JP2014041102A - Device and method for measuring bearing capacity of heat exchanger pipe - Google Patents

Device and method for measuring bearing capacity of heat exchanger pipe Download PDF

Info

Publication number
JP2014041102A
JP2014041102A JP2012184515A JP2012184515A JP2014041102A JP 2014041102 A JP2014041102 A JP 2014041102A JP 2012184515 A JP2012184515 A JP 2012184515A JP 2012184515 A JP2012184515 A JP 2012184515A JP 2014041102 A JP2014041102 A JP 2014041102A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
measuring
supporting force
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012184515A
Other languages
Japanese (ja)
Other versions
JP5968160B2 (en
Inventor
Shingo Nishida
慎吾 西田
Hideyuki Morita
英之 森田
Kazuo Hirota
和生 廣田
Kengo Shimamura
健吾 嶋村
Ryoichi Kawakami
亮一 川上
Takanari Kusakabe
隆也 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012184515A priority Critical patent/JP5968160B2/en
Priority to PCT/JP2013/072465 priority patent/WO2014030718A1/en
Publication of JP2014041102A publication Critical patent/JP2014041102A/en
Application granted granted Critical
Publication of JP5968160B2 publication Critical patent/JP5968160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for measuring the bearing capacity of a heat exchanger pipe which are capable of measuring contact force between the heat exchanger pipe and a swing preventive member with high precision.SOLUTION: The measuring device includes: a cable 101 which is flexible and can be inserted into the inside from an edge of a heat exchanger pipe 66; a moving body 102 at the tip of the cable 101 which is connected to the inside of the heat exchanger pipe 66 with a prescribed gap; a probe 103 which is disposed on a periphery of the moving body 102 and transmits/receives an ultrasonic wave to/from the inside of the heat exchanger pipe 66; and a control apparatus 104 for obtaining the bearing capacity of the heat exchanger pipe 66 by a swing preventive metal fitting 69 on the basis of a measurement signal from the probe 103.

Description

本発明は、熱交換器に用いられる多数の伝熱管の支持力を測定するための伝熱管の支持力測定装置及び方法に関するものである。   The present invention relates to a heat transfer tube supporting force measuring apparatus and method for measuring the supporting force of a large number of heat transfer tubes used in a heat exchanger.

原子力発電プラントは、原子炉、蒸気発生器、蒸気タービン、発電機などにより構成されている。例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水を生成する。蒸気発生器は、この高温高圧水(一次冷却水)と二次冷却水との間で熱交換し、蒸気を生成する。蒸気タービンは、この蒸気によりタービンを駆動し、発電機はこの駆動力により発電する。   A nuclear power plant includes a nuclear reactor, a steam generator, a steam turbine, a generator, and the like. For example, a pressurized water reactor (PWR: Pressurized Water Reactor) uses light water as a reactor coolant and a neutron moderator, and generates high-temperature and high-pressure water that does not boil over the entire core. The steam generator exchanges heat between the high-temperature and high-pressure water (primary cooling water) and the secondary cooling water to generate steam. The steam turbine drives the turbine with this steam, and the generator generates power with this driving force.

この蒸気発生器は、中空密閉形状をなす胴部内に、その内壁面と所定間隔をもって管群外筒が配設され、この管群外筒内に逆U字形状をなす複数の伝熱管が配設され、各伝熱管の端部が管板に支持され、胴部の下端部に一次冷却水の入口側水室鏡と出口側水室鏡が形成されている。また、胴部は、内部に管群外筒の上方に位置して二次冷却水の入口部が設けられると共に、気水分離器及び湿分分離器が上下に並んで配設され、その上方に蒸気出口が設けられている。   In this steam generator, a tube group outer cylinder is disposed at a predetermined distance from an inner wall surface in a hollow hermetically sealed body portion, and a plurality of inverted U-shaped heat transfer tubes are arranged in the tube group outer cylinder. An end portion of each heat transfer tube is supported by the tube plate, and an inlet side water chamber mirror and an outlet side water chamber mirror of the primary cooling water are formed at the lower end portion of the trunk portion. In addition, the body portion is located above the outer tube of the tube group and is provided with an inlet portion for secondary cooling water, and a steam / water separator and a moisture separator are arranged vertically, There is a steam outlet.

従って、冷却水配管より入口側水室鏡を通して複数の伝熱管に一次冷却水が供給される一方、入口部からこの胴部内に二次冷却水が供給される。すると、複数の伝熱管内を流れる一次冷却水(熱水)と胴部内を循環する二次冷却水(冷水)との間で熱交換を行われることで、二次冷却水が熱を吸収して水蒸気が生成される。そして、生成された蒸気が気水分離器により水分が除去され、湿分分離器により湿分が除去された蒸気が蒸気出口から排出される一方、熱交換を終了した一次冷却水が出口側水室鏡から排出される。   Accordingly, the primary cooling water is supplied from the cooling water pipe to the plurality of heat transfer tubes through the inlet side water chamber mirror, while the secondary cooling water is supplied from the inlet portion into the trunk portion. Then, heat exchange is performed between the primary cooling water (hot water) flowing in the plurality of heat transfer tubes and the secondary cooling water (cold water) circulating in the body, so that the secondary cooling water absorbs heat. Water vapor is generated. Then, moisture is removed from the generated steam by the steam separator, and the steam from which moisture has been removed by the moisture separator is discharged from the steam outlet, while the primary cooling water that has finished heat exchange is discharged from the outlet side water. It is discharged from the mirror.

