JP2014045606A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2014045606A
JP2014045606A JP2012187367A JP2012187367A JP2014045606A JP 2014045606 A JP2014045606 A JP 2014045606A JP 2012187367 A JP2012187367 A JP 2012187367A JP 2012187367 A JP2012187367 A JP 2012187367A JP 2014045606 A JP2014045606 A JP 2014045606A
Authority
JP
Japan
Prior art keywords
air
stator
main body
rotor
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012187367A
Other languages
Japanese (ja)
Other versions
JP5918656B2 (en
Inventor
Jinxia Xie
錦霞 謝
Narushige Omura
成重 大村
Yoshiaki Yagi
良晃 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2012187367A priority Critical patent/JP5918656B2/en
Priority to CN201310379755.2A priority patent/CN103683663B/en
Publication of JP2014045606A publication Critical patent/JP2014045606A/en
Application granted granted Critical
Publication of JP5918656B2 publication Critical patent/JP5918656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently cool a stator core and such.SOLUTION: In the rotary electric machine, air of a body part 41 that flows toward an end part of a right side of Fig. 1 after flowing through a gap 60 in a radial direction from an end part of a left side of Fig. 1 of a stator 30 flows in an air duct part 42 from a right side in the body part 41, and is cooled down by a heat exchanger 43, and a one-way air passage is formed so as to flow in a left side of the body part 41. A wind dividing plate 8 is fixed at a left side of a center of an axial direction of an axis of rotation 2 so as to surround a circumference of the axis of rotation 2, and a surface expanding in a radial direction is formed so as to block at least part of the radial direction gap 60.

Description

本発明は、内部の空気が循環する系統が形成された回転電機に関する。   The present invention relates to a rotating electrical machine in which a system in which internal air circulates is formed.

回転電機は、運転時に回転子鉄心や固定子鉄心に取り付けられたコイルから発熱する。ある限度以上に過熱されるとコイルの絶縁物の劣化が促進する。その結果、当該絶縁物が損傷する。また、絶縁物の交換タイミングが短縮する。   The rotating electric machine generates heat from coils attached to the rotor core and the stator core during operation. Deterioration of the coil insulation is promoted when overheated above a certain limit. As a result, the insulator is damaged. In addition, the replacement timing of the insulator is shortened.

従来の回転電機は、温度上昇を抑えるために、鉄心に通風ダクトが設けられている。通風ダクトには、ファンの回転によって生じた冷却風が流されるようになっている。ファンは、回転軸と共に回転して、固定子枠内の空気を循環させる機能を有している。   In a conventional rotating electrical machine, a ventilation duct is provided in an iron core in order to suppress a temperature rise. Cooling air generated by the rotation of the fan is allowed to flow through the ventilation duct. The fan has a function of rotating with the rotating shaft and circulating the air in the stator frame.

冷却風により固定子鉄心を冷却するときに、固定子鉄心の部位によって冷却度合いが異なること、すなわち鉄心温度のアンバランスが生じることがある。   When the stator core is cooled by the cooling air, the degree of cooling differs depending on the portion of the stator core, that is, the core temperature may be unbalanced.

鉄心の温度のアンバランスを低下させて、冷却効果を高める方法として、特許文献1に開示されているように、回転軸の軸方向に風仕切板を設けることが知られている。   As a method of increasing the cooling effect by reducing the temperature imbalance of the iron core, as disclosed in Patent Document 1, it is known to provide a wind partition plate in the axial direction of the rotating shaft.

特開平5−130753号公報Japanese Patent Laid-Open No. 5-130753

しかし、上記の例では、固定子鉄心の軸方向両側から固定子内の軸方向中央に向かうように空気が流れている。この方法を一方通風式回転電機に適用した場合、熱交換器出口から出た冷媒(冷却空気)は回転軸と回転子の間に形成される通風路(半径方向空隙)を通り、回転子および固定子鉄心にあるダクトを通って鉄心を冷却し、最後に熱交換器入口へと戻ることとなる。   However, in the above example, air flows from both sides in the axial direction of the stator core toward the center in the axial direction in the stator. When this method is applied to a single-ventilated rotary electric machine, the refrigerant (cooling air) exiting from the heat exchanger outlet passes through a ventilation path (radial gap) formed between the rotating shaft and the rotor, and the rotor and The iron core is cooled through a duct in the stator iron core and finally returned to the heat exchanger inlet.

ダクトは、冷却空気が半径方向に流れる流路であって、固定子鉄心内に軸方向に互いに間隔をあけて複数形成されている。軸方向に複数形成されたダクトそれぞれを通る冷却空気の量は均一ではないことが多いため、固定子鉄心の温度に軸方向の不均一が生じてしまう。このため、上記の例では一方向に循環する流通経路の場合には、対応できない。   The duct is a flow path through which cooling air flows in the radial direction, and a plurality of ducts are formed in the stator core at intervals in the axial direction. Since the amount of cooling air passing through each of the plurality of ducts formed in the axial direction is often not uniform, nonuniformity in the axial direction occurs in the temperature of the stator core. For this reason, in the above example, the distribution route that circulates in one direction cannot be handled.

