JP2014045076A - Substrate for high-frequency circuit - Google Patents

Substrate for high-frequency circuit Download PDF

Info

Publication number
JP2014045076A
JP2014045076A JP2012186599A JP2012186599A JP2014045076A JP 2014045076 A JP2014045076 A JP 2014045076A JP 2012186599 A JP2012186599 A JP 2012186599A JP 2012186599 A JP2012186599 A JP 2012186599A JP 2014045076 A JP2014045076 A JP 2014045076A
Authority
JP
Japan
Prior art keywords
resin layer
frequency circuit
substrate
metal foil
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012186599A
Other languages
Japanese (ja)
Inventor
Yasumasa Akatsuka
泰昌 赤塚
Makoto Uchida
誠 内田
Kenji Sekine
健二 関根
Shigeru Mogi
繁 茂木
Makoto Tsuji
誠 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2012186599A priority Critical patent/JP2014045076A/en
Publication of JP2014045076A publication Critical patent/JP2014045076A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for a high-frequency circuit, which is capable of reducing transmission loss of en electric signal in a high-frequency circuit and in which adhesion between a metal foil and a resin layer is high and the resin layer has a low dielectric constant, a low dielectric loss tangent, and low hygroscopicity.SOLUTION: The substrate for a high-frequency circuit of the present invention is formed of a laminate comprising a resin layer and a metal foil laminated on at least one main surface of the resin layer via a primer resin layer. The resin layer is a heat-cured product of a varnish containing a polyamic acid, a fluororesin, and an organic solvent. A base resin of the primer resin layer is a soluble polyimide resin represented by formula (1). In the formula, Rrepresents a specific tetravalent aromatic group, Rrepresents a specific divalent aromatic group, and n1 as the number of repetitions represents an integer of 10-1000.

Description

本発明は、高周波伝送特性に優れ、金属箔と樹脂層との密着性が十分であり、かつ、樹脂層の誘電率及び吸湿性の低い高周波回路用基板に関する。   The present invention relates to a high-frequency circuit substrate having excellent high-frequency transmission characteristics, sufficient adhesion between a metal foil and a resin layer, and a low dielectric constant and hygroscopicity of the resin layer.

一般的にフレキシブル基板には、ハンダリフローに耐え得る耐熱性と機械強度の観点から、銅箔上にポリイミド樹脂の絶縁層を形成した積層体が広く用いられている。また、近年、高速伝送の普及に伴い、高速伝送時の伝送損失の小さい基板材料が求められている。
一般にポリイミド樹脂は金属との接着力が高くないため、ポリイミド樹脂と金属箔との接着性を向上させるためには、金属箔の表面を粗化させる必要がある。しかし、1GHz以上の高周波になると信号は金属の表面を伝わりやすくなることが知られており(表皮効果)、伝送線路となる金属箔表面の凹凸が大きい場合、高周波の電気信号は導体の中心部ではなく凹凸の大きい表面を迂回しながら伝わるため、伝送損失が大きくなるという問題が生じる。
このような伝送損失を低減するため、特許文献1の実施例には、銅箔の表面粗度(Rz)が0.6〜0.7μmであるフレキシブル銅張積層板が記載されている。しかし、高周波回路においては、例えば16GHzの場合、電気信号は金属と絶縁層との界面から0.5μmの深さを伝わるといわれており、さらに周波数が高くなるにつれてその深度は浅くなるため、このレベルの粗度では依然として大きいといえる。
また、伝送損失は絶縁層の誘電特性によっても影響される。ポリイミド樹脂は本来、誘電正接が比較的低い樹脂であるが、誘電率は3〜4であり、エポキシ樹脂と同レベルであるため、決して低くはない。
また、ポリイミド樹脂は吸湿性が高いが、絶縁層が吸湿した場合、誘電正接は高くなる傾向があるため、伝送損失を改善するためには、絶縁層の吸湿性も下げる必要がある。
In general, a laminate in which an insulating layer of polyimide resin is formed on a copper foil is widely used for flexible substrates from the viewpoint of heat resistance that can withstand solder reflow and mechanical strength. In recent years, with the widespread use of high-speed transmission, a substrate material having a small transmission loss during high-speed transmission is required.
In general, since polyimide resin does not have high adhesive strength with metal, it is necessary to roughen the surface of the metal foil in order to improve the adhesion between the polyimide resin and the metal foil. However, it is known that the signal easily propagates on the surface of the metal at a high frequency of 1 GHz or more (skin effect), and when the unevenness of the surface of the metal foil that becomes the transmission line is large, the high-frequency electric signal is at the center of the conductor However, the problem is that the transmission loss increases because it travels while bypassing the surface with large irregularities.
In order to reduce such a transmission loss, the Example of patent document 1 describes the flexible copper clad laminated board whose surface roughness (Rz) of copper foil is 0.6-0.7 micrometer. However, in a high-frequency circuit, for example, in the case of 16 GHz, it is said that an electrical signal travels a depth of 0.5 μm from the interface between the metal and the insulating layer, and the depth becomes shallower as the frequency becomes higher. It can be said that the roughness of the level is still large.
Transmission loss is also affected by the dielectric properties of the insulating layer. Polyimide resin is originally a resin having a relatively low dielectric loss tangent, but has a dielectric constant of 3 to 4, which is the same level as an epoxy resin, so it is not low.
In addition, although the polyimide resin has high hygroscopicity, when the insulating layer absorbs moisture, the dielectric loss tangent tends to increase. Therefore, in order to improve transmission loss, it is necessary to reduce the hygroscopic property of the insulating layer.

特開2009−246201号公報JP 2009-246201 A 国際公開第2007/148666号International Publication No. 2007/148666 特許第4412708号公報Japanese Patent No. 4412708

本発明は、上記の点に鑑みてなされたものであり、高周波回路における電気信号の伝送損失を低減することができると同時に、金属箔と樹脂層との密着性が高く、かつ、樹脂層の誘電率、誘電正接、及び吸湿性の低い高周波回路用基板を提供することを目的とするものである。   The present invention has been made in view of the above points, and can reduce electrical signal transmission loss in a high-frequency circuit, and at the same time has high adhesion between the metal foil and the resin layer, and the resin layer An object of the present invention is to provide a high-frequency circuit substrate having low dielectric constant, dielectric loss tangent, and hygroscopicity.

本発明者らは、特定の分子構造の可溶性ポリイミド樹脂をベース樹脂とするプライマー樹脂層を表面粗化処理が施されていない金属箔上に形成し、次いで、ポリアミック酸溶液にフッ素樹脂を分散したワニスをプライマー樹脂層上に塗布し、高温下にて溶剤を乾燥させ、イミド化反応を生ぜしめることにより、表面粗化処理がなされていない金属箔に対しても接着性が高く、誘電率、誘電正接、及び吸湿性の低い樹脂層を有する高周波回路用基板が得られることを見出し、本発明を完成させた。   The present inventors formed a primer resin layer based on a soluble polyimide resin having a specific molecular structure on a metal foil not subjected to surface roughening treatment, and then dispersed a fluororesin in a polyamic acid solution. By applying the varnish on the primer resin layer, drying the solvent at a high temperature and causing an imidization reaction, the adhesiveness is high even for a metal foil not subjected to surface roughening treatment, the dielectric constant, The inventors have found that a high frequency circuit board having a dielectric loss tangent and a low hygroscopic resin layer can be obtained, and the present invention has been completed.

