JP2014047959A - Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon - Google Patents

Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon Download PDF

Info

Publication number
JP2014047959A
JP2014047959A JP2012190279A JP2012190279A JP2014047959A JP 2014047959 A JP2014047959 A JP 2014047959A JP 2012190279 A JP2012190279 A JP 2012190279A JP 2012190279 A JP2012190279 A JP 2012190279A JP 2014047959 A JP2014047959 A JP 2014047959A
Authority
JP
Japan
Prior art keywords
heat exchanger
blower
heat
ventilation resistance
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012190279A
Other languages
Japanese (ja)
Inventor
Yasuhisa Sakagami
靖久 阪上
Atsushi Goto
惇 後藤
Yutaka Araki
豊 新木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012190279A priority Critical patent/JP2014047959A/en
Publication of JP2014047959A publication Critical patent/JP2014047959A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat exchanging efficiency of a heat exchanger by a way of suppressing an increase in a cost without increasing a cubic volume of the heat exchanger.SOLUTION: A heat exchanger 20 comprise a heat transfer tube 23 through which a refrigerant is made to flow and heat radiation fins 24. A blower 16 for forming an air stream passing through the heat exchanger 20 is combined with the heat exchanger 20. In the heat exchanger 20, ventilation resistance at a region facing the blower 16 is larger than ventilation resistance at other regions. The fact that thickness of the fin 24 at the region facing the blower 16 is larger than thickness of the other regions or the fact that the size of the fin 24 at the region facing the blower 16 in a ventilation direction is larger than that of the other regions, becomes a primary factor of difference of ventilation resistance.

Description

本発明は熱交換器及びそれを搭載した冷凍サイクル装置に関する。   The present invention relates to a heat exchanger and a refrigeration cycle apparatus equipped with the heat exchanger.

冷凍サイクル装置は空気調和機、冷蔵庫、冷凍庫、給湯器などの形で広く実用化されている。冷凍サイクル装置に必須の構成要素として熱交換器がある。   Refrigeration cycle apparatuses are widely put into practical use in the form of air conditioners, refrigerators, freezers, water heaters, and the like. A heat exchanger is an essential component of the refrigeration cycle apparatus.

冷凍サイクル装置の中に熱交換器がどのように組み込まれているかを、空気調和機を例にとり、図6に基づき説明する。   How the heat exchanger is incorporated in the refrigeration cycle apparatus will be described with reference to FIG. 6, taking an air conditioner as an example.

図6に示す空気調和機1はセパレートタイプとして構成されており、室内機2と室外機3を備える。室内機2は室内熱交換器4を内蔵し、室外機3はコンプレッサ5、室外熱交換器6、レシーバー7、及び膨張弁8を内蔵する。室内熱交換器4、コンプレッサ5、室外熱交換器6、レシーバー7、及び膨張弁8は図6のように接続されて冷凍サイクルを構成する。   The air conditioner 1 shown in FIG. 6 is configured as a separate type, and includes an indoor unit 2 and an outdoor unit 3. The indoor unit 2 includes an indoor heat exchanger 4, and the outdoor unit 3 includes a compressor 5, an outdoor heat exchanger 6, a receiver 7, and an expansion valve 8. The indoor heat exchanger 4, the compressor 5, the outdoor heat exchanger 6, the receiver 7, and the expansion valve 8 are connected as shown in FIG. 6 to constitute a refrigeration cycle.

冷房時には、冷媒はコンプレッサ5の吐出管より高温高圧のガス冷媒として吐出される。高温高圧のガス冷媒は室外熱交換器6に流入し、室外熱交換器6の外側を流れる室外空気に対し放熱を行う。放熱を行うとガス冷媒は凝縮する。凝縮した冷媒はレシーバー7で気液分離された後、膨張弁8に送られる。冷媒は膨張弁8で絞られ、低温低圧の液冷媒となる。液冷媒は室内熱交換器4に流入し、そこで蒸発・気化することにより室内空気から熱を奪う。その結果、室内を冷却することができる。   During cooling, the refrigerant is discharged from the discharge pipe of the compressor 5 as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant flows into the outdoor heat exchanger 6 and radiates heat to the outdoor air flowing outside the outdoor heat exchanger 6. When the heat is released, the gas refrigerant condenses. The condensed refrigerant is gas-liquid separated by the receiver 7 and then sent to the expansion valve 8. The refrigerant is throttled by the expansion valve 8 and becomes a low-temperature and low-pressure liquid refrigerant. The liquid refrigerant flows into the indoor heat exchanger 4, where it takes heat from the indoor air by being evaporated and vaporized. As a result, the room can be cooled.