本発明は上述した課題を解決するためになされたものであり、その目的は、一方通風式回転電機に係る固定子等を均一に冷却できるようにすることである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to enable uniform cooling of a stator and the like related to a one-way ventilation type electric rotating machine.

上記目的を達成するための本発明に係る回転電機は、所定の軸周りを回転する回転軸と、前記回転軸を半径方向外側から所定の半径方向空隙を保ちながら取り囲むように配置された円環状で、前記回転軸と共に回転する回転子と、前記回転子を半径方向外側から取り囲む固定子と、前記固定子を半径方向外側から取り囲むように構成された本体部と、この本体部内の空気が流入可能で且つ内部の空気が前記本体部内に流出可能に構成された風道部と、を備えるフレームと、前記風道部内に配置されて、前記本体部内の空気を冷却可能な熱交換器と、を有し、前記固定子の第1軸方向端部から前記半径方向空隙を流れた後に前記第1軸方向端部の反対側の第2軸方向端部に向かって流れる前記本体部内の空気が、前記本体部内の前記第2軸方向端部側から前記風道部内に流入し、前記熱交換器で冷却されて、前記本体部内の前記第1軸方向端部側に流入するように一方通行の空気流路が形成された回転電機において、前記回転軸の軸方向中央よりも前記第1軸方向端部側に、前記回転軸の外周を取り囲むように固定されて、前記半径方向空隙の少なくとも一部を塞ぐように前記回転軸に垂直な方向に広がる面が形成された風仕切り板を有すること、を特徴とする。   In order to achieve the above object, a rotating electrical machine according to the present invention includes a rotating shaft that rotates around a predetermined axis, and an annular shape that surrounds the rotating shaft from outside in the radial direction while maintaining a predetermined radial gap. And a rotor that rotates together with the rotating shaft, a stator that surrounds the rotor from outside in the radial direction, a main body configured to surround the stator from outside in the radial direction, and air in the main body flows in A frame including an air passage portion configured to allow air inside to flow out into the main body portion, a heat exchanger disposed in the air passage portion and capable of cooling the air in the main body portion, and And air in the main body that flows toward the second axial end opposite to the first axial end after flowing through the radial gap from the first axial end of the stator. The second axial direction in the main body In the rotating electrical machine in which a one-way air flow path is formed so as to flow into the air passage portion from the portion side, be cooled by the heat exchanger, and flow into the first axial end portion side in the main body portion The rotary shaft is fixed to the first axial end side from the axial center of the rotary shaft so as to surround the outer periphery of the rotary shaft, and is perpendicular to the rotary shaft so as to close at least a part of the radial gap. It has the wind partition plate in which the surface which spreads in any direction was formed, It is characterized by the above-mentioned.

本発明によれば、一方通風式回転電機に係る固定子等を均一に冷却することが可能である。   According to the present invention, it is possible to uniformly cool the stator and the like related to the one-ventilated rotary electric machine.

本発明に係る第1の実施形態の回転電機を模式的に示した概略正面図であって、上半分を断面で示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic front view which showed typically the rotary electric machine of 1st Embodiment which concerns on this invention, Comprising: An upper half is shown with a cross section. 図1の回転電機のII−II矢視の概略側面図である。It is a schematic side view of the rotary electric machine of FIG. 図1の回転子および固定子を部分的に拡大した部分拡大正面図である。FIG. 2 is a partially enlarged front view in which the rotor and stator of FIG. 1 are partially enlarged. 本発明に係る第2の実施形態の回転電機を模式的に示した概略正面図である。It is the schematic front view which showed typically the rotary electric machine of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施形態の回転電機の風仕切り板等を模式的に示した部分側面図である。It is the partial side view which showed typically the wind partition plate etc. of the rotary electric machine of 3rd Embodiment which concerns on this invention. 図5の風仕切り板よりも、半径方向空隙内の気流の下流側に配置された風仕切り板等を模式的に示した部分側面図である。It is the partial side view which showed typically the wind partition board etc. which are arrange | positioned rather than the wind partition board of FIG. 5 in the downstream of the airflow in radial direction space | gap.

以下、本発明に係る回転電機の実施形態について図面を参照して説明する。   Embodiments of a rotating electrical machine according to the present invention will be described below with reference to the drawings.

[第1の実施形態]
第1の実施形態について、図1〜図3を用いて説明する。図1は、本実施形態の回転電機を模式的に示した概略正面図であって、上半分を断面で示す。図2は、図1の回転電機のII−II矢視の概略側面図である。図3は、図1の回転子20および固定子30を部分的に拡大した部分拡大正面図である。
[First Embodiment]
A first embodiment will be described with reference to FIGS. FIG. 1 is a schematic front view schematically showing the rotating electrical machine of the present embodiment, and shows an upper half in section. FIG. 2 is a schematic side view of the rotating electrical machine of FIG. FIG. 3 is a partially enlarged front view in which the rotor 20 and the stator 30 of FIG. 1 are partially enlarged.

先ず、本実施形態の回転電機の構成について説明する。   First, the configuration of the rotating electrical machine of the present embodiment will be described.