ところで、蒸気発生器は、複数の伝熱管内に一次冷却水としての高圧水が供給され、外部の二次冷却水を加熱して蒸気を生成することから、この伝熱管が振動しやすい。そのため、下端部が管板により支持された複数の伝熱管は、上部のUベンド部にて、複数の振れ止め金具が挿入されて支持されている。このような技術として、例えば、下記特許文献に記載されたものがある。   By the way, the steam generator is supplied with high-pressure water as primary cooling water in a plurality of heat transfer tubes and heats the external secondary cooling water to generate steam, so that the heat transfer tubes are likely to vibrate. Therefore, the plurality of heat transfer tubes whose lower end portions are supported by the tube plate are supported by inserting a plurality of steady rests at the upper U-bend portion. As such a technique, there exist some which were described in the following patent document, for example.

特開昭61−291896号公報JP 61-291896 A

上述したように、蒸気発生器のUベンド部にて、複数の伝熱管は、その間に振れ止め金具が挿入されて支持されている。この場合、伝熱管は、振れ止め金具との間で互いに押付けられることで振動が抑制されており、伝熱管と振れ止め金具との間の押付力の管理が重要である。しかし、伝熱管や振れ止め金具の製造誤差や組付誤差、または、各種部材の熱伸びを考慮すると、伝熱管と振れ止め金具との間に隙間が発生するおそれがあり、振れ止め金具により伝熱管の振動を適正に抑制することができないことがある。   As described above, in the U bend portion of the steam generator, the plurality of heat transfer tubes are supported with the steady rests inserted therebetween. In this case, the heat transfer tubes are pressed against each other with the steady-state fittings so that vibrations are suppressed, and management of the pressing force between the heat transfer tubes and the steady-state fittings is important. However, taking into account manufacturing errors and assembly errors of heat transfer tubes and steady-state fittings, or thermal expansion of various members, there is a possibility that a gap will be generated between the heat transfer tubes and steady-state fittings. The vibration of the heat tube may not be properly suppressed.

本発明は、上述した課題を解決するものであり、伝熱管と振れ止め部材との接触力を高精度に測定することが可能な伝熱管の支持力測定装置及び方法を提供することを目的とする。   This invention solves the subject mentioned above, and aims at providing the supporting force measuring apparatus and method of a heat exchanger tube which can measure the contact force of a heat exchanger tube and a steadying member with high precision. To do.

上記の目的を達成するための本発明の伝熱管の支持力測定装置は、複数の伝熱管の間に振れ止め部材が介装された蒸気発生器において、可撓性を有して前記伝熱管の端部から内部に挿入可能な索状部材と、前記索状部材の先端部に前記伝熱管の内面に所定隙間をもって連結される移動体と、前記移動体の外周部に設けられて前記伝熱管の内面に対して測定信号の送受信を行う測定子と、前記測定子からの測定信号に基づいて前記振れ止め部材による前記伝熱管の支持力を求める演算装置と、を有することを特徴とするものである。   In order to achieve the above object, a heat transfer tube supporting force measuring apparatus according to the present invention is a steam generator in which a steady member is interposed between a plurality of heat transfer tubes, and the heat transfer tube has flexibility. A cable-like member that can be inserted into the inside from the end of the cable, a moving body that is connected to the tip of the cable-like member with an inner surface of the heat transfer tube with a predetermined gap, and provided on the outer peripheral part of the moving body. A measuring element that transmits and receives a measurement signal to and from the inner surface of the heat tube, and an arithmetic unit that obtains a supporting force of the heat transfer tube by the steadying member based on the measurement signal from the measuring element. Is.

従って、索状部材を用いて移動体を伝熱管内に挿入し、移動体に設けられた測定子から伝熱管の内面へ測定信号の送受信を行い、演算装置が測定子からの測定信号に基づいて振れ止め部材による伝熱管の支持力を求める。そのため、伝熱管の内部から振れ止め部材による支持力を測定することができ、作業者が蒸気発生器に入り、振れ止め部材による伝熱管の支持部にアクセスする必要はなく、被爆を低減しながら、伝熱管などを切断する必要もなく、伝熱管と振れ止め部材との接触力を高精度に測定することができる。   Therefore, the moving body is inserted into the heat transfer tube using the cord-shaped member, and the measurement signal is transmitted and received from the probe provided on the movable body to the inner surface of the heat transfer tube. The arithmetic unit is based on the measurement signal from the probe. Obtain the supporting force of the heat transfer tube by the steady rest member. Therefore, it is possible to measure the supporting force by the steadying member from the inside of the heat transfer tube, and it is not necessary for the operator to enter the steam generator and access to the supporting part of the heat transfer tube by the steadying member, while reducing the exposure. Further, it is not necessary to cut the heat transfer tube or the like, and the contact force between the heat transfer tube and the steadying member can be measured with high accuracy.