室外機3の一般的な構造は図7から図9に示すようなものである。室外機2は、板金製部品と合成樹脂製部品により構成される筐体10の内部に、コンプレッサ5、室外熱交換器6、レシーバー7、及び膨張弁8を収容するが、図7にはコンプレッサ5と室外熱交換器6のみ示されている。筐体10の内部は機械室11と熱交換室12に区画されており、機械室11にはコンプレッサ5が収納され、熱交換室12には室外熱交換器6が収納されている。   The general structure of the outdoor unit 3 is as shown in FIGS. The outdoor unit 2 houses a compressor 5, an outdoor heat exchanger 6, a receiver 7, and an expansion valve 8 inside a housing 10 composed of sheet metal parts and synthetic resin parts. Only 5 and the outdoor heat exchanger 6 are shown. The inside of the housing 10 is partitioned into a machine room 11 and a heat exchange chamber 12, the compressor 5 is housed in the machine room 11, and the outdoor heat exchanger 6 is housed in the heat exchange room 12.

図7に示す通り、筐体10は平面形状が矩形であり、矩形の長辺のうち、図7において下側に位置する側が筐体10の正面となり、上側に位置する側が筐体10の背面となる。矩形の短辺は筐体の側面となる。ここでは筐体10の正面に向き合う使用者の左手側を左側面とし、右手側を右側面とする。   As shown in FIG. 7, the housing 10 has a rectangular planar shape, and of the long sides of the rectangle, the lower side in FIG. 7 is the front surface of the housing 10, and the upper side is the back surface of the housing 10. It becomes. The short side of the rectangle is the side of the housing. Here, the left hand side of the user facing the front of the housing 10 is the left side, and the right hand side is the right side.

室外熱交換器6は平面形状L字形に形成されている。室外熱交換器6の長辺6aは筐体10の背面に形成された空気取入口13に向かい合い、短辺6bは筐体10の右側面に形成された空気取入口14に向かいあう。   The outdoor heat exchanger 6 is formed in a planar shape L shape. The long side 6 a of the outdoor heat exchanger 6 faces the air intake 13 formed on the back surface of the housing 10, and the short side 6 b faces the air intake 14 formed on the right side of the housing 10.

熱交換室12の正面側には空気吹出口15が形成され、空気吹出口15と室外熱交換器6の間に送風機16が配置されている。送風機16はプロペラファン16aとこれを回転させるモータ16bにより構成される。室外熱交換器6の長辺6aはプロペラファン16aに正面から向かい合う。すなわち正対する。室外熱交換器6の短辺6bはプロペラファン16aの側面に向き合う。   An air outlet 15 is formed on the front side of the heat exchange chamber 12, and a blower 16 is disposed between the air outlet 15 and the outdoor heat exchanger 6. The blower 16 includes a propeller fan 16a and a motor 16b that rotates the propeller fan 16a. The long side 6a of the outdoor heat exchanger 6 faces the propeller fan 16a from the front. That is, they face each other. The short side 6b of the outdoor heat exchanger 6 faces the side surface of the propeller fan 16a.

送風機16を駆動すると、筐体10の内部の空気が空気吹出口15から吹き出される。その分を埋め合わせる形で空気取入口13、14から筐体10内に外気が流入する。空気取入口13から流入した外気は主に室外熱交換器6の長辺6を通り抜けて長辺6aとの間で熱交換を行い、空気取入口14から流入した外気は主に室外熱交換器6の短辺6bを通り抜けて短辺6bとの間で熱交換を行う。   When the blower 16 is driven, the air inside the housing 10 is blown out from the air outlet 15. Outside air flows into the housing 10 from the air intakes 13 and 14 in a form to make up for that. The outside air flowing in from the air intake 13 passes through the long side 6 of the outdoor heat exchanger 6 and exchanges heat with the long side 6a, and the outside air flowing in from the air intake 14 is mainly used in the outdoor heat exchanger. The heat exchange is performed with the short side 6b through the short side 6b.

