とすることができ、効果的である。   The pipe temperature detecting means 5 is installed in at least two places, that is, the most downstream part and the relatively upstream part in the refrigerant flow direction among the pipes included in the evaporation heat exchanger, Of the temperatures detected by the two temperature sensor groups, if the minimum temperature is output as the piping temperature, the representative value of the evaporator piping temperature can be set as the minimum temperature of the evaporator, which is effective. .

以上の説明において、室内空気温度設定値26℃、配管温度目標値17.6℃、配管温度目標値の補正量を−2℃として例示したが、これらはそれぞれの設定値を限定するものではない。   In the above description, the indoor air temperature set value 26 ° C., the pipe temperature target value 17.6 ° C., and the correction amount of the pipe temperature target value are set to −2 ° C., but these do not limit the set values. .

本発明は、湿度センサを搭載することなく、室内空気の水蒸気分圧を一定に保ち、快適な温湿度環境を実現でき、冷凍サイクルを活用して湿度の調整をする空気調和装置に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for an air-conditioning apparatus that can maintain a constant partial pressure of water vapor in indoor air without using a humidity sensor, can realize a comfortable temperature / humidity environment, and adjusts humidity using a refrigeration cycle. .

1 室内機
3 室外機
5 配管温度検出手段
6 放射温度検出手段
7 蒸発用熱交換器
9 冷媒配管
11 送風手段
13 室内空気温度検出手段
15 室内マイコン
16 風量補正手段
17 膨張弁
19 室外マイコン
21 インバータ
22 室内空気温度設定手段
23 圧縮機
24 配管温度設定手段
25 室外送風機
27 凝縮用熱交換器
DESCRIPTION OF SYMBOLS 1 Indoor unit 3 Outdoor unit 5 Piping temperature detection means 6 Radiation temperature detection means 7 Evaporation heat exchanger 9 Refrigerant piping 11 Air blowing means 13 Indoor air temperature detection means 15 Indoor microcomputer 16 Air flow correction means 17 Expansion valve 19 Outdoor microcomputer 21 Inverter 22 Indoor air temperature setting means 23 Compressor 24 Piping temperature setting means 25 Outdoor fan 27 Condensing heat exchanger

Claims (5)

