JP2014045255A - Crystal vibration element - Google Patents

Crystal vibration element Download PDF

Info

Publication number
JP2014045255A
JP2014045255A JP2012185203A JP2012185203A JP2014045255A JP 2014045255 A JP2014045255 A JP 2014045255A JP 2012185203 A JP2012185203 A JP 2012185203A JP 2012185203 A JP2012185203 A JP 2012185203A JP 2014045255 A JP2014045255 A JP 2014045255A
Authority
JP
Japan
Prior art keywords
vibrating arm
parallel
base
vibration
vibration element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012185203A
Other languages
Japanese (ja)
Other versions
JP6013832B2 (en
Inventor
Kenji Inoue
憲司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2012185203A priority Critical patent/JP6013832B2/en
Publication of JP2014045255A publication Critical patent/JP2014045255A/en
Application granted granted Critical
Publication of JP6013832B2 publication Critical patent/JP6013832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tuning fork type crystal vibration element which solves various problems occurring when a vibration arm part is bent and the entire length of a vibration element is shortened.SOLUTION: A vibration element 10 includes a base part 11, and a first vibration arm part 12a and a second vibration arm part 12b extended from the base part 11. The vibration arm parts 12a, 12b respectively have shapes which extend in different directions 100a, 100b from the base part 11 and then bend to extend in the same direction (direction 100).

Description

本発明は、例えば基準信号源やクロック信号源に用いられる水晶振動素子に関する。以下、水晶振動素子の一例として、音叉型屈曲水晶振動素子(以下「振動素子」と略称する。)について説明する。   The present invention relates to a crystal resonator element used for a reference signal source or a clock signal source, for example. Hereinafter, a tuning fork-type bending quartz crystal vibrating element (hereinafter abbreviated as “vibrating element”) will be described as an example of a quartz crystal vibrating element.

図7は、関連技術1の振動素子を示す平面図である。以下、この図面に基づき説明する。   FIG. 7 is a plan view showing a vibration element according to Related Technique 1. FIG. Hereinafter, description will be given based on this drawing.

本関連技術1の振動素子900は、基部911と、基部911から平行に伸びる一対の振動腕部912a,912bと、を備えている。振動腕部912a,912bには、それぞれ溝部913a,913bが形成されている。   The vibration element 900 according to the related technology 1 includes a base 911 and a pair of vibrating arm portions 912a and 912b extending in parallel from the base 911. Groove portions 913a and 913b are formed in the vibrating arm portions 912a and 912b, respectively.

振動腕部912a,912bの側面と溝部913a,913bとには、励振電極921a,921bが形成されている。基部911には、二つの電極パッド922a,922bが形成されている。電極パッド922a,922bは、互いに絶縁されるように、分離された状態で配置されている。振動腕部912aの側面及び振動腕部912bの溝部913bに形成された励振電極921aと、基部911に形成された電極パッド922aとは、同じ極性同士になるように配線及び接続されている。振動腕部912bの側面及び振動腕部912aの溝部913aに形成された励振電極921bと、基部911に形成された電極パッド922bとは、同じ極性同士になるように配線及び接続されている。   Excitation electrodes 921a and 921b are formed on the side surfaces of the vibrating arm portions 912a and 912b and the groove portions 913a and 913b. Two electrode pads 922 a and 922 b are formed on the base 911. The electrode pads 922a and 922b are arranged in a separated state so as to be insulated from each other. The excitation electrode 921a formed on the side surface of the vibrating arm portion 912a and the groove portion 913b of the vibrating arm portion 912b and the electrode pad 922a formed on the base portion 911 are wired and connected to have the same polarity. The excitation electrode 921b formed on the side surface of the vibrating arm portion 912b and the groove portion 913a of the vibrating arm portion 912a and the electrode pad 922b formed on the base portion 911 are wired and connected to have the same polarity.

電極パッド922a,922bは、図示を略すが、パッケージ側の電極パッドに導電性接着剤を介して固定されると同時に電気的に接続される。電極パッド922a,922bに交番電圧が印加されると、発生した電界により振動腕部912a,912bに伸縮が生じ、これにより振動素子900に所定の共振周波数の屈曲振動が生じる。   Although not shown, the electrode pads 922a and 922b are fixed to the electrode pads on the package side via a conductive adhesive and simultaneously electrically connected. When an alternating voltage is applied to the electrode pads 922a and 922b, the vibration arms 912a and 912b are expanded and contracted by the generated electric field, and thereby bending vibration of a predetermined resonance frequency is generated in the vibration element 900.

振動素子900は、例えば携帯電話などの電子機器において、同期信号源として用いられている。近年の電子機器の小型化に伴い、そこに使われる振動素子900にも小型化が求められている。振動素子900の小型化にあたっては、振動素子900の全長(長手方向の長さ)すなわち基部911又は振動腕部912a,912bの長さを短くする必要がある。   The vibration element 900 is used as a synchronization signal source in an electronic device such as a mobile phone. With recent miniaturization of electronic devices, the vibration element 900 used therein is also required to be miniaturized. In order to reduce the size of the vibration element 900, it is necessary to shorten the entire length (length in the longitudinal direction) of the vibration element 900, that is, the length of the base portion 911 or the vibration arm portions 912a and 912b.

基部911の長さを短くすると、振動腕部912a,912bからの振動が、基部911内で十分に吸収されず、基部911の固定部分を介して、外部のパッケージなどに漏れてしまう問題(以下「振動漏れ」という。)が発生する。この振動漏れは、振動エネルギの損失となるため、振動素子900に重要な特性値であるCI(Crystal Impedance)を劣化すなわち増加させる要因となる。   When the length of the base portion 911 is shortened, the vibration from the vibrating arm portions 912a and 912b is not sufficiently absorbed in the base portion 911 and leaks to an external package or the like via the fixed portion of the base portion 911 (hereinafter referred to as the base portion 911). "Vibration leakage") occurs. This vibration leakage is a loss of vibration energy, and causes deterioration (increase) in CI (Crystal Impedance), which is an important characteristic value for the vibration element 900.

また、振動腕部912a,912bの長さLを短くすると、次式から明らかなように、所定の振動周波数fを得るために振動腕部912a,912bの幅Wを狭くする必要がある。そのため、幅Wを狭くすることにより、製造が困難になる、特性が劣化する等の問題を引き起こす。
f=C(W/L) ここで、Cは定数である。
Further, when the length L of the vibrating arm portions 912a and 912b is shortened, the width W of the vibrating arm portions 912a and 912b needs to be narrowed in order to obtain a predetermined vibration frequency f as is apparent from the following equation. Therefore, narrowing the width W causes problems such as difficulty in manufacture and deterioration of characteristics.
f = C (W / L 2 ) where C is a constant.