室外熱交換器6としては様々な形式のものを用いることができる。ここでは図10から図12に示すパラレルフロータイプの熱交換器20を室外熱交換器6として用いている。   Various types of outdoor heat exchanger 6 can be used. Here, the parallel flow type heat exchanger 20 shown in FIGS. 10 to 12 is used as the outdoor heat exchanger 6.

図11において、紙面上側が熱交換器20の上側、紙面下側が熱交換器20の下側となる。熱交換器20は2本の垂直な分流管21、22を水平方向に間隔を置いて配置し、分流管21、22を複数の伝熱管23で接続した構成となっている。伝熱管23は金属の押出成型品であり、分流管21、22の長さ方向に沿って所定間隔で配置される。   In FIG. 11, the upper side of the paper is the upper side of the heat exchanger 20, and the lower side of the paper is the lower side of the heat exchanger 20. The heat exchanger 20 has a configuration in which two vertical branch pipes 21 and 22 are arranged at intervals in the horizontal direction, and the branch pipes 21 and 22 are connected by a plurality of heat transfer pipes 23. The heat transfer tubes 23 are metal extrusion-molded products, and are arranged at predetermined intervals along the length direction of the flow dividing tubes 21 and 22.

図10に示す通り、伝熱管23は平面形状L字形に曲げられていて、長辺23aと短辺23bを所定半径の湾曲部23cが接続している。長辺23aは室外熱交換器6における長辺6aとなり、短辺23bは室外熱交換器6における短辺6bとなる。   As shown in FIG. 10, the heat transfer tube 23 is bent into a planar shape L-shaped, and a long side 23a and a short side 23b are connected to a curved portion 23c having a predetermined radius. The long side 23 a becomes the long side 6 a in the outdoor heat exchanger 6, and the short side 23 b becomes the short side 6 b in the outdoor heat exchanger 6.

上下に隣接する伝熱管23の間には放熱用のフィン24が多数、所定ピッチで配置される。各フィン24は伝熱管23の軸線に直角に交わる平面内に配置される。従って湾曲部23cでは隣接するフィン24同士が異なる角度を有することになる。   A large number of heat dissipating fins 24 are arranged at a predetermined pitch between the heat transfer tubes 23 adjacent in the vertical direction. Each fin 24 is disposed in a plane that intersects the axis of the heat transfer tube 23 at a right angle. Therefore, adjacent fins 24 have different angles in the curved portion 23c.

熱交換器20を室外熱交換器6として使用すると、暖房運転時には熱交換器20が低温になり、着霜が生じる。着霜を抑制し、また除霜運転時における除霜水(ドレン)の排出を容易にするため、フィン24はルーバが切起し形成されていないストレートフィンタイプとされている。   When the heat exchanger 20 is used as the outdoor heat exchanger 6, the heat exchanger 20 becomes low temperature during heating operation and frost formation occurs. In order to suppress frost formation and facilitate the discharge of defrost water (drain) during the defrosting operation, the fin 24 is a straight fin type in which a louver is raised and not formed.

分流管21、22、伝熱管23、及びフィン24はいずれもアルミニウム等熱伝導の良い金属で形成され、溶接やろう付けで互いに固定されている。言うまでもないが伝熱管23の内部は分流管21、22の内部に連通する。   The shunt pipes 21 and 22, the heat transfer pipes 23, and the fins 24 are all formed of a metal having good heat conductivity such as aluminum, and are fixed to each other by welding or brazing. Needless to say, the inside of the heat transfer tube 23 communicates with the inside of the flow dividing tubes 21 and 22.

分流管21の上部には冷媒入口25が形成され、分流管22の下部には冷媒出口26が形成されている。冷媒入口25から分流管21に流入した冷媒は各伝熱管23に分流され、伝熱管23及びその外側のフィン24より放熱(あるいは吸熱)を行いつつ分流管22へと流れ、冷媒出口26から流出する。   A refrigerant inlet 25 is formed in the upper part of the branch pipe 21, and a refrigerant outlet 26 is formed in the lower part of the branch pipe 22. The refrigerant that has flowed into the branch pipes 21 from the refrigerant inlet 25 is split into the heat transfer pipes 23, flows to the branch pipes 22 while releasing heat (or absorbing heat) from the heat transfer pipes 23 and the fins 24 outside thereof, and flows out from the refrigerant outlet 26. To do.