すなわち、本発明は、下記の[1]〜[7]に関する。
[1]
樹脂層と、該樹脂層の少なくとも一方の主面にプライマー樹脂層を介して積層された金属箔とを備える積層体からなる高周波回路用基板であって、
上記樹脂層が、ポリアミック酸と、フッ素樹脂と、有機溶剤とを含むワニスの加熱硬化物であり、
上記プライマー樹脂層のベース樹脂が下記式(1)で表される可溶性ポリイミド樹脂である高周波回路用基板。

Figure 2014045076
(式(1)中、Rは下記式(2−1)〜(2−4):
Figure 2014045076
より選ばれる1種以上の4価の芳香族基を表し、Rは下記式(3−1)〜(3−3):
Figure 2014045076
より選ばれる1種以上の2価の芳香族基を表し、n1は繰り返し数であり10〜1000の整数を表す。)
[2]
上記金属箔の表面粗さSaが0.5μm以下である上記[1]記載の高周波回路用基板。
[3]
上記金属箔が銅箔である上記[1]又は[2]記載の高周波回路用基板。
[4]
上記銅箔が、上記プライマー樹脂層と接する表面に、ニッケル、鉄、亜鉛、金、銀、アルミニウム、クロム、チタン、パラジウム、及び錫からなる群より選ばれる1種以上の金属からなる金属メッキ層を有する上記[3]記載の高周波回路用基板。
[5]
上記フッ素樹脂がポリ四フッ化エチレンである上記[1]乃至[4]のいずれか一項記載の高周波回路用基板。
[6]
上記式(1)中のRが上記式(2−2)及び(2−4)より選ばれる1種以上の4価の芳香族基である上記[1]乃至[5]のいずれか一項記載の高周波回路用基板。
[7]
上記式(1)で表される可溶性ポリイミド樹脂が、
(a)ジカルボン酸二無水物成分として4,4’−オキシジフタル酸無水物を使用し、ジアミン成分として、1,3−ビス−(3−アミノフェノキシ)ベンゼン単独、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン単独、若しくは1,3−ビス−(3−アミノフェノキシ)ベンゼンと3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンとの両者を使用して得られたもの、又は、
(b)ジカルボン酸二無水物成分として3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物を使用し、ジアミン成分として4,4’−ジアミノ−3,3’,5,5’−テトラエチルジフェニルメタンを使用して得られたものである上記[1]乃至[6]のいずれか一項記載の高周波回路用基板。 That is, the present invention relates to the following [1] to [7].
[1]
A substrate for a high frequency circuit comprising a laminate comprising a resin layer and a metal foil laminated on at least one main surface of the resin layer via a primer resin layer,
The resin layer is a heat-cured product of a varnish containing a polyamic acid, a fluororesin, and an organic solvent,
A substrate for a high-frequency circuit, wherein the base resin of the primer resin layer is a soluble polyimide resin represented by the following formula (1).
Figure 2014045076
(In the formula (1), R 1 represents the following formulas (2-1) to (2-4):
Figure 2014045076
Represents one or more tetravalent aromatic groups selected from R 2 and the following formulas (3-1) to (3-3):
Figure 2014045076
1 or more types of bivalent aromatic groups selected from the above are represented, n1 is a repeating number and represents an integer of 10 to 1000. )
[2]
The high frequency circuit board according to [1], wherein the metal foil has a surface roughness Sa of 0.5 μm or less.
[3]
The high frequency circuit board according to the above [1] or [2], wherein the metal foil is a copper foil.
[4]
A metal plating layer comprising one or more metals selected from the group consisting of nickel, iron, zinc, gold, silver, aluminum, chromium, titanium, palladium, and tin on the surface where the copper foil is in contact with the primer resin layer The high frequency circuit board according to the above [3], comprising:
[5]
The high frequency circuit board according to any one of [1] to [4], wherein the fluororesin is polytetrafluoroethylene.
[6]
Any one of the above [1] to [5], wherein R 1 in the formula (1) is one or more tetravalent aromatic groups selected from the formulas (2-2) and (2-4). The substrate for a high-frequency circuit according to the item.
[7]
The soluble polyimide resin represented by the above formula (1) is
(A) 4,4′-oxydiphthalic anhydride is used as the dicarboxylic dianhydride component, and 1,3-bis- (3-aminophenoxy) benzene alone, 3,3′-diamino-4 as the diamine component , 4'-dihydroxydiphenylsulfone alone or obtained using both 1,3-bis- (3-aminophenoxy) benzene and 3,3'-diamino-4,4'-dihydroxydiphenylsulfone Or
(B) 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride is used as the dicarboxylic dianhydride component, and 4,4′-diamino-3,3 ′, 5,5 ′ as the diamine component. The high frequency circuit board according to any one of [1] to [6], which is obtained using tetraethyldiphenylmethane.

本発明の高周波回路用基板では、表面粗度が実質的にゼロである鏡面金属箔を用いることができるため、高周波帯においても伝送損失を極めて少なくすることができる。さらに、本発明の高周波回路用基板は、金属箔と樹脂層との接着性、並びに樹脂層の誘電特性及び吸湿性に優れる。   In the high-frequency circuit board of the present invention, a mirror-surface metal foil having a surface roughness of substantially zero can be used, so that transmission loss can be extremely reduced even in a high-frequency band. Furthermore, the high frequency circuit board of the present invention is excellent in the adhesion between the metal foil and the resin layer, and the dielectric properties and moisture absorption of the resin layer.

本発明の高周波回路用基板は、樹脂層と、該樹脂層の少なくとも一方の主面にプライマー樹脂層を介して積層された金属箔とを備える積層体からなるものである。   The high-frequency circuit board of the present invention comprises a laminate comprising a resin layer and a metal foil laminated on at least one main surface of the resin layer via a primer resin layer.

本発明に用いられる金属箔としては、表面粗化処理を全く行っていないものが好ましい。強いて具体的な粗度の測定値を挙げれば、表面粗度(Sa)が0.5μm以下の範囲内にあることが好ましく、0.2μm以下の範囲内にあることがより好ましい。表面粗度が0.5μm以下の範囲内にあると、伝送損失が小さくなり、実用性能を満足することができる。金属箔としては銅箔が好ましい。銅箔の種類には電解箔と圧延箔とがあるが、どちらでも構わない。金属箔の厚さは通常5〜50μmであり、好ましくは10〜40μmである。
なお、従来は表面粗度として線状二次元における凹凸の算術平均であるRaが一般的に用いられてきたが、現実の表面が三次元的広がりを持っているため、正確な値とは言い難い。これに対し、Saは三次元空間における凹凸の算術平均であり、より適切な測定方法である。
The metal foil used in the present invention is preferably one that has not been subjected to any surface roughening treatment. If a strong and specific measured value of roughness is given, the surface roughness (Sa) is preferably in the range of 0.5 μm or less, and more preferably in the range of 0.2 μm or less. When the surface roughness is in the range of 0.5 μm or less, the transmission loss is reduced and the practical performance can be satisfied. A copper foil is preferable as the metal foil. There are two types of copper foil, electrolytic foil and rolled foil, either one of which may be used. The thickness of the metal foil is usually 5 to 50 μm, preferably 10 to 40 μm.
Conventionally, Ra, which is the arithmetic average of irregularities in linear two dimensions, has been generally used as the surface roughness. However, since the actual surface has a three-dimensional extent, it is not an accurate value. hard. On the other hand, Sa is an arithmetic average of unevenness in a three-dimensional space, and is a more appropriate measurement method.

