JP2014049197A - Sealed container - Google Patents

Sealed container Download PDF

Info

Publication number
JP2014049197A
JP2014049197A JP2012189015A JP2012189015A JP2014049197A JP 2014049197 A JP2014049197 A JP 2014049197A JP 2012189015 A JP2012189015 A JP 2012189015A JP 2012189015 A JP2012189015 A JP 2012189015A JP 2014049197 A JP2014049197 A JP 2014049197A
Authority
JP
Japan
Prior art keywords
barrier layer
sealed container
sealing
thermoplastic resin
heat seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012189015A
Other languages
Japanese (ja)
Other versions
JP5985930B2 (en
JP2014049197A5 (en
Inventor
Tadashi Naemura
正 苗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Packaging Corp
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2012189015A priority Critical patent/JP5985930B2/en
Priority to KR1020130102238A priority patent/KR102051683B1/en
Priority to CN201310393424.4A priority patent/CN103662190B/en
Priority to CN201320538058.2U priority patent/CN203544483U/en
Publication of JP2014049197A publication Critical patent/JP2014049197A/en
Publication of JP2014049197A5 publication Critical patent/JP2014049197A5/ja
Application granted granted Critical
Publication of JP5985930B2 publication Critical patent/JP5985930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/10Container closures formed after filling
    • B65D77/20Container closures formed after filling by applying separate lids or covers, i.e. flexible membrane or foil-like covers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Closing Of Containers (AREA)
  • Packages (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed container ensuring high barrier performance stably.SOLUTION: Laminate wrapping materials (10a), (10b) formed by laminating a thermoplastic resin layer (14) on at least one surface of a barrier layer (13) are superimposed so that the thermoplastic resin layer (14) are located on the inside, and a housing section (16) is formed by bonding and sealing the peripheral edge of the superimposed laminate wrapping materials (10a), (10b) thus producing a sealed container. The sealing part (31) at the peripheral edge has a heat seal part (33) where the thermoplastic resin layer (14) is welded, and a large number of barrier layer joints (34) where the barrier layers (13) are bonded each other. The large number of barrier layer joints (34) are spotted without continuing into the heat seal part (33).

Description

本発明は、リチウムイオン二次電池等の電池用ケースや各種食品のレトルトパウチ等に用いられる密封容器およびその関連技術に関する。   The present invention relates to a sealed container used for a battery case such as a lithium ion secondary battery, a retort pouch for various foods, and the like and related technology.

上記のような光、酸素、水分を嫌うものの包装には、これらを遮断する金属バリア層に熱可塑性樹脂層を積層したラミネート包材を用いた密封容器が使用されている。図1および図2に示すように、前記密封容器は(100)、ラミネート包材(10a)(10b)の熱可塑性樹脂層(14)を内側にして重ね、周縁部をヒートシールして製造するのが一般的である。図11に示すように、この方法で製造された密封容器(100)の周縁封止部(101)は熱可塑性樹脂層(14)同士が溶着することによって形成されている。   Sealing containers using a laminate packaging material in which a thermoplastic resin layer is laminated on a metal barrier layer that shields light, oxygen, and moisture as described above are used. As shown in FIG. 1 and FIG. 2, the sealed container is manufactured by stacking (100) with the thermoplastic resin layer (14) of the laminate packaging material (10a) (10b) inside and heat-sealing the peripheral edge. It is common. As shown in FIG. 11, the peripheral sealing part (101) of the sealed container (100) manufactured by this method is formed by welding thermoplastic resin layers (14) together.

前記密封容器(100)は金属バリア層(13)によって外部の光、酸素、水分から遮断されている。しかし、前記密封容器(100)の封止部(101)は外周端から内周端まで熱可塑性樹脂層(14)が通じているため、封止部(101)の外周端面から侵入した微量の光、酸素、水分は熱可塑性樹脂層(14)を通って収容部(16)にまで侵入するおそれがある。これらの侵入量が微量であっても収容部(16)に侵入すると様々な問題が発生する懸念がある。例えば、レトルトパウチ等の食品用容器において酸素が侵入すると内容物が劣化する。またリチウムイオン二次電池のように電解液を包装している場合は、水分が侵入するとフッ酸が発生し、密封性能が著しく低下するおそれがある。   The sealed container (100) is shielded from external light, oxygen and moisture by the metal barrier layer (13). However, since the thermoplastic resin layer (14) communicates from the outer peripheral end to the inner peripheral end of the sealing portion (101) of the sealed container (100), a small amount of intrusion from the outer peripheral end surface of the sealing portion (101) There is a possibility that light, oxygen, and moisture may enter the accommodating portion (16) through the thermoplastic resin layer (14). There is a concern that various problems may occur when the amount of these intrusions is very small, when they enter the accommodating portion (16). For example, when oxygen enters a food container such as a retort pouch, the contents deteriorate. Further, when an electrolyte solution is packaged like a lithium ion secondary battery, when moisture enters, hydrofluoric acid is generated, and the sealing performance may be significantly deteriorated.

かかる問題に対し、特許文献1は重ねたラミネート包材を強く押圧してバリア層同士が周方向に沿って線状に接近または接触するようにシールする方法を提案している。このシール方法によれば、バリア層同士を接近させれば狭くなった熱可塑性樹脂層が隘路となって光等が侵入しにくくなる。またバリア層同士が接触すれば接触点で熱可塑性樹脂層が途切れるので光等の侵入を阻止することができる(特許文献1参照)。   In order to solve such a problem, Patent Document 1 proposes a method in which the laminated laminate packaging material is strongly pressed and sealed so that the barrier layers come close to or come into contact with each other along the circumferential direction. According to this sealing method, if the barrier layers are brought close to each other, the narrowed thermoplastic resin layer becomes a bottleneck and light or the like hardly enters. Further, if the barrier layers are in contact with each other, the thermoplastic resin layer is interrupted at the contact point, so that intrusion of light or the like can be prevented (see Patent Document 1).

特開2000−264313号公報JP 2000-264313 A

特許文献1に記載された方法によってバリア性を向上させることができる。しかし、バリア層を接近させて隘路を形成しても侵入断面積が小さくなるだけであるから光等を完全に遮断することはできない。しかも、ヒートシール装置からの熱の伝わり方が外気温等によってばらつくことがあるので侵入断面積を安定させることが困難であり、ひいてはバリア性能も安定しない。また、バリア層同士を接触させるには樹脂を押し退けることなるが、線状接触では一軸方向にしか樹脂を押し退けられないので樹脂の流れ性が悪い。このため、確実に樹脂を押し退けてバリア層同士を接合するには大きい加圧力が必要となる。また、押し退け量が不足して接合界面に樹脂が残っていれば外部からの侵入路となる。線状接触部の一部に未接合部分があれば、光等はそこを通って最短距離で内部に侵入することになるのでバリア性能が不安定になる。   The barrier property can be improved by the method described in Patent Document 1. However, even if the barrier layer is approached to form a bottleneck, the intrusion cross-sectional area is only small, so that light cannot be completely blocked. In addition, since how heat is transmitted from the heat sealing device may vary depending on the outside air temperature or the like, it is difficult to stabilize the intrusion cross-sectional area, and the barrier performance is not stable. Further, in order to bring the barrier layers into contact with each other, the resin is pushed away, but in the linear contact, the resin can be pushed away only in the uniaxial direction, so that the resin flowability is poor. For this reason, a large pressurizing force is required to join the barrier layers by reliably pushing away the resin. Further, if the amount of displacement is insufficient and the resin remains at the bonding interface, an entry path from the outside is formed. If there is an unjoined part in a part of the linear contact part, light or the like passes through the part and enters the inside at the shortest distance, so that the barrier performance becomes unstable.

本発明は、上述した技術背景に鑑み、高いバリア性能を安定して得ることができる密封容器およびその関連技術の提供を目的とする。   In view of the above-described technical background, an object of the present invention is to provide a sealed container that can stably obtain high barrier performance and related technology.

即ち、本発明は下記[1]〜[12]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[12].

[1]バリア層の少なくとも一方の面に熱可塑性樹脂層が積層されたラミネート包材が熱可塑性樹脂層を内側にして重ねられ、重ねられたラミネート包材の周縁を接合して封止することによって収容部が形成される密封容器であって、
前記周縁の封止部は、熱可塑性樹脂層が溶着したヒートシール部とバリア層同士が接合された多数のバリア層接合部とを有し、前記多数のバリア層接合部はヒートシール部中に連続することなく斑点状に配置されていることを特徴とする密封容器。
[1] Laminate packaging material in which a thermoplastic resin layer is laminated on at least one surface of a barrier layer is laminated with the thermoplastic resin layer inside, and the periphery of the laminated laminate packaging material is bonded and sealed. A sealed container in which a container is formed,
The peripheral sealing portion includes a heat seal portion to which a thermoplastic resin layer is welded and a large number of barrier layer bonding portions in which barrier layers are bonded to each other, and the large number of barrier layer bonding portions are included in the heat seal portion. A hermetically sealed container characterized by being arranged in spots without being continuous.

[2]前記バリア層は金属からなる前項1に記載の密封容器。   [2] The sealed container according to [1], wherein the barrier layer is made of metal.

[3]前記封止部の周に直交する任意の直線上に少なくとも1つのバリア層接合部が存在する前項1または2に記載の密封容器。   [3] The sealed container according to item 1 or 2, wherein at least one barrier layer bonding portion exists on an arbitrary straight line orthogonal to the circumference of the sealing portion.

[4]前記封止部の周に直交する直線とのなす角度が45°未満である任意の直線上に少なくとも1つのバリア層接触部が存在する前項1〜3のいずれかに記載の密封容器。   [4] The sealed container according to any one of the preceding items 1 to 3, wherein at least one barrier layer contact portion exists on an arbitrary straight line having an angle of less than 45 ° with a straight line orthogonal to the circumference of the sealing portion. .

[5]前記バリア層接合部の平面形状が菱形である前項1〜4のいずれかに記載の密封容器。   [5] The sealed container according to any one of [1] to [4], wherein the planar shape of the barrier layer joint is a rhombus.

[6]前記バリア層接合部の平面形状が対角線の長さの異なる菱形であり、該バリア層接合部は長い方の対角線が封止部の周方向に沿って配置されている前項5に記載の密封容器。   [6] The planar shape of the barrier layer bonding portion is a rhombus having different diagonal lengths, and the barrier layer bonding portion has a longer diagonal line arranged along the circumferential direction of the sealing portion. Sealed container.

[7]前記封止部の幅方向においてバリア層接合部が複数列に配置されている前項1〜6のいずれかに記載の密封容器。   [7] The sealed container according to any one of [1] to [6], wherein barrier layer joint portions are arranged in a plurality of rows in the width direction of the sealing portion.