前述の通り、送風機16を駆動すると空気取入口13、14から筐体10内に外気が流入し、室外熱交換器6として使用されている熱交換器20を吹き抜けて熱交換器20の内部を流れる冷媒との間で熱交換を行う。この時、送風機16に正対する長辺23aを通過する気流に比べ、送風機16に正対していない短辺23b及び湾曲部23cを通過する気流はどうしても流速が遅くなる。そのため、熱交換器20の全幅に亘り均一な風速分布を得ることができず、熱交換器20の全ての部位で伝熱性能を十分に発揮させるということができなかった。   As described above, when the blower 16 is driven, outside air flows into the housing 10 from the air intake ports 13 and 14, and blows through the heat exchanger 20 used as the outdoor heat exchanger 6 to pass through the inside of the heat exchanger 20. Exchanges heat with the flowing refrigerant. At this time, compared to the airflow passing through the long side 23a facing the blower 16, the airflow passing through the short side 23b and the curved portion 23c not facing the blower 16 is inevitably slowed. Therefore, a uniform wind speed distribution cannot be obtained over the entire width of the heat exchanger 20, and the heat transfer performance cannot be sufficiently exhibited in all parts of the heat exchanger 20.

上記の問題に対処するため、特許文献1に記載された熱交換器では、通過する風速が速い部分ではフィンピッチを密に設定し、風速が遅い部分ではフィンピッチを疎に設定して、伝熱性能を向上させている。図10から図12に示した熱交換器20にその考えをあてはめると図13及び図14に示す形になる。   In order to deal with the above problem, in the heat exchanger described in Patent Document 1, the fin pitch is set densely in a portion where the passing wind speed is high, and the fin pitch is set sparsely in a portion where the wind speed is slow. The thermal performance is improved. When the idea is applied to the heat exchanger 20 shown in FIGS. 10 to 12, the shape shown in FIGS. 13 and 14 is obtained.

同じく上記の問題に対処するため、特許文献2に記載された熱交換器では、送風機に正対していて風速が速くなる部位に第2の熱交換器を設置することで熱交換器の各部位を通過する気流の風速を均一化し、熱交換効率を向上させている。図10から図12に示した熱交換器20にその考えをあてはめると図15に示す形になる。   Similarly, in order to cope with the above problem, in the heat exchanger described in Patent Document 2, each part of the heat exchanger is provided by installing the second heat exchanger in a part facing the blower and increasing the wind speed. The air velocity passing through the air is made uniform, improving the heat exchange efficiency. When the idea is applied to the heat exchanger 20 shown in FIGS. 10 to 12, the shape shown in FIG. 15 is obtained.

特開平7−198167号公報JP 7-198167 A 特許平8−270985号公報Japanese Patent Publication No. 8-270985

特許文献1の解決方策では、フィンの疎密を熱交換器の部位に応じて変化させながら加工することが求められるため、加工コストが上昇する。またフィンピッチが密とされた部位では着霜が直ぐに通風阻害をもたらすので、除霜運転の頻度が高くなり、長時間連続運転を行うには不向きとなる。   In the solution of Patent Document 1, it is required to perform processing while changing the density of the fins according to the part of the heat exchanger, so that the processing cost increases. Further, since the frost formation immediately impedes ventilation in the portion where the fin pitch is dense, the frequency of the defrosting operation becomes high and is not suitable for continuous operation for a long time.

特許文献2の解決方策では、第2の熱交換器を用いるため加工工程が増加し、加工コストも上昇する。また熱交換器の体積が増大するので機器の小型化には不向きである。   In the solution method of patent document 2, since a 2nd heat exchanger is used, a process process increases and a process cost also rises. Further, since the volume of the heat exchanger increases, it is not suitable for downsizing of the equipment.

本発明は上記のような従来技術の抱える問題を解決すべくなされたものであり、熱交換器の体積を増大させず、コスト上昇を抑制できるやり方で熱交換器の熱交換効率を向上させることを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and it is possible to improve the heat exchange efficiency of the heat exchanger in a manner that can suppress the increase in cost without increasing the volume of the heat exchanger. With the goal.