銅箔は、無処理の銅箔であってもよく、プライマー樹脂層と接する表面に金属メッキ処理が施された銅箔(すなわち、表面に金属メッキ層を有する銅箔)であってもよい。金属メッキには、例えば、ニッケル、鉄、亜鉛、金、銀、アルミニウム、クロム、チタン、パラジウム、及び錫からなる群より選ばれる1種以上の金属が用いられ、好ましくはニッケル、鉄、亜鉛、金、及びアルミニウムからなる群より選ばれる1種以上の金属が用いられ、より好ましくはニッケル及びアルミニウムからなる群より選ばれる1種以上の金属が用いられる。場合によっては、ニッケル、鉄、亜鉛、金、及び錫からなる群より選ばれる1種以上の金属が好ましく用いられる。
金属箔表面の金属メッキ層は該金属がイオン化した溶液中での電解メッキ又は無電解メッキにより得られる。金属メッキ層の厚みは10〜300nmが好ましい。
The copper foil may be an untreated copper foil, or may be a copper foil that has been subjected to metal plating treatment on the surface in contact with the primer resin layer (that is, a copper foil having a metal plating layer on the surface). For the metal plating, for example, one or more metals selected from the group consisting of nickel, iron, zinc, gold, silver, aluminum, chromium, titanium, palladium, and tin are used, preferably nickel, iron, zinc, One or more metals selected from the group consisting of gold and aluminum are used, and more preferably one or more metals selected from the group consisting of nickel and aluminum are used. In some cases, one or more metals selected from the group consisting of nickel, iron, zinc, gold, and tin are preferably used.
The metal plating layer on the surface of the metal foil is obtained by electrolytic plating or electroless plating in a solution in which the metal is ionized. The thickness of the metal plating layer is preferably 10 to 300 nm.

また、無処理の銅箔表面又は金属メッキ処理された銅箔表面が、シランカップリング剤等の薬剤で表面処理されていてもよい。すなわち、表面にシランカップリング剤処理層を有する銅箔であってもよい。シランカップリング剤処理層は、銅箔表面にシランカップリング剤を塗布することにより得ることができる。シランカップリング剤としては、アミノ系、エポキシ系他、市販されている種々のシランカップリング剤(例えばKBMシリーズ 信越化学工業株式会社製)を用いることができる。シランカップリング剤処理層の厚みは1〜50nmが好ましい。   Further, the surface of the untreated copper foil or the surface of the copper foil subjected to metal plating may be surface-treated with a chemical such as a silane coupling agent. That is, the copper foil which has a silane coupling agent processing layer on the surface may be sufficient. The silane coupling agent treatment layer can be obtained by applying a silane coupling agent to the copper foil surface. As the silane coupling agent, amino-based, epoxy-based and other various silane coupling agents commercially available (for example, KBM series manufactured by Shin-Etsu Chemical Co., Ltd.) can be used. The thickness of the silane coupling agent treatment layer is preferably 1 to 50 nm.

つまり、本発明の高周波回路用基板においては、銅箔の無処理表面に直接プライマー樹脂層が形成されたものであっても、金属メッキ層やシランカップリング剤処理層を介してプライマー樹脂層が形成されたものであってもよい。なお、プライマー樹脂層は銅箔と樹脂層との強力な接着のために設けられるものであるため、通常、上記の金属メッキ層やシランカップリング剤処理層以外の、銅箔と樹脂層との接着力を弱める他の樹脂層等を介することはない。   That is, in the high-frequency circuit board of the present invention, even if the primer resin layer is formed directly on the untreated surface of the copper foil, the primer resin layer is interposed via the metal plating layer or the silane coupling agent treatment layer. It may be formed. In addition, since the primer resin layer is provided for strong adhesion between the copper foil and the resin layer, usually the copper foil and the resin layer other than the metal plating layer and the silane coupling agent treatment layer are used. There is no other resin layer that weakens the adhesive strength.

本発明におけるプライマー樹脂層のベース樹脂は、下記式(4)で表される構造のイミドセグメントを有するポリイミド樹脂であれば特に制限はない。   If the base resin of the primer resin layer in this invention is a polyimide resin which has an imide segment of the structure represented by following formula (4), there will be no restriction | limiting in particular.

Figure 2014045076
(式(4)中、R及びRは上記式(1)におけるのと同じ意味を表す。)
Figure 2014045076
(In the formula (4), R 1 and R 2 have the same meaning as in the above formula (1).)

イミドセグメントの繰り返し数は10〜1000が好ましい。繰り返し数が10より小さいとポリイミド樹脂が本来持つ耐熱性と機械強度とが発現し難くなるとともに、金属箔表面がポリイミド樹脂の末端基(アミノ基又はカルボキシル基)の影響を受けやすくなる。また、繰り返し数が1000より大きいと溶液での粘度が高く、層を形成するのが困難なばかりか、金属箔表面との接着性が低下する。これらの不具合を考慮に入れると、上記繰り返し数は50〜500が好ましい。また、ポリイミド樹脂の質量平均分子量は、作業性の面から5,000〜500,000程度が好ましい。より好ましくは50,000〜200,000程度である。さらに好ましくは50,000〜150,000程度である。   The number of repeating imide segments is preferably 10 to 1000. When the number of repetitions is less than 10, the heat resistance and mechanical strength inherent in the polyimide resin are difficult to develop, and the metal foil surface is easily affected by the terminal group (amino group or carboxyl group) of the polyimide resin. On the other hand, when the number of repetitions is more than 1000, the viscosity in the solution is high, and it is difficult to form a layer, and the adhesion to the surface of the metal foil is lowered. Taking these problems into consideration, the number of repetitions is preferably 50 to 500. The weight average molecular weight of the polyimide resin is preferably about 5,000 to 500,000 from the viewpoint of workability. More preferably, it is about 50,000-200,000. More preferably, it is about 50,000-150,000.

従来のポリイミド樹脂からなるプライマー樹脂層又はフィルムは、通常、その前駆体のポリアミック酸を含むワニスを基板上に塗布し、乾燥した後、加熱処理によって前駆体を閉環反応させて、作られていた。これに対し、本発明においてはベース樹脂自体がポリアミック酸の閉環したポリイミド樹脂であるので、ポリイミド樹脂が溶媒中に溶解したプライマー樹脂溶液(プライマー樹脂ワニス)を金属箔上に直接塗布した後、乾燥するだけで、ポリイミド樹脂をベース樹脂とするプライマー樹脂層を得ることができる。   A primer resin layer or film made of a conventional polyimide resin is usually made by applying a varnish containing a precursor polyamic acid onto a substrate, drying it, and then subjecting the precursor to a ring-closing reaction by heat treatment. . On the other hand, in the present invention, since the base resin itself is a polyamic acid ring-closed polyimide resin, a primer resin solution (primer resin varnish) in which the polyimide resin is dissolved in a solvent is directly applied on the metal foil, and then dried. Thus, a primer resin layer having a polyimide resin as a base resin can be obtained.

プライマー樹脂層のベース樹脂となる可溶性ポリイミド樹脂は、通常、下記式(5−1)〜(5−4)で表されるテトラカルボン酸二無水物のうちの1種以上と、下記式(6−1)〜(6−3)で表されるジアミンのうちの1種以上との縮合反応によりポリアミック酸を得て、これを閉環させることで得られる。   The soluble polyimide resin used as the base resin of the primer resin layer is usually one or more of tetracarboxylic dianhydrides represented by the following formulas (5-1) to (5-4), and the following formula (6 It is obtained by obtaining a polyamic acid by a condensation reaction with one or more of the diamines represented by -1) to (6-3) and ring-closing it.