[8]前記封止部の内周側領域にバリア層接合部を有さずヒートシール部のみからなる領域を有する前項1〜7のいずれかに記載の密封容器。   [8] The sealed container according to any one of 1 to 7 above, wherein the inner peripheral side region of the sealing portion does not have a barrier layer bonding portion and has a region consisting only of a heat seal portion.

[9]前記密封容器は電池用ケースである前項1〜8のいずれかに記載の密封容器。   [9] The sealed container according to any one of 1 to 8 above, wherein the sealed container is a battery case.

[10]電池本体が前項9に記載の電池用ケース内に装填され、前記電池本体に接続された電極用リードがケース外に引き出された状態で該ケースの周縁に封止部が形成されていることを特徴とする電池。   [10] The battery body is loaded in the battery case described in the above item 9, and a sealing portion is formed on the periphery of the case with the electrode lead connected to the battery body being pulled out of the case. A battery characterized by comprising:

[11]金属からなるバリア層の少なくとも片面に熱可塑性樹脂層が積層されたラミネート包材を熱可塑性樹脂層が内側となるようにして重ねる工程と、
重ねたラミネート包材の周縁を押さえ板で挟んで加熱することにより熱可塑性樹脂層同士を溶着するヒートシール部形成工程と、
重ねたラミネート包材の周縁に、表面に多数の突起が連続することなく斑点状に設けられた突起付治具を押し付けながら超音波振動を付与し、前記突起の先端面で熱可塑性樹脂層を押し退けてバリア層を露出させ、露出させたバリア層同士を接合するバリア層接合部形成工程とを行い、
重ねたラミネート包材の周縁に、ヒートシール部中に多数のバリア層接合部が連続することなく斑点状に配置された封止部を形成することを特徴とする密封容器の製造方法。
[11] A step of stacking a laminate packaging material in which a thermoplastic resin layer is laminated on at least one side of a barrier layer made of metal so that the thermoplastic resin layer is inside,
A heat seal portion forming step of welding the thermoplastic resin layers together by heating by sandwiching the periphery of the laminated laminate material with a pressing plate; and
Ultrasonic vibration is applied to the periphery of the laminated laminate packaging while pressing a jig with protrusions provided in a spot shape without many protrusions on the surface, and a thermoplastic resin layer is applied to the tip surface of the protrusions. A barrier layer bonding part forming step of exposing the barrier layer by pushing away and bonding the exposed barrier layers to each other;
A method of manufacturing a sealed container, comprising forming a sealing portion arranged in a spot shape without a large number of barrier layer joining portions being continuous in a heat seal portion at the periphery of the laminated laminate packaging material.

[12]前記ヒートシール部形成工程を行った後、熱可塑性樹脂層が軟化状態にある間にバリア層接合部形成工程を行う前項11に記載の密封容器の製造方法。   [12] The method for manufacturing a sealed container according to [11], wherein after the heat seal portion forming step is performed, the barrier layer joint portion forming step is performed while the thermoplastic resin layer is in a softened state.

上記[1]に記載の密閉容器によれば、封止部の端面から容器内に侵入しようとする光、水、酸素等の劣化促進物はバリア層接合部で遮断されるのでバリア層接合部を迂回してヒートシール部のみを辿る。このような侵入路は隣合うバリア層接合部間に形成された隘路であり断面積が小さくなっているので劣化促進物の侵入が抑制される。さらに、迂回路となることによって侵入路の距離が長くなるので劣化促進物の侵入が抑制される。   According to the sealed container described in [1] above, the barrier layer joint portion prevents deterioration promoting substances such as light, water, oxygen, and the like, which try to enter the container from the end face of the sealing portion, from being blocked by the barrier layer joint portion. Follow only the heat seal part. Such an intrusion path is a bottleneck formed between adjacent barrier layer joints and has a small cross-sectional area, so that the invasion of the deterioration promoting substance is suppressed. Furthermore, since the distance of the intrusion path is increased by becoming a detour, intrusion of the deterioration promoting substance is suppressed.

また、前記バリア層接合部はヒートシール部中に連続することなく斑点状に形成されているので、バリア層接合部の全周囲はヒートシール部であり熱可塑性樹脂である。従って、バリア層同士を接合するために熱可塑性樹脂を押し退けてバリア層を露出させる際には、樹脂をバリア層接合部(予定部)の周りの全方向に押し退けることができるので、樹脂が良好に流れてバリア層を露出させることが容易である。このため、少ない加圧力で確実にバリア層接合部を形成することができ、ひいては安定したバリア性能を得ることができる。   Moreover, since the said barrier layer junction part is formed in the spot shape without continuing in a heat seal part, the perimeter of a barrier layer junction part is a heat seal part, and is a thermoplastic resin. Therefore, when the thermoplastic resin is pushed away to bond the barrier layers to expose the barrier layer, the resin can be pushed away in all directions around the barrier layer bonding portion (planned portion). It is easy to flow through and expose the barrier layer. For this reason, it is possible to reliably form the barrier layer bonding portion with a small applied pressure, and as a result, stable barrier performance can be obtained.

また、樹脂同士が溶着したヒートシール部よりもバリア層接合部の結合力が強くなった場合は、封止部は外部からの応力に対して耐剥離強度が向上する。   In addition, when the bonding strength of the barrier layer bonding portion is stronger than the heat seal portion where the resins are welded together, the peel strength of the sealing portion is improved against external stress.

上記[2]に記載の密封容器によれば、ラミネート包材のバリア層が金属であるからバリア性能および強度が高い。   According to the sealed container as described in [2] above, since the barrier layer of the laminate packaging material is a metal, the barrier performance and strength are high.

上記[3]に記載の密封容器によれば、封止部を最短距離で横断する侵入路が存在しないので、確実に侵入路の距離を長くすることができる。   According to the sealed container described in [3] above, there is no intrusion path that traverses the sealing portion at the shortest distance, and therefore the distance of the intrusion path can be reliably increased.

上記[4]に記載の密封容器によれば、封止部の周に直交する直線に対し、直線の侵入路の傾斜角度は45°以上となる。前記傾斜角度が大きくなるほど侵入路の距離が長くなり、前記傾斜角度に相応する劣化促進物の侵入抑制効果が得られる。   According to the sealed container described in [4] above, the inclination angle of the straight entry path is 45 ° or more with respect to the straight line orthogonal to the circumference of the sealing portion. The greater the inclination angle, the longer the distance of the intrusion path, and the effect of suppressing the invasion of deterioration promoting substances corresponding to the inclination angle is obtained.

上記[5]に記載の密封容器によれば、バリア層接合部を形成するための突起付治具をワイヤーカット加工によって製作できるので、低コストで治具を製作できる。   According to the sealed container as described in [5] above, the jig with protrusions for forming the barrier layer bonding portion can be manufactured by wire cutting, so that the jig can be manufactured at low cost.

上記[6]に記載の密封容器によれば、封止部の周に直交する直線に対し、直線の侵入路の傾斜角度は45°超となる。前記傾斜角度が大きくなるほど侵入路の距離が長くなり、前記傾斜角度に相応する劣化促進物の侵入抑制効果が得られる。   According to the sealed container described in [6] above, the inclination angle of the straight entry path is greater than 45 ° with respect to the straight line orthogonal to the circumference of the sealing portion. The greater the inclination angle, the longer the distance of the intrusion path, and the effect of suppressing the invasion of deterioration promoting substances corresponding to the inclination angle is obtained.

上記[7]に記載の密封容器によれば、侵入路の迂回回数が列数に応じて増えるので侵入路の距離をより長くすることができる。   According to the sealed container described in [7] above, the number of detours of the intrusion path increases according to the number of rows, so that the distance of the intrusion path can be further increased.

上記[8]に記載の密封容器によれば、封止部の内周側領域はバリア層接合部が存在せずヒートシール部のみで構成されているから、内容物は熱可塑性樹脂のみに接触する。かかる密封容器はバリア層との接触を避ける必要のある内容物の包装にも安全に使用できる。   According to the sealed container described in [8] above, the inner peripheral side region of the sealing portion is configured by only the heat seal portion without the barrier layer joint portion, so that the content contacts only the thermoplastic resin. To do. Such a sealed container can be safely used for packaging contents that need to avoid contact with the barrier layer.

上記[9]に記載の密封容器によれば、電池用ケースにおいて上記の効果を得ることができる。   According to the sealed container as described in [9] above, the above effect can be obtained in the battery case.

上記[10]に記載の電池によれば、劣化促進物に対してバリア性能が高く、かつ安定したバリア性能が得られる。   According to the battery described in [10] above, the barrier performance is high with respect to the deterioration promoting substance, and a stable barrier performance is obtained.

上記[11]に記載の密封容器の製造方法によれば、バリア層が金属であるラミネート包材を用いて安定したバリア性能を有する密封容器を製造することができる。   According to the method for manufacturing a sealed container described in [11] above, a sealed container having stable barrier performance can be manufactured using a laminate packaging material in which the barrier layer is a metal.

上記[12]に記載の密封容器の製造方法によれば、先に行うヒートシール部形成工程によって熱可塑性樹脂層が押し潰されて薄くなっているので、後に行うバリア層接合部形成工程の超音波接合で押し退ける樹脂量が少なくて済むのでバリア層同士の接合が容易になる。しかも、樹脂が軟化状態にある間に超音波接合することによって樹脂の押し退けが容易であるからバリア層接合部の形成が容易であり、効率良く封止処理を行うことができる。   According to the method for manufacturing a sealed container described in [12] above, since the thermoplastic resin layer is crushed and thinned by the heat seal portion forming step that is performed first, the barrier layer joint portion forming step that is performed later is superfluous. Since the amount of resin that can be pushed away by sonic bonding is small, bonding between barrier layers becomes easy. Moreover, since the resin can be easily pushed away by ultrasonic bonding while the resin is in a softened state, the barrier layer bonding portion can be easily formed, and the sealing process can be performed efficiently.

本発明の密閉容器の一実施形態である電池用ケースの封止処理前の状態を示す斜視図であるIt is a perspective view which shows the state before the sealing process of the battery case which is one Embodiment of the airtight container of this invention. 図1の電池用ケースの封止用周縁部の断面図である。It is sectional drawing of the peripheral part for sealing of the battery case of FIG. 図1の電池用ケースを用いた電池の斜視図である。It is a perspective view of the battery using the battery case of FIG. 電池用ケースの封止部の平面図である。It is a top view of the sealing part of a battery case. 電池用ケースの封止部の断面図である。It is sectional drawing of the sealing part of a battery case. 密閉容器における封止部の他の実施形態である。It is other embodiment of the sealing part in an airtight container. 密閉容器における封止部のさらに他の実施形態である。It is further another embodiment of the sealing part in an airtight container. 密閉容器における封止部のさらに他の実施形態である。It is further another embodiment of the sealing part in an airtight container. 密閉容器における封止部のさらに他の実施形態である。It is further another embodiment of the sealing part in an airtight container. 密閉容器における封止部のさらに他の実施形態である。It is further another embodiment of the sealing part in an airtight container. 本発明の密閉容器の製造方法において、封止処理工程を示す断面図である。It is sectional drawing which shows a sealing process process in the manufacturing method of the airtight container of this invention. 従来の密封容器の周縁封止部の断面図である。It is sectional drawing of the periphery sealing part of the conventional sealed container.