一方、特許文献1、2には、振動腕部をU字状に折り曲げることにより、基部を短くすることなく、かつ振動腕部の実質的な長さを短くすることなく、全長を短くできる振動素子が開示されている(以下「関連技術2」という。)。   On the other hand, in Patent Documents 1 and 2, vibrations that can shorten the overall length without bending the base and shortening the substantial length of the vibrating arm by bending the vibrating arm into a U shape. An element is disclosed (hereinafter referred to as “Related Art 2”).

特開2008−199283号公報JP 2008-199283 A 特開平06−112761号公報Japanese Patent Laid-Open No. 06-112761 特開2011−151567号公報JP 2011-151567 A

しかしながら、関連技術2の振動素子は、その全長を短くできるものの、振動素子の先端において振動腕部を折り曲げる構造であるため、次のような問題があった。なお、振動素子の先端とは、その長手方向の振動腕部側の端をいうものとする。   However, although the vibration element of the related technique 2 can shorten the entire length, the vibration element has a structure in which the vibration arm portion is bent at the tip of the vibration element, and thus has the following problems. It should be noted that the tip of the vibration element refers to the end on the vibrating arm portion side in the longitudinal direction.

振動素子の先端で振動腕部が二重になっていることにより、振動素子の先端の重量が大きい。そのため、振動素子が落下などの衝撃を受けた場合に、振動腕部と基部との接続部分が破損しやすいなど、耐衝撃性が低下する。また、振動腕部の重心が振動素子の先端側にあるため、不要な振動が生じてCIが増大したり、実装時に振動素子の先端がパッケージの底面に接触してCIが増大したりする可能性がある。   Since the vibrating arm portion is doubled at the tip of the vibration element, the weight of the tip of the vibration element is large. For this reason, when the vibration element receives an impact such as dropping, the connection between the vibrating arm portion and the base portion is easily damaged, and the impact resistance is lowered. In addition, since the center of gravity of the vibrating arm is on the tip side of the vibration element, unnecessary vibration may occur and CI may increase, or the tip of the vibration element may contact the bottom surface of the package during mounting, and CI may increase. There is sex.

そこで、本発明の目的は、振動腕部を折り曲げて振動素子の全長を短くした場合の諸問題を解決する、振動素子を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vibration element that solves various problems when the vibration arm portion is bent to shorten the entire length of the vibration element.

本発明に係る振動素子は、
基部と、この基部から延設された第一及び第二の振動腕部と、を備えた振動素子において、
前記第一及び第二の振動腕部はそれぞれ、前記基部から互いに異なる方向へ延びてから、同一方向へ曲がる形状である、
ことを特徴とする。
The vibration element according to the present invention is
In a vibration element comprising a base and first and second vibrating arms extending from the base,
Each of the first and second vibrating arm portions has a shape extending from the base portion in different directions and then bending in the same direction.
It is characterized by that.

本発明によれば、振動腕部の基端側において振動腕部を折り曲げる構造であることにより、振動素子の全長を短くできるとともに、関連技術2に比べて振動素子の先端側を軽量化できるので、振動腕部と基部との接続部分における耐衝撃性を向上できる。また、関連技術2に比べて振動腕部の重心が基部側にあるため、不要な振動が生じてCIが増大したり、実装時に振動素子の先端がパッケージの底面に接触してCIが増大したりする可能性を抑制できる。   According to the present invention, since the vibration arm portion is bent on the base end side of the vibration arm portion, the overall length of the vibration element can be shortened, and the distal end side of the vibration element can be reduced in weight compared to the related technique 2. The impact resistance at the connecting portion between the vibrating arm portion and the base portion can be improved. Further, since the center of gravity of the vibrating arm portion is on the base side as compared with the related art 2, CI is increased due to unnecessary vibration, or the tip of the vibrating element comes into contact with the bottom surface of the package during mounting, and the CI increases. It is possible to suppress the possibility of

実施形態1の振動素子を示す平面図である。FIG. 3 is a plan view showing the resonator element according to the first embodiment. 図1におけるII−II線縦断面図である。It is the II-II line longitudinal cross-sectional view in FIG. 図1の振動素子の寸法例を示す平面図である。FIG. 2 is a plan view illustrating a dimension example of the vibration element in FIG. 1. 実施形態2の振動素子を示す平面図である。6 is a plan view showing a vibration element according to Embodiment 2. FIG. 実施形態3の振動素子を示す平面図である。FIG. 6 is a plan view illustrating a vibration element according to a third embodiment. 実施形態4の振動素子を示す平面図である。FIG. 6 is a plan view illustrating a vibration element according to a fourth embodiment. 関連技術1の振動素子を示す平面図である。FIG. 12 is a plan view showing a vibration element of Related Art 1.

以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。なお、本明細書及び図面において、実質的に同一の構成要素については同一の符号を用いる。図面に描かれた形状は、当業者が理解しやすいように描かれているため、実際の寸法及び比率とは必ずしも一致していない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. In the present specification and drawings, the same reference numerals are used for substantially the same components. The shapes depicted in the drawings are drawn so as to be easily understood by those skilled in the art, and thus do not necessarily match the actual dimensions and ratios.

図1は、実施形態1の振動素子の平面図である。図2は、図1におけるII−II線縦断面図である。以下、図1及び図2に基づき説明する。「第一」、「第二」等の序数詞は、符号に置き換えることで、適宜省略する。   FIG. 1 is a plan view of the resonator element according to the first embodiment. 2 is a longitudinal sectional view taken along line II-II in FIG. Hereinafter, a description will be given based on FIG. 1 and FIG. Ordinal numbers such as “first” and “second” are appropriately omitted by replacing them with symbols.

本実施形態1の振動素子10は、基部11と、基部11から延設された第一の振動腕部12a及び第二の振動腕部12bと、を備えている。振動腕部12a,12bはそれぞれ、基部11から互いに異なる方向100a,100bへ延びてから、同一方向(方向100)へ曲がる形状である。   The vibration element 10 according to the first embodiment includes a base 11, and a first vibrating arm 12 a and a second vibrating arm 12 b extending from the base 11. The vibrating arm portions 12a and 12b have shapes that extend from the base portion 11 in different directions 100a and 100b, respectively, and then bend in the same direction (direction 100).

例えば、振動腕部12a,12bはそれぞれ、基部11の中心線110に対して非平行かつ互いに対称に基部11から延びてから、中心線110に対して平行な同一方向(方向100)へ曲がる形状である。   For example, each of the vibrating arm portions 12 a and 12 b extends from the base portion 11 so as to be non-parallel to and symmetrical to the center line 110 of the base portion 11 and then bends in the same direction (direction 100) parallel to the center line 110. It is.