Figure 2014045076
Figure 2014045076

Figure 2014045076
Figure 2014045076

本発明において好ましいテトラカルボン酸二無水物としては、上記の中の4,4’−オキシジフタル酸無水物(式(5−2))又は3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物(式(5−4))が挙げられ、より好ましくは4,4’−オキシジフタル酸無水物である。
また、ジアミン成分は上記3種のジアミンがいずれも上記のテトラカルボン酸二無水物との組み合わせで使用することができる。より好ましいジアミンとしては、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン(式(6−1))又は1,3−ビス−(3−アミノフェノキシ)ベンゼン(式(6−3))を挙げることができる。
好ましい組み合わせとしては、4,4’−オキシジフタル酸無水物に対しては、1,3−ビス−(3−アミノフェノキシ)ベンゼン又は3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンが好ましく、特に、1,3−ビス−(3−アミノフェノキシ)ベンゼン単独、又は1,3−ビス−(3−アミノフェノキシ)ベンゼンと3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンとの併用がより好ましい。また、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物に対しては、4,4’−ジアミノ−3,3’,5,5’−テトラエチルジフェニルメタンが好ましい。上記で2種のジアミン成分を併用する場合、1,3−ビス−(3−アミノフェノキシ)ベンゼンと3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンとの使用割合に特に限定はないが、通常、前者が100〜10モル%、後者が0〜90モル%程度である。
これらの組み合わせから得られるポリイミド樹脂を含む上記ポリイミド樹脂溶液は、金属箔上への塗布用のワニス(特にプライマー樹脂ワニス)としてより好ましい。
Preferred tetracarboxylic dianhydrides in the present invention include 4,4′-oxydiphthalic anhydride (formula (5-2)) or 3,4,3 ′, 4′-benzophenone tetracarboxylic acid An anhydride (formula (5-4)) is mentioned, More preferably, it is 4,4'- oxydiphthalic anhydride.
The diamine component may be any of the above three diamines in combination with the above tetracarboxylic dianhydride. More preferable diamines include 3,3′-diamino-4,4′-dihydroxydiphenylsulfone (formula (6-1)) or 1,3-bis- (3-aminophenoxy) benzene (formula (6-3)). ).
Preferred combinations are 1,3-bis- (3-aminophenoxy) benzene or 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone for 4,4′-oxydiphthalic anhydride. In particular, 1,3-bis- (3-aminophenoxy) benzene alone or 1,3-bis- (3-aminophenoxy) benzene and 3,3′-diamino-4,4′-dihydroxydiphenylsulfone The combined use is more preferable. In addition, 4,4′-diamino-3,3 ′, 5,5′-tetraethyldiphenylmethane is preferred for 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride. When two types of diamine components are used in the above, there is no particular limitation on the use ratio of 1,3-bis- (3-aminophenoxy) benzene and 3,3′-diamino-4,4′-dihydroxydiphenylsulfone. However, the former is usually about 100 to 10 mol% and the latter is about 0 to 90 mol%.
The said polyimide resin solution containing the polyimide resin obtained from these combinations is more preferable as a varnish for application | coating on metal foil (especially primer resin varnish).

ポリアミック酸の閉環反応は、該ポリアミック酸を溶解する極性溶媒中、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、メチルベンゾエート、バレロラクトン、及びブチロラクトンからなる群より選ばれる1種以上を含有する溶媒中で行うのが好ましい。こうして得られたポリイミド樹脂溶液は、通常のワニスと同様に金属箔上に塗布して用いることが可能である。ポリイミド樹脂溶液としては、溶媒中にポリイミド樹脂が、通常1〜50質量%、好ましくは5〜30質量%溶解した溶液が取り扱いやすい。   The ring closure reaction of the polyamic acid is one or more selected from the group consisting of N-methyl-2-pyrrolidone, N, N-dimethylacetamide, methylbenzoate, valerolactone, and butyrolactone in a polar solvent that dissolves the polyamic acid. It is preferable to carry out in a solvent containing The polyimide resin solution obtained in this way can be applied on a metal foil and used in the same manner as a normal varnish. As the polyimide resin solution, a solution in which a polyimide resin is dissolved in a solvent is usually 1 to 50% by mass, preferably 5 to 30% by mass, is easy to handle.

ポリアミック酸の閉環反応は、上記極性溶媒を単独で使用し実施することもできるが、トルエン、キシレン、ヘキサン、シクロヘキサン、ヘプタン等の比較的低沸点の無極性溶媒を少量添加した混合溶媒を使用し、反応時に副生する水を反応系から除去させながら実施するのが好ましい。反応温度は、150〜220℃が好ましく、180〜200℃が特に好ましい。反応時間は2〜10時間が好ましく、5〜8時間が特に好ましい。無極性溶媒の添加量は反応溶媒に対し5〜20質量%が好ましい。   The ring closure reaction of polyamic acid can be carried out using the above polar solvent alone, but using a mixed solvent to which a small amount of a nonpolar solvent having a relatively low boiling point such as toluene, xylene, hexane, cyclohexane and heptane is added. It is preferable to carry out the reaction while removing water produced as a by-product during the reaction from the reaction system. The reaction temperature is preferably 150 to 220 ° C, particularly preferably 180 to 200 ° C. The reaction time is preferably 2 to 10 hours, particularly preferably 5 to 8 hours. The addition amount of the nonpolar solvent is preferably 5 to 20% by mass with respect to the reaction solvent.

なお、ポリイミド樹脂におけるイミドセグメントの繰り返し数は、テトラカルボン酸二無水物成分とジアミン成分とのモル比で制御できる。例えば繰り返し数100程度の場合、テトラカルボン酸二無水物成分:ジアミン成分=1.00モル:1.01モル又は1.01モル:1.00モルとなるように反応させる。繰り返し数の多いものを得るには、テトラカルボン酸二無水物成分とジアミン成分との使用割合を上記モル割合よりも等モルに近づければよく、繰り返し数の少ないものを得るには上記モル割合の両者の差を大きくすればよい。   In addition, the repeating number of the imide segment in a polyimide resin can be controlled by the molar ratio of the tetracarboxylic dianhydride component and the diamine component. For example, when the number of repetitions is about 100, the reaction is performed such that tetracarboxylic dianhydride component: diamine component = 1.00 mol: 1.01 mol or 1.01 mol: 1.00 mol. In order to obtain a product having a large number of repetitions, the use ratio of the tetracarboxylic dianhydride component and the diamine component should be closer to the equimolar ratio than the above molar ratio, and in order to obtain a product having a small number of repetitions, the molar ratio What is necessary is just to enlarge the difference of both.

本発明で用いるポリイミド樹脂溶液(プライマー樹脂溶液)には、目標とする接着強度及び金属箔の防錆効果を達成する範囲内であれば、必要に応じて種々の添加剤を加えることができる。添加剤としては例えば、芳香族ポリアミド樹脂、エポキシ樹脂、フェノール樹脂等の有機添加剤、シリカ化合物等の無機添加剤、顔料、染料、ハレーション防止剤、蛍光増白剤、界面活性剤、レベリング剤、可塑剤、難燃剤、酸化防止剤、充填剤、静電防止剤、粘度調整剤、促進剤、脱水剤、光安定剤、光触媒、低誘電体、導電体、磁性体、熱分解性化合物等が挙げられる。   Various additives can be added to the polyimide resin solution (primer resin solution) used in the present invention as needed as long as the target adhesive strength and the rust preventive effect of the metal foil are achieved. Examples of additives include organic additives such as aromatic polyamide resins, epoxy resins, and phenol resins, inorganic additives such as silica compounds, pigments, dyes, antihalation agents, fluorescent whitening agents, surfactants, leveling agents, Plasticizers, flame retardants, antioxidants, fillers, antistatic agents, viscosity modifiers, accelerators, dehydrating agents, light stabilizers, photocatalysts, low dielectrics, conductors, magnetic substances, thermally decomposable compounds, etc. Can be mentioned.

プライマー樹脂層を形成するには、ポリイミド樹脂溶液(プライマー樹脂溶液)を金属箔上に塗布し、次いで乾燥させる。より詳しくは、通常粗化処理の施されていない金属箔の片面(該金属箔面は金属メッキ処理されていても、また、シランカップリング剤処理されていてもよい)に上記プライマー樹脂溶液を、例えばプライマー樹脂層としての換算厚さ(乾燥後のポリイミド樹脂層の厚さ)が0.5〜20μm、好ましくは1〜10μm、より好ましくは1〜5μmとなるように塗布し、乾燥させることにより、金属箔上にプライマー樹脂層が形成される。例えば、樹脂濃度が20質量%のプライマー樹脂溶液を10μm厚に塗布し、80〜200℃で5〜60分間、好ましくは130〜150℃で10〜30分間乾燥させることにより、およそ2μm厚のプライマー樹脂層が得られる。
乾燥時の熱源は熱風でも遠赤外線ヒーターでもよいが、溶媒蒸気の滞留防止や樹脂内部までの熱伝導の点で、熱風と遠赤外線ヒーターとを併用するとよい。
In order to form the primer resin layer, a polyimide resin solution (primer resin solution) is applied onto the metal foil and then dried. More specifically, the primer resin solution is usually applied to one side of a metal foil that has not been subjected to roughening treatment (the metal foil surface may be subjected to metal plating treatment or silane coupling agent treatment). For example, it is applied and dried so that the converted thickness (the thickness of the polyimide resin layer after drying) as the primer resin layer is 0.5 to 20 μm, preferably 1 to 10 μm, more preferably 1 to 5 μm. Thus, a primer resin layer is formed on the metal foil. For example, a primer resin solution having a resin concentration of 20% by mass is applied to a thickness of 10 μm and dried at 80 to 200 ° C. for 5 to 60 minutes, preferably at 130 to 150 ° C. for 10 to 30 minutes. A resin layer is obtained.
The heat source during drying may be hot air or a far-infrared heater, but hot air and a far-infrared heater may be used in combination from the standpoint of preventing solvent vapor stagnation and conducting heat to the inside of the resin.