本発明の伝熱管の支持力測定装置では、前記測定子は、前記伝熱管の内面に向けて超音波を送信する送信部と、前記伝熱管を伝播する超音波を受信する受信部とを有し、前記演算装置は、前記送信部及び受信部からの信号に基づいて超音波伝播速度の変化を求め、この超音波伝播速度の変化から前記伝熱管の応力を求めることを特徴としている。   In the supporting capacity measuring apparatus for a heat transfer tube of the present invention, the probe includes a transmission unit that transmits ultrasonic waves toward the inner surface of the heat transfer tube, and a reception unit that receives ultrasonic waves propagating through the heat transfer tube. And the said arithmetic unit calculates | requires the change of an ultrasonic propagation speed based on the signal from the said transmission part and a receiving part, and calculates | requires the stress of the said heat exchanger tube from this change of an ultrasonic propagation speed.

従って、音弾性法を用いて伝熱管の応力を求めるため、被爆を低減しながら、伝熱管などを切断する必要もなく、容易に振れ止め部材による伝熱管の支持力を測定することができる。   Therefore, since the stress of the heat transfer tube is obtained using the acoustoelastic method, it is not necessary to cut the heat transfer tube or the like while reducing the exposure, and the supporting force of the heat transfer tube by the steadying member can be easily measured.

本発明の伝熱管の支持力測定装置では、前記測定子を前記伝熱管の内面に接触させる移動装置が設けられることを特徴としている。   In the heat transfer tube supporting force measuring apparatus according to the present invention, a moving device is provided for bringing the probe into contact with the inner surface of the heat transfer tube.

従って、移動装置により測定子を伝熱管の内面に接触させた状態で、測定子から伝熱管の内面へ測定信号の送受信を行い、演算装置が測定子からの測定信号に基づいて振れ止め部材による伝熱管の支持力を求めるため、測定精度を向上することができる。   Therefore, in a state where the probe is in contact with the inner surface of the heat transfer tube by the moving device, the measurement signal is transmitted and received from the probe to the inner surface of the heat transfer tube, and the arithmetic device uses the steadying member based on the measurement signal from the probe Since the supporting force of the heat transfer tube is obtained, the measurement accuracy can be improved.

本発明の伝熱管の支持力測定装置では、前記測定子は、前記移動体の周方向にずれた位置に複数配置されることを特徴としている。   In the heat transfer tube supporting force measuring apparatus according to the present invention, a plurality of the measuring elements are arranged at positions shifted in the circumferential direction of the movable body.

従って、伝熱管における周方向にずれた位置での応力を測定することができることから、伝熱管における異なる位置での応力を平均化することで、測定精度を向上することができる。   Therefore, since the stress at the position shifted in the circumferential direction in the heat transfer tube can be measured, the measurement accuracy can be improved by averaging the stress at different positions in the heat transfer tube.

本発明の伝熱管の支持力測定装置では、前記移動装置は、前記複数の測定子を同期して移動可能であることを特徴としている。   In the heat transfer tube supporting force measuring apparatus according to the present invention, the moving device is capable of moving the plurality of measuring elements synchronously.

従って、移動装置は、複数の測定子を同期して伝熱管の内面に接触させることができ、装置を簡素化して操作性を向上することができる。   Therefore, the moving device can synchronize a plurality of measuring elements with the inner surface of the heat transfer tube, simplify the device, and improve operability.

本発明の伝熱管の支持力測定装置では、前記移動装置は、前記測定子を伝熱管の径方向に沿って移動可能であることを特徴としている。   In the heat transfer tube supporting force measuring apparatus according to the present invention, the moving device is capable of moving the measuring element along a radial direction of the heat transfer tube.

従って、移動装置により測定子を伝熱管の径方向に沿って移動することで、伝熱管の内面に接触させることとなり、測定子と伝熱管の内面との擦れをなくして測定子の損傷を防止することができる。   Therefore, by moving the probe along the radial direction of the heat transfer tube by the moving device, it will be brought into contact with the inner surface of the heat transfer tube, eliminating friction between the probe and the inner surface of the heat transfer tube and preventing damage to the probe. can do.