本実施形態の回転電機は、回転軸2と、リブ10と、回転子20と、固定子30と、回転軸2および固定子30等を収容するフレーム40と、を有する。   The rotating electrical machine of the present embodiment includes a rotating shaft 2, a rib 10, a rotor 20, a stator 30, and a frame 40 that houses the rotating shaft 2, the stator 30, and the like.

回転軸2は、水平な軸周りを回転する円柱状の部材で、軸受6により回転自在に支持されている。回転軸2には、回転軸2と共に回転する内部ファン4が取り付けられている。   The rotating shaft 2 is a cylindrical member that rotates around a horizontal axis, and is rotatably supported by a bearing 6. An internal fan 4 that rotates together with the rotating shaft 2 is attached to the rotating shaft 2.

リブ10は、取付け部11と、支持部12と、円環部13と、を有する(図2)。   The rib 10 has an attachment part 11, a support part 12, and an annular part 13 (FIG. 2).

取付け部11は、回転軸2の外周面を取り囲んで回転軸2に取り付けられる部材である。支持部12は、取付け部11から放射状に円環部13の内周面まで延びる棒状で、周方向に等間隔(90度ごと)に、すなわち4箇所に形成される(図2)。周方向に隣り合う支持部12の間には、風仕切り板8が配置される。風仕切り板8については、後で説明する。   The attachment portion 11 is a member that surrounds the outer peripheral surface of the rotary shaft 2 and is attached to the rotary shaft 2. The support part 12 is a rod shape that extends radially from the attachment part 11 to the inner peripheral surface of the annular part 13, and is formed at equal intervals in the circumferential direction (every 90 degrees), that is, at four locations (FIG. 2). A wind partition plate 8 is disposed between the support portions 12 adjacent in the circumferential direction. The air divider plate 8 will be described later.

円環部13は、支持部12に支持されて、回転軸2の外周面に所定の半径方向空隙60を保ちながら取り囲むように構成されている。   The annular portion 13 is supported by the support portion 12 and is configured to surround the outer peripheral surface of the rotating shaft 2 while maintaining a predetermined radial gap 60.

回転子20は、リブ10の円環部13の半径方向外側を取り囲むように固定されて、回転軸2と共に回転する。この回転子20は、回転子鉄心21と、導体の回転子バー23と、を有する。回転子鉄心21は、鋼板が軸方向に複数積層されてなる複数の鋼板群25と、軸方向に隣り合う鋼板群25の間それぞれに配置された複数の間隔板26と、を有する(図3)。固定子鉄心21には、軸方向に延びるスロット24が形成されている。間隔板26には、半径方向に貫通する回転子ダクト22が形成されている。この例では、間隔板26が軸方向に複数配列されているため、回転子ダクト22は、軸方向に複数形成される。   The rotor 20 is fixed so as to surround the radially outer side of the annular portion 13 of the rib 10 and rotates together with the rotating shaft 2. The rotor 20 includes a rotor core 21 and a conductor rotor bar 23. The rotor core 21 has a plurality of steel plate groups 25 in which a plurality of steel plates are laminated in the axial direction, and a plurality of spacing plates 26 disposed between the steel plate groups 25 adjacent in the axial direction (FIG. 3). ). A slot 24 extending in the axial direction is formed in the stator core 21. The spacing plate 26 is formed with a rotor duct 22 that penetrates in the radial direction. In this example, since a plurality of spacing plates 26 are arranged in the axial direction, a plurality of rotor ducts 22 are formed in the axial direction.

回転子バー23は、スロット24を貫通するように配置される部材である。   The rotor bar 23 is a member arranged so as to penetrate the slot 24.

固定子30は、回転子20を半径方向外側から取り囲む円環状の部材である。この固定子30は、固定子鉄心31および固定子巻線35等からなる。固定子鉄心31は、詳細な図示は省略するが、複数の鋼板群32と、複数の間隔板33と、を有する。   The stator 30 is an annular member that surrounds the rotor 20 from the outside in the radial direction. The stator 30 includes a stator core 31 and a stator winding 35. Although not shown in detail, the stator core 31 has a plurality of steel plate groups 32 and a plurality of spacing plates 33.

鋼板群32は、鋼板が軸方向に複数積層されてなる部材である。間隔板33は、軸方向に互いに隣接する鋼板群32の間に配置される部材である。この間隔板33には、空気が半径方向に流通可能な流路(固定子ダクト34)が形成されている。固定子巻線35は、固定子鉄心31に形成されたスロット(図示せず)に巻きまわされる。   The steel plate group 32 is a member in which a plurality of steel plates are laminated in the axial direction. The spacing plate 33 is a member disposed between the steel plate groups 32 adjacent to each other in the axial direction. The spacing plate 33 is formed with a flow path (stator duct 34) through which air can flow in the radial direction. The stator winding 35 is wound around a slot (not shown) formed in the stator core 31.

フレーム40は、本体部41および風道部42を有する。本体部41は、軸受6等が固定されて、固定子30を半径方向外側から取り囲み、回転子20および固定子30を収容する。   The frame 40 has a main body portion 41 and an air passage portion 42. The main body 41 has the bearing 6 and the like fixed thereto, surrounds the stator 30 from the outside in the radial direction, and accommodates the rotor 20 and the stator 30.