本発明における樹脂層は、テトラカルボン酸二無水物とジアミン化合物とを、N−メチル−2−ピロリドンやN,N−ジメチルアセトアミド等の極性溶媒中で反応させて得られるポリアミック酸樹脂ワニスにフッ素樹脂を分散させることにより得られるワニスを、金属箔上に設けられたプライマー樹脂層上に所望の膜厚、通常10〜100μmになるように塗布して乾燥した後、250〜400℃で0.5〜20時間の条件で脱水閉環させることにより得られる。この際、ポリアミック酸樹脂ワニスは、テトラカルボン酸二無水物にメタノールやエタノールを反応させたエステル塩を含有していてもよい。なお、原料となるテトラカルボン酸二無水物とジアミン化合物との組み合わせには何ら制限はなく、従来公知の組み合わせにより得られるポリイミド樹脂を用いることができる。ポリアミック酸樹脂ワニスの市販品としては、KAYAFLEX KPI−120(日本化薬株式会社製)等が挙げられる。   The resin layer in the present invention is a fluorine-containing polyamic acid resin varnish obtained by reacting a tetracarboxylic dianhydride and a diamine compound in a polar solvent such as N-methyl-2-pyrrolidone or N, N-dimethylacetamide. The varnish obtained by dispersing the resin is applied on the primer resin layer provided on the metal foil so as to have a desired film thickness, usually 10 to 100 μm, and dried, and then at 250 to 400 ° C. It is obtained by dehydrating and ring-closing under conditions of 5 to 20 hours. At this time, the polyamic acid resin varnish may contain an ester salt obtained by reacting tetracarboxylic dianhydride with methanol or ethanol. In addition, there is no restriction | limiting in the combination of the tetracarboxylic dianhydride used as a raw material and a diamine compound, The polyimide resin obtained by a conventionally well-known combination can be used. Examples of commercially available polyamic acid resin varnish include KAYAFLEX KPI-120 (manufactured by Nippon Kayaku Co., Ltd.).

上記フッ素樹脂としては、ポリ四フッ化エチレン、ポリビニリデンフルオライド、ポリビニルフルオライド、ポリクロロトリフルオロエチレン、フッ化ビニリデン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体、クロロトリフルオロエチレン−エチレン共重合体等が挙げられ、誘電特性の観点からポリ四フッ化エチレンが好ましい。
フッ素樹脂の形状としては、ポリアミック酸溶液に均一に分散できる形状であれば特に制限はないが、繊維状、鱗片状、粉末状等が挙げられ、粉末状が好ましい。
フッ素樹脂の配合量としては、ポリアミック酸とフッ素樹脂との合計に対して、10〜80質量%が好ましく、20〜70質量%が特に好ましい。
フッ素樹脂の好ましい態様である粉末形状において、粉末の製造法としては、懸濁重合法又は乳化重合法によるものでも、樹脂ブロックの粉砕によるものでも構わない。フッ素樹脂粉末の平均粒径としては、10〜50μmが好ましく、15〜45μmがさらに好ましい。
Examples of the fluororesin include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, vinylidene fluoride-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, Tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, chlorotrifluoroethylene-ethylene copolymer, etc. From the viewpoint of dielectric properties, polytetrafluoroethylene is preferred.
The shape of the fluororesin is not particularly limited as long as it is a shape that can be uniformly dispersed in the polyamic acid solution, and examples thereof include a fibrous shape, a scale shape, and a powder shape, and a powder shape is preferable.
As a compounding quantity of a fluororesin, 10-80 mass% is preferable with respect to the sum total of a polyamic acid and a fluororesin, and 20-70 mass% is especially preferable.
In the powder form which is a preferred embodiment of the fluororesin, the powder production method may be a suspension polymerization method or an emulsion polymerization method, or a resin block pulverization method. The average particle size of the fluororesin powder is preferably 10 to 50 μm, and more preferably 15 to 45 μm.

ポリアミック酸溶液へのフッ素樹脂粉末の分散には三本ロール、プラネタリミキサー、二軸ニーダー等を用いることができるが、二次凝集しやすいフッ素樹脂粉末を一次粒子まで完全に分散するには、せん断力の強い三本ロールが特に好ましい。   A three-roll, planetary mixer, biaxial kneader, etc. can be used to disperse the fluororesin powder in the polyamic acid solution. A strong triple roll is particularly preferred.

本発明の高周波回路用基板は、樹脂層の片面にプライマー樹脂層を介して金属箔が積層された積層体に限られるものではない。例えば、2枚の積層体の樹脂面をエポキシ樹脂組成物等で接着することにより、両面基板として使用することもできる。   The high-frequency circuit board of the present invention is not limited to a laminate in which a metal foil is laminated on one surface of a resin layer via a primer resin layer. For example, it can also be used as a double-sided substrate by bonding the resin surfaces of two laminates with an epoxy resin composition or the like.

本発明の高周波回路用基板にスルーホールを形成する方法としては、ドリルによる加工法や、炭酸ガスレーザー、YAGレーザー、エキシマレーザー等のレーザーによる加工法を採用することができる。   As a method for forming a through hole in the high-frequency circuit board of the present invention, a processing method using a drill or a processing method using a laser such as a carbon dioxide laser, a YAG laser, or an excimer laser can be employed.

また、本発明の高周波回路用基板のスルーホールに金属メッキを施す方法としては、従来周知の方法を採用することができ、例えば、無電解銅メッキと電解銅メッキとによるパターンメッキやパネルメッキを順次施せばよい。   In addition, as a method of applying metal plating to the through hole of the high-frequency circuit board of the present invention, a conventionally known method can be adopted, for example, pattern plating or panel plating by electroless copper plating and electrolytic copper plating. It may be applied sequentially.

本発明において高周波回路には、単に高周波信号のみを伝送する回路からなるものだけでなく、高周波信号を低周波信号に変換して、生成された低周波信号を外部へ出力する伝送路や、高周波対応部品の駆動のために供給される電源を供給するための伝送路等の、高周波信号ではない信号を伝送する伝送路が同一平面上に併設された回路も含まれる。なお、本発明において、高周波信号とは1GHz以上の周波数を有する信号をいう。   In the present invention, the high-frequency circuit is not limited to a circuit that simply transmits a high-frequency signal, but a transmission path that converts a high-frequency signal into a low-frequency signal and outputs the generated low-frequency signal to the outside, Also included is a circuit in which a transmission path for transmitting a signal that is not a high-frequency signal is provided on the same plane, such as a transmission path for supplying power supplied to drive the corresponding component. In the present invention, the high frequency signal means a signal having a frequency of 1 GHz or more.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(銅箔表面の粗度及び凹凸間隔の測定方法)
レーザー顕微鏡(オリンパス株式会社製)を用い、銅箔の表面粗度(Sa)を測定した。
(Measurement method of copper foil surface roughness and uneven spacing)
The surface roughness (Sa) of the copper foil was measured using a laser microscope (manufactured by Olympus Corporation).