また、本発明の伝熱管の支持力測定方法にあっては、複数の伝熱管の間に振れ止め部材が介装された蒸気発生器において、可撓性を有する索状部材により前記伝熱管の端部から移動体を内部に挿入する工程と、前記伝熱管における前記移動体の所定の挿入位置で前記移動体から測定信号を送信すると共に測定信号を受信する測定信号送受信工程と、送受信した測定信号に基づいて前記振れ止め部材による前記伝熱管の支持力を求める演算工程と、を有することを特徴とするものである。   In the heat transfer tube supporting force measuring method according to the present invention, in the steam generator in which the steadying member is interposed between the plurality of heat transfer tubes, the heat transfer tube has a flexible cord-like member. A step of inserting the moving body from the end, a measurement signal transmitting and receiving step of transmitting a measurement signal from the moving body and receiving a measurement signal at a predetermined insertion position of the moving body in the heat transfer tube, and a transmitted and received measurement And a calculation step of obtaining a supporting force of the heat transfer tube by the steadying member based on a signal.

従って、伝熱管の内部から振れ止め部材による支持力を測定することができ、作業者が蒸気発生器に入り、振れ止め部材による伝熱管の支持部にアクセスする必要はなく、被爆を低減しながら、伝熱管などを切断する必要もなく、伝熱管と振れ止め部材との接触力を高精度に測定することができる。   Therefore, it is possible to measure the supporting force by the steadying member from the inside of the heat transfer tube, and it is not necessary for the operator to enter the steam generator and access the supporting part of the heat transfer tube by the steadying member, while reducing the exposure. Further, it is not necessary to cut the heat transfer tube or the like, and the contact force between the heat transfer tube and the steadying member can be measured with high accuracy.

本発明の伝熱管の支持力測定装置及び方法によれば、伝熱管の内部から振れ止め部材による支持力を測定することができ、伝熱管と振れ止め部材との接触力を高精度に測定することができる。   According to the heat transfer tube support force measuring apparatus and method of the present invention, the support force by the steady member can be measured from the inside of the heat transfer tube, and the contact force between the heat transfer tube and the steady member can be measured with high accuracy. be able to.

図1は、本発明の実施例1に係る伝熱管の支持力測定装置を表す概略図である。FIG. 1 is a schematic diagram showing a heat transfer tube supporting force measuring apparatus according to Embodiment 1 of the present invention. 図2は、実施例1の伝熱管の支持力測定装置の要部を表す断面図である。FIG. 2 is a cross-sectional view illustrating a main part of the heat transfer tube supporting force measuring apparatus according to the first embodiment. 図3は、図2のIII−III断面図である。3 is a cross-sectional view taken along the line III-III in FIG. 図4は、伝熱管の支持力測定装置の作動を表す断面図である。FIG. 4 is a cross-sectional view illustrating the operation of the heat transfer tube supporting force measuring apparatus. 図5は、図4のV−V断面図である。5 is a cross-sectional view taken along the line VV in FIG. 図6は、伝熱管の支持力測定装置による支持力測定方法を表す概略図である。FIG. 6 is a schematic diagram showing a supporting force measurement method using a supporting force measuring device for heat transfer tubes. 図7は、実施例1の蒸気発生器が適用された原子力発電プラントの概略構成図である。FIG. 7 is a schematic configuration diagram of a nuclear power plant to which the steam generator according to the first embodiment is applied. 図8は、実施例1の蒸気発生器を表す概略構成図である。FIG. 8 is a schematic configuration diagram illustrating a steam generator according to the first embodiment. 図9は、本発明の実施例2に係る伝熱管の支持力測定装置の要部を表す断面図である。FIG. 9: is sectional drawing showing the principal part of the supporting force measuring apparatus of the heat exchanger tube which concerns on Example 2 of this invention. 図10は、図9のX−X断面図である。10 is a cross-sectional view taken along the line XX of FIG.

以下に添付図面を参照して、本発明に係る伝熱管の支持力測定装置及び方法の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Exemplary embodiments of a heat transfer tube bearing capacity measuring apparatus and method according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.

図1は、本発明の実施例1に係る伝熱管の支持力測定装置を表す概略図、図2は、実施例1の伝熱管の支持力測定装置の要部を表す断面図、図3は、図2のIII−III断面図、図4は、伝熱管の支持力測定装置の作動を表す断面図、図5は、図4のV−V断面図、図6は、伝熱管の支持力測定装置による支持力測定方法を表す概略図、図7は、実施例1の蒸気発生器が適用された原子力発電プラントの概略構成図、図8は、実施例1の蒸気発生器を表す概略構成図である。   FIG. 1 is a schematic diagram illustrating a heat transfer tube supporting force measuring device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view illustrating a main part of the heat transfer tube supporting force measuring device according to the first embodiment, and FIG. 2 is a cross-sectional view taken along the line III-III of FIG. 2, FIG. 4 is a cross-sectional view showing the operation of the heat transfer tube support force measuring device, FIG. 5 is a cross-sectional view taken along the line VV of FIG. FIG. 7 is a schematic diagram illustrating a nuclear power generation plant to which the steam generator according to the first embodiment is applied, and FIG. 8 is a schematic diagram illustrating the steam generator according to the first embodiment. FIG.