回転速度可変の圧縮機と凝縮用熱交換器と膨張弁と蒸発用熱交換器とを冷媒配管で結合し、前記冷媒配管内で冷媒を循環させて冷凍サイクルを構成するヒートポンプ手段と、
前記蒸発用熱交換器の風下側に設置され、前記蒸発用熱交換器を通して取り入れた空気を室内に空気を送り出す送風手段と、
入力された所望の室内空気温度を室内空気温度設定値として出力する室内空気温度設定手段と、
室内空気温度を検出する室内空気温度検出手段と、
前記蒸発用熱交換器に含まれるフィンまたは配管の温度を検出する配管温度検出手段と、室内における所望の水蒸気分圧を有する空気の露点温度を、前記配管温度の目標値として設定し、出力する配管温度設定手段と、
所定の時間区間における室内の放射温度分布の変化から人体の活動水準を検出する放射温度検出手段と、
前記室内空気温度と前記室内空気温度設定値とを比較し、かつ前記配管温度と前記目標値とを比較し、前記室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、前記配管温度を前記目標値を基準とする所定の範囲内に保持するように前記ヒートポンプ手段の膨張弁開度と圧縮機回転数とを制御するヒートポンプ制御手段と、
前記室内空気温度と前記室内空気温度設定値とを比較し、かつ前記配管温度と前記目標値とを比較し、前記室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、前記載送風手段から出力される風量を増加させる風量補正手段と、
を備えることを特徴とする空気調和装置。
A heat pump means for connecting a compressor having a variable rotation speed, a heat exchanger for condensation, an expansion valve, and an evaporating heat exchanger with refrigerant pipes, and constituting a refrigeration cycle by circulating the refrigerant in the refrigerant pipes;
Blower means installed on the lee side of the evaporating heat exchanger, and sends out air taken into the room through the evaporating heat exchanger;
Indoor air temperature setting means for outputting the input desired indoor air temperature as a room air temperature setting value;
Indoor air temperature detecting means for detecting the indoor air temperature;
The pipe temperature detecting means for detecting the temperature of the fins or pipes included in the heat exchanger for evaporation and the dew point temperature of air having a desired water vapor partial pressure in the room are set as the target value of the pipe temperature and output. Piping temperature setting means;
Radiation temperature detection means for detecting the activity level of the human body from changes in the indoor radiation temperature distribution in a predetermined time interval;
The indoor air temperature and the indoor air temperature set value are compared, the pipe temperature is compared with the target value, and the difference between the indoor air temperature and the indoor air temperature set value is within a predetermined range, In addition, when the pipe temperature is equal to or lower than the target value, the expansion valve opening degree and the compressor rotation speed of the heat pump means are controlled so that the pipe temperature is maintained within a predetermined range based on the target value. Heat pump control means,
The indoor air temperature and the indoor air temperature set value are compared, the pipe temperature is compared with the target value, and the difference between the indoor air temperature and the indoor air temperature set value is within a predetermined range, And when the pipe temperature is equal to or lower than the target value, the air volume correction means for increasing the air volume output from the air blowing means, and
An air conditioner comprising:
放射温度検出手段が少なくとも放射温度分布の変化の有無を判別し、「有」とした場合、目標値は変更前よりも低くすることを特徴とする請求項1記載の空気調和装置。 The air conditioning apparatus according to claim 1, wherein when the radiation temperature detecting means determines at least whether or not there is a change in the radiation temperature distribution and determines "Yes", the target value is made lower than before the change. ヒートポンプ手段は、除湿停止信号の出力を監視し、前記出力を検知した場合、配管温度を目標値を基準とする所定の範囲内に保持するように膨張弁を開き、圧縮機回転数を上昇させるように制御することを特徴とする請求項1または2記載の空気調和装置。 The heat pump means monitors the output of the dehumidification stop signal, and when the output is detected, opens the expansion valve so as to keep the pipe temperature within a predetermined range based on the target value, and increases the compressor rotational speed. The air conditioner according to claim 1, wherein the air conditioner is controlled as follows. 風量補正手段は、室内空気温度と前記室内空気温度設定値との差が所定の範囲内で、かつ、前記配管温度が前記目標値以下の場合に、室内空気温度を入力し、室内空気温度の時間微分値が0を含む所定の範囲内に収まるように風量を変化させることを特徴とする請求項1〜3のいずれか1項に記載の空気調和装置。 The air volume correction means inputs the room air temperature when the difference between the room air temperature and the indoor air temperature set value is within a predetermined range and the pipe temperature is less than or equal to the target value, The air conditioner according to any one of claims 1 to 3, wherein the air volume is changed so that the time differential value falls within a predetermined range including zero. 配管温度検出手段は、蒸発用熱交換器に含まれる配管のうち、冷媒の流れ方向に対して最下流の部位と、比較的上流の部位との少なくとも2箇所に設置された温度センサ群を備え、前記温度センサー群で検出された温度のうち、最低温度を配管温度として出力することを特徴とする請求項1〜4のいずれか1項に記載の空気調和装置。 The pipe temperature detection means includes temperature sensor groups installed in at least two locations, a most downstream site and a relatively upstream site in the refrigerant flow direction, among the piping included in the evaporation heat exchanger. The air conditioning apparatus according to any one of claims 1 to 4, wherein a minimum temperature among the temperatures detected by the temperature sensor group is output as a pipe temperature.
JP2012195856A 2012-09-06 2012-09-06 Air conditioner Pending JP2014052114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195856A JP2014052114A (en) 2012-09-06 2012-09-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195856A JP2014052114A (en) 2012-09-06 2012-09-06 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014052114A true JP2014052114A (en) 2014-03-20