風道部42は、本体部41と互いに連通するように形成されて、本体部41内の空気が流入可能で、且つ風道部42の内部の空気が本体部41内に流出可能に構成されている。空気の流路等については、後述する。   The air passage portion 42 is formed so as to communicate with the main body portion 41 so that air in the main body portion 41 can flow in and air inside the air passage portion 42 can flow out into the main body portion 41. ing. The air flow path and the like will be described later.

風道部42内には、熱交換器43が配置されている。この熱交換器43は、フレーム40内の空気を冷却する機能を有し、冷却された空気によって固定子30等を冷却する。当該熱交換器43は、固定子30等を冷却するための空気の流路上に配置される。この例では、熱交換器43は、固定子30の上方に配置される。   A heat exchanger 43 is disposed in the air passage portion 42. The heat exchanger 43 has a function of cooling the air in the frame 40 and cools the stator 30 and the like with the cooled air. The heat exchanger 43 is disposed on an air flow path for cooling the stator 30 and the like. In this example, the heat exchanger 43 is disposed above the stator 30.

この熱交換器43の周囲には、複数の板からなり空気の流路を形成する複数の板群が配置されている。   Around the heat exchanger 43, a plurality of plate groups that are formed of a plurality of plates and form an air flow path are arranged.

これらの板群には、固定子30と熱交換器43を仕切る第1板群51と、本体部41から風道部42への入口部を形成する第2板群52と、熱交換器43に空気を流入させるための第3板群53と、を含む。   These plate groups include a first plate group 51 that partitions the stator 30 and the heat exchanger 43, a second plate group 52 that forms an inlet portion from the main body portion 41 to the air passage portion 42, and the heat exchanger 43. 3rd board group 53 for making air flow in to.

第1板群51は、固定子30の上方で且つ熱交換器43の下方に取り付けられて、固定子30および熱交換器43を仕切るように配置される。この第1板群51の下方は、固定子30内を通り抜けた空気が流れる流路(固定子上方流路61)が形成されて、第1板群51の上方は、熱交換器43を通り抜けた空気が流れる流路(熱交換器下方流路62)が形成される。   The first plate group 51 is attached above the stator 30 and below the heat exchanger 43 and is arranged so as to partition the stator 30 and the heat exchanger 43. A flow path (stator upper flow path 61) through which air that has passed through the stator 30 flows is formed below the first plate group 51, and the upper part of the first plate group 51 passes through the heat exchanger 43. A flow path (heat exchanger lower flow path 62) through which the air flows is formed.

第2板群52は、固定子30と内部ファン4との間に配置されて、風道部入口流路63を形成する。この風道部入口流路63は、固定子上方流路61から流れる空気が流入し、その後、内部ファン4を通り抜けて風道部42に流れるように形成されている。   The second plate group 52 is disposed between the stator 30 and the internal fan 4 to form the air passage portion inlet flow path 63. The air passage portion inlet flow passage 63 is formed so that air flowing from the stator upper flow passage 61 flows in, and then flows through the internal fan 4 to the air passage portion 42.

第3板群53は、熱交換器43の軸方向両側の端部の上方それぞれに配置されて、曲面が形成された板である。この第3板群53により、風道部入口流路63から流れる空気が流れる熱交換器上流側流路64を形成する。   The third plate group 53 is a plate in which a curved surface is formed by being arranged above the ends on both sides in the axial direction of the heat exchanger 43. The third plate group 53 forms a heat exchanger upstream side flow path 64 through which air flowing from the air passage inlet flow path 63 flows.

風仕切り板8は、回転軸2に垂直な方向に広がる面が形成されている板状の部材であって、リブ10の軸方向中央よりも図1における左側で、回転子20の左側端部よりも右側に配置される。   The air partition plate 8 is a plate-like member in which a surface extending in a direction perpendicular to the rotation shaft 2 is formed, and is on the left side in FIG. It is arranged on the right side.

この風仕切り板8は、周方向に隣り合う支持部12の周方向間隙それぞれに取り付けられ、この例では、4枚の風仕切り板8が回転軸2の外周を取り囲むように配置される(図2)。なお、図1では、風仕切り板8を固定するための支持部12や取付け部11の図示は省略している。   This wind partition plate 8 is attached to each of the circumferential gaps of the support portions 12 adjacent to each other in the circumferential direction, and in this example, four wind partition plates 8 are arranged so as to surround the outer periphery of the rotating shaft 2 (see FIG. 2). In addition, in FIG. 1, illustration of the support part 12 and the attaching part 11 for fixing the wind partition plate 8 is abbreviate | omitted.

このように構成することで、各風仕切り板8は、半径方向空隙60の一部を塞ぎ、半径方向間隙を通り抜けようとする空気の流れを阻害することができる。   By configuring in this way, each air partition plate 8 can block a part of the radial gap 60 and inhibit the flow of air that attempts to pass through the radial gap.