実施例1の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水型原子炉(PWR:Pressurized Water Reactor)である。   The nuclear reactor of Example 1 uses light water as a reactor coolant and a neutron moderator, and produces high-temperature and high-pressure water that does not boil over the entire core, and sends this high-temperature and high-pressure water to a steam generator to generate steam by heat exchange. This is a pressurized water reactor (PWR) that generates electricity by sending this steam to a turbine generator.

実施例1の加圧水型原子炉を有する原子力発電プラントにおいて、図7に示すように、原子炉格納容器11は、内部に加圧水型原子炉12及び蒸気発生器13が格納されており、この加圧水型原子炉12と蒸気発生器13とは高温側送給配管14と低温側送給配管15を介して連結されており、高温側送給配管14に加圧器16が設けられ、低温側送給配管15に一次冷却水ポンプ17が設けられている。この場合、減速材及び一次冷却水(冷却材)として軽水を用い、炉心部における一次冷却水の沸騰を抑制するために、一次冷却系統は加圧器16により150〜160気圧程度の高圧状態を維持するように制御している。   In the nuclear power plant having the pressurized water reactor according to the first embodiment, as shown in FIG. 7, the reactor containment vessel 11 stores therein the pressurized water reactor 12 and the steam generator 13. The nuclear reactor 12 and the steam generator 13 are connected via a high temperature side supply pipe 14 and a low temperature side supply pipe 15, and a pressurizer 16 is provided in the high temperature side supply pipe 14, and the low temperature side supply pipe is provided. A primary cooling water pump 17 is provided at 15. In this case, light water is used as a moderator and primary cooling water (cooling material), and the primary cooling system maintains a high pressure state of about 150 to 160 atm by the pressurizer 16 in order to suppress boiling of the primary cooling water in the core. You are in control.

従って、加圧水型原子炉12にて、燃料(原子燃料)として低濃縮ウランまたはMOXにより一次冷却水として軽水が加熱され、高温の一次冷却水が加圧器16により所定の高圧に維持された状態で、高温側送給配管14を通して蒸気発生器13に送られる。この蒸気発生器13では、高温高圧の一次冷却水と二次冷却水との間で熱交換が行われ、冷やされた一次冷却水は低温側送給配管15を通して加圧水型原子炉12に戻される。   Accordingly, in the pressurized water reactor 12, light water is heated as the primary cooling water by the low-enriched uranium or MOX as the fuel (nuclear fuel), and the high temperature primary cooling water is maintained at a predetermined high pressure by the pressurizer 16. , And is sent to the steam generator 13 through the high temperature side supply pipe 14. In the steam generator 13, heat exchange is performed between the high-temperature and high-pressure primary cooling water and the secondary cooling water, and the cooled primary cooling water is returned to the pressurized water reactor 12 through the low-temperature side supply pipe 15. .

蒸気発生器13は、加熱された二次冷却水、つまり、蒸気を送給する配管31を介して蒸気タービン32と連結されており、この配管31に主蒸気隔離弁33が設けられている。蒸気タービン32は、高圧タービン34と低圧タービン35を有すると共に、発電機(発電装置)36が接続されている。また、高圧タービン34と低圧タービン35は、その間に湿分分離加熱器37が設けられており、配管31から分岐した冷却水分岐配管38が湿分分離加熱器37に連結される一方、高圧タービン34と湿分分離加熱器37は低温再熱管39により連結され、湿分分離加熱器37と低圧タービン35は高温再熱管40により連結されている。   The steam generator 13 is connected to a steam turbine 32 via a pipe 31 for supplying heated secondary cooling water, that is, steam, and a main steam isolation valve 33 is provided in the pipe 31. The steam turbine 32 includes a high-pressure turbine 34 and a low-pressure turbine 35, and a generator (power generation device) 36 is connected to the steam turbine 32. Further, the high pressure turbine 34 and the low pressure turbine 35 are provided with a moisture separation heater 37 therebetween, and a cooling water branch pipe 38 branched from the pipe 31 is connected to the moisture separation heater 37, while the high pressure turbine 34 and the moisture separation heater 37 are connected by a low-temperature reheat pipe 39, and the moisture separation heater 37 and the low-pressure turbine 35 are connected by a high-temperature reheat pipe 40.

更に、蒸気タービン32の低圧タービン35は、復水器41を有しており、この復水器41は、配管31からバイパス弁42を有するタービンバイパス配管43が接続されると共に、冷却水(例えば、海水)を給排する取水管44及び排水管45が連結されている。この取水管44は、循環水ポンプ46を有し、排水管45と共に他端部が海中に配置されている。   Further, the low-pressure turbine 35 of the steam turbine 32 includes a condenser 41. The condenser 41 is connected to a turbine bypass pipe 43 having a bypass valve 42 from the pipe 31, and is also supplied with cooling water (for example, , Seawater) is connected to a water intake pipe 44 and a drain pipe 45. The intake pipe 44 has a circulating water pump 46, and the other end portion thereof is disposed in the sea together with the drain pipe 45.