より具体的に言えば、振動腕部12aは基端側の第一の非平行領域121aと先端側の第一の平行領域122aとを有し、振動腕部12bは基端側の第二の非平行領域121bと先端側の第二の平行領域122bとを有する。非平行領域121a,121bはそれぞれ、中心線110に対して非平行かつ互いに対称に基部11から延設された領域である。平行領域122a,122bはそれぞれ、同一方向(方向100)に非平行領域121a,121bから延設された領域である。非平行領域121aと平行領域122aとの境界領域及び非平行領域121bと平行領域122bとの境界領域を、それぞれ折り曲げ領域123a,123bと呼ぶ。   More specifically, the vibrating arm portion 12a has a first non-parallel region 121a on the proximal end side and a first parallel region 122a on the distal end side, and the vibrating arm portion 12b has a second non-parallel region on the proximal end side. It has a non-parallel region 121b and a second parallel region 122b on the tip side. The non-parallel regions 121a and 121b are regions extending from the base 11 so as to be non-parallel to the center line 110 and symmetrical to each other. The parallel regions 122a and 122b are regions extending from the non-parallel regions 121a and 121b in the same direction (direction 100), respectively. The boundary region between the non-parallel region 121a and the parallel region 122a and the boundary region between the non-parallel region 121b and the parallel region 122b are referred to as bent regions 123a and 123b, respectively.

非平行領域121aは、平行領域122aの延設方向(方向100)から反時計回りに鈍角となる方向100aへ延びる形状である。非平行領域121bは、平行領域122bの延設方向(方向100)から時計回りに鈍角となる方向100aへ延びる形状である。非平行領域121a,121bは、本実施形態1では直線状であるが、曲線状、折れ線状などとしてもよい。   The non-parallel region 121a has a shape extending from the extending direction (direction 100) of the parallel region 122a in a counterclockwise direction 100a. The non-parallel region 121b has a shape that extends in a clockwise direction from the extending direction (direction 100) of the parallel region 122b to an obtuse angle direction 100a. The non-parallel regions 121a and 121b are linear in the first embodiment, but may be curved or polygonal.

基部11は、振動腕部12aが設けられた第一辺111と、第一辺111に対向するとともに振動腕部12bが設けられた第二辺112と、第一辺111と第二辺112とに挟まれ互いに対向する第三辺113及び第四辺114と、を有する四角形状である。   The base 11 includes a first side 111 provided with the vibrating arm 12a, a second side 112 opposed to the first side 111 and provided with the vibrating arm 12b, the first side 111, and the second side 112. It is a quadrangular shape having a third side 113 and a fourth side 114 that are sandwiched between and opposed to each other.

次に、振動素子10の構成について更に詳しく説明する。   Next, the configuration of the vibration element 10 will be described in more detail.

図1及び図2に示すように、振動素子10は、水晶振動片15と、水晶振動片15に設けられた励振電極21a,21b、電極パッド22a,22b及び周波数調整用金属膜23a,23bとから、主に構成されている。   As shown in FIGS. 1 and 2, the resonator element 10 includes a crystal vibrating piece 15, excitation electrodes 21a and 21b, electrode pads 22a and 22b, and frequency adjusting metal films 23a and 23b provided on the crystal vibrating piece 15. From, it is mainly composed.

水晶振動片15は、音叉形状となっており、基部11と、基部11から延設された二本一対の振動腕部12a,12bと、基部11の第一辺111の一部及び第二辺112の一部から延設された、電極パッド22a,22bが設けられる部分と、により概略構成される。振動腕部12a,12bには、水晶を挟んで対向する平面同士に同極となるように励振電極21a,21bがそれぞれ設けられている。   The crystal vibrating piece 15 has a tuning fork shape, and includes a base portion 11, two pairs of vibrating arm portions 12 a and 12 b extending from the base portion 11, a part of the first side 111 and the second side of the base portion 11. 112, and a portion provided with electrode pads 22a and 22b extending from a part of 112. Excitation electrodes 21a and 21b are respectively provided on the vibrating arm portions 12a and 12b so as to have the same polarity on the planes facing each other across the crystal.

図2に基づき詳しく説明すると、振動腕部12aには、水晶を挟んで対向する平面同士が同極となるように、両側面に励振電極21aが設けられ、表裏面の溝部13aに励振電極21bが設けられる。同様に、振動腕部12bには、水晶を挟んで対向する平面同士に同極となるように、両側面に励振電極21bが設けられ、表裏面の溝部13bに励振電極21aが設けられる。したがって、振動腕部12aにおいては両側面に設けられた励振電極21aと溝部13a内に設けられた励振電極21bが異極同士となり、振動腕部12bにおいては両側面に設けられた励振電極21bと溝部13b内に設けられた励振電極21aが異極同士となる。このとき、振動腕部12aにおいては両側面の励振電極21aと溝部13a内の励振電極21bが平行平板電極となり、それらの電極間で大きな電界強度が得られる。振動腕部12bにおいても同様である。   Explaining in detail with reference to FIG. 2, the vibrating arm portion 12a is provided with excitation electrodes 21a on both side surfaces so that the planes facing each other across the crystal have the same polarity, and the excitation electrode 21b in the groove portion 13a on the front and back surfaces. Is provided. Similarly, the vibrating arm portion 12b is provided with excitation electrodes 21b on both side surfaces so as to have the same polarity on opposite surfaces across the quartz, and excitation electrodes 21a are provided in the groove portions 13b on the front and back surfaces. Therefore, in the vibrating arm portion 12a, the excitation electrode 21a provided on both sides and the excitation electrode 21b provided in the groove 13a have different polarities, and in the vibrating arm portion 12b, the excitation electrode 21b provided on both sides. The excitation electrodes 21a provided in the groove 13b have different polarities. At this time, in the vibrating arm portion 12a, the excitation electrode 21a on both sides and the excitation electrode 21b in the groove 13a become parallel plate electrodes, and a large electric field strength is obtained between these electrodes. The same applies to the vibrating arm 12b.

基部11は、平面視略四角形の平板となっている。振動腕部12a,12bはそれぞれ、基部11の第一辺111及び第二辺112から互いに異なる方向へ延設されてから同一方向に延設されている。水晶振動片15は、基部11と振動腕部12a,12bとが一体となって音叉形状をなしており、例えば成膜技術、フォトリソグラフィ技術、化学エッチング技術により製造される。   The base 11 is a flat plate having a substantially rectangular shape in plan view. The vibrating arm portions 12a and 12b are respectively extended from the first side 111 and the second side 112 of the base portion 11 in different directions and then extended in the same direction. The crystal vibrating piece 15 has a tuning fork shape in which the base 11 and the vibrating arms 12a and 12b are integrated, and is manufactured by, for example, a film forming technique, a photolithography technique, and a chemical etching technique.