Family

ID=50610745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195856A Pending JP2014052114A (en) 2012-09-06 2012-09-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP2014052114A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940044A (en) * 2014-04-22 2014-07-23 珠海格力电器股份有限公司 Control method of air conditioning system
CN106594978A (en) * 2016-11-22 2017-04-26 珠海格力电器股份有限公司 control method and device for air conditioner
WO2017179192A1 (en) * 2016-04-15 2017-10-19 三菱電機株式会社 Air conditioner
CN108050650A (en) * 2017-11-23 2018-05-18 广东美的制冷设备有限公司 The dirty stifled detection method of air-conditioning, device and computer readable storage medium
CN108361908A (en) * 2017-12-28 2018-08-03 合肥长天信息技术有限公司 A kind of market central air-conditioner control method
WO2019075821A1 (en) * 2017-10-20 2019-04-25 深圳市鹰硕技术有限公司 Method for controlling air conditioner in multimedia classroom
CN113678739A (en) * 2021-08-25 2021-11-23 广东唯金智能环境科技有限公司 Livestock breeding house environment control system and control method thereof
CN113944997A (en) * 2021-05-18 2022-01-18 珠海市精实测控技术有限公司 Heating ventilation laboratory working condition decoupling automatic adjusting method
CN115371209A (en) * 2022-08-26 2022-11-22 珠海格力电器股份有限公司 Air conditioner defrosting time prediction method and device
CN115628510A (en) * 2022-10-28 2023-01-20 珠海格力电器股份有限公司 Indoor humidity control method and device, air conditioner and storage medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940044A (en) * 2014-04-22 2014-07-23 珠海格力电器股份有限公司 Control method of air conditioning system
JPWO2017179192A1 (en) * 2016-04-15 2018-11-08 三菱電機株式会社 Air conditioner
WO2017179192A1 (en) * 2016-04-15 2017-10-19 三菱電機株式会社 Air conditioner
CN106594978A (en) * 2016-11-22 2017-04-26 珠海格力电器股份有限公司 control method and device for air conditioner
WO2019075821A1 (en) * 2017-10-20 2019-04-25 深圳市鹰硕技术有限公司 Method for controlling air conditioner in multimedia classroom
CN108050650A (en) * 2017-11-23 2018-05-18 广东美的制冷设备有限公司 The dirty stifled detection method of air-conditioning, device and computer readable storage medium
CN108050650B (en) * 2017-11-23 2020-04-03 广东美的制冷设备有限公司 Air conditioner filth blockage detection method and device and computer readable storage medium
CN108361908A (en) * 2017-12-28 2018-08-03 合肥长天信息技术有限公司 A kind of market central air-conditioner control method
CN113944997A (en) * 2021-05-18 2022-01-18 珠海市精实测控技术有限公司 Heating ventilation laboratory working condition decoupling automatic adjusting method
CN113944997B (en) * 2021-05-18 2022-11-15 珠海精实测控技术股份有限公司 Heating ventilation laboratory working condition decoupling automatic adjusting method
CN113678739A (en) * 2021-08-25 2021-11-23 广东唯金智能环境科技有限公司 Livestock breeding house environment control system and control method thereof
CN113678739B (en) * 2021-08-25 2023-11-28 广东唯金智能环境科技有限公司 Environment control system and method for livestock breeding house
CN115371209A (en) * 2022-08-26 2022-11-22 珠海格力电器股份有限公司 Air conditioner defrosting time prediction method and device
CN115628510A (en) * 2022-10-28 2023-01-20 珠海格力电器股份有限公司 Indoor humidity control method and device, air conditioner and storage medium
CN115628510B (en) * 2022-10-28 2024-05-28 珠海格力电器股份有限公司 Indoor humidity control method and device, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP2014052114A (en) Air conditioner
JP2014052113A (en) Air conditioner
JP2014020583A (en) Air conditioner
CN107166637B (en) Temperature compensation control method, device and system for air conditioner
JP6567183B2 (en) Air conditioning system
CN104969010B (en) Air conditioner
JP7072426B2 (en) Air conditioner and air conditioner system, and air conditioner
US8973845B2 (en) Air conditioning apparatus with a controller that utilizes two set temperature ranges
JP5375945B2 (en) Air conditioning system that adjusts temperature and humidity
JP5012777B2 (en) Air conditioner
EP3988852A1 (en) Air conditioning device, air conditioning method, and program
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
JP7026781B2 (en) Air conditioning system
JP6136388B2 (en) Energy-saving air conditioning system
JP5487857B2 (en) Air conditioning system
WO2018173120A1 (en) Dehumidifier
JP6937947B2 (en) Air conditioner
KR20170109309A (en) Dehumidification control apparatus for air conditioner and method thereof
JP6523796B2 (en) Air conditioning control device, air conditioning control system, air conditioning control method and program
JP6675217B2 (en) Radiant air conditioning system and radiant cooling and heating method
JP6925461B2 (en) Air conditioners, air conditioners and programs
WO2018185911A1 (en) Air conditioning system
CN112902486B (en) Constant temperature and humidity unit and control method thereof
JP2016138666A (en) Air conditioner
JP5737173B2 (en) Air conditioning system that adjusts temperature and humidity