(接着強度の測定方法)
JIS C5016−1994に準拠して、毎分50mmの速度で銅箔を銅箔除去面に対して90°の方向に引きはがしながら、引っ張り試験機により、銅箔の引きはがし強さを測定し、得られた値を接着強度とした。
(Measurement method of adhesive strength)
In accordance with JIS C5016-1994, the peel strength of the copper foil was measured by a tensile tester while peeling the copper foil at a rate of 50 mm per minute in the direction of 90 ° with respect to the copper foil removal surface. The obtained value was defined as the adhesive strength.

(界面比導電率の測定方法)
MIC型誘電体共振器法により10GHzにおいて行った。この値は測定周波数における導体損失の度合いを表す。
(Measurement method of interfacial specific conductivity)
The measurement was performed at 10 GHz by the MIC type dielectric resonator method. This value represents the degree of conductor loss at the measurement frequency.

(誘電率、誘電正接の測定方法)
空洞共振器(関東電子応用開発株式会社製)により1GHzにて測定し、ネットワークアナライザー(アジレントテクノロジー株式会社製、型式8719ET)にて解析した。
(Measurement method of dielectric constant and dielectric loss tangent)
Measurement was performed at 1 GHz using a cavity resonator (manufactured by Kanto Electronics Application Development Co., Ltd.), and analysis was performed using a network analyzer (model 8719ET, manufactured by Agilent Technology Co., Ltd.).

[合成例1]
温度計、環流冷却器、ディーンスタークトラップ装置、粉体導入口、窒素導入装置、及び撹拌装置のついた300mlの反応器に、ジアミン成分として1,3−ビス−(3−アミノフェノキシ)ベンゼン(APB−N:三井化学株式会社製 分子量292.34、以下、APB−Nと記載する)58.5g(0.2モル)を仕込み、乾燥窒素を流しながら、溶剤としてメチルベンゾエート90.6gを加え、60℃で30分間撹拌した。その後、そこに、ジカルボン酸二無水物成分として4,4’−オキシジフタル酸無水物(ODPA:マナック社製 分子量310.22、以下、ODPAと記載する)63.4g(0.204モル)、溶剤としてγ−ブチロラクトンを135.9g、触媒としてγ−バレロラクトンを2.05g、ピリジンを3.23g、及び脱水剤としてトルエン52.4gを添加した。反応器内を180℃まで加熱し、分留管より発生する水を抜きながら、6時間、加熱閉環反応を行った。イミド化反応終了後、反応液を80℃以下に冷却し、次いで孔径3μmのテフロンRTM(以下、上付のRTMは登録商標を示す)フィルターを用い加圧濾過し、下記式(7)で表されるポリイミド樹脂(質量平均分子量96,600)がγ−ブチロラクトン及びメチルベンゾエートの混合溶媒中に34質量%の濃度で溶解したプライマー樹脂溶液を394g得た。このプライマー樹脂溶液1.00mlを、E型回転粘度計を用い25℃で測定した回転粘度は、27.1Pa・sであった。
[Synthesis Example 1]
A 1,3-bis- (3-aminophenoxy) benzene (diamine component) was added to a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark trap device, a powder inlet, a nitrogen inlet device, and a stirring device. APB-N: made by Mitsui Chemicals Co., Ltd. 58.5 g (0.2 mol) having a molecular weight of 292.34 (hereinafter referred to as APB-N) was charged, and 90.6 g of methylbenzoate was added as a solvent while flowing dry nitrogen. And stirred at 60 ° C. for 30 minutes. Thereafter, there was 4,3.4′-oxydiphthalic anhydride (ODPA: Manac, Inc., molecular weight 310.22, hereinafter referred to as ODPA) as a dicarboxylic dianhydride component, 63.4 g (0.204 mol), solvent As a catalyst, 135.9 g of γ-butyrolactone, 2.05 g of γ-valerolactone as a catalyst, 3.23 g of pyridine, and 52.4 g of toluene as a dehydrating agent were added. The inside of the reactor was heated to 180 ° C., and a heating ring closure reaction was performed for 6 hours while removing water generated from the fractionating tube. After completion of the imidization reaction, the reaction solution is cooled to 80 ° C. or lower, and then filtered under pressure using a Teflon RTM filter having a pore diameter of 3 μm (hereinafter, the superscript RTM indicates a registered trademark), and expressed by the following formula (7). As a result, 394 g of a primer resin solution in which the polyimide resin (mass average molecular weight 96,600) was dissolved in a mixed solvent of γ-butyrolactone and methylbenzoate at a concentration of 34% by mass was obtained. The rotational viscosity of 1.00 ml of this primer resin solution measured at 25 ° C. using an E-type rotational viscometer was 27.1 Pa · s.

Figure 2014045076
(式(7)中、nは繰り返し数を表す。)
Figure 2014045076
(In formula (7), n represents the number of repetitions.)

[合成例2]
温度計、環流冷却器、ディーンスタークトラップ装置、粉体導入口、窒素導入装置、及び撹拌装置のついた500mlの反応器に、ジアミン成分としてカヤボンドRTMC−300S(4,4’−ジアミノ−3,3’,5,5’−テトラエチルジフェニルメタン、日本化薬株式会社製 分子量310.48)62.1g(0.2モル)を仕込み、乾燥窒素を流しながら、溶剤としてN−メチル−2−ピロリドン493gを加え、60℃で30分間撹拌した。その後、そこに、ジカルボン酸二無水物成分としてBTDA(3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物 デグッサ製 分子量322.23)64.4g(0.2モル)、脱水剤としてトルエン38gを添加した。次いで反応器内を180℃まで加熱し、分留管より発生する水を抜きながら、6時間、加熱閉環反応を行った。イミド化反応終了後、反応液を80℃以下に冷却した後、孔径3μmのテフロンRTMフィルターを用い加圧濾過し、下記式(8)で表されるポリイミド樹脂(質量平均分子量72,000)がN−メチル−2−ピロリドンに20質量%の濃度で溶解した溶液を630g得た。このポリイミド溶液1.00mlを、E型回転粘度計を用い25℃で測定した回転粘度は、855mPa・sであった。
[Synthesis Example 2]
Kayabond RTMC-300S (4,4′-diamino-3, diamine component) was added to a 500 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark trap device, a powder inlet, a nitrogen inlet device, and a stirring device. 3 ', 5,5'-Tetraethyldiphenylmethane, Nippon Kayaku Co., Ltd. molecular weight 310.48) 62.1 g (0.2 mol) was charged, and dry nitrogen was introduced while 493 g of N-methyl-2-pyrrolidone was used as a solvent. And stirred at 60 ° C. for 30 minutes. Thereafter, BTDA (3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, molecular weight 322.23, manufactured by Degussa) 64.4 g (0.2 mol) as a dicarboxylic dianhydride component, a dehydrating agent As a result, 38 g of toluene was added. Next, the inside of the reactor was heated to 180 ° C., and a heat ring closure reaction was performed for 6 hours while removing water generated from the fractionating tube. After completion of the imidization reaction, the reaction solution is cooled to 80 ° C. or lower, and then filtered under pressure using a Teflon RTM filter having a pore size of 3 μm, so that a polyimide resin (mass average molecular weight 72,000) represented by the following formula (8) is obtained. 630 g of a solution dissolved in N-methyl-2-pyrrolidone at a concentration of 20% by mass was obtained. The rotational viscosity of this polyimide solution 1.00 ml measured at 25 ° C. using an E-type rotational viscometer was 855 mPa · s.

Figure 2014045076
(式(8)中、nは繰り返し数を表す。)
Figure 2014045076
(In formula (8), n represents the number of repetitions.)