振動腕部12a,12bの長手方向には、それぞれ溝部13a,13bが設けられている。溝部13a,13bの本数は、特に制限はなく、例えば振動腕部12aの表裏面に二本ずつ及び振動腕部12bの表裏面に二本ずつ設けてもよいし、振動腕部12aの表裏面に一本ずつ及び振動腕部12bの表裏面に一本ずつ設けてもよい。なお、溝部13a,13bは、振動腕部12aの表裏面のどちらか一方にのみ設けてもよいし、振動腕部12bの表裏面のどちらか一方にのみ設けてもよいし、また、平行領域122a,122bに加え又はこれに代えて非平行領域121a,121bに設けてもよい。   Groove portions 13a and 13b are provided in the longitudinal direction of the vibrating arm portions 12a and 12b, respectively. The number of the groove portions 13a and 13b is not particularly limited. For example, two grooves may be provided on the front and back surfaces of the vibrating arm portion 12a and two grooves on the front and back surfaces of the vibrating arm portion 12b. May be provided one by one and one on the front and back surfaces of the vibrating arm portion 12b. The groove portions 13a and 13b may be provided only on either the front or back surface of the vibrating arm portion 12a, or may be provided only on either the front or back surface of the vibrating arm portion 12b, or in parallel regions. In addition to or instead of 122a and 122b, the non-parallel regions 121a and 121b may be provided.

励振電極21aは、振動腕部12aの両側面及び振動腕部12bの表裏面の溝部13aに設けられている。励振電極21bは、振動腕部12bの両側面及び振動腕部12aの表裏面の溝部13bに設けられている。   The excitation electrode 21a is provided in the groove part 13a of the both sides | surfaces of the vibration arm part 12a, and the front and back of the vibration arm part 12b. The excitation electrode 21b is provided in the groove part 13b of the both sides | surfaces of the vibration arm part 12b, and the front and back of the vibration arm part 12a.

基部11の第一辺111の一部及び第二辺112の一部から延設された水晶振動片15上には、それぞれ電極パッド22a,22bが設けられる。励振電極21a、電極パッド22a及び周波数調整用金属膜23aは互いに電気的に導通し、励振電極21b、電極パッド22b及び周波数調整用金属膜23bも互いに電気的に導通している。   Electrode pads 22 a and 22 b are provided on the quartz crystal vibrating piece 15 extending from a part of the first side 111 and a part of the second side 112 of the base 11, respectively. The excitation electrode 21a, the electrode pad 22a, and the frequency adjusting metal film 23a are electrically connected to each other, and the excitation electrode 21b, the electrode pad 22b, and the frequency adjusting metal film 23b are also electrically connected to each other.

励振電極21a,21b、電極パッド22a,22b及び周波数調整用金属膜23a,23bは、例えば成膜技術、フォトリソグラフィ技術、エッチング技術により形成され、例えばTi層の上にPd又はAu層が設けられた積層構造となっている。   The excitation electrodes 21a and 21b, the electrode pads 22a and 22b, and the frequency adjusting metal films 23a and 23b are formed by, for example, a film formation technique, a photolithography technique, and an etching technique. For example, a Pd or Au layer is provided on the Ti layer. It has a laminated structure.

振動素子10は、電極パッド22a,22bを介して、図示しないが、導電性接着剤によって素子搭載部材側の電極パッドに固定されると同時に電気的に接続される。   Although not shown, the vibration element 10 is electrically connected to the electrode pad on the element mounting member side through the electrode pads 22a and 22b.

振動素子10を動作させるには、電極パッド22a,22bに交番電圧を印加する。印加後のある電気的状態を瞬間的に捉えると、振動腕部12aの表裏面の溝部13a内に設けられた励振電極21bはプラス電位となり、振動腕部12aの両側面に設けられた励振電極21aはマイナス電位となり、互いに対向する励振電極21bと励振電極21aとの間でプラスからマイナスに電界が生じる。このとき、振動腕部12bの表裏面の溝部13b内に設けられた励振電極21aはマイナス電位となり、振動腕部12bの両側面に設けられた励振電極21bはプラス電位となり、振動腕部12aに生じた極性とは反対の極性となり、互いに対向する励振電極21bと励振電極21aとの間でプラスからマイナスに電界が生じる。この交番電圧で生じた電界によって、振動腕部12a,12bに伸縮現象が生じ、振動腕部12a,12bの形状で設定された共振周波数の屈曲振動モードが得られる。   In order to operate the vibration element 10, an alternating voltage is applied to the electrode pads 22a and 22b. When an electrical state after application is instantaneously captured, the excitation electrodes 21b provided in the groove portions 13a on the front and back surfaces of the vibrating arm portion 12a have a positive potential, and the excitation electrodes provided on both side surfaces of the vibrating arm portion 12a. 21a becomes a negative potential, and an electric field is generated from positive to negative between the excitation electrode 21b and the excitation electrode 21a facing each other. At this time, the excitation electrode 21a provided in the groove 13b on the front and back surfaces of the vibrating arm portion 12b has a negative potential, and the excitation electrodes 21b provided on both side surfaces of the vibrating arm portion 12b have a positive potential. The polarity is opposite to the generated polarity, and an electric field is generated from plus to minus between the excitation electrode 21b and the excitation electrode 21a facing each other. The electric field generated by the alternating voltage causes a stretching phenomenon in the vibrating arm portions 12a and 12b, and a flexural vibration mode having a resonance frequency set in the shape of the vibrating arm portions 12a and 12b is obtained.

次に、振動素子10の作用及び効果について説明する。   Next, the operation and effect of the vibration element 10 will be described.

(1)振動腕部12a,12bの基端(付け根)側において振動腕部12a,12bを折り曲げる構造を採用したことにより、振動素子10の全長を短くできるとともに、関連技術2に比べて振動素子10の先端側を軽量化できるので、振動腕部12a,12bと基部11との接続部分における耐衝撃性を向上できる。また、関連技術2に比べて振動腕部12a,12bの重心が基部11側にあるため、不要な振動が生じてCIが増大したり、実装時に振動素子10の先端がパッケージの底面に接触してCIが増大したりする可能性を抑制できる。   (1) By adopting a structure in which the vibrating arm portions 12a and 12b are bent on the base end (base) side of the vibrating arm portions 12a and 12b, the overall length of the vibrating element 10 can be shortened, and the vibrating element compared to the related art 2 Since the tip end side of 10 can be reduced in weight, it is possible to improve the impact resistance at the connecting portion between the vibrating arm portions 12a and 12b and the base portion 11. Further, since the center of gravity of the vibrating arms 12a and 12b is on the base 11 side as compared with the related technique 2, the unnecessary vibration occurs and CI increases, or the tip of the vibrating element 10 contacts the bottom surface of the package during mounting. Therefore, the possibility of increasing CI can be suppressed.