本発明に係る熱交換器は、冷媒を通す伝熱管及び放熱用のフィンを備えた熱交換器であって、当該熱交換器を通過する気流を形成する送風機が組み合わせられ、当該熱交換器は前記送風機に正対する部位の通風抵抗がそれ以外の部位の通風抵抗に比べて大とされていることを特徴としている。   The heat exchanger according to the present invention is a heat exchanger provided with a heat transfer tube through which a refrigerant passes and fins for heat dissipation, combined with a blower that forms an airflow passing through the heat exchanger, and the heat exchanger is The ventilation resistance of the site | part facing the said air blower is made large compared with the ventilation resistance of the other site | part.

上記構成の熱交換器において、前記送風機に正対する部位はそれ以外の部位に比べ前記フィンの厚みが大とされていることが前記通風抵抗の差の要因であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the portion facing the blower has a larger thickness of the fin than the other portions as a factor of the difference in ventilation resistance.

上記構成の熱交換器において、前記送風機に正対する部位はそれ以外の部位に比べ通風方向における前記フィンの寸法が大とされていることが前記通風抵抗の差の要因であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the portion facing the blower has a larger size of the fin in the ventilation direction than the other portions is a factor of the difference in the ventilation resistance.

また本発明は、上記熱交換器を搭載した冷凍サイクル装置であることを特徴としている。   The present invention is also characterized in that it is a refrigeration cycle apparatus equipped with the heat exchanger.

また本発明は、冷凍サイクル装置が室外機と室内機を備える空気調和機として構成され、前記室外機に前記熱交換器を搭載したことを特徴としている。   According to the present invention, the refrigeration cycle apparatus is configured as an air conditioner including an outdoor unit and an indoor unit, and the heat exchanger is mounted on the outdoor unit.

本発明によると、熱交換器の中で送風機に正対する部位の通風抵抗がそれ以外の部位の通風抵抗に比べて大とされていることにより、熱交換器の各部位を通過する気流の風速が均一化し、熱交換効率が向上する。   According to the present invention, the wind speed of the airflow passing through each part of the heat exchanger is such that the ventilation resistance of the part facing the blower in the heat exchanger is larger than the ventilation resistance of the other part. Becomes uniform and heat exchange efficiency is improved.

本発明の第1実施形態に係る熱交換器の上面図である。It is a top view of the heat exchanger which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る熱交換器の上面図である。It is a top view of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on 2nd Embodiment of this invention. 熱流体のシミュレーションにより得た結果の表である。It is a table | surface of the result obtained by simulation of a thermal fluid. 空気調和機の概略構成図である。It is a schematic block diagram of an air conditioner. 空気調和機の室外機の概略構成を示す平面図である。It is a top view which shows schematic structure of the outdoor unit of an air conditioner. 空気調和機の室外機の概略構成を示す立面図である。It is an elevation which shows schematic structure of the outdoor unit of an air conditioner. 空気調和機の室外機の概略構成を示す部分立面図で、図9と直角の方向に見たものである。FIG. 9 is a partial elevation view showing a schematic configuration of an outdoor unit of an air conditioner, as viewed in a direction perpendicular to FIG. 9. 従来の熱交換器の上面図である。It is a top view of the conventional heat exchanger. 図10の熱交換器の正面図である。It is a front view of the heat exchanger of FIG. 図10の熱交換器の部分斜視図である。It is a fragmentary perspective view of the heat exchanger of FIG. 従来の別の熱交換器の上面図である。It is a top view of another conventional heat exchanger. 図13の熱交換器の正面図である。It is a front view of the heat exchanger of FIG. 従来のさらに別の熱交換器の上面図である。It is a top view of another conventional heat exchanger.

<第1実施形態>
図1及び図2に基づき、本発明に係る熱交換器の構造を説明する。なお、図10から図12に示した従来の熱交換器と機能的に共通する構成要素には図10から図12で用いた符号をそのまま用い、説明は省略する。第2実施形態の説明でも同様とする。
<First Embodiment>
Based on FIG.1 and FIG.2, the structure of the heat exchanger which concerns on this invention is demonstrated. In addition, the code | symbol used in FIGS. 10-12 is used for the component which is functionally common in the conventional heat exchanger shown in FIGS. 10-12, and description is abbreviate | omitted. The same applies to the description of the second embodiment.