[密封容器の概要]
図1および図2にラミネート包材による電池用ケース(1)の封止処理前の状態を示し、図3に前記電池用ケース(1)に封止処理を行って製作した電池(2)を示す。封止処理を施した電池用ケース(1)は本発明の密閉容器の一実施形態である。また、以下の説明において、密封容器の外部から侵入して内容物を劣化させる光、酸素、水分等を包括して「劣化促進物」と称する。
[Outline of sealed container]
1 and 2 show the state before the battery case (1) is sealed with the laminate packaging material, and FIG. 3 shows the battery (2) manufactured by sealing the battery case (1). Show. The battery case (1) subjected to the sealing treatment is an embodiment of the sealed container of the present invention. In the following description, light, oxygen, moisture and the like that enter from the outside of the sealed container and degrade the contents are collectively referred to as “degradation promoting substances”.

電池用ケース(1)は、平面視四角形の凹部(11)の開口周縁から略水平方向の外方に向けて延ばされた封止用周縁部(12)が形成された2個のケース半体(10a)(10b)を、凹部(11)の開口部が向かい合うように配置し、重なった封止用周縁部(12)を接合することによって収容部(16)を形成するものとなされている。図2に示すように、前記ケース半体(10a)(10b)は、バリア層(13)の一方の面に熱可塑性樹脂層(14)を積層し、他方の面に外側層(15)を積層したラミネート包材に絞り加工を施して凹部(11)を成形したものであり、組み付けたケース半体(10a)(10b)は封止用周縁部(12)において熱可塑性樹脂層(14)同士が接触している。   The battery case (1) has two case halves formed with a sealing peripheral edge (12) extending outwardly in the substantially horizontal direction from the opening peripheral edge of the concave part (11) having a rectangular shape in plan view. The body (10a) (10b) is arranged so that the opening of the recess (11) faces each other, and the overlapping sealing peripheral part (12) is joined to form the accommodating part (16). Yes. As shown in FIG. 2, the case halves (10a) and (10b) are formed by laminating a thermoplastic resin layer (14) on one surface of the barrier layer (13) and an outer layer (15) on the other surface. The laminated laminate packaging material is drawn to form a recess (11), and the assembled case halves (10a) and (10b) are the thermoplastic resin layer (14) in the sealing periphery (12). They are in contact with each other.

[ラミネート包材]
前記ラミネート包材(10a)(10b)において、各層の好ましい材料は以下のとおりである。
[Laminated packaging]
In the laminated packaging materials (10a) and (10b), preferred materials for each layer are as follows.

バリア層(13)の材料は劣化促進物を遮断できるものであれば限定されない。バリア層(13)の好ましい材料として、バリア性が高く、接合強度が高い点でアルミニウム、銅、鉄等の金属を推奨できる。さらに、バリア層材料としてこれらの金属を用いることで後述する封止処理において超音波接合を適用することができる。   The material of the barrier layer (13) is not limited as long as it can block deterioration promoting substances. As a preferable material for the barrier layer (13), metals such as aluminum, copper, and iron can be recommended because of their high barrier properties and high bonding strength. Furthermore, by using these metals as the barrier layer material, ultrasonic bonding can be applied in a sealing process described later.

密封容器の内面となる熱可塑性樹脂層(14)の材料は熱可塑性樹脂で溶着可能なものであれば任意のものを用いることができ、特にCPP(無延伸ポリプロピレン)やポリエチレンが好ましい。これらの熱可塑性樹脂は軟化しやすいので樹脂を押し退けてバリア層(13)同士を接合させる封止処理に適している。   Any material can be used as the material for the thermoplastic resin layer (14) to be the inner surface of the sealed container as long as it can be welded with a thermoplastic resin, and CPP (unstretched polypropylene) and polyethylene are particularly preferable. Since these thermoplastic resins are easily softened, they are suitable for a sealing process in which the barrier layers (13) are joined by pushing the resin away.

外側層(15)の材料は熱可塑性樹脂層(14)よりも融点の高い樹脂が好ましく、ポリエチレンテレフタレートやナイロンを推奨できる。   The material of the outer layer (15) is preferably a resin having a melting point higher than that of the thermoplastic resin layer (14), and polyethylene terephthalate or nylon can be recommended.

本発明の密封容器に適用可能なラミネート包材は、容器の内側に臨む面が熱可塑性樹脂層(14)であり、この熱可塑性樹脂層層(14)よりも外側にバリア層(13)と有することが必要条件であり、この条件を満たすものであれば他の積層構造の包材にも適用できる。図示例の外側層(15)の有無も任意であるが、バリア層(13)の保護のために外側層(15)を有するラミネート包材を用いることが好ましい。また、後述する封止処理においても、外側層(15)があれば封止用治具で挟んで加圧した場合のバリア層(13)の損傷を回避することができる。また、バリア層(13)と熱可塑性樹脂層(14)または外側層(15)の間に中間層を有する積層構造であっても良い。   In the laminate packaging material applicable to the sealed container of the present invention, the surface facing the inside of the container is the thermoplastic resin layer (14), and the barrier layer (13) is provided outside the thermoplastic resin layer layer (14). It is a necessary condition that it can be applied to packaging materials having other laminated structures as long as this condition is satisfied. Although the presence or absence of the outer layer (15) in the illustrated example is optional, it is preferable to use a laminate packaging material having the outer layer (15) for protecting the barrier layer (13). Also in the sealing process described later, if there is an outer layer (15), damage to the barrier layer (13) when pressed by being sandwiched by a sealing jig can be avoided. Alternatively, a laminated structure having an intermediate layer between the barrier layer (13) and the thermoplastic resin layer (14) or the outer layer (15) may be used.

前記ラミネート包材(10a)(10b)を構成する各層の厚みも限定されないが、本発明では熱可塑性樹脂層(14)の樹脂を押し退けてバリア層(13)同士を接合させる封止処理を行うので、接合強度を確保できる限り熱可塑性樹脂層(14)は薄い方が好ましい。かかる観点より、熱可塑性樹脂層(14)の厚みは10〜100μmが好ましく、特に20〜40μmが好ましい。また、前記バリア層(13)の厚みは熱可塑性樹脂層(14)の厚みの1/3以上であることが好ましい。封止処理ではラミネート包材(10a)(10b)を治具で挟み込んで樹脂を押し退けるので、この工程でバリア層(13)を断裂させないためにも上記範囲の厚みであることが好ましい。特に好ましい外側層(15)の厚みは10〜80μmである。   The thickness of each layer constituting the laminate packaging material (10a) (10b) is not limited, but in the present invention, a sealing process is performed in which the resin of the thermoplastic resin layer (14) is pushed away to join the barrier layers (13) together. Therefore, it is preferable that the thermoplastic resin layer (14) is thin as long as the bonding strength can be ensured. From this viewpoint, the thickness of the thermoplastic resin layer (14) is preferably 10 to 100 μm, and particularly preferably 20 to 40 μm. Moreover, it is preferable that the thickness of the said barrier layer (13) is 1/3 or more of the thickness of a thermoplastic resin layer (14). In the sealing treatment, the laminate wrapping material (10a) (10b) is sandwiched with a jig and the resin is pushed away, so that the thickness is preferably in the above range in order not to tear the barrier layer (13) in this step. A particularly preferred thickness of the outer layer (15) is 10 to 80 μm.

[密封容器を用いた電池]
図3に示すように、前記電池用ケース(1)を用いた電池(2)の製造においては、一方のケース半体(10b)の凹部(11)に電池本体を収納し、電池本体の正極および負極のそれぞれに接続にされた正極用リード(20)および負極用リード(21)を外部に引き出した状態で他方のケース半体(10a)を被せて封止用周縁部(12)を重ねて封止処理を行う。前記正極用リード(20)および負極用リード(21)はそれぞれタブフィルム(22)(23)で挟んだ状態で封止用周縁部(12)(12)の間に配置されている。従って、封止用周縁部(12)(12)の封止処理を行うと、リード(20)(21)が引き出されていない部分に形成される第1封止部(31)は上下の封止用周縁部(12)(12)が直接接合され、リード(20)(21)を引き出した部分に形成される第2封止部(32)はリード(20)(21)およびタブフィルム(22)(23)を介して上下の封止用周縁部(12)(12)が接合される。前記電池用ケース(1)は、2つの第1封止部(31)および2つの第2封止部(32)からなる周縁封止部(30)が全周に形成されてリード(20)(21)がケース外に引き出された状態で密封されている。
[Battery using sealed container]
As shown in FIG. 3, in manufacturing the battery (2) using the battery case (1), the battery body is housed in the recess (11) of one case half (10b), and the positive electrode of the battery body is With the positive electrode lead (20) and negative electrode lead (21) connected to each of the negative electrode and the negative electrode lead (21) pulled out, the other case half (10a) is covered and the sealing peripheral edge (12) is overlaid. The sealing process is performed. The positive electrode lead (20) and the negative electrode lead (21) are disposed between the sealing peripheral portions (12) and (12) in a state of being sandwiched between the tab films (22) and (23), respectively. Therefore, when the sealing peripheral portions (12) and (12) are sealed, the first sealing portion (31) formed in the portion where the leads (20) and (21) are not pulled out is sealed in the upper and lower seals. The second sealing portion (32) formed in the portion where the peripheral edge portions (12) and (12) are directly joined and the leads (20) and (21) are pulled out is composed of the leads (20) and (21) and the tab film ( 22) The upper and lower sealing peripheral portions (12) and (12) are joined via (23). In the battery case (1), a peripheral sealing portion (30) including two first sealing portions (31) and two second sealing portions (32) is formed on the entire periphery, and the lead (20) (21) is sealed when pulled out of the case.

[密封容器の封止部]
前記周縁封止部(30)において、リード(20)(21)が引き出されていない部分に形成される第1封止部(31)は本発明における封止部に対応するものであり、ヒートシール部とバリア層接合部とにより構成されている。
[Sealed container sealing part]
In the peripheral sealing portion (30), the first sealing portion (31) formed in a portion where the leads (20) and (21) are not drawn out corresponds to the sealing portion in the present invention, and heat It is comprised by the seal part and the barrier layer junction part.