続いて、冷却空気の流路について説明する。   Subsequently, the flow path of the cooling air will be described.

回転電機に電力が供給されると、回転軸2および回転子20が回転し、固定子巻線35から熱が発生し、その熱は、固定子鉄心31等に伝わる。   When electric power is supplied to the rotating electrical machine, the rotating shaft 2 and the rotor 20 rotate, heat is generated from the stator winding 35, and the heat is transmitted to the stator core 31 and the like.

回転軸2の回転に伴い、内部ファン4が回転する。内部ファン4の回転により、フレーム40内に空気の流れが発生する。この例では、図1における複数の矢印Aで示すように空気が流れる。すなわち、内部ファン4は、図1における内部ファン4の左側の半径方向空隙60および固定子上方流路61の空気を吸い込むように回転する。   As the rotating shaft 2 rotates, the internal fan 4 rotates. An air flow is generated in the frame 40 by the rotation of the internal fan 4. In this example, air flows as indicated by a plurality of arrows A in FIG. That is, the internal fan 4 rotates so as to suck in air in the radial gap 60 on the left side of the internal fan 4 and the stator upper flow path 61 in FIG.

内部ファン4によって吸い込まれた空気は、風道部入口流路63を経て、熱交換器上流側流路64に流れ込む。その後、当該空気は、熱交換器43を通り抜ける。熱交換器43を通り抜けている間に、当該空気は冷却される。   The air sucked by the internal fan 4 flows into the heat exchanger upstream flow path 64 through the air passage inlet flow path 63. Thereafter, the air passes through the heat exchanger 43. While passing through the heat exchanger 43, the air is cooled.

詳細な図示は省略するが、熱交換器43には、内部に冷却水配管が配置されている。この冷却水配管は、風道部42の外部から冷却水を供給し、熱交換後に再び風道部42の外部に流れるように構成されている。   Although detailed illustration is omitted, the heat exchanger 43 has cooling water piping disposed therein. The cooling water pipe is configured to supply cooling water from the outside of the air passage portion 42 and flow again to the outside of the air passage portion 42 after heat exchange.

熱交換器43により冷却された空気は、熱交換器下方流路62に流れ込んで、回転子20および固定子30の軸方向外側(図1の左側)を経て、一部は半径方向空隙60に流れ込む。半径方向空隙60に流れ込んだ空気の多くは、風仕切り板8に吹き付けられる。   The air cooled by the heat exchanger 43 flows into the heat exchanger lower flow path 62, passes through the outer side of the rotor 20 and the stator 30 in the axial direction (left side in FIG. 1), and partly enters the radial gap 60. Flows in. Most of the air that has flowed into the radial gap 60 is blown to the wind partition plate 8.

風仕切り板8に吹き付けられた空気の一部は、風仕切り板8よりも下流側(図1の右側)に流れて、そのまま半径方向空隙60を通り抜けて、内部ファン4に向かって流れる。   A part of the air blown to the wind partition plate 8 flows downstream from the wind partition plate 8 (right side in FIG. 1), passes through the radial gap 60 as it is, and flows toward the internal fan 4.

風仕切り板8に吹き付けられた空気の一部は、回転子ダクト22を半径方向外側に通り抜けて、固定子鉄心31の固定子ダクト34に流れ込む。このとき、風仕切り板8の図1の右側にある鋼板群32等を冷却することができる。風仕切り板8の図1の右側にある鋼板群25、32等を冷却した空気は、固定子上方流路61に流れ出て、内部ファン4に向かって流れる。   A part of the air blown to the wind partition plate 8 passes through the rotor duct 22 radially outward and flows into the stator duct 34 of the stator core 31. At this time, the steel plate group 32 and the like on the right side of FIG. 1 of the air partition plate 8 can be cooled. Air that has cooled the steel plate groups 25 and 32 on the right side of FIG. 1 of the air partition plate 8 flows out to the stator upper flow path 61 and flows toward the internal fan 4.

仮に風仕切り板8がない場合には、半径方向空隙60に流れ込んだ空気は、その多くが半径方向空隙60の下流側(図1の右側)に向かって流れてしまう。その結果、特に上流側の回転子ダクト22および固定子ダクト34の半径方向流路に流れる空気は、少なくなる。この場合、回転子20および固定子30を冷却する効果が低くなる。特に上流側の固定子鉄心31の冷却効率は低くなってしまう。   If there is no wind partition plate 8, most of the air flowing into the radial gap 60 flows toward the downstream side (right side in FIG. 1) of the radial gap 60. As a result, the amount of air flowing in the radial flow paths of the rotor duct 22 and the stator duct 34 on the upstream side in particular is reduced. In this case, the effect of cooling the rotor 20 and the stator 30 is reduced. In particular, the cooling efficiency of the upstream stator core 31 is lowered.

これに対して、本実施形態では、風仕切り板8を配置することによって、固定子30内の軸方向の上流側を効率よく冷却できる。   On the other hand, in this embodiment, the upstream side in the axial direction in the stator 30 can be efficiently cooled by arranging the wind partition plate 8.