第1実施形態に係る熱交換器20は、送風機16に正対する部位、すなわち長辺23aでは、送風機16に正対しない部位、すなわち短辺23b及び湾曲部23cに比べ、フィン24の厚みが大とされている。このことにより、長辺23aの通風抵抗は短辺23b及び湾曲部23cの通風抵抗に比べて大となっている。   In the heat exchanger 20 according to the first embodiment, the thickness of the fin 24 is larger at the portion facing the blower 16, that is, the long side 23a than at the portion not facing the blower 16, that is, the short side 23b and the curved portion 23c. It is said that. Accordingly, the ventilation resistance of the long side 23a is larger than the ventilation resistance of the short side 23b and the curved portion 23c.

上記のように通風抵抗に差をつけたことにより、長辺23aを通過する気流の風速と、短辺23b及び湾曲部23cを通過する気流の風速との差が小さくなり、熱交換器20の全体に亘って熱交換が偏りなく行われる。これにより熱交換器20の熱交換効率が向上する。   By making a difference in ventilation resistance as described above, the difference between the wind speed of the airflow passing through the long side 23a and the wind speed of the airflow passing through the short side 23b and the curved portion 23c is reduced, and the heat exchanger 20 Heat exchange is performed evenly throughout. Thereby, the heat exchange efficiency of the heat exchanger 20 improves.

<第2実施形態>
図3及び図4に本発明の第2実施形態に係る熱交換器20を示す。第2実施形態に係る熱交換器20は、送風機16に正対する部位、すなわち長辺23aでは、送風機16に正対しない部位、すなわち短辺23b及び湾曲部23cに比べ、通風方向におけるフィン24の寸法が大とされている。このことにより、長辺23aの通風抵抗は短辺23b及び湾曲部23cの通風抵抗に比べて大となっている。
Second Embodiment
3 and 4 show a heat exchanger 20 according to a second embodiment of the present invention. In the heat exchanger 20 according to the second embodiment, the portion facing the blower 16, that is, the long side 23 a, the portion not facing the blower 16, that is, the short side 23 b and the curved portion 23 c are compared with the fin 24 in the ventilation direction. The dimensions are large. Accordingly, the ventilation resistance of the long side 23a is larger than the ventilation resistance of the short side 23b and the curved portion 23c.

上記のように通風抵抗に差をつけたことにより、長辺23aを通過する気流の風速と、短辺23b及び湾曲部23cを通過する気流の風速との差が小さくなり、熱交換器20の全体に亘って熱交換が偏りなく行われる。これにより熱交換器20の熱交換効率が向上する。   By making a difference in ventilation resistance as described above, the difference between the wind speed of the airflow passing through the long side 23a and the wind speed of the airflow passing through the short side 23b and the curved portion 23c is reduced, and the heat exchanger 20 Heat exchange is performed evenly throughout. Thereby, the heat exchange efficiency of the heat exchanger 20 improves.

<シミュレーション>
本発明の効果を熱流体シミュレーションソフト(商品名「STREAM」)を用いて確認した。その結果が図5に示す表である。
<Simulation>
The effect of the present invention was confirmed using thermal fluid simulation software (trade name “STREAM”). The result is a table shown in FIG.

図5の表において「正面流量」とは熱交換器の中で送風機に正対する部位の流量のことであり、「側面流量」とはそれ以外の部位の流量のことである。従来の熱交換器では側面流量が0.17m3/sであるのに対し、本発明の熱交換器では側面流量が0.23m3/sと、側面流量が29%上昇した。従って本発明の熱交換器を用いれば熱交換器全体における気流の風速の差が小さくなり、熱交換効率が向上する。 In the table of FIG. 5, “front flow rate” refers to the flow rate of the part facing the blower in the heat exchanger, and “side flow rate” refers to the flow rate of other parts. In the conventional heat exchanger, the side flow rate is 0.17 m 3 / s, whereas in the heat exchanger of the present invention, the side flow rate is 0.23 m 3 / s and the side flow rate is increased by 29%. Therefore, if the heat exchanger of this invention is used, the difference in the wind speed of the airflow in the whole heat exchanger will become small, and heat exchange efficiency will improve.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は熱交換器及びそれを搭載した冷凍サイクル装置に広く利用可能である。   The present invention is widely applicable to a heat exchanger and a refrigeration cycle apparatus equipped with the heat exchanger.