図4Aおよび図4Bに示すように、第1封止部(31)は、熱可塑性樹脂層(14)(14)の溶着によって形成されるヒートシール部(33)と熱可塑性樹脂層(14)の樹脂が押し退けられてバリア層(13)(13)同士が接合された多数のバリア層接合部(34)とにより形成されている。前記ヒートシール部(33)が第1封止部(31)の幅方向の全域にわたって形成されているのに対し、バリア層接合部(34)は幅方向における中間領域(35)にのみ形成されており、内周側領域(36)および外周側領域(37)はバリア層接合部(34)が存在せずヒートシール部(33)のみが存在している。   As shown to FIG. 4A and FIG. 4B, a 1st sealing part (31) is a heat seal part (33) formed by welding of a thermoplastic resin layer (14) (14), and a thermoplastic resin layer (14). The resin is pushed away to form a large number of barrier layer bonding portions (34) in which the barrier layers (13) and (13) are bonded to each other. The heat seal portion (33) is formed over the entire width direction of the first sealing portion (31), whereas the barrier layer joint portion (34) is formed only in the intermediate region (35) in the width direction. In the inner peripheral side region (36) and the outer peripheral side region (37), the barrier layer bonding portion (34) does not exist and only the heat seal portion (33) exists.

前記ヒートシール部(33)が第1封止部(31)の全域で途切れることなく連続しているのに対し、多数のバリア層接合部(34)は互いに非連続でありヒートシール部(33)中に斑点状に存在している。また、各々のバリア層接合部(34)の形状は2本の対角線の長さの等しい菱形(正方形)であり、2本の対角線が第1封止部(31)の周方向および幅方向に沿って配置されている。また、これらのバリア層接合部(34)は封止部(30)の幅方向において複数列に配置され、かつ周方向および幅方向の両方向に対してジグザグに斜行して千鳥状に配置されている。このようなバリア層接合部(34)の配置は菱形の最密配置であり、中間領域(35)におけるヒートシール部(33)はバリア層接合部(34)の最密配置によって斜格子形状となっている。   While the heat seal part (33) is continuous without interruption throughout the entire first sealing part (31), many barrier layer joint parts (34) are discontinuous with each other, and the heat seal part (33 ) Spotted inside. The shape of each barrier layer junction (34) is a rhombus (square) with two diagonal lines having the same length, and the two diagonal lines extend in the circumferential direction and the width direction of the first sealing part (31). Are arranged along. Further, these barrier layer joint portions (34) are arranged in a plurality of rows in the width direction of the sealing portion (30), and are zigzag obliquely arranged in both the circumferential direction and the width direction. ing. The arrangement of the barrier layer joints (34) is a rhombus close-packed arrangement, and the heat seal part (33) in the intermediate region (35) has an oblique lattice shape due to the close-packed arrangement of the barrier layer joints (34). It has become.

容器外部からもたらされる劣化促進物はバリア層(13)によって完全に遮断されるが、熱可塑性樹脂層(14)には微量が入り込む可能性がある。従って、図4Aに示す第1封止部(31)の平面視において、外周端面から入り込んだ劣化促進物はヒートシール部(33)のみを辿って容器内に到達し、ヒートシール部(33)が侵入路となる。前記ヒートシール部(33)はバリア層接合部(34)に挟まれて隘路となり、侵入路の断面積が小さくなることで劣化促進物の侵入が抑制される。また、前記ヒートシール部(33)は第1封止部(21)の外周端から内側に至るまで繋がっているものの中間領域(35)では斜め格子形状であるから、劣化促進物の侵入路(38)(39)はバリア層接合部(34)を避けて迂回しながらのジグザグ状の道筋(38)となるか、あるいは斜行直線(39)となる。ジグザグ状の侵入路(38)や斜行直線の侵入路(39)は、第1封止部(31)の周に直交する直線で表される最短距離の道筋(S)よりも距離が長くなり、侵入路の距離を長くすることで劣化促進物の侵入が抑制される。以上より、本実施形態の第1封止部(31)は劣化促進物の侵入路の断面積を小さくし、かつ侵入路を長くすることで相乗的に侵入が抑制されてバリア性が高められている。   The deterioration promoting substance brought from the outside of the container is completely blocked by the barrier layer (13), but a trace amount may enter the thermoplastic resin layer (14). Therefore, in the plan view of the first sealing portion (31) shown in FIG. 4A, the deterioration promoting substance that has entered from the outer peripheral end surface reaches only the heat seal portion (33) into the container, and the heat seal portion (33). Becomes an intrusion path. The heat seal portion (33) is sandwiched between barrier layer joint portions (34) and becomes a bottleneck, and the cross-sectional area of the intrusion passage is reduced, so that the penetration of the deterioration promoting substance is suppressed. In addition, although the heat seal portion (33) is connected from the outer peripheral end of the first sealing portion (21) to the inside, the intermediate region (35) has an oblique lattice shape, so that an intrusion path for deterioration promoting substances ( 38) (39) is a zigzag path (38) detouring around the barrier layer joint (34), or a skewed straight line (39). The zigzag intrusion path (38) and the oblique intrusion path (39) are longer than the shortest distance path (S) represented by a straight line orthogonal to the circumference of the first sealing portion (31). Thus, the penetration of the deterioration promoting substance is suppressed by increasing the distance of the intrusion path. As described above, the first sealing portion (31) of this embodiment reduces the cross-sectional area of the intrusion path of the deterioration promoting substance and lengthens the intrusion path to synergistically suppress the intrusion and enhance the barrier property. ing.

また、バリア層接合部(34)は樹脂同士が溶着したヒートシール部(33)よりも結合力が強い。このためヒートシール部(33)中にバリア層接合部(34)を形成したことで外部からの応力に対して耐剥離強度が向上する。   The barrier layer bonding portion (34) has a stronger bonding force than the heat seal portion (33) in which the resins are welded together. For this reason, the formation of the barrier layer bonding portion (34) in the heat seal portion (33) improves the peel resistance against external stress.

本発明の封止部(31)はヒートシール部(33)中に多数のバリア層接合部(34)が斑点状に存在しているので、ヒートシール部(33)の幅が実質的に封止部(31)の幅(W1)となる(図4A参照)。本発明は封止部(31)の幅(W1)を制限するものではないが、容器の内圧に対して接合強度を確保するためには幅(W1)が1mm以上の封止部(31)を形成することが好ましい。また幅(W1)が10mmあれば十分な接合強度が得られる。従って、好ましい封止部(31)の幅(W1)は1〜20mmである。また、前記封止部(31)の幅(W1)の好適値は熱可塑性樹脂層(14)の厚みや樹脂のMFR値にも影響を受けるので、これらに応じて1〜20mmの範囲内で適宜設定することが好ましい。特に好ましい封止部(31)の幅(W1)は3〜10mmである。   Since the sealing part (31) of the present invention has a large number of barrier layer joints (34) in the form of spots in the heat sealing part (33), the width of the heat sealing part (33) is substantially sealed. This is the width (W1) of the stop (31) (see FIG. 4A). Although this invention does not restrict | limit the width | variety (W1) of a sealing part (31), in order to ensure joining strength with respect to the internal pressure of a container, the width | variety (W1) sealing part (31) is 1 mm or more. Is preferably formed. Further, if the width (W1) is 10 mm, sufficient bonding strength can be obtained. Therefore, the preferable width (W1) of the sealing portion (31) is 1 to 20 mm. Moreover, since the suitable value of the width | variety (W1) of the said sealing part (31) is influenced also by the thickness of a thermoplastic resin layer (14), and the MFR value of resin, in the range of 1-20 mm according to these It is preferable to set appropriately. A particularly preferable width (W1) of the sealing portion (31) is 3 to 10 mm.

また、封止部(31)の内周側端部は内容物が接触するので熱可塑性樹脂層(14)の材料のみで形成されていることが好ましい。内容物によってはバリア層(13)の材料(例えば金属)との接触を避けなければならない、あるいは避けることが好ましいものがある。例えば電池の場合は電解液が金属製のバリア層(13)に接触することは避けなければならない。このため、封止部(31)の内周側領域(36)にはバリア層接合部(34)を設けず、ヒートシール部(33)のみが存在する領域を形成することが好ましく、バリア層との接触を避ける必要のある内容物の包装にも安全に使用できる。前記内周側領域(36)の幅(W2)は3〜15mmが好ましく、特に5〜10mmが好ましい。一方、封止部(31)の外周側領域(37)におけるバリア層接合部(34)の有無は問わない。   Further, the inner peripheral side end of the sealing portion (31) is preferably formed only from the material of the thermoplastic resin layer (14) because the contents come into contact therewith. Depending on the contents, contact with the material (eg metal) of the barrier layer (13) must be avoided or preferably avoided. For example, in the case of a battery, it must be avoided that the electrolyte contacts the metal barrier layer (13). For this reason, it is preferable not to provide the barrier layer bonding portion (34) in the inner peripheral side region (36) of the sealing portion (31), and to form a region where only the heat seal portion (33) exists. It can be used safely for packaging of contents that need to avoid contact. The inner peripheral side region (36) has a width (W2) of preferably 3 to 15 mm, particularly preferably 5 to 10 mm. On the other hand, the presence or absence of the barrier layer bonding portion (34) in the outer peripheral side region (37) of the sealing portion (31) does not matter.

上記実施形態に基づいて説明したように、封止部(31)において、劣化促進物の侵入路の断面積を小さくし、あるいはさらに侵入路を迂回させて距離を長くすることによって劣化促進物の侵入を抑制できる。   As explained based on the above-mentioned embodiment, in the sealing part (31), by reducing the cross-sectional area of the invasion path of the deterioration promoting substance, or by further detouring the intruding path and increasing the distance, Intrusion can be suppressed.

前記侵入路の断面積の縮小は侵入路の幅を縮小すれば良く、侵入路の幅の縮小はヒートシール部(33)中に多数のバリア層接合部(34)を非連続に形成すればバリア層接合部(34)の形状や形成位置に関係なく実現できる。侵入路の幅はバリア層接合部(34)間の間隔(D)であるから、間隔(D)を狭くすることによって劣化促進物の侵入を抑制することができる(図4A参照)。一方、バリア層接合部(34)間の間隔(D)を小さくするほど樹脂を押し退けるために大きな圧力が必要になる等加工条件が厳しくなり、また樹脂が押し退けられなかった場合はバリア層(13)同士を接触させることができずバリア層接合部(34)が形成されない。かかる観点より、バリア層接合部間(34)の間隔(D)は0.2〜3mmの範囲に設定することが好ましく、特に0.5〜1.5mmが好ましい。   The cross-sectional area of the intrusion path may be reduced by reducing the width of the intrusion path, and the width of the intrusion path may be reduced by discontinuously forming a large number of barrier layer joints (34) in the heat seal part (33). This can be realized regardless of the shape and position of the barrier layer bonding portion (34). Since the width of the intrusion path is the distance (D) between the barrier layer joints (34), the invasion of the deterioration promoting substance can be suppressed by narrowing the distance (D) (see FIG. 4A). On the other hand, as the distance (D) between the barrier layer joints (34) decreases, the processing conditions become severe, such as a large pressure is required to push the resin away, and if the resin is not pushed away, the barrier layer (13 ) Cannot be brought into contact with each other, and the barrier layer joint (34) is not formed. From this viewpoint, the distance (D) between the barrier layer joints (34) is preferably set in the range of 0.2 to 3 mm, and particularly preferably 0.5 to 1.5 mm.