そして、この復水器41は、配管47が接続されており、復水ポンプ48、グランドコンデンサ49、復水脱塩装置50、復水ブースタポンプ51、低圧給水加熱器52が接続されている。また、配管47は、脱気器53が連結されると共に、主給水ポンプ54、高圧給水加熱器55、主給水制御弁56が設けられている。   The condenser 41 is connected to a pipe 47, and is connected to a condensate pump 48, a ground condenser 49, a condensate demineralizer 50, a condensate booster pump 51, and a low-pressure feed water heater 52. The piping 47 is connected to a deaerator 53 and is provided with a main feed water pump 54, a high-pressure feed water heater 55, and a main feed water control valve 56.

従って、蒸気発生器13にて、高温高圧の一次冷却水と熱交換を行って生成された蒸気は、配管31を通して蒸気タービン32(高圧タービン34から低圧タービン35)に送られ、この蒸気により蒸気タービン32を駆動して発電機36により発電を行う。このとき、蒸気発生器13からの蒸気は、高圧タービン34を駆動した後、湿分分離加熱器37で蒸気に含まれる湿分が除去されると共に加熱されてから低圧タービン35を駆動する。そして、蒸気タービン32を駆動した蒸気は、復水器41で海水を用いて冷却されて復水となり、グランドコンデンサ49、復水脱塩装置50、低圧給水加熱器52、脱気器53、高圧給水加熱器55などを通して蒸気発生器13に戻される。   Therefore, the steam generated by exchanging heat with the high-temperature and high-pressure primary cooling water in the steam generator 13 is sent to the steam turbine 32 (from the high-pressure turbine 34 to the low-pressure turbine 35) through the pipe 31. The turbine 32 is driven to generate power by the generator 36. At this time, the steam from the steam generator 13 drives the high-pressure turbine 34, and then the moisture contained in the steam is removed and heated by the moisture separation heater 37, and then the low-pressure turbine 35 is driven. Then, the steam that has driven the steam turbine 32 is cooled using seawater in the condenser 41 to become condensed water, and the ground condenser 49, the condensate demineralizer 50, the low pressure feed water heater 52, the deaerator 53, the high pressure It returns to the steam generator 13 through the feed water heater 55 or the like.

このように構成された原子力発電プラントの蒸気発生器13において、図8に示すように、胴部61は、密閉された中空円筒形状をなし、上部に対して下部が若干小径となっている。この胴部61は、その下部に内壁面と所定間隔をもって円筒形状をなす管群外筒62が配設されている。この管群外筒62は、内部に所定の高さ位置に対応して複数の管支持板63が配設されると共に、この管支持板63の下方に管板64が固定されており、各管支持板63は、管板64から上方に延設された複数のステーロッド65により支持されている。そして、この管群外筒62は、内部に逆U字形状をなす複数の伝熱管66からなる伝熱管群67が配設されている。   In the steam generator 13 of the nuclear power plant configured as described above, as shown in FIG. 8, the body portion 61 has a sealed hollow cylindrical shape, and the lower portion has a slightly smaller diameter with respect to the upper portion. The body 61 is provided with a tube group outer cylinder 62 having a cylindrical shape with a predetermined distance from the inner wall surface at the lower portion thereof. The tube group outer cylinder 62 has a plurality of tube support plates 63 disposed therein corresponding to a predetermined height position, and a tube plate 64 is fixed below the tube support plate 63. The tube support plate 63 is supported by a plurality of stay rods 65 extending upward from the tube plate 64. The tube group outer cylinder 62 is provided with a heat transfer tube group 67 including a plurality of heat transfer tubes 66 having an inverted U shape.

伝熱管群67にて、各伝熱管66は、上部がU字形状部としてのUベンド部68が構成され、下端部が管板64に拡管して支持されると共に、中間部(中途部)が複数の管支持板63により支持されている。Uベンド部68は、複数の伝熱管が管群外筒62の内外方向(上下方向)に略平行をなして配置されると共に、管群外筒62の径方向(水平方向)に略平行をなして配置されている。そして、管群外筒62の径方向に配置された各伝熱管は、その間に複数の振れ止め金具(振れ止め部材)69が介装されている。   In the heat transfer tube group 67, each heat transfer tube 66 has a U-bend portion 68 having an upper portion as a U-shaped portion and a lower end portion that is expanded and supported by the tube plate 64, and an intermediate portion (intermediate portion). Are supported by a plurality of tube support plates 63. The U-bend portion 68 has a plurality of heat transfer tubes arranged substantially parallel to the inside / outside direction (vertical direction) of the tube group outer cylinder 62 and substantially parallel to the radial direction (horizontal direction) of the tube group outer cylinder 62. It is arranged. Each of the heat transfer tubes arranged in the radial direction of the tube group outer cylinder 62 is provided with a plurality of steady metal fittings (stabilization members) 69 interposed therebetween.