以上の説明からわかるように本実施形態によれば、冷却されにくい軸方向の上流側の固定子鉄心31の冷却効果を向上させることで、固定子鉄心31等を軸方向に均一に冷却できるようにすることが可能になる。   As can be seen from the above description, according to the present embodiment, the stator core 31 and the like can be uniformly cooled in the axial direction by improving the cooling effect of the axially upstream stator core 31 that is difficult to be cooled. It becomes possible to.

[第2の実施形態]
第2の実施形態について図4を用いて説明する。図4は、本実施形態の回転電機を模式的に示した概略正面図である。なお、図4では、リブ10の支持部12および取付け部11について、回転子20の軸方向中央よりも上流側(図4における左側)のみ示し、下流側は省略している。本実施形態は、第1の実施形態(図1〜図3)の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。
[Second Embodiment]
A second embodiment will be described with reference to FIG. FIG. 4 is a schematic front view schematically showing the rotating electrical machine of the present embodiment. In FIG. 4, only the upstream side (left side in FIG. 4) of the support portion 12 and the attachment portion 11 of the rib 10 is shown with respect to the axial center of the rotor 20, and the downstream side is omitted. This embodiment is a modification of the first embodiment (FIGS. 1 to 3), and the same or similar parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. .

本実施形態の風仕切り板8は、回転子20の軸方向中央よりも、上流側、すなわち、図4における左側に、風仕切り板8が軸方向に複数(この例では、二つ)配置されている。   The air partition plate 8 of the present embodiment has a plurality (two in this example) of air partition plates 8 arranged in the axial direction on the upstream side of the axial center of the rotor 20, that is, on the left side in FIG. ing.

これにより、第1の実施形態と同様の効果を得ると共に、第1の実施形態よりも、半径方向空隙60内において上流側の固定子30等を冷却しやすくなる。   As a result, the same effects as those of the first embodiment can be obtained, and the upstream stator 30 and the like can be more easily cooled in the radial gap 60 than in the first embodiment.

[第3の実施形態]
第3の実施形態について図5および図6を用いて説明する。図5は、本実施形態の回転電機の風仕切り板8等を模式的に示した部分側面図である。図6は、図5の風仕切り板8よりも、半径方向空隙60内の気流の下流側に配置された風仕切り板8等を模式的に示した部分側面図である。
[Third Embodiment]
A third embodiment will be described with reference to FIGS. FIG. 5 is a partial side view schematically showing the wind partition plate 8 and the like of the rotating electrical machine of the present embodiment. FIG. 6 is a partial side view schematically showing the wind partition plate 8 and the like arranged on the downstream side of the airflow in the radial gap 60 from the wind partition plate 8 of FIG.

なお、本実施形態は、第1の実施形態(図1〜図3)の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。また、本実施形態の回転電機の全体の構成は、第1の実施形態で説明した図1に示すものと同様である。   In addition, this embodiment is a modification of 1st Embodiment (FIGS. 1-3), Comprising: The same code | symbol is attached | subjected to the same part or similar part as 1st Embodiment, and duplication description is carried out. Omitted. The overall configuration of the rotating electrical machine of the present embodiment is the same as that shown in FIG. 1 described in the first embodiment.

本実施形態の回転子20は、支持部12が軸方向に複数配列されて支持されている。この例では、軸方向に配列された全ての支持部12に風仕切り板8が取り付けられている。このとき、風仕切り板8の面積が上流側と下流側で異なるように構成される。   The rotor 20 of this embodiment is supported by a plurality of support portions 12 arranged in the axial direction. In this example, the wind partition plate 8 is attached to all the support parts 12 arranged in the axial direction. At this time, the area of the wind partition plate 8 is configured to be different between the upstream side and the downstream side.

この例では、上流側が下流側よりも面積が大きくなるように、すなわち、半径方向空隙60に占める割合が大きくなるように構成されている。図5に示す風仕切り板8が取り付けられる軸方向位置は、図6に示す風仕切り板8が取り付けられる軸方向位置よりも、上流側である。   In this example, the upstream side is configured to have a larger area than the downstream side, that is, the proportion of the radial gap 60 is increased. The axial position where the wind partition plate 8 shown in FIG. 5 is attached is upstream of the axial position where the wind partition plate 8 shown in FIG. 6 is attached.

このように構成することで、第1の実施形態よりも、半径方向空隙60から各間隔板33の半径方向流路に流す空気の量を細かく調整することが可能になり、固定子30等を均一に冷却することが可能になる。   By configuring in this way, it becomes possible to finely adjust the amount of air flowing from the radial gap 60 to the radial flow path of each spacing plate 33 as compared with the first embodiment, and the stator 30 and the like can be adjusted. It becomes possible to cool uniformly.

[その他の実施形態]
上記実施形態の説明は、本発明を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
[Other Embodiments]
The description of the above embodiment is an example for explaining the present invention, and does not limit the invention described in the claims. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

上述した実施形態では、内部ファン4でフレーム40内の空気を流通させているが、これに限らない。他の電源で回転する外部ファンで、フレーム40内の空気を循環させてもよい。   In the embodiment described above, the air in the frame 40 is circulated by the internal fan 4, but this is not a limitation. You may circulate the air in the flame | frame 40 with the external fan rotated with another power supply.