また、個々のバリア層接合部(34)の大きさは、その外接円の直径で0.2〜5mmが好ましく、特に0.5〜1.5mmが好ましい。   In addition, the size of each barrier layer joint (34) is preferably 0.2 to 5 mm, particularly preferably 0.5 to 1.5 mm, in terms of the diameter of the circumscribed circle.

また、侵入路の距離の拡大は、バリア層接合部(34)の形状または形成位置、あるいはこれらの組み合わせによって実現できる。図4Aに示すように、最短の侵入路は封止部(31)の周に直交する直線(S)上にあり、この第1封止部(31)を最短距離で横断する場合の距離は封止部(31)の幅(W1)の寸法であるから、前記直線(S)上に少なくとも1つのバリア層接合部(34)が存在すればこのバリア層接合部(34)を迂回することによって侵入路の距離を長くすることができる。従って、封止部(31)の周に直交する任意の直線(S)上に少なくとも1つのバリア接合部(34)が存在するようにバリア層接合部(34)を配置すれば上述した最短距離の侵入路は存在しなくなり、侵入路は封止部(31)の幅(W1)よりも長くなる。また図4Aに示したように、封止部(31)の幅方向においてバリア層接合部(34)を複数列に形成すれば迂回回数が増えるので、侵入路の距離をより長くすることができる。ただし、限られた幅(W1)内において列数が増えるとバリア層接合部(34)間の間隔(D)も狭くなり、押し退けた樹脂の流れが滞り易くなるので、列数は20列以下が好ましい。   Further, the enlargement of the distance of the intrusion path can be realized by the shape or formation position of the barrier layer joint (34), or a combination thereof. As shown in FIG. 4A, the shortest intrusion path is on a straight line (S) orthogonal to the circumference of the sealing portion (31), and the distance in the case of crossing the first sealing portion (31) with the shortest distance is Since it is the dimension of the width (W1) of the sealing part (31), if there is at least one barrier layer joining part (34) on the straight line (S), the barrier layer joining part (34) should be bypassed. Can increase the distance of the intrusion path. Therefore, if the barrier layer bonding portion (34) is arranged so that at least one barrier bonding portion (34) exists on an arbitrary straight line (S) orthogonal to the circumference of the sealing portion (31), the shortest distance described above. The intrusion path no longer exists, and the intrusion path is longer than the width (W1) of the sealing portion (31). As shown in FIG. 4A, if the barrier layer bonding portions (34) are formed in a plurality of rows in the width direction of the sealing portion (31), the number of detours is increased, so that the distance of the intrusion path can be further increased. . However, if the number of rows increases within the limited width (W1), the distance (D) between the barrier layer joints (34) also becomes narrow, and the flow of the displaced resin tends to stagnate, so the number of rows is 20 rows or less. Is preferred.

図5の封止部(40)はヒートシール部(41)中に図4Aと同形のバリア層接合部(34)を千鳥状ではなく整列配置させたものである。このような整列配置の場合は周方向に隣合うバリア層接合部(34)の間を通る直線(42)が最短距離の侵入路であり、この直線は封止部(40)の周に直交する直線で表される最短距離の道筋(S)であるから、侵入路の距離を長くすることはできない。なお、前記封止部(40)は多数のバリア層接合部(34)が非連続に形成され、侵入路の断面積を縮小することで劣化促進物の侵入を抑制する効果を有しているので本発明に含まれる。   The sealing portion (40) in FIG. 5 is obtained by arranging the barrier layer joint portions (34) having the same shape as that in FIG. 4A in the heat seal portion (41), not in a staggered manner. In such an aligned arrangement, the straight line (42) passing between the barrier layer joints (34) adjacent in the circumferential direction is the shortest distance intrusion path, and this straight line is orthogonal to the circumference of the sealing part (40). Since it is the shortest path (S) represented by a straight line, the distance of the intrusion path cannot be increased. The sealing portion (40) has a large number of barrier layer joint portions (34) formed discontinuously, and has an effect of suppressing the invasion of deterioration promoting substances by reducing the cross-sectional area of the intrusion path. Therefore, it is included in the present invention.

[バリア層接合部の他の形状例および配置例]
図6〜図9に示した封止部(45)(50)(55)(60)は本発明の封止部の他の実施形態である。
(1)図6
封止部(45)は、ヒートシール部(46)中に、封止部(45)の幅方向において平行四辺形の多数のバリア層接合部(47)を1列に配置した例である。1列配置であっても平行四辺形の内角と隣合うバリア層接合部(47)との間隔の設定値によって、封止部(45)の周に直交する任意の直線(S)上に少なくとも1つのバリア接合部(47)を存在させることができる。図中(48)は最短の侵入路である。
(2)図7
封止部(50)は、ヒートシール部(51)中に、三角形のバリア層接合部(52)を封止部(50)の幅方向において複数列に配置し、かつ三角形の頂点の向きを1列毎に交互に逆転させて配置した例である。この封止部(50)は周に直交する任意の直線(S)上に少なくとも1つのバリア接合部(52)が存在するだけではなく、直線の侵入路が存在せず、侵入路(53)は全てジグザグ状となる。
(3)図8
封止部(55)は、ヒートシール部(56)中に、円形のバリア層接合部(57)を封止部(55)の幅方向において複数列に配置し、かつ周方向および幅方向の両方向に対してジグザグに斜行させて千鳥状に配置したものである。この封止部(55)は周に直交する任意の直線(S)上に少なくとも1つのバリア接合部(57)が存在するだけではなく、直線の侵入路が存在せず、侵入路(58)は全てバリア層接合部(57)を迂回して曲がりくねったつづら折状となる。
(4)図9
封止部(60)は、ヒートシール部(61)中に、菱形のバリア層接合部(62)を封止部(55)の幅方向において複数列に配置し、かつ周方向および幅方向の両方向に対してジグザグに斜行させて千鳥状に配置したものである。前記バリア層接合部(62)は2本の対角線の長さが異なる菱形であり、長い方の対角線(63)が周方向に沿うように配置されている。即ち、前記バリア層接合部(62)は周方向に長い菱形である。
[Another shape example and arrangement example of the barrier layer joint]
The sealing portions (45), (50), (55), and (60) shown in FIGS. 6 to 9 are other embodiments of the sealing portion of the present invention.
(1) FIG.
The sealing part (45) is an example in which a number of parallelogram-shaped barrier layer joining parts (47) are arranged in a row in the heat sealing part (46) in the width direction of the sealing part (45). Even in one-row arrangement, at least on an arbitrary straight line (S) orthogonal to the circumference of the sealing portion (45) depending on the set value of the interval between the inner angle of the parallelogram and the adjacent barrier layer joint portion (47). There can be one barrier junction (47). In the figure, (48) is the shortest entry path.
(2) FIG.
The sealing portion (50) has triangular barrier layer joint portions (52) arranged in a plurality of rows in the width direction of the sealing portion (50) in the heat seal portion (51), and the direction of the apex of the triangle is set. This is an example in which each row is alternately reversed. The sealing portion (50) not only has at least one barrier junction (52) on an arbitrary straight line (S) orthogonal to the circumference, but also has no straight intrusion path, and the intrusion path (53). Are all zigzag shaped.
(3) FIG.
The sealing portion (55) includes circular barrier layer joint portions (57) arranged in a plurality of rows in the width direction of the sealing portion (55) in the heat seal portion (56), and in the circumferential direction and the width direction. They are arranged in a zigzag pattern in a zigzag manner in both directions. The sealing portion (55) not only has at least one barrier junction (57) on an arbitrary straight line (S) orthogonal to the circumference, but also has no straight intrusion path, and the intrusion path (58). Are all bent in a twisted manner around the barrier layer joint (57).
(4) FIG.
The sealing portion (60) includes a diamond-shaped barrier layer bonding portion (62) arranged in a plurality of rows in the width direction of the sealing portion (55) in the heat seal portion (61), and in the circumferential direction and the width direction. They are arranged in a zigzag pattern in a zigzag manner in both directions. The barrier layer junction (62) is a rhombus with two diagonal lines having different lengths, and the longer diagonal line (63) is arranged along the circumferential direction. That is, the barrier layer junction (62) has a long diamond shape in the circumferential direction.

菱形が最密配置された封止部(60)における直線の侵入路(64)の傾斜角度(α)、即ちその封止部(60)の周に直交する直線で表される最短距離の道筋(S)と直線の侵入路(64)とがなす角度は、その菱形の内角の1/2角である。前記内角は、2対の内角のうちの、封止部(60)の周に直交する直線(S)上にある1対の内角である。従って、前記内角(2α)が大きくなるほど侵入路(64)の傾斜角度(α)が大きくなって距離が長くなり劣化促進物の侵入抑制効果が大きくなる。前記内角(2α)は2本の対角線の長さによって決まり、菱形の2本の対角線のうちの長い方の対角線(63)が周方向に沿い、かつ対角線の長さの差が大きくなるほど侵入路(64)の距離が長くなり、距離相応の侵入抑制効果が得られる。   Inclination angle (α) of the straight intrusion path (64) in the sealing portion (60) in which the rhombus is arranged in a close-packed manner, that is, the path of the shortest distance represented by a straight line orthogonal to the circumference of the sealing portion (60) The angle formed by (S) and the straight entry path (64) is a half angle of the interior angle of the rhombus. The inner angle is a pair of inner angles on a straight line (S) orthogonal to the circumference of the sealing portion (60) of the two pairs of inner angles. Therefore, as the inner angle (2α) increases, the inclination angle (α) of the intrusion path (64) increases, the distance becomes longer, and the invasion suppression effect of the deterioration promoting substance increases. The interior angle (2α) is determined by the lengths of the two diagonal lines, and the longer diagonal line (63) of the two diagonal lines of the rhombus is along the circumferential direction, and the larger the difference in the lengths of the diagonal lines, the larger the intrusion path The distance of (64) becomes longer, and an invasion suppression effect corresponding to the distance can be obtained.