[実施例1]
合成例1で得られたポリイミド溶液(プライマー樹脂溶液)にN−メチル−2−ピロリドンを固形分が5質量%となるように加え、その溶液をオートマチックアプリケーター(株式会社安田精機製作所製)を用いて18μm厚の圧延銅箔(表面粗さSaが0.14μm)の上に28μm厚で塗布した後、130℃で10分間乾燥し、1.4μm厚のプライマー樹脂層付銅箔を得た。
一方、下記式(9)で表されるポリイミド前駆体(質量平均分子量81,000)をN−メチル−2−ピロリドン及びN,N−ジメチルアセトアミドの混合溶媒に溶解した溶液(ポリイミド前駆体溶液)、カヤフレックス(KAYAFLEX) KPI−100(商品名、日本化薬株式会社製、固形分15%)200gに、平均粒径10μmのポリ四フッ化エチレン粉末を36.7g添加し、三本ロールミルで分散させてワニスを調製した。
そして、乾燥後の膜厚が25μmになるよう、このワニスをプライマー樹脂層に塗布し、乾燥させた。その後、窒素気流下200〜350℃で加熱処理してポリアミック酸のイミド化反応を行い、本発明の高周波回路用基板(サンプル1)を調製した。
[Example 1]
N-methyl-2-pyrrolidone is added to the polyimide solution (primer resin solution) obtained in Synthesis Example 1 so that the solid content is 5% by mass, and the solution is used with an automatic applicator (manufactured by Yasuda Seiki Seisakusyo Co., Ltd.). Then, it was applied on a rolled copper foil having a thickness of 18 μm (surface roughness Sa is 0.14 μm) at a thickness of 28 μm, and then dried at 130 ° C. for 10 minutes to obtain a copper foil with a primer resin layer having a thickness of 1.4 μm.
On the other hand, a solution (polyimide precursor solution) in which a polyimide precursor (mass average molecular weight 81,000) represented by the following formula (9) is dissolved in a mixed solvent of N-methyl-2-pyrrolidone and N, N-dimethylacetamide KAYAFLEX KPI-100 (trade name, manufactured by Nippon Kayaku Co., Ltd., solid content: 15%) 200 g of polytetrafluoroethylene powder having an average particle size of 10 μm was added to a 3-roll mill. A varnish was prepared by dispersing.
And this varnish was apply | coated to the primer resin layer so that the film thickness after drying might be set to 25 micrometers, and it was made to dry. Then, the imidation reaction of polyamic acid was performed by heating at 200 to 350 ° C. under a nitrogen stream to prepare the high-frequency circuit substrate of the present invention (Sample 1).

Figure 2014045076
(式(9)中、nは繰り返し数を表す。)
Figure 2014045076
(In formula (9), n represents the number of repetitions.)

[実施例2]
合成例2で得られたポリイミド溶液(プライマー樹脂溶液)を用い、実施例1と同様にして、1.5μm厚のプライマー樹脂層付銅箔を得た。
一方、上記式(9)で表されるポリイミド前駆体(質量平均分子量81,000)をN−メチル−2−ピロリドン及びN,N−ジメチルアセトアミドの混合溶媒に溶解した溶液(ポリイミド前駆体溶液)、カヤフレックス(KAYAFLEX) KPI−100(商品名、日本化薬株式会社製)に、平均粒径15μmのポリ四フッ化エチレン粉末を45g添加し、三本ロールミルで分散させてワニスを調製した。
そして、乾燥後の膜厚が25μmになるよう、このワニスをプライマー樹脂層に塗布し、乾燥させた。その後、窒素気流下200〜350℃で加熱処理してポリアミック酸のイミド化反応を行い、本発明の高周波回路用基板(サンプル2)を調製した。
[Example 2]
Using the polyimide solution (primer resin solution) obtained in Synthesis Example 2, a copper foil with a primer resin layer having a thickness of 1.5 μm was obtained in the same manner as in Example 1.
On the other hand, a solution (polyimide precursor solution) in which a polyimide precursor (mass average molecular weight 81,000) represented by the above formula (9) is dissolved in a mixed solvent of N-methyl-2-pyrrolidone and N, N-dimethylacetamide Kayaflex KAI-100 (trade name, manufactured by Nippon Kayaku Co., Ltd.) was added with 45 g of polytetrafluoroethylene powder having an average particle size of 15 μm and dispersed with a three-roll mill to prepare a varnish.
And this varnish was apply | coated to the primer resin layer so that the film thickness after drying might be set to 25 micrometers, and it was made to dry. Then, it heat-processed at 200-350 degreeC under nitrogen stream, the imidation reaction of polyamic acid was performed, and the board | substrate for high frequency circuits (sample 2) of this invention was prepared.

[比較例1]
比較用の基板(比較サンプル1)として、市販のポリイミド積層板(エスパネックス(登録商標)、新日鐵化学株式会社製)を用いた。
[Comparative Example 1]
As a substrate for comparison (Comparative Sample 1), a commercially available polyimide laminate (Espanex (registered trademark), manufactured by Nippon Steel Chemical Co., Ltd.) was used.

上記サンプル1、サンプル2、又は比較サンプル1を用い、10GHzでの銅箔の比導電率を測定した。また、銅箔と樹脂層との引きはがし強さを測定した。さらに、上記サンプルの全銅箔をエッチングにより除去し、1GHzにおいて樹脂層の誘電率及び誘電正接を測定した。次いで、樹脂層に煮沸処理(沸騰水中で1時間)を施した後、吸水率を測定し、1GHzにおいて、吸水後の樹脂層の比誘電率及び誘電正接を測定した。結果を表1に示す。   Using Sample 1, Sample 2, or Comparative Sample 1, the specific conductivity of the copper foil at 10 GHz was measured. Further, the peel strength between the copper foil and the resin layer was measured. Further, the entire copper foil of the sample was removed by etching, and the dielectric constant and dielectric loss tangent of the resin layer were measured at 1 GHz. Next, after boiling the resin layer (1 hour in boiling water), the water absorption was measured, and the relative dielectric constant and dielectric loss tangent of the resin layer after water absorption were measured at 1 GHz. The results are shown in Table 1.

Figure 2014045076
Figure 2014045076

本発明によれば、伝送損失が少なく、樹脂層と金属箔との密着性が高く、樹脂層の吸水率の低い高周波回路用基板が得られるので、本発明の高周波回路用基板は、高速伝送用の各種高周波回路用基板として有用である。   According to the present invention, a high-frequency circuit substrate with low transmission loss, high adhesion between the resin layer and the metal foil, and a low water absorption rate of the resin layer is obtained. It is useful as a substrate for various high frequency circuits.

Claims (7)