また、第3の実施形態では、風仕切り板8の外寸で面積を調整しているが、これに限らない。所定の形状の穴(例えば、円形や矩形)で面積を調整してもよい。   Moreover, in 3rd Embodiment, although the area is adjusted with the external dimension of the wind partition plate 8, it is not restricted to this. The area may be adjusted with a hole having a predetermined shape (for example, a circle or a rectangle).

2…回転軸、4…内部ファン、6…軸受、8…風仕切り板、10…リブ、11…取付け部、12…支持部、13…円環部、20…回転子、21…回転子鉄心、22…回転子ダクト、23…回転子バー、24…スロット、25…鋼板群、26…間隔板、30…固定子、31…固定子鉄心、32…鋼板群、33…間隔板、34…固定子ダクト、35…固定子巻線、40…フレーム、41…本体部、42…風道部、43…熱交換器、51…第1板群、52…第2板群、53…第3板群、60…半径方向空隙、61…固定子上方流路、62…熱交換器下方流路、63…風道部入口流路、64…熱交換器上流側流路 DESCRIPTION OF SYMBOLS 2 ... Rotary shaft, 4 ... Internal fan, 6 ... Bearing, 8 ... Wind partition plate, 10 ... Rib, 11 ... Mounting part, 12 ... Support part, 13 ... Ring part, 20 ... Rotor, 21 ... Rotor core 22 ... Rotor duct, 23 ... Rotor bar, 24 ... Slot, 25 ... Steel plate group, 26 ... Spacing plate, 30 ... Stator, 31 ... Stator iron core, 32 ... Steel plate group, 33 ... Spacing plate, 34 ... Stator duct, 35 ... Stator winding, 40 ... Frame, 41 ... Main body, 42 ... Airway part, 43 ... Heat exchanger, 51 ... First plate group, 52 ... Second plate group, 53 ... Third Plate group, 60 ... radial gap, 61 ... stator upper flow path, 62 ... heat exchanger lower flow path, 63 ... air passage inlet flow path, 64 ... heat exchanger upstream flow path

Claims (3)

所定の軸周りを回転する回転軸と、
前記回転軸を半径方向外側から所定の半径方向空隙を保ちながら取り囲むように配置された円環状で、前記回転軸と共に回転する回転子と、
前記回転子を半径方向外側から取り囲む固定子と、
前記固定子を半径方向外側から取り囲むように構成された本体部と、この本体部内の空気が流入可能で且つ内部の空気が前記本体部内に流出可能に構成された風道部と、を備えるフレームと、
前記風道部内に配置されて、前記本体部内の空気を冷却可能な熱交換器と、
を有し、
前記固定子の第1軸方向端部から前記半径方向空隙を流れた後に前記第1軸方向端部の反対側の第2軸方向端部に向かって流れる前記本体部内の空気が、前記本体部内の前記第2軸方向端部側から前記風道部内に流入し、前記熱交換器で冷却されて、前記本体部内の前記第1軸方向端部側に流入するように一方通行の空気流路が形成された回転電機において、
前記回転軸の軸方向中央よりも前記第1軸方向端部側に、前記回転軸の外周を取り囲むように固定されて、前記半径方向空隙の少なくとも一部を塞ぐように前記回転軸に垂直な方向に広がる面が形成された風仕切り板を有すること、
を特徴とする回転電機。
A rotation axis that rotates around a predetermined axis;
A rotor that is arranged so as to surround the rotating shaft from outside in the radial direction while maintaining a predetermined radial gap; and a rotor that rotates together with the rotating shaft;
A stator surrounding the rotor from outside in the radial direction;
A frame comprising: a main body portion configured to surround the stator from the outside in the radial direction; and an air passage portion configured to allow air in the main body portion to flow in and out of the air in the main body portion. When,
A heat exchanger that is disposed in the air passage portion and can cool the air in the main body portion;
Have
The air in the main body flows through the radial gap from the first axial end of the stator and then flows toward the second axial end opposite to the first axial end. The one-way air flow path flows into the air passage portion from the second axial end portion side, is cooled by the heat exchanger, and flows into the first axial end portion side in the main body portion. In the rotating electric machine formed with
It is fixed so as to surround the outer periphery of the rotary shaft, closer to the first axial end than the axial center of the rotary shaft, and perpendicular to the rotary shaft so as to close at least a part of the radial gap. Having an air divider with a surface extending in the direction;
Rotating electric machine.
前記風仕切り板は、軸方向に互いに間隔をあけて複数配列されていること、を特徴とする請求項1に記載の回転電機。   The rotating electrical machine according to claim 1, wherein a plurality of the wind partition plates are arranged at intervals in the axial direction. 前記空気流路の上流側にある前記風仕切り板の面積よりも、下流側にある前記風仕切り板の面積が小さくなるように構成されていること、を特徴とする請求項2に記載の回転電機。   The rotation according to claim 2, wherein an area of the wind partition plate on the downstream side is smaller than an area of the wind partition plate on the upstream side of the air flow path. Electric.
JP2012187367A 2012-08-28 2012-08-28 Rotating electric machine Active JP5918656B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012187367A JP5918656B2 (en) 2012-08-28 2012-08-28 Rotating electric machine
CN201310379755.2A CN103683663B (en) 2012-08-28 2013-08-27 Electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187367A JP5918656B2 (en) 2012-08-28 2012-08-28 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2014045606A true JP2014045606A (en) 2014-03-13
JP5918656B2 JP5918656B2 (en) 2016-05-18