(2)振動腕部12a,12bの基端側において振動腕部12a,12bを折り曲げる構造を採用したことにより、振動腕部12a,12bの基端を中心とする振動に、振動腕部12a,12bの折り曲げ領域123a,123bを中心とする振動も加わることにより、振動効率が向上するのでCIを低減できる。   (2) By adopting a structure in which the vibrating arm portions 12a and 12b are bent on the proximal end sides of the vibrating arm portions 12a and 12b, the vibrating arm portions 12a and 12b are subjected to vibration centered on the proximal ends of the vibrating arm portions 12a and 12b. By adding vibration centered on the bent regions 123a and 123b of 12b, the vibration efficiency is improved, so that CI can be reduced.

(3)非平行領域121aの延設方向は、平行領域122aの延設方向(方向100)から反時計回りに鋭角又は直角にしてもよいが、図示するように反時計回りに鈍角とすることが好ましい。非平行領域121bの延設方向は、平行領域122bの延設方向(方向100)から時計回りに鋭角又は直角にしてもよいが、図示するように時計回りに鈍角とすることが好ましい。その理由は、振動素子10の全長を一定としたとき、折り曲げ領域123a,123bを振動素子10の基端側へ位置付けることができるので、振動素子10の全長をそのままにして平行領域122a,122bの長さすなわち振動腕部12a,12bの長さを伸ばすことができるからである。なお、振動素子10の基端とは、その長手方向の基部11側の端をいうものとする。   (3) The extending direction of the non-parallel region 121a may be an acute angle or a right angle counterclockwise from the extending direction (direction 100) of the parallel region 122a, but it should be an obtuse angle counterclockwise as shown. Is preferred. The extending direction of the non-parallel region 121b may be an acute angle or a right angle clockwise from the extending direction (direction 100) of the parallel region 122b, but is preferably an obtuse angle clockwise as shown. The reason is that the bending regions 123a and 123b can be positioned on the proximal end side of the vibration element 10 when the entire length of the vibration element 10 is constant. This is because the length, that is, the length of the vibrating arm portions 12a and 12b can be extended. The base end of the vibration element 10 refers to the end on the base 11 side in the longitudinal direction.

(4)振動腕部12a、12bを基部11の第一辺111及び第二辺112に設けることにより、振動腕部12a,12bの長さを伸ばすことができる。その理由は、振動腕部12a、12bを基部11の第三辺113に設ける従来構造(例えば図7参照)に比べて、非平行領域121a,121bの基端(付け根)を振動素子10の基端側へ位置付けることができるからでる。   (4) By providing the vibrating arm portions 12a and 12b on the first side 111 and the second side 112 of the base 11, the length of the vibrating arm portions 12a and 12b can be extended. The reason is that the base ends (roots) of the non-parallel regions 121a and 121b are set to the base of the vibration element 10 as compared with the conventional structure (see, for example, FIG. 7) in which the vibrating arms 12a and 12b are provided on the third side 113 of the base 11. This is because it can be positioned to the end side.

次に、図面の上下左右を使って、振動素子10について説明する。   Next, the vibration element 10 will be described using the top, bottom, left, and right of the drawing.

本実施形態1では、基部11の左右それぞれの端面(第一辺111及び第二辺112)から斜め下側に振動腕部12a,12bを延出し、折り曲げ領域123a,123bで延出する方向を反転し、上方向に振動腕部12a,12bを延出する。本実施形態1によれば、振動素子10の全長を変更することなく、実効的に振動腕部12a,12bの長さを長くすることができる。振動腕部12aの長さは概ね非平行領域121aの長さと平行領域122aの長さとの和であり、同様に、振動腕部12bの長さは概ね非平行領域121bの長さと平行領域122bの長さとの和である。その結果、振動素子10の全長を従来構造の振動素子と同じにしても、従来構造の振動素子よりも振動周波数を下げることができる。言い換えると、振動周波数が同じであれば、振動素子10の全長を従来構造の振動素子よりも短くすることができる。   In the first embodiment, the vibrating arm portions 12a and 12b are extended obliquely downward from the left and right end surfaces (first side 111 and second side 112) of the base portion 11, and the extending directions in the bent regions 123a and 123b are defined. It inverts and extends the vibrating arm portions 12a and 12b upward. According to the first embodiment, it is possible to effectively increase the length of the vibrating arm portions 12a and 12b without changing the overall length of the vibrating element 10. The length of the vibrating arm portion 12a is approximately the sum of the length of the non-parallel region 121a and the length of the parallel region 122a. Similarly, the length of the vibrating arm portion 12b is approximately the length of the non-parallel region 121b and the length of the parallel region 122b. It is the sum of the length. As a result, even if the total length of the vibration element 10 is the same as that of the vibration element having the conventional structure, the vibration frequency can be lowered as compared with the vibration element having the conventional structure. In other words, if the vibration frequency is the same, the entire length of the vibration element 10 can be made shorter than that of the vibration element having the conventional structure.

また、振動腕部12a,12bは、基部11の側面から斜め下方向に延び、その後折り返して、基部11の長さ方向に延びている。これにより、振動腕部12a,12bに略V字状又は略U字状の折り曲げ領域123a,123bが形成される。この折り曲げ領域123a,123bがあることにより、振動腕部12a,12bが左右に振動しやすくなくなるので、振動素子10のCIを低減することができる。   The vibrating arm portions 12 a and 12 b extend obliquely downward from the side surface of the base portion 11, and then turn back to extend in the length direction of the base portion 11. As a result, bent regions 123a and 123b that are substantially V-shaped or substantially U-shaped are formed in the vibrating arm portions 12a and 12b. The presence of these bent regions 123a and 123b makes it difficult for the vibrating arm portions 12a and 12b to vibrate left and right, so that the CI of the vibrating element 10 can be reduced.

図3は、図1の振動素子の寸法例を示す平面図である。以下、図1乃至図3に基づき、振動素子10の寸法例について説明する。   FIG. 3 is a plan view illustrating a dimension example of the vibration element in FIG. 1. Hereinafter, a dimension example of the vibration element 10 will be described with reference to FIGS. 1 to 3.