樹脂層と、該樹脂層の少なくとも一方の主面にプライマー樹脂層を介して積層された金属箔とを備える積層体からなる高周波回路用基板であって、
前記樹脂層が、ポリアミック酸と、フッ素樹脂と、有機溶剤とを含むワニスの加熱硬化物であり、
前記プライマー樹脂層のベース樹脂が下記式(1)で表される可溶性ポリイミド樹脂である高周波回路用基板。
Figure 2014045076
(式中、Rは下記式(2−1)〜(2−4):
Figure 2014045076
より選ばれる1種以上の4価の芳香族基を表し、Rは下記式(3−1)〜(3−3):
Figure 2014045076
より選ばれる1種以上の2価の芳香族基を表し、n1は繰り返し数であり10〜1000の整数を表す。)
A substrate for a high frequency circuit comprising a laminate comprising a resin layer and a metal foil laminated on at least one main surface of the resin layer via a primer resin layer,
The resin layer is a heat-cured product of a varnish containing polyamic acid, a fluororesin, and an organic solvent,
A substrate for a high-frequency circuit, wherein the base resin of the primer resin layer is a soluble polyimide resin represented by the following formula (1).
Figure 2014045076
(In the formula, R 1 represents the following formulas (2-1) to (2-4):
Figure 2014045076
Represents one or more tetravalent aromatic groups selected from R 2 and the following formulas (3-1) to (3-3):
Figure 2014045076
1 or more types of bivalent aromatic groups selected from the above are represented, n1 is a repeating number and represents an integer of 10 to 1000. )
前記金属箔の表面粗さSaが0.5μm以下である請求項1記載の高周波回路用基板。   The high-frequency circuit board according to claim 1, wherein the metal foil has a surface roughness Sa of 0.5 μm or less. 前記金属箔が銅箔である請求項1又は2記載の高周波回路用基板。   The high frequency circuit board according to claim 1 or 2, wherein the metal foil is a copper foil. 前記銅箔が、前記プライマー樹脂層と接する表面に、ニッケル、鉄、亜鉛、金、銀、アルミニウム、クロム、チタン、パラジウム、及び錫からなる群より選ばれる1種以上の金属からなる金属メッキ層を有する請求項3記載の高周波回路用基板。   A metal plating layer made of one or more metals selected from the group consisting of nickel, iron, zinc, gold, silver, aluminum, chromium, titanium, palladium, and tin on the surface where the copper foil is in contact with the primer resin layer The high frequency circuit board according to claim 3, comprising: 前記フッ素樹脂がポリ四フッ化エチレンである請求項1乃至4のいずれか一項記載の高周波回路用基板。   The high-frequency circuit substrate according to claim 1, wherein the fluororesin is polytetrafluoroethylene. 前記式(1)中のRが前記式(2−2)及び(2−4)より選ばれる1種以上の4価の芳香族基である請求項1乃至5のいずれか一項記載の高周波回路用基板。 The R 1 in the formula (1) is one or more tetravalent aromatic groups selected from the formulas (2-2) and (2-4). High frequency circuit board. 前記式(1)で表される可溶性ポリイミド樹脂が、
(a)ジカルボン酸二無水物成分として4,4’−オキシジフタル酸無水物を使用し、ジアミン成分として、1,3−ビス−(3−アミノフェノキシ)ベンゼン単独、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン単独、若しくは1,3−ビス−(3−アミノフェノキシ)ベンゼンと3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンとの両者を使用して得られたもの、又は、
(b)ジカルボン酸二無水物成分として3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物を使用し、ジアミン成分として4,4’−ジアミノ−3,3’,5,5’−テトラエチルジフェニルメタンを使用して得られたものである請求項1乃至6のいずれか一項記載の高周波回路用基板。
The soluble polyimide resin represented by the formula (1) is
(A) 4,4′-oxydiphthalic anhydride is used as the dicarboxylic dianhydride component, and 1,3-bis- (3-aminophenoxy) benzene alone, 3,3′-diamino-4 as the diamine component , 4'-dihydroxydiphenylsulfone alone or obtained using both 1,3-bis- (3-aminophenoxy) benzene and 3,3'-diamino-4,4'-dihydroxydiphenylsulfone Or
(B) 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride is used as the dicarboxylic dianhydride component, and 4,4′-diamino-3,3 ′, 5,5 ′ as the diamine component. The substrate for a high-frequency circuit according to any one of claims 1 to 6, wherein the substrate is obtained using tetraethyldiphenylmethane.
JP2012186599A 2012-08-27 2012-08-27 Substrate for high-frequency circuit Pending JP2014045076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186599A JP2014045076A (en) 2012-08-27 2012-08-27 Substrate for high-frequency circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186599A JP2014045076A (en) 2012-08-27 2012-08-27 Substrate for high-frequency circuit

Publications (1)

Publication Number Publication Date
JP2014045076A true JP2014045076A (en) 2014-03-13

Family

ID=50396144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186599A Pending JP2014045076A (en) 2012-08-27 2012-08-27 Substrate for high-frequency circuit

Country Status (1)

Country Link
JP (1) JP2014045076A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038741A (en) 2015-09-30 2017-04-07 아라까와 가가꾸 고교 가부시끼가이샤 Modified polyimide, adhesive composition, copper foil with resin, copper-clad laminate, printed wiring board and multilayer board
KR20170077826A (en) 2015-12-28 2017-07-06 아라까와 가가꾸 고교 가부시끼가이샤 Polyimide-based adhesive
KR20170113348A (en) 2016-03-30 2017-10-12 아라까와 가가꾸 고교 가부시끼가이샤 Polyimide, polyimide-based adhesive, film-shaped adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper clad laminate and printed wiring board, and multi-layer board and manufacturing method thereof
JP2020055241A (en) * 2018-10-03 2020-04-09 Agc株式会社 Metal foil with resin and method for producing metal foil with resin
JPWO2020179443A1 (en) * 2019-03-01 2020-09-10
KR20220160027A (en) 2020-04-06 2022-12-05 쇼와덴코머티리얼즈가부시끼가이샤 Bismaleimide-based adhesive composition, cured product, adhesive sheet and flexible printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038741A (en) 2015-09-30 2017-04-07 아라까와 가가꾸 고교 가부시끼가이샤 Modified polyimide, adhesive composition, copper foil with resin, copper-clad laminate, printed wiring board and multilayer board
KR20170077826A (en) 2015-12-28 2017-07-06 아라까와 가가꾸 고교 가부시끼가이샤 Polyimide-based adhesive
KR20170113348A (en) 2016-03-30 2017-10-12 아라까와 가가꾸 고교 가부시끼가이샤 Polyimide, polyimide-based adhesive, film-shaped adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper clad laminate and printed wiring board, and multi-layer board and manufacturing method thereof
JP2020055241A (en) * 2018-10-03 2020-04-09 Agc株式会社 Metal foil with resin and method for producing metal foil with resin
JPWO2020179443A1 (en) * 2019-03-01 2020-09-10
WO2020179443A1 (en) * 2019-03-01 2020-09-10 Jsr株式会社 Laminate for high-frequency circuit, method for producing same, flexible printed board, b stage sheet, and wound laminate
JP7306449B2 (en) 2019-03-01 2023-07-11 Jsr株式会社 Laminate for high frequency circuit, flexible printed circuit board, and laminate wound body
KR20220160027A (en) 2020-04-06 2022-12-05 쇼와덴코머티리얼즈가부시끼가이샤 Bismaleimide-based adhesive composition, cured product, adhesive sheet and flexible printed wiring board

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
TWI546187B (en) Flexible metal laminate containing fluoropolymer
JP4957059B2 (en) Polyimide film laminate
TWI716524B (en) Copper clad laminate and printed circuit board
JP6790816B2 (en) Polyimide adhesive
JPWO2011099555A1 (en) Polyimide film, and these polyimide laminates and polyimide metal laminates
JP2014045076A (en) Substrate for high-frequency circuit
JP2017119361A (en) Copper foil with resin, copper-clad laminate, printed wiring board and multilayer wiring board
JPWO2007148666A1 (en) Copper foil with primer resin layer and laminate using the same
TW200409569A (en) Copper-clad laminate
TWI768525B (en) Polyimide film, method of producing the same, and multilayer film, flexible metal foil laminate and electronic component containing the same
TWI772946B (en) Method for producing a polyimide film, the polyimide film manufactured by the method, and multilayer film, flexible metal foil laminate and electronic component containing the same
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP2024059887A (en) Manufacturing method of metal-clad laminate
JP2021074894A (en) Multilayer polyimide film
JP2015106629A (en) Printed wiring board for high-frequency circuit
KR20240049536A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP5733778B2 (en) Polyimide resin for primer layer and laminate using the same
JP5468913B2 (en) Multilayer polyimide film with resist and method for producing the same
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP2014138020A (en) Printed wiring substrate for high-frequency circuit
TWI804658B (en) Metal-clad laminates and circuit boards
JP6825289B2 (en) Resin composition, adhesive, film-like adhesive, adhesive sheet, multi-layer wiring board, copper foil with resin, copper-clad laminate, printed wiring board
WO2014106930A1 (en) High-frequency circuit substrate
JPWO2005027597A1 (en) Flexible printed wiring board substrate and manufacturing method thereof