また、胴部61は、下部が球面形状をなし、管板64の下方に隔壁70により入室71と出室72が区画形成されると共に、入口ノズル73及び出口ノズル74が形成され、各伝熱管66の一端部が入室71に連通し、他端部が出室72に連通している。   Further, the lower portion of the body portion 61 has a spherical shape, and an entrance chamber 71 and an exit chamber 72 are defined by a partition wall 70 below the tube plate 64, and an inlet nozzle 73 and an outlet nozzle 74 are formed. One end of 66 communicates with the entrance chamber 71 and the other end communicates with the exit chamber 72.

また、胴部61は、伝熱管群67の上方に給水を蒸気と熱水とに分離する気水分離器75と、この分離された蒸気の湿分を除去して乾き蒸気に近い状態とする湿分分離器76が設けられている。また、胴部61は、伝熱管群67と気水分離器75との間に、内部に二次冷却水の給水を行う給水管77が連結される一方、天井部に蒸気出口78が形成されている。即ち、給水管77から内部に給水された二次冷却水は、管群外筒62との間を流下し、管板64にて上方に循環し、伝熱管群67内を上昇するときに各伝熱管66内を流れる熱水(一次冷却水)との熱交換を行う。   In addition, the body 61 has an air-water separator 75 that separates the feed water into steam and hot water above the heat transfer tube group 67, and removes the moisture of the separated steam so as to be in a state close to dry steam. A moisture separator 76 is provided. In addition, the body 61 is connected with a water supply pipe 77 for supplying secondary cooling water between the heat transfer tube group 67 and the steam separator 75, and a steam outlet 78 is formed in the ceiling. ing. That is, the secondary cooling water supplied to the inside from the water supply pipe 77 flows down between the tube group outer cylinders 62, circulates upward in the tube sheet 64, and rises in the heat transfer pipe group 67. Heat exchange with hot water (primary cooling water) flowing in the heat transfer tube 66 is performed.

従って、図7及び図8に示すように、加圧水型原子炉12で加熱された一次冷却水が高温側送給配管14を通して蒸気発生器13の入室71に送られ、多数の伝熱管66内を通って循環して出室72に至る。一方、復水器41で冷却された二次冷却水が冷却水配管47を通して蒸気発生器13の給水管77に送られ、胴部61内を通って伝熱管66内を流れる熱水(一次冷却水)と熱交換を行う。即ち、胴部61は、内部で高圧高温の一次冷却水と二次冷却水との間で熱交換が行われ、冷やされた一次冷却水は出室72から冷却水配管15を通して加圧水型原子炉12に戻される。一方、高圧高温の一次冷却水と熱交換を行った二次冷却水は、胴部61内を上昇し、気水分離器75で蒸気と熱水とに分離され、湿分分離器76でこの蒸気の湿分を除去され、蒸気出口78から配管31を通して蒸気タービン32に送られる。   Therefore, as shown in FIGS. 7 and 8, the primary cooling water heated in the pressurized water reactor 12 is sent to the entrance 71 of the steam generator 13 through the high-temperature side feed pipe 14, and the inside of the large number of heat transfer tubes 66. It circulates through and reaches the exit chamber 72. On the other hand, the secondary cooling water cooled by the condenser 41 is sent to the water supply pipe 77 of the steam generator 13 through the cooling water pipe 47 and flows in the heat transfer pipe 66 through the trunk portion 61 (primary cooling). Heat exchange with water). That is, in the body portion 61, heat exchange is performed between the high-pressure and high-temperature primary cooling water and the secondary cooling water inside, and the cooled primary cooling water passes from the outlet chamber 72 through the cooling water pipe 15 to the pressurized water reactor. 12 is returned. On the other hand, the secondary cooling water subjected to heat exchange with the high-pressure and high-temperature primary cooling water rises in the body 61 and is separated into steam and hot water by the steam-water separator 75, and this is separated by the moisture separator 76. The moisture of the steam is removed and sent from the steam outlet 78 to the steam turbine 32 through the pipe 31.

このように構成された蒸気発生器13にて、図6に示すように、複数の伝熱管66は、内部に一次冷却水としての高圧水が流動し、胴部61内を流れる二次冷却水を加熱して蒸気を生成することから、振動しやすい。そのため、伝熱管66は、下端部が管板64に支持される一方、上端部にあるUベンド部68が振れ止め金具69により支持されている。即ち、複数の伝熱管66は、Uベンド部68で各伝熱管66の間にそれぞれ振れ止め金具69が接触するように介装されることで、伝熱管の振動を抑制するようにしている。ところが、伝熱管66や振れ止め金具69は、製造誤差、組付誤差、各種部材の磨耗や熱伸びにより伝熱管と振れ止め金具との間に隙間が発生し、振れ止め金具69による伝熱管66の支持が不十分となることがある。   In the steam generator 13 configured as described above, as shown in FIG. 6, the plurality of heat transfer tubes 66 have high-pressure water as primary cooling water flowing therein, and secondary cooling water flowing in the body portion 61. Since it generates steam by heating, it is easy to vibrate. Therefore, the lower end portion of the heat transfer tube 66 is supported by the tube plate 64, while the U bend portion 68 at the upper end portion is supported by the steady fitting 69. That is, the plurality of heat transfer tubes 66 are interposed by the U-bend portion 68 so that the steady rests 69 are in contact with each other between the heat transfer tubes 66, thereby suppressing vibration of the heat transfer tubes. However, in the heat transfer tube 66 and the steady metal fitting 69, a gap is generated between the heat transfer tube and the steady metal fitting due to manufacturing errors, assembly errors, wear and thermal elongation of various members, and the heat transfer tube 66 formed by the steady metal fitting 69. Support may be insufficient.