図9に示した菱形の内角(2α)は鈍角であるから、侵入路(64)の傾斜角度(α)は45°超である。従って、菱形が最密配置された封止部において、長い方の対角線が周方向に沿うように菱形を配置すれば、直線の侵入路(64)の傾斜角度(α)は45°超となる。一方、図4Aの封止部(31)のバリア層接合部(34)は2本の対角線の長さが等しい菱形(正方形)であるから、侵入路の傾斜角度(α)は45°である。換言すると、前記封止部(31)の周に直交する直線とのなす角度が45°未満の任意の直線上には少なくとも1つのバリア層接触部(34)が存在し、傾斜角度(α)が45°未満の直線の侵入路は存在しない。   Since the interior angle (2α) of the rhombus shown in FIG. 9 is an obtuse angle, the inclination angle (α) of the entry path (64) is more than 45 °. Therefore, if the rhombus is arranged so that the longer diagonal line is along the circumferential direction in the sealing portion in which the rhombus is closely packed, the inclination angle (α) of the straight entry path (64) exceeds 45 °. . On the other hand, since the barrier layer junction (34) of the sealing part (31) in FIG. 4A is a rhombus (square) having the same length of the two diagonal lines, the inclination angle (α) of the intrusion path is 45 °. . In other words, at least one barrier layer contact portion (34) exists on an arbitrary straight line having an angle of less than 45 ° with the straight line orthogonal to the circumference of the sealing portion (31), and the inclination angle (α) There is no straight entry path with an angle less than 45 °.

以上より、菱形のバリア層接合部を最密配置する場合は、2本の対角線の長さに差をつけ、長い方の対角線を周方向に沿う方向に配置することが好ましく、対角線の長さの差が大きいほど劣化促進物の侵入抑制効果が大きい。また、菱形の好ましい大きさは、長い対角線寸法が0.05〜20mm、短い対角線寸法が0.02〜10mmであり、特に好ましい大きさは長い対角線寸法が0.5〜3mm、短い対角線寸法が0.2〜1.2mmである。   From the above, when the diamond-shaped barrier layer junctions are arranged in a close-packed manner, it is preferable to make a difference in the lengths of the two diagonal lines, and to arrange the longer diagonal line in the direction along the circumferential direction. The greater the difference is, the greater the effect of suppressing the penetration of the deterioration promoting substance. Further, the preferable size of the rhombus is 0.05 to 20 mm for the long diagonal dimension and 0.02 to 10 mm for the short diagonal dimension, and the particularly preferable size is 0.5 to 3 mm for the long diagonal dimension and the short diagonal dimension. 0.2 to 1.2 mm.

また、直線の侵入路の距離が封止部の周に直交する直線に対する侵入路の傾斜角度が大きくなるほど長くなるのは、上述したバリア層接合部が菱形である場合に限らず、どのような形状においても共通である。従って、封止部の周に直交する直線とのなす角度が45°未満である任意の直線上に少なくとも1つのバリア層接触部が存在すれば、傾斜角度が45°未満の直線の侵入路は存在せず、直線の侵入路の傾斜角度は45°以上となり、前記角度に相応する劣化促進物の侵入抑制効果が得られる。   In addition, the distance of the straight intrusion path becomes longer as the inclination angle of the intrusion path with respect to the straight line orthogonal to the circumference of the sealing portion becomes larger, not only when the barrier layer joint described above is a rhombus, The shape is also common. Therefore, if there is at least one barrier layer contact portion on an arbitrary straight line having an angle of less than 45 ° with the straight line orthogonal to the circumference of the sealing portion, a straight intrusion path having an inclination angle of less than 45 ° is It does not exist, and the inclination angle of the straight intrusion path is 45 ° or more, and the invasion suppression effect of the deterioration promoting substance corresponding to the angle can be obtained.

[密封容器の用途]
本発明の密封容器は、電池、食品等の光、酸素、水分をきらうものの包装する容器として広く用いることができる。また、密封容器の形状、シート状のラミネート包材の成形の有無(凹部成形の有無)、密封容器の寸法も問わない。但し、容器の周縁に封止処理を施す必要上、平面寸法が10mm×20mm以上、厚さが3mm以上の容器に適用することが好ましい。また、平面寸法が300mm×300mm以下、厚さが50mm以下の容器に適用することが好ましい。
[Use of sealed containers]
The sealed container of the present invention can be widely used as a container for packaging light, oxygen, moisture, etc., such as batteries and foods. Further, the shape of the sealed container, the presence or absence of molding of the sheet-like laminate packaging material (whether or not the recess is formed), and the dimensions of the sealed container are not limited. However, it is preferable to apply to a container having a planar dimension of 10 mm × 20 mm or more and a thickness of 3 mm or more because it is necessary to perform sealing treatment on the periphery of the container. Moreover, it is preferable to apply to a container having a planar dimension of 300 mm × 300 mm or less and a thickness of 50 mm or less.

また、本発明の密封容器は周縁の少なくとも一部に多数のバリア層接合部が連続することなく形成された封止部(以下、「本発明の封止部」と略する)が形成されていることが条件であり、周の一部に本発明の封止部が形成されていない容器も本発明に含まれる。例えば、図3に参照されるように、電池用ケースに適用する場合は電極用リードが容器外に引き出されるので、電極用リードの引き出し部には本発明の封止部は形成されておらず、引き出し部を除く周縁に形成されている。また、容器の内容物に拘わらず、容器の周縁に内容物充填用開口部を残して封止処理を行い充填後に開口部を閉じることがあるが、充填用に開口部を残した容器も本発明に含まれる。   In addition, the sealed container of the present invention has a sealed portion (hereinafter, abbreviated as “sealed portion of the present invention”) formed without a large number of barrier layer joints being continuous at least at the periphery. The present invention also includes a container in which the sealing portion of the present invention is not formed on a part of the circumference. For example, as shown in FIG. 3, when applied to a battery case, the electrode lead is drawn out of the container, so that the sealing portion of the present invention is not formed in the lead portion of the electrode lead. , Formed on the peripheral edge excluding the drawer portion. Regardless of the contents of the container, the opening may be closed after filling by leaving the opening for filling the contents on the periphery of the container, and the container with the opening left for filling may be closed. Included in the invention.

[密封容器の製造方法]
以下に、ラミネート包材のバリア層が金属である場合の密封容器の製造方法について、図4Aおよび図4Bの封止部(31)の封止処理を例に挙げ、図10を参照しつつ詳述する。
[Method of manufacturing sealed container]
Hereinafter, the manufacturing method of the sealed container when the barrier layer of the laminate packaging material is a metal will be described in detail with reference to FIG. 10 by taking the sealing process of the sealing portion (31) of FIGS. 4A and 4B as an example. Describe.

ヒートシール部(33)は熱可塑性樹脂層(14)同士の接合であるから、重ねた封止用周縁部(12)をヒートシール用の押さえ板(70)(71)で挟んで加熱することにより形成することができる(ヒートシール部形成工程)。バリア層接合部(34)は、バリア層接合部(34)の形状および配置に対応して多数の突起(72)を形成した突起付治具(73)を押し付けて加圧しながら超音波振動を与え、突起(72)の先端面で樹脂を押し退けて接合界面にバリア層(13)を露出させ、露出させたバリア層(13)同士を接合させることによって形成する(バリア層接合部形成工程)。突起(72)の押し付けおよび超音波振動によって押し退けられた樹脂は突起(72)の全周囲に存在する凹部(74)に流れるのでバリア層(13)を露出させやすい。従って、少ない加圧力で確実にバリア層接合部(34)を形成することができ、ひいては安定したバリア性能を得ることができる。   Since the heat seal part (33) is a joint between the thermoplastic resin layers (14), the overlapping sealing peripheral part (12) is sandwiched between the heat seal pressing plates (70) (71) and heated. (A heat seal part forming step). The barrier layer joint (34) is subjected to ultrasonic vibration while pressing and pressing a jig (73) with protrusions on which a large number of protrusions (72) are formed corresponding to the shape and arrangement of the barrier layer joint (34). And forming by bonding the exposed barrier layers (13) together by exposing the barrier layer (13) to the bonding interface by pushing the resin away from the tip surface of the protrusion (72) (barrier layer bonding portion forming step) . The resin pushed away by the pressing of the protrusion (72) and the ultrasonic vibration flows into the recess (74) existing around the protrusion (72), so that the barrier layer (13) is easily exposed. Therefore, the barrier layer bonding portion (34) can be reliably formed with a small applied pressure, and thus stable barrier performance can be obtained.

上記の封止方法を密封容器側から説明すると、前記バリア層接合部(34)はヒートシール部(33)中に連続することなく斑点状に形成されているので、バリア層接合部(34)の全周囲はヒートシール部(33)であり熱可塑性樹脂である。従って、バリア層(13)同士を接合するために熱可塑性樹脂を押し退けてバリア層(13)を露出させる際には、樹脂をバリア層接合部(34)(予定部)の周りの全方向に押し退けることができるので、樹脂が良好に流れてバリア層を露出させることが容易である。   The above-described sealing method will be described from the sealed container side. Since the barrier layer joint (34) is formed in a spot shape without being continuous in the heat seal portion (33), the barrier layer joint (34) The entire periphery of is a heat seal part (33), which is a thermoplastic resin. Therefore, when the barrier layer (13) is exposed by pushing away the thermoplastic resin to bond the barrier layers (13) to each other, the resin is omnidirectional around the barrier layer bonding portion (34) (planned portion). Since it can be pushed away, it is easy for the resin to flow well to expose the barrier layer.

前記ヒートシール部形成工程およびバリア層接合部形成工程を行うことによって、ラミネート包材の周縁に本発明の封止部(31)を形成することができる。これらの工程は同時に行っても良いし、順次行っても良い。   By performing the heat seal portion forming step and the barrier layer bonding portion forming step, the sealing portion (31) of the present invention can be formed on the periphery of the laminate packaging material. These steps may be performed simultaneously or sequentially.

2つの工程を同時に1工程で行う場合は、図10に示したように、押さえ板(71)に突起付治具(73)を取り付け、封止用周縁部(12)を挟んで加熱加圧しながら突起付治具(73)に超音波振動を与える。   When two steps are performed simultaneously in one step, as shown in FIG. 10, a jig with a protrusion (73) is attached to the holding plate (71) and heated and pressurized with the sealing peripheral portion (12) in between. Apply ultrasonic vibration to the jig with protrusion (73).