Family

ID=50320274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187367A Active JP5918656B2 (en) 2012-08-28 2012-08-28 Rotating electric machine

Country Status (2)

Country Link
JP (1) JP5918656B2 (en)
CN (1) CN103683663B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171186A (en) * 2014-03-05 2015-09-28 東芝三菱電機産業システム株式会社 Totally-enclosed rotary electric machine
WO2017070760A1 (en) * 2015-10-28 2017-05-04 Weg Equipamentos Elétricos S.a. Electrical machine
JP2018046621A (en) * 2016-09-13 2018-03-22 東芝三菱電機産業システム株式会社 Totally-enclosed-fan-cooled type rotary electric machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637683B2 (en) * 2015-06-19 2020-01-29 東芝三菱電機産業システム株式会社 Rotating electric machine
DE102016125218A1 (en) * 2016-12-21 2018-06-21 Wobben Properties Gmbh Stator support for a stator of a wind turbine generator, as well as stator, generator and wind turbine with selbigem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480249U (en) * 1990-11-27 1992-07-13
JPH07322565A (en) * 1994-05-24 1995-12-08 Gec Alsthom Ltd Cooling mechanism of motor-driven rotary machine
JP2001178050A (en) * 1999-12-14 2001-06-29 Meidensha Corp Rotor of dynamo-electric machine
JP2003204643A (en) * 2001-11-01 2003-07-18 General Electric Co <Ge> Tapered air gap between rotor and stator for superconducting synchronous machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130753A (en) * 1991-11-05 1993-05-25 Mitsubishi Electric Corp Rotor of rotary electric machine
JP4180974B2 (en) * 2003-06-02 2008-11-12 株式会社東芝 Fully-closed self-cooling motor for driving a vehicle and method for manufacturing a cooler provided in the motor
CN201601574U (en) * 2009-12-10 2010-10-06 广东省东莞电机有限公司 Pure axial ventilation high-voltage motor
CN201576990U (en) * 2009-12-10 2010-09-08 广东省东莞电机有限公司 Axial-radial hybrid ventilation high-voltage motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480249U (en) * 1990-11-27 1992-07-13
JPH07322565A (en) * 1994-05-24 1995-12-08 Gec Alsthom Ltd Cooling mechanism of motor-driven rotary machine
JP2001178050A (en) * 1999-12-14 2001-06-29 Meidensha Corp Rotor of dynamo-electric machine
JP2003204643A (en) * 2001-11-01 2003-07-18 General Electric Co <Ge> Tapered air gap between rotor and stator for superconducting synchronous machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171186A (en) * 2014-03-05 2015-09-28 東芝三菱電機産業システム株式会社 Totally-enclosed rotary electric machine
WO2017070760A1 (en) * 2015-10-28 2017-05-04 Weg Equipamentos Elétricos S.a. Electrical machine
JP2018046621A (en) * 2016-09-13 2018-03-22 東芝三菱電機産業システム株式会社 Totally-enclosed-fan-cooled type rotary electric machine

Also Published As

Publication number Publication date
JP5918656B2 (en) 2016-05-18
CN103683663A (en) 2014-03-26
CN103683663B (en) 2016-04-27

Similar Documents

Publication Publication Date Title
US20150162805A1 (en) Rotor of rotating electrical machine and rotating electrical machine
US20110278969A1 (en) Electrical machine with multiple cooling flows and cooling method
JP5918656B2 (en) Rotating electric machine
WO2013145684A1 (en) Rotating electrical machine
JP2014033584A (en) Wind cooling structure of rotary electric machine
JP2013066341A (en) Rotary electric machine
JP2011071190A (en) Multiple transformer device
JP4897587B2 (en) Rotating electric machine
JP2007089255A (en) Dynamo-electric machine
CN105391200A (en) Fully-closed rotation motor
JP2016220395A (en) Rotary electric machine
KR101668547B1 (en) Rotating electric machine
JP5881921B1 (en) Rotating electric machine
JP2013034332A (en) Rotary electric machine
JP6637683B2 (en) Rotating electric machine
JP2016100953A (en) Rotary electric machine
EP3142231A1 (en) An electric power generator
WO2016079806A1 (en) Rotary electric machine
JP2018148776A (en) Rotary electric machine
US11967877B2 (en) Rotating electric machine
JP2006074866A (en) Dynamo-electric machine
JP7263107B2 (en) Rotor of rotary electric machine
JPH07245914A (en) Cooling air ventilator for electric rotating machine
US11973405B2 (en) Stator for rotating electric machine and cooling structure for stator
JP2006081367A (en) Rotor of rotating electric machine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250