振動素子10は、例えば40kHz付近で共振するように設計され、全長が約1.1678mm程度と小型化に対応している。振動素子10の厚みは、使用する水晶ウェハの厚みと同程度であり、例えば0.lmmとなっている。ここでは、振動素子10の長手方向を「長さ」、短手方向を「幅」とする。   The vibration element 10 is designed to resonate in the vicinity of 40 kHz, for example, and has a total length of about 1.1678 mm, corresponding to miniaturization. The thickness of the vibration element 10 is approximately the same as the thickness of the crystal wafer to be used. lmm. Here, the longitudinal direction of the vibration element 10 is defined as “length”, and the lateral direction is defined as “width”.

振動腕部12a,12bの平行領域122a,122bにおいて、長さ61が0.96lmm、幅62が0.0486mm、間隔63が0.276mmである。基部11及び電極パッド22a,22bの領域は、全体の長さ64が0.276mm、側面の長さ65が0.208mm、幅66が0.347mmである。基部11の第三辺113の幅67は0.106mm、第三辺113と平行領域122a,122bとの距離68は0.0608mmである。電極パッド22a,22bは、側面の長さ69が0.104mm、基部11側の長さ70が0.075mmである。電極パッド22a,22bと非平行領域121a,121bとは、側面での距離71が0.049mm、基部11側での距離72が0.108mmである。非平行領域121a,122bは、側面での長さ73が0.054mm、基部11との角度74が63°、平行領域122a,122bとの角度75が63°である。   In the parallel regions 122a and 122b of the vibrating arm portions 12a and 12b, the length 61 is 0.96 lmm, the width 62 is 0.0486 mm, and the interval 63 is 0.276 mm. The region of the base 11 and the electrode pads 22a and 22b has an overall length 64 of 0.276 mm, a side length 65 of 0.208 mm, and a width 66 of 0.347 mm. The width 67 of the third side 113 of the base 11 is 0.106 mm, and the distance 68 between the third side 113 and the parallel regions 122a and 122b is 0.0608 mm. The electrode pads 22a and 22b have a side length 69 of 0.104 mm and a length 70 on the base 11 side of 0.075 mm. The electrode pads 22a and 22b and the non-parallel regions 121a and 121b have a distance 71 on the side surface of 0.049 mm and a distance 72 on the base 11 side of 0.108 mm. The non-parallel regions 121a and 122b have a side length 73 of 0.054 mm, an angle 74 with the base 11 of 63 °, and an angle 75 with the parallel regions 122a and 122b of 63 °.

このとき、振動素子10は、振動周波数が36kHz、CIが60kΩであった。一方、基部の長さが0.208mm、全長が1.1678mmである関連技術1の振動素子(図7参照)は、振動周波数が4lkHz、CIが85kΩであった。このように、振動素子10によれば、同じ大きさの関連技術1の振動素子に比べて、振動周波数を5kHz程度低減でき、CIを25kΩ程度低減できた。振動周波数を低減できた理由は、振動腕部12a,12bの基端側において振動腕部12a,12bを折り曲げる構造を採用したことにより、振動腕部12a,12bが実質的に長くなったためである。CIを低減できた理由は、振動腕部12a,12bの基端側において振動腕部12a,12bを折り曲げる構造を採用したことにより、振動腕部12a,12bが変形しやすくなったためである。   At this time, the vibration element 10 had a vibration frequency of 36 kHz and a CI of 60 kΩ. On the other hand, the vibration element of Related Art 1 (see FIG. 7) having a base length of 0.208 mm and a total length of 1.1678 mm had a vibration frequency of 4 kHz and a CI of 85 kΩ. Thus, according to the vibration element 10, the vibration frequency can be reduced by about 5 kHz and the CI can be reduced by about 25 kΩ compared to the vibration element of the related technology 1 having the same size. The reason why the vibration frequency can be reduced is that the vibration arm portions 12a and 12b are substantially lengthened by adopting a structure in which the vibration arm portions 12a and 12b are bent on the base end side of the vibration arm portions 12a and 12b. . The reason why CI can be reduced is that the vibrating arm portions 12a and 12b are easily deformed by adopting a structure in which the vibrating arm portions 12a and 12b are bent on the base end side of the vibrating arm portions 12a and 12b.

図4は、実施形態2の振動素子の平面図である。以下、図4に基づき説明する。   FIG. 4 is a plan view of the resonator element according to the second embodiment. Hereinafter, a description will be given based on FIG.

本実施形態2の振動素子30は、基部31及びスリット34が実施形態1と異なる。基部31は、実施形態1と同様に、振動腕部12aが設けられた第一辺311と、第一辺311に対向するとともに振動腕部12bが設けられた第二辺312と、第一辺311と第二辺312とに挟まれ互いに対向する第三辺313及び第四辺314と、を有する四角形状である。ただし、基部31は、実施形態1に比べて、振動腕部12a,12bの延設方向(方向100)側に突き出している。そして、延設方向(方向100)側の第三辺313には、延設方向(方向100)に沿ってスリット34が設けられている。スリット34は、基部31の厚み方向に貫通している。   The vibration element 30 according to the second embodiment is different from the first embodiment in the base 31 and the slit 34. As in the first embodiment, the base 31 includes a first side 311 provided with the vibrating arm 12a, a second side 312 opposed to the first side 311 and provided with the vibrating arm 12b, and a first side. It is a quadrangular shape having a third side 313 and a fourth side 314 that are sandwiched between 311 and the second side 312 and face each other. However, the base portion 31 protrudes in the extending direction (direction 100) side of the vibrating arm portions 12a and 12b as compared with the first embodiment. A slit 34 is provided along the extending direction (direction 100) on the third side 313 on the extending direction (direction 100) side. The slit 34 penetrates in the thickness direction of the base 31.

本実施形態2では、スパッタ技術及びフォトリソグラフィ技術を用いたリフトオフ法によって、振動腕部12a,12bに励振電極21a,21bを形成する。このとき、スリット34は、振動腕部12aの側面の励振電極21aと振動腕部12bの側面の励振電極21bとを切り離す役割を果たす(特許文献3参照)。また、スリット34は、振動腕部12a,12よりも延設方向(方向100)側の基部31の剛性を下げて、振動変位を更に容易にする効果がある。   In the second embodiment, excitation electrodes 21a and 21b are formed on the vibrating arms 12a and 12b by a lift-off method using a sputtering technique and a photolithography technique. At this time, the slit 34 serves to separate the excitation electrode 21a on the side surface of the vibrating arm portion 12a from the excitation electrode 21b on the side surface of the vibrating arm portion 12b (see Patent Document 3). Further, the slit 34 has an effect of further facilitating the vibration displacement by lowering the rigidity of the base portion 31 on the extending direction (direction 100) side than the vibrating arm portions 12a and 12.

本実施形態2の他の構成は、実施形態2と同様である。本実施形態2のような構成にしても、実施形態1と同様の作用及び効果を奏する。   Other configurations of the second embodiment are the same as those of the second embodiment. Even if it is a structure like this Embodiment 2, there exists the same effect | action and effect as Embodiment 1. FIG.