実施例1の伝熱管の支持力測定装置100は、作業者が胴部61の入室71にて、伝熱管66の端部から内部に挿入し、Uベンド部68における伝熱管66の内部から残留応力を計測することで、伝熱管66と振れ止め金具69との接触状態を検出し、振れ止め金具69による伝熱管66の支持力を計測するものである。   In the heat transfer tube supporting force measuring apparatus 100 according to the first embodiment, an operator inserts the heat transfer tube 66 from the end of the heat transfer tube 66 in the entrance chamber 71 of the body portion 61, and remains inside the heat transfer tube 66 in the U bend portion 68. By measuring the stress, the contact state between the heat transfer tube 66 and the steady rest fitting 69 is detected, and the supporting force of the heat transfer tube 66 by the steady rest fitting 69 is measured.

伝熱管の支持力測定装置100は、図1に示すように、ケーブル(索状部材)101と移動体102と測定子103と制御装置(演算装置)104とから構成されている。   As shown in FIG. 1, the heat transfer tube supporting force measuring device 100 includes a cable (corrugated member) 101, a moving body 102, a measuring element 103, and a control device (arithmetic device) 104.

ケーブル101は、図示しないが、電源用ケーブル、制御用ケーブル、信号送受信用ケーブルなどが集合され、被覆ケーブルで被覆されて構成されており、伝熱管66内に挿通可能となっている。移動体102は、このケーブル101の先端部に連結され、伝熱管66の内面に所定隙間をもつ円柱形状をなしている。測定子103は、移動体102の外周部に設けられており、伝熱管66の内面に対して測定信号の送受信を行うことができる。制御装置104は、測定子103からの測定信号に基づいて振れ止め金具68による伝熱管66の支持力を求めることができる。   Although not shown, the cable 101 is configured by collecting a power cable, a control cable, a signal transmission / reception cable, and the like, and is covered with a covered cable, and can be inserted into the heat transfer tube 66. The moving body 102 is connected to the tip of the cable 101 and has a cylindrical shape with a predetermined gap on the inner surface of the heat transfer tube 66. The measuring element 103 is provided on the outer peripheral portion of the moving body 102, and can transmit / receive a measurement signal to / from the inner surface of the heat transfer tube 66. The control device 104 can obtain the support force of the heat transfer tube 66 by the steady rest metal fitting 68 based on the measurement signal from the probe 103.

この場合、測定子103は、移動体102の軸心方向(長手方向)に複数(本実施例では、4組)設けられており、各測定子103は、移動体102の周方向にずれ、つまり、周方向に等間隔で設けられている。そして、各測定子103は、移動装置105により移動体102(伝熱管66)の径方向にそれぞれ移動可能であり、伝熱管66の内面に接触させることができる。このとき、移動装置105は、複数の測定子103を同期して移動させることができる。   In this case, a plurality of measuring elements 103 are provided in the axial direction (longitudinal direction) of the moving body 102 (four sets in this embodiment), and each measuring element 103 is displaced in the circumferential direction of the moving body 102, That is, they are provided at equal intervals in the circumferential direction. Each measuring element 103 can be moved in the radial direction of the moving body 102 (heat transfer tube 66) by the moving device 105, and can be brought into contact with the inner surface of the heat transfer tube 66. At this time, the moving device 105 can move the plurality of measuring elements 103 in synchronization.

ここで、測定子103及び移動装置105について詳細に説明するが、なお、各測定子103及び各移動装置105はほぼ同様の構成であることから、移動体102の先端部に設けられた測定子103及び移動装置105についてのみ説明する。   Here, the measuring element 103 and the moving device 105 will be described in detail. However, since each measuring element 103 and each moving device 105 have substantially the same configuration, the measuring element provided at the distal end portion of the moving body 102. Only 103 and the moving device 105 will be described.

図2及び図3に示すように、移動体102は、先端部にモータを有する駆動装置111が固定され、出力軸112が移動体102の軸心に沿って延出され、回転自在に支持されている。この出力軸112は、外周部に偏心部113が固定されており、偏心部113の外周部に支持円盤114が相対移動自在に嵌合している。この支持円盤114は、径方向に沿って長孔114aが形成され、移動体102に固定された支持ピン115がこの長孔114aに係合している。そして、支持円盤114は、長孔114aが形成