2つの工程を順次行う場合は、先に押さえ板(70)(71)のみを用いてヒートシール部(33)を形成し(ヒートシール部形成工程)、その後突起付治具(73)を用いてバリア層接合部(34)を形成する(バリア層接合部形成工程)。2工程に分けて封止処理を行えば、先に行うヒートシール部形成工程によって熱可塑性樹脂層(14)押し潰されて薄くなっているので、後に行うバリア層接合部形成工程の超音波接合で押し退ける樹脂量が少なくて済むのでバリア層(13)同士の接合が容易になる。また、バリア層接合部形成工程は、ヒートシール部形成工程を行った後、樹脂温度が低下しないうちに連続して行うことが好ましい。樹脂温度が高く樹脂が軟化状態にある間に超音波接合すれば、樹脂の押し退けが容易であるからバリア層接合部(34)の形成が容易である。超音波振動によっても樹脂は軟化するが、ヒートシール時の熱を利用することによって効率良くバリア層接合部(34)を形成し、ひいては効率良く封止処理を行うことができる。   When performing the two steps in sequence, first form the heat seal part (33) using only the pressure plate (70) (71) (heat seal part forming step), and then use the jig with protrusion (73) Then, the barrier layer bonding portion (34) is formed (barrier layer bonding portion forming step). If the sealing process is performed in two steps, the thermoplastic resin layer (14) is crushed and thinned by the heat seal portion forming step performed earlier, so that the ultrasonic bonding in the barrier layer joint portion forming step performed later Since the amount of resin that can be pushed away is small, it becomes easy to join the barrier layers (13). Moreover, it is preferable to perform a barrier layer junction part formation process continuously, after performing a heat seal part formation process, before the resin temperature falls. If ultrasonic bonding is performed while the resin temperature is high and the resin is in a softened state, the resin can be easily pushed away, so that the barrier layer bonding portion (34) can be easily formed. Although the resin is also softened by ultrasonic vibration, the barrier layer bonding portion (34) can be efficiently formed by utilizing the heat at the time of heat sealing, and as a result, the sealing process can be performed efficiently.

前記ヒートシールおよび超音波接合の条件の限定は無く、ラミネート包材の熱可塑性樹脂層およびバリア層の材料および厚み、密封容器の用途等に応じて適宜設定する。   There is no limitation on the conditions for the heat sealing and ultrasonic bonding, and the conditions are appropriately set according to the material and thickness of the thermoplastic resin layer and barrier layer of the laminate packaging material, the use of the sealed container, and the like.

例えばヒートシールの温度は、熱可塑性樹脂層(14)がLLDPE(直鎖状低密度ポリエチレン)の場合は140℃以上、CPP(無延伸ポリプロピレン)の場合は160℃以上が好ましい。また、樹脂からなる外側層(15)を有するラミネート包材の場合は樹脂の融点よりも低い温度であることが条件となる。前記外側層を構成する樹脂がPETの場合は250℃以下、ナイロンの場合は230℃以下が好ましい。また、ヒートシール時の加圧力は0.2〜1.0MPaが好ましく、加熱時間は2〜5秒が好ましい。   For example, the heat sealing temperature is preferably 140 ° C. or higher when the thermoplastic resin layer (14) is LLDPE (linear low density polyethylene) and 160 ° C. or higher when it is CPP (unstretched polypropylene). In the case of a laminate packaging material having an outer layer (15) made of a resin, the temperature is lower than the melting point of the resin. When the resin constituting the outer layer is PET, it is preferably 250 ° C. or lower, and when nylon is 230 ° C. or lower. Moreover, the applied pressure at the time of heat sealing is preferably 0.2 to 1.0 MPa, and the heating time is preferably 2 to 5 seconds.

また、超音波接合の条件としては、周波数:15〜40kHz、加圧力:5〜20MPa、エネルギー:0.5〜100J、超音波照射時間:0.1〜2秒が好ましい。   Moreover, as conditions for ultrasonic bonding, frequency: 15 to 40 kHz, applied pressure: 5 to 20 MPa, energy: 0.5 to 100 J, and ultrasonic irradiation time: 0.1 to 2 seconds are preferable.

超音波接合用の突起付治具(73)において、突起(72)の先端面形状および配置は封止部(31)におけるバリア層接合部(34)の形状および配置に対応する。前記突起付治具の製造方法は限定されず、形状に応じて任意の方法で製作したものを用いることができる。例えば、図4A、図9の菱形のバリア層接合部(34)(62)を最密配置するための突起付治具や図6の平行四辺形のバリア層接合部(47)を整列配置させるための突起付治具は、隣合うバリア層接合部(34)(62)(47)の間のヒートシール部(33)(61)(46)に対応する部分をワイヤーカット加工で切除することによって製造することができる。ワイヤーカット加工で製作可能な治具はカットライン上にバリア層接合部が存在しない形状に限定されるが、所要形状への加工が容易であるから低コストで製作できるというメリットがある。   In the jig with protrusions for ultrasonic bonding (73), the shape and arrangement of the tip surface of the protrusion (72) correspond to the shape and arrangement of the barrier layer bonding portion (34) in the sealing portion (31). The manufacturing method of the said jig | tool with a protrusion is not limited, What was manufactured by arbitrary methods according to a shape can be used. For example, the protrusion-shaped jig for arranging the diamond-shaped barrier layer joints (34) and (62) of FIG. 4A and FIG. 9 in close proximity and the parallelogram barrier layer joint (47) of FIG. For the jig with protrusions, the part corresponding to the heat seal part (33) (61) (46) between the adjacent barrier layer joint parts (34) (62) (47) should be excised by wire cutting Can be manufactured by. A jig that can be manufactured by wire cutting is limited to a shape that does not have a barrier layer joint on the cut line, but has an advantage that it can be manufactured at a low cost because it can be easily processed into a required shape.

また、図4A、図9、図6に参照されるように、ワイヤーカット加工で製作可能な突起付治具による封止部(31)(60)(45)は直線の侵入路(39)(64)(48)を有するものとなるが、侵入路(39)(64)(48)の距離が長くなるようにこれらの傾斜角度(α)を大きくすることによって劣化促進物の侵入抑制効果を大きくすることができる。例えば菱形バリア層接合部に最密配置においては、2本の対角線のうちの長い方の対角線を周方向に沿わせ、かつ対角線の長さの差を大きくするほど傾斜角度(α)が大きくなる。   As shown in FIGS. 4A, 9, and 6, the sealing portions (31), (60), and (45) using a jig with a protrusion that can be manufactured by wire-cut processing are straight intrusions (39) ( 64) (48), but by increasing the inclination angle (α) so that the distance of the intrusion path (39), (64), and (48) is increased, the invasion suppression effect of the deterioration promoting substance can be reduced. Can be bigger. For example, in the close-packed arrangement in the rhombus barrier layer junction, the inclination angle (α) increases as the longer one of the two diagonals is along the circumferential direction and the difference in diagonal length is increased. .

本発明は、リチウムイオン二次電池用ケースや食品のレトルトパウチ等として好適に利用できる。   The present invention can be suitably used as a case for a lithium ion secondary battery, a retort pouch for food, or the like.

1…電池用ケース(密封容器)
2…電池
10a、10b…ケース半体(ラミネート包材)
11…凹部
12…封止用周縁部
13…バリア層
14…熱可塑性樹脂層
15…外側層
16…収容部
20…正極用リード
21…負極用リード
30…周縁封止部
31…第1封止部(封止部)
33、41、46、51、56、61…ヒートシール部
34、47、52、57、62…バリア層接合部
36…内周側領域
40、45、50、55、60…封止部
63…長い方の対角線
70、71…ヒートシール用押さえ板
72…突起
73…突起付治具
1… Battery case (sealed container)
2 ... Battery
10a, 10b ... Case half (laminated packaging)
11 ... recess
12 ... Surrounding edge
13… Barrier layer
14 ... Thermoplastic resin layer
15 ... Outer layer
16 ... Container
20 ... Lead for positive electrode
21 ... Negative electrode lead
30… Rim seal
31 ... 1st sealing part (sealing part)
33, 41, 46, 51, 56, 61 ... heat seal part
34, 47, 52, 57, 62 ... Barrier layer joint
36… Inner area
40, 45, 50, 55, 60 ... sealing part
63… longer diagonal
70, 71… Heat seal retainer
72 ... Protrusions
73 ... Jig with protrusion

Claims (12)

バリア層の少なくとも一方の面に熱可塑性樹脂層が積層されたラミネート包材が熱可塑性樹脂層を内側にして重ねられ、重ねられたラミネート包材の周縁を接合して封止することによって収容部が形成される密封容器であって、
前記周縁の封止部は、熱可塑性樹脂層が溶着したヒートシール部とバリア層同士が接合された多数のバリア層接合部とを有し、前記多数のバリア層接合部はヒートシール部中に連続することなく斑点状に配置されていることを特徴とする密封容器。
A laminate packaging material in which a thermoplastic resin layer is laminated on at least one surface of the barrier layer is laminated with the thermoplastic resin layer inside, and the periphery of the laminated laminate packaging material is joined and sealed to accommodate the container. Is a sealed container,
The peripheral sealing portion includes a heat seal portion to which a thermoplastic resin layer is welded and a large number of barrier layer bonding portions in which barrier layers are bonded to each other, and the large number of barrier layer bonding portions are included in the heat seal portion. A hermetically sealed container characterized by being arranged in spots without being continuous.
前記バリア層は金属からなる請求項1に記載の密封容器。   The sealed container according to claim 1, wherein the barrier layer is made of metal. 前記封止部の周に直交する任意の直線上に少なくとも1つのバリア層接合部が存在する請求項1または2に記載の密封容器。   3. The sealed container according to claim 1, wherein at least one barrier layer bonding portion exists on an arbitrary straight line orthogonal to the circumference of the sealing portion. 前記封止部の周に直交する直線とのなす角度が45°未満である任意の直線上に少なくとも1つのバリア層接触部が存在する請求項1〜3のいずれかに記載の密封容器。   The sealed container according to any one of claims 1 to 3, wherein at least one barrier layer contact portion exists on an arbitrary straight line having an angle of less than 45 ° with a straight line orthogonal to the circumference of the sealing portion. 前記バリア層接合部の平面形状が菱形である請求項1〜4のいずれかに記載の密封容器。   The sealed container according to any one of claims 1 to 4, wherein a planar shape of the barrier layer joint is a rhombus. 前記バリア層接合部の平面形状が対角線の長さの異なる菱形であり、該バリア層接合部は長い方の対角線が封止部の周方向に沿って配置されている請求項5に記載の密封容器。   6. The sealing according to claim 5, wherein the planar shape of the barrier layer bonding portion is a rhombus having different diagonal lengths, and the barrier layer bonding portion has a longer diagonal line arranged along the circumferential direction of the sealing portion. container. 前記封止部の幅方向においてバリア層接合部が複数列に配置されている請求項1〜6のいずれかに記載の密封容器。   The sealed container according to claim 1, wherein barrier layer joint portions are arranged in a plurality of rows in the width direction of the sealing portion. 前記封止部の内周側領域にバリア層接合部を有さずヒートシール部のみからなる領域を有する請求項1〜7のいずれかに記載の密封容器。   The sealed container according to any one of claims 1 to 7, wherein the inner peripheral side region of the sealing portion does not have a barrier layer bonding portion and has a region consisting only of a heat seal portion. 前記密封容器は電池用ケースである請求項1〜8のいずれかに記載の密封容器。   The sealed container according to claim 1, wherein the sealed container is a battery case. 電池本体が請求項9に記載の電池用ケース内に装填され、前記電池本体に接続された電極用リードがケース外に引き出された状態で該ケースの周縁に封止部が形成されていることを特徴とする電池。   The battery main body is loaded in the battery case according to claim 9, and a sealing portion is formed on the periphery of the case in a state where the electrode lead connected to the battery main body is drawn out of the case. A battery characterized by. 金属からなるバリア層の少なくとも片面に熱可塑性樹脂層が積層されたラミネート包材を熱可塑性樹脂層が内側となるようにして重ねる工程と、
重ねたラミネート包材の周縁を押さえ板で挟んで加熱することにより熱可塑性樹脂層同士を溶着するヒートシール部形成工程と、
重ねたラミネート包材の周縁に、表面に多数の突起が連続することなく斑点状に設けられた突起付治具を押し付けながら超音波振動を付与し、前記突起の先端面で熱可塑性樹脂層を押し退けてバリア層を露出させ、露出させたバリア層同士を接合するバリア層接合部形成工程とを行い、
重ねたラミネート包材の周縁に、ヒートシール部中に多数のバリア層接合部が連続することなく斑点状に配置された封止部を形成することを特徴とする密封容器の製造方法。
A step of stacking a laminate packaging material in which a thermoplastic resin layer is laminated on at least one side of a barrier layer made of metal so that the thermoplastic resin layer is inside;
A heat seal portion forming step of welding the thermoplastic resin layers together by heating by sandwiching the periphery of the laminated laminate material with a pressing plate; and
Ultrasonic vibration is applied to the periphery of the laminated laminate packaging while pressing a jig with protrusions provided in a spot shape without many protrusions on the surface, and a thermoplastic resin layer is applied to the tip surface of the protrusions. A barrier layer bonding part forming step of exposing the barrier layer by pushing away and bonding the exposed barrier layers to each other;
A method of manufacturing a sealed container, comprising forming a sealing portion arranged in a spot shape without a large number of barrier layer joining portions being continuous in a heat seal portion at the periphery of the laminated laminate packaging material.
前記ヒートシール部形成工程を行った後、熱可塑性樹脂層が軟化状態にある間にバリア層接合部形成工程を行う請求項11に記載の密封容器の製造方法。
The manufacturing method of the sealed container of Claim 11 which performs a barrier layer junction part formation process after performing the said heat seal part formation process, while a thermoplastic resin layer is in a softened state.
JP2012189015A 2012-08-29 2012-08-29 Sealed container Active JP5985930B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012189015A JP5985930B2 (en) 2012-08-29 2012-08-29 Sealed container
KR1020130102238A KR102051683B1 (en) 2012-08-29 2013-08-28 Sealing container
CN201310393424.4A CN103662190B (en) 2012-08-29 2013-08-28 Seal container
CN201320538058.2U CN203544483U (en) 2012-08-29 2013-08-28 Sealed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189015A JP5985930B2 (en) 2012-08-29 2012-08-29 Sealed container