図5は、実施形態3の振動素子の平面図である。以下、図5に基づき説明する。   FIG. 5 is a plan view of the resonator element according to the third embodiment. Hereinafter, a description will be given based on FIG.

本実施形態3の振動素子40は、電極パッド42a,42bの形状が実施形態1と異なる。電極パッド42a,42bは、実施形態1に比べて、それぞれ振動素子40の外側の方向400a,400bへ大きく延びている。そのため、振動素子40によれば、素子搭載部材との接着面積が増加するため、耐衝撃性をより向上できる。   The vibration element 40 according to the third embodiment is different from the first embodiment in the shape of the electrode pads 42a and 42b. The electrode pads 42a and 42b greatly extend in the directions 400a and 400b outside the vibration element 40, respectively, as compared with the first embodiment. Therefore, according to the vibration element 40, since the adhesion area with the element mounting member increases, the impact resistance can be further improved.

本実施形態3の他の構成は、実施形態1と同様である。本実施形態3のような構成にしても、実施形態1と同様の作用及び効果を奏する。   Other configurations of the third embodiment are the same as those of the first embodiment. Even if it is a structure like this Embodiment 3, there exists an effect | action and effect similar to Embodiment 1. FIG.

図6は、実施形態4の振動素子の平面図である。以下、図6に基づき説明する。   FIG. 6 is a plan view of the resonator element according to the fourth embodiment. Hereinafter, a description will be given based on FIG.

本実施形態4の振動素子50は、電極パッド42a,42b,52の形状が実施形態1と異なる。電極パッド42a,42bは、実施形態3と同じである。電極パッド52は、電極パッド42aの先端から、更に振動腕部12a,12bの延設方向(方向100)へ大きく延びている。そのため、振動素子50によれば、素子搭載部材との接着面積が更に増加するとともに、振動素子50の先端に加わる力を電極パッド52へ分散できるので、耐衝撃性を更に向上できる。   The vibration element 50 of the fourth embodiment is different from the first embodiment in the shape of the electrode pads 42a, 42b, and 52. The electrode pads 42a and 42b are the same as in the third embodiment. The electrode pad 52 further extends greatly from the tip of the electrode pad 42a in the extending direction (direction 100) of the vibrating arm portions 12a and 12b. Therefore, according to the vibration element 50, the adhesion area with the element mounting member is further increased, and the force applied to the tip of the vibration element 50 can be distributed to the electrode pad 52, so that the impact resistance can be further improved.

本実施形態4の他の構成は、実施形態1と同様である。本実施形態4のような構成にしても、実施形態1と同様の作用及び効果を奏する。   Other configurations of the fourth embodiment are the same as those of the first embodiment. Even if it is a structure like this Embodiment 4, there exists an effect | action and effect similar to Embodiment 1. FIG.

以上、上記各実施形態を参照して本発明を説明したが、本発明は上記各実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。   Although the present invention has been described with reference to the above embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.

10 振動素子
100,100a,100b 方向
11 基部
110 中心線
111 第一辺
112 第二辺
113 第三辺
114 第四辺
12a 振動腕部
121a 非平行領域
122a 平行領域
123a 折り曲げ領域
12b 振動腕部
121b 非平行領域
122b 平行領域
123b 折り曲げ領域
13a,13b 溝部
15 水晶振動片
21a,21b 励振電極
22a,22b 電極パッド
23a,23b 周波数調整用金属膜
30 振動素子
31 基部
311 第一辺
312 第二辺
313 第三辺
314 第四辺
34 スリット
40 振動素子
400a,400b 方向
42a,42b 電極パッド
50 振動素子
52 電極パッド
61,64,65,69,70,73 長さ
62,66,67 幅
63 間隔
68,71,72 距離
74,75 角度
900 振動素子
911 基部
912a,912b 振動腕部
913a,913b 溝部
921a,921b 励振電極
922a,922b 電極パッド
L 長さ
W 幅
DESCRIPTION OF SYMBOLS 10 Vibration element 100,100a, 100b Direction 11 Base part 110 Center line 111 1st edge 112 2nd edge 113 3rd edge 114 4th edge 12a Vibration arm part 121a Non-parallel area 122a Parallel area 123a Bending area 12b Vibration arm part 121b Non Parallel region 122b Parallel region 123b Bending region 13a, 13b Groove portion 15 Quartz vibrating piece 21a, 21b Excitation electrode 22a, 22b Electrode pad 23a, 23b Frequency adjusting metal film 30 Vibration element 31 Base portion 311 First side 312 Second side 313 Third Side 314 Fourth side 34 Slit 40 Vibration element 400a, 400b Direction 42a, 42b Electrode pad 50 Vibration element 52 Electrode pad 61, 64, 65, 69, 70, 73 Length 62, 66, 67 Width 63 Distance 68, 71, 72 distance 74,75 corner 900 vibrating elements 911 base 912a, 912b vibrating arms 913a, 913b groove 921a, 921b excitation electrodes 922a, 922b electrode pads L Length W Width

Claims (5)