1 空気調和機
2 室内機
3 室外機
4 室内熱交換器
5 コンプレッサ
6 室外熱交換器
7 レシーバー
8 膨張弁
10 筐体
16 送風機
20 熱交換器
21、22 分流管
23 伝熱管
23a 長辺
23b 短辺
23c 湾曲部
24 フィン
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Indoor unit 3 Outdoor unit 4 Indoor heat exchanger 5 Compressor 6 Outdoor heat exchanger 7 Receiver 8 Expansion valve 10 Housing | casing 16 Blower 20 Heat exchanger 21, 22 Shunt pipe 23 Heat exchanger tube 23a Long side 23b Short side 23c bending portion 24 fin

Claims (5)

冷媒を通す伝熱管及び放熱用のフィンを備えた熱交換器であって、
当該熱交換器を通過する気流を形成する送風機が組み合わせられ、
当該熱交換器は前記送風機に正対する部位の通風抵抗がそれ以外の部位の通風抵抗に比べて大とされていることを特徴とする熱交換器。
A heat exchanger having a heat transfer tube for passing a refrigerant and a fin for heat dissipation,
A blower that forms an airflow passing through the heat exchanger is combined,
The heat exchanger is characterized in that the ventilation resistance at a portion facing the blower is larger than the ventilation resistance at other portions.
前記送風機に正対する部位はそれ以外の部位に比べ前記フィンの厚みが大とされていることが前記通風抵抗の差の要因であることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the portion facing the blower has a larger thickness of the fin than the other portions as a factor of the difference in the ventilation resistance. 前記送風機に正対する部位はそれ以外の部位に比べ通風方向における前記フィンの寸法が大とされていることが前記通風抵抗の差の要因であることを特徴とする請求項1に記載の熱交換器。   2. The heat exchange according to claim 1, wherein the portion facing the blower has a larger size of the fin in the ventilation direction than the other portions, which is a factor of the difference in the ventilation resistance. vessel. 請求項1から3のいずれかの熱交換器を搭載したことを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 3. 室外機と室内機を備える空気調和機として構成され、
前記室外機に前記熱交換器を搭載したことを特徴とする請求項4に記載の冷凍サイクル装置。
It is configured as an air conditioner equipped with an outdoor unit and an indoor unit,
The refrigeration cycle apparatus according to claim 4, wherein the heat exchanger is mounted on the outdoor unit.
JP2012190279A 2012-08-30 2012-08-30 Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon Pending JP2014047959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012190279A JP2014047959A (en) 2012-08-30 2012-08-30 Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190279A JP2014047959A (en) 2012-08-30 2012-08-30 Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon

Publications (1)

Publication Number Publication Date
JP2014047959A true JP2014047959A (en) 2014-03-17

Family

ID=50607824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190279A Pending JP2014047959A (en) 2012-08-30 2012-08-30 Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon

Country Status (1)

Country Link
JP (1) JP2014047959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314527A (en) * 2017-06-23 2017-11-03 美的集团武汉制冷设备有限公司 Radiation recuperator and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314527A (en) * 2017-06-23 2017-11-03 美的集团武汉制冷设备有限公司 Radiation recuperator and air conditioner

Similar Documents

Publication Publication Date Title
JP5079857B2 (en) Air conditioner indoor unit
JP6223596B2 (en) Air conditioner indoor unit
JP2008196811A (en) Air conditioner
JP2010107102A (en) Outdoor unit for air conditioner
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP6205576B2 (en) Dehumidifier
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
WO2014155560A1 (en) Heat exchanger and refrigeration cycle air conditioner using same
WO2017135442A1 (en) Heat exchanger
JP2013053812A (en) Parallel flow heat exchanger and air conditioner mounted with the same
JP6370399B2 (en) Air conditioner indoor unit
JP2015224798A (en) Indoor unit of air conditioner
JP2014228223A (en) Air conditioner
JP2011064338A (en) Air conditioner
JP2019027614A (en) Heat exchanging device and air conditioner
JP2014047959A (en) Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
JP2010196945A (en) Outdoor unit
JP6486718B2 (en) Heat exchanger
JP2015169358A (en) heat exchanger
CN213955448U (en) Evaporating system of vertical cabinet type indoor unit
JP5997115B2 (en) Air conditioner
KR101351857B1 (en) a structure for arrangement of heat exchange on heater
CN102679793A (en) Heat exchanger fin
KR100898116B1 (en) Fin of Heat-exchanger