Publications (3)

Publication Number Publication Date
JP2014049197A true JP2014049197A (en) 2014-03-17
JP2014049197A5 JP2014049197A5 (en) 2015-07-23
JP5985930B2 JP5985930B2 (en) 2016-09-06

Family

ID=50301184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189015A Active JP5985930B2 (en) 2012-08-29 2012-08-29 Sealed container

Country Status (3)

Country Link
JP (1) JP5985930B2 (en)
KR (1) KR102051683B1 (en)
CN (2) CN203544483U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075257A (en) * 2017-10-16 2019-05-16 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing electrochemical cell
JP2019207780A (en) * 2018-05-28 2019-12-05 大日本印刷株式会社 Cell, heat seal device, and manufacturing method of cell
JPWO2022018948A1 (en) * 2020-07-20 2022-01-27

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985930B2 (en) * 2012-08-29 2016-09-06 昭和電工パッケージング株式会社 Sealed container
DE102019104379A1 (en) 2019-02-21 2020-08-27 Krones Ag Device and method for producing filled containers
DE102019104387A1 (en) * 2019-02-21 2020-08-27 Krones Ag Device and method for producing filled containers
US11535439B2 (en) 2019-10-18 2022-12-27 Sonoco Development, Inc. Pasteurization pouch with barrier
KR102305454B1 (en) * 2021-03-23 2021-10-01 쓰리애플즈코스메틱스 주식회사 Cosmetic airtight container

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104859A (en) * 1997-10-02 1999-04-20 Showa Alum Corp Method for joining composite material
WO1999040634A1 (en) * 1998-02-05 1999-08-12 Dai Nippon Printing Co., Ltd. Sheet for cell case and cell device
JP2000223090A (en) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Battery
JP2000264313A (en) * 1999-03-17 2000-09-26 Dainippon Printing Co Ltd Barrier package and its sealing method
JP2000301356A (en) * 1999-04-23 2000-10-31 Omron Corp Joining method of metallic foil and ultrasonic welding tool
JP2002260603A (en) * 2001-03-02 2002-09-13 Asahi Kasei Corp Laminated outer package sealed battery
JP2003154467A (en) * 2001-11-19 2003-05-27 Sony Corp Electric connection device, electric connection method, and battery
JP2004087239A (en) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd Battery and manufacturing method of the same, battery pack, and battery pack module
JP2006282259A (en) * 2005-04-04 2006-10-19 Dainippon Printing Co Ltd Seal container for boiling and retorting
JP2007330851A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Horn for ultrasonic bonding, ultrasonic bonding apparatus and ultrasonic bonding method
JP2008207818A (en) * 2007-02-23 2008-09-11 Osaka Jushi Kako Kk Plastic container for storing for long time heat-treated food product
JP2008243760A (en) * 2007-03-29 2008-10-09 Misuzu Kogyo:Kk Laminated assembly of sheet-like member
JP2010274296A (en) * 2009-05-27 2010-12-09 Nissan Motor Co Ltd Ultrasonic welding apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189246A (en) * 1995-06-26 1998-07-29 摩托罗拉公司 Packaging for an electrochemical device and device using same
JP4720065B2 (en) * 2001-09-04 2011-07-13 日本電気株式会社 Film outer battery and battery pack
JP5219587B2 (en) * 2008-03-31 2013-06-26 三洋電機株式会社 Laminated battery and battery module including the laminated battery
JP2012151034A (en) * 2011-01-20 2012-08-09 Hitachi Maxell Energy Ltd Laminated battery, and electronic apparatus comprising the same
JP5985930B2 (en) * 2012-08-29 2016-09-06 昭和電工パッケージング株式会社 Sealed container

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104859A (en) * 1997-10-02 1999-04-20 Showa Alum Corp Method for joining composite material
US6632538B1 (en) * 1998-02-05 2003-10-14 Dai Nippon Printing Co., Ltd. Sheet for cell and cell device
WO1999040634A1 (en) * 1998-02-05 1999-08-12 Dai Nippon Printing Co., Ltd. Sheet for cell case and cell device
JP2000223090A (en) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Battery
JP2000264313A (en) * 1999-03-17 2000-09-26 Dainippon Printing Co Ltd Barrier package and its sealing method
JP2000301356A (en) * 1999-04-23 2000-10-31 Omron Corp Joining method of metallic foil and ultrasonic welding tool
JP2002260603A (en) * 2001-03-02 2002-09-13 Asahi Kasei Corp Laminated outer package sealed battery
JP2003154467A (en) * 2001-11-19 2003-05-27 Sony Corp Electric connection device, electric connection method, and battery
JP2004087239A (en) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd Battery and manufacturing method of the same, battery pack, and battery pack module
JP2006282259A (en) * 2005-04-04 2006-10-19 Dainippon Printing Co Ltd Seal container for boiling and retorting
JP2007330851A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Horn for ultrasonic bonding, ultrasonic bonding apparatus and ultrasonic bonding method
JP2008207818A (en) * 2007-02-23 2008-09-11 Osaka Jushi Kako Kk Plastic container for storing for long time heat-treated food product
JP2008243760A (en) * 2007-03-29 2008-10-09 Misuzu Kogyo:Kk Laminated assembly of sheet-like member
JP2010274296A (en) * 2009-05-27 2010-12-09 Nissan Motor Co Ltd Ultrasonic welding apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075257A (en) * 2017-10-16 2019-05-16 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing electrochemical cell
JP2019207780A (en) * 2018-05-28 2019-12-05 大日本印刷株式会社 Cell, heat seal device, and manufacturing method of cell
WO2019230743A1 (en) * 2018-05-28 2019-12-05 大日本印刷株式会社 Battery, heat seal device, and method of manufacturing battery
US11949118B2 (en) 2018-05-28 2024-04-02 Dai Nippon Printing Co., Ltd. Battery packaging material having a valve device
JPWO2022018948A1 (en) * 2020-07-20 2022-01-27
JP7286200B2 (en) 2020-07-20 2023-06-05 トタニ技研工業株式会社 Bag-making method and welding method
US12011898B2 (en) 2020-07-20 2024-06-18 Totani Corporation Bag making method

Also Published As

Publication number Publication date
JP5985930B2 (en) 2016-09-06
CN103662190B (en) 2016-11-23
KR102051683B1 (en) 2019-12-03
CN103662190A (en) 2014-03-26
CN203544483U (en) 2014-04-16
KR20140029258A (en) 2014-03-10

Similar Documents

Publication Publication Date Title
JP5985930B2 (en) Sealed container
TWI479716B (en) A secondary battery manufacturing method, a secondary battery, a welding apparatus
JP5851785B2 (en) Battery and manufacturing method thereof
JP6638593B2 (en) Manufacturing method of electrode assembly
KR101216423B1 (en) Process of Improved Productivity for Preparation of Secondary Battery
TWI437595B (en) Electrochemical device
KR101589811B1 (en) Rechargeable battery
KR20140116184A (en) Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine
JP4341098B2 (en) battery
JP6128497B2 (en) Laminated battery and manufacturing method thereof
JP5082264B2 (en) Film-clad electrical device and method for manufacturing the same
JP2014032924A (en) Film sheathed battery and method for manufacturing the same
JP6342231B2 (en) Battery negative terminal
KR101999405B1 (en) Battery pack and method for manufacturing the same
JP2018176215A (en) Ultrasound joint method for metallic foil and film exterior battery
JP6491548B2 (en) Secondary battery manufacturing method and manufacturing apparatus
JP6342192B2 (en) Negative electrode terminal for battery and manufacturing method thereof
JP6227756B2 (en) Battery terminals and batteries
JP6101726B2 (en) Lithium ion secondary battery
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP2018120803A (en) Method for manufacturing film package battery and film package battery
JP6702139B2 (en) Electrode assembly and method of manufacturing electrode assembly
JP2015069962A (en) Power storage element
JP2016122492A (en) Battery manufacturing method and manufacturing apparatus for manufacturing battery
JP2007073322A (en) Method of sealing battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5985930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250