基部と、この基部から延設された第一及び第二の振動腕部と、を備えた水晶振動素子において、
前記第一及び第二の振動腕部はそれぞれ、前記基部から互いに異なる方向へ延びてから、同一方向へ曲がる形状である、
ことを特徴とする水晶振動素子。
In a crystal resonator element comprising a base and first and second vibrating arms extending from the base,
Each of the first and second vibrating arm portions has a shape extending from the base portion in different directions and then bending in the same direction.
A crystal resonator element characterized by the above.
前記第一及び第二の振動腕部はそれぞれ、前記基部の中心線に対して非平行かつ互いに対称に前記基部から延びてから、前記中心線に対して平行な同一方向へ曲がる形状である、
請求項1記載の水晶振動素子。
Each of the first and second vibrating arms has a shape that extends from the base non-parallel to and symmetrical to the center line of the base and then bends in the same direction parallel to the center line.
The crystal resonator element according to claim 1.
前記第一の振動腕部は基端側の第一の非平行領域と先端側の第一の平行領域とを有し、前記第二の振動腕部は基端側の第二の非平行領域と先端側の第二の平行領域とを有し、
前記第一及び第二の非平行領域はそれぞれ、前記中心線に対して非平行かつ互いに対称に前記基部から延設された領域であり、
前記第一及び第二の平行領域はそれぞれ、前記同一方向に前記第一及び第二の非平行領域から延設された領域である、
請求項2記載の水晶振動素子。
The first vibrating arm portion has a first non-parallel region on the proximal end side and a first parallel region on the distal end side, and the second vibrating arm portion is a second non-parallel region on the proximal end side. And a second parallel region on the tip side,
Each of the first and second non-parallel regions is a region extending from the base portion in parallel with and symmetrical to the center line,
The first and second parallel regions are regions extending from the first and second non-parallel regions in the same direction, respectively.
The crystal resonator element according to claim 2.
前記第一の非平行領域は、前記第一平行領域の延設方向から反時計回りに鈍角となる方向へ延びる形状であり、
前記第二の非平行領域は、前記第二の平行領域の延設方向から時計回りに鈍角となる方向へ延びる形状である、
請求項3記載の水晶振動素子。
The first non-parallel region has a shape extending in a direction that becomes an obtuse angle counterclockwise from the extending direction of the first parallel region,
The second non-parallel region has a shape extending in a clockwise direction from the extending direction of the second parallel region to an obtuse angle.
The crystal resonator element according to claim 3.
前記基部は、前記第一の振動腕部が設けられた第一辺と、この第一辺に対向するとともに前記第二の振動腕部が設けられた第二辺と、前記第一辺と前記第二辺とに挟まれ互いに対向する第三辺及び第四辺と、を有する四角形状である、
請求項1乃至4のいずれか一つに記載の水晶振動素子。
The base includes a first side provided with the first vibrating arm, a second side facing the first side and provided with the second vibrating arm, the first side, and the first side. A quadrangular shape having a third side and a fourth side sandwiched between the second side and facing each other,
The crystal resonator element according to claim 1.
JP2012185203A 2012-08-24 2012-08-24 Crystal oscillator Active JP6013832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185203A JP6013832B2 (en) 2012-08-24 2012-08-24 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185203A JP6013832B2 (en) 2012-08-24 2012-08-24 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2014045255A true JP2014045255A (en) 2014-03-13
JP6013832B2 JP6013832B2 (en) 2016-10-25

Family

ID=50396252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185203A Active JP6013832B2 (en) 2012-08-24 2012-08-24 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP6013832B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054364A (en) * 2014-09-03 2016-04-14 京セラクリスタルデバイス株式会社 Crystal vibration element
JPWO2018180861A1 (en) * 2017-03-30 2020-02-13 株式会社大真空 Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using the tuning fork type piezoelectric vibrating piece

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112761A (en) * 1992-09-25 1994-04-22 Seiko Electronic Components Ltd Tortion crystal vibrator
JP2003163568A (en) * 2001-10-09 2003-06-06 Eta Sa Fab Ebauches Piezoelectric resonator and assembly having the same sealed in case
JP2006345519A (en) * 2005-06-09 2006-12-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
JP2008199283A (en) * 2007-02-13 2008-08-28 Epson Toyocom Corp Piezoelectric vibrating piece and manufacturing method thereof
JP2009206590A (en) * 2008-02-26 2009-09-10 Seiko Instruments Inc Piezoelectric vibration chip, piezoelectric vibrator, oscillator, electronic apparatus, radio wave clock, and method of manufacturing piezoelectric vibration chip
JP2011015101A (en) * 2009-06-30 2011-01-20 Kyocera Kinseki Corp Flexural-mode tuning-fork type crystal vibrator
JP2011199578A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Vibration piece and vibration device
WO2012052267A1 (en) * 2010-10-21 2012-04-26 Micro Crystal Ag Method for mounting a piezoelectric resonator in a case and packaged piezoelectric resonator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112761A (en) * 1992-09-25 1994-04-22 Seiko Electronic Components Ltd Tortion crystal vibrator
JP2003163568A (en) * 2001-10-09 2003-06-06 Eta Sa Fab Ebauches Piezoelectric resonator and assembly having the same sealed in case
JP2006345519A (en) * 2005-06-09 2006-12-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
JP2008199283A (en) * 2007-02-13 2008-08-28 Epson Toyocom Corp Piezoelectric vibrating piece and manufacturing method thereof
JP2009206590A (en) * 2008-02-26 2009-09-10 Seiko Instruments Inc Piezoelectric vibration chip, piezoelectric vibrator, oscillator, electronic apparatus, radio wave clock, and method of manufacturing piezoelectric vibration chip
JP2011015101A (en) * 2009-06-30 2011-01-20 Kyocera Kinseki Corp Flexural-mode tuning-fork type crystal vibrator
JP2011199578A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Vibration piece and vibration device
WO2012052267A1 (en) * 2010-10-21 2012-04-26 Micro Crystal Ag Method for mounting a piezoelectric resonator in a case and packaged piezoelectric resonator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054364A (en) * 2014-09-03 2016-04-14 京セラクリスタルデバイス株式会社 Crystal vibration element
JPWO2018180861A1 (en) * 2017-03-30 2020-02-13 株式会社大真空 Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using the tuning fork type piezoelectric vibrating piece
US11290082B2 (en) 2017-03-30 2022-03-29 Daishtnku Corporation Tuning fork-type piezoelectric vibration piece and tuning fork-type piezoelectric vibrator using the vibration piece

Also Published As

Publication number Publication date
JP6013832B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
TW201223141A (en) Piezoelectric vibrator element, piezoelectric module, and electronic device
US9705067B2 (en) Piezoelectric actuator
JP5534828B2 (en) Tuning fork type bending crystal resonator element
JP2006270177A (en) Piezoelectric vibration reed and piezoelectric device
US10276775B2 (en) Vibration device
JP2007013910A (en) Piezoelectric resonator
JP5593979B2 (en) Vibrating piece, vibrator, oscillator, sensor and electronic equipment
JP2009005022A (en) Tuning fork vibrator, and oscillator
US9644624B2 (en) Piezoelectric actuator
JP5399767B2 (en) Crystal oscillator
JP6013832B2 (en) Crystal oscillator
JP2011087279A (en) Vibrating piece, vibrator, oscillator, and electronic device
JP6649747B2 (en) Piezoelectric vibrating reed and piezoelectric vibrator
JP2004248237A (en) Tuning fork type crystal resonator
JP2011160016A (en) Tuning fork flexural crystal vibration element wafer and method for manufacturing the same, and method for manufacturing tuning fork flexural crystal vibration element
JP4993080B2 (en) Tuning fork type piezoelectric vibrating piece
JP5399888B2 (en) Tuning fork type bending crystal resonator element
JP6365435B2 (en) Elastic wave device
JP6059930B2 (en) Crystal oscillator
JP5847540B2 (en) Crystal wafer
JP2012054699A (en) Tuning fork type bending crystal vibrator wafer
JP5432582B2 (en) Crystal oscillator
JP6419491B2 (en) Crystal oscillator
JP6005442B2 (en) Crystal oscillator
JP2013141313A (en) Transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160923

R150 Certificate of patent or registration of utility model

Ref document number: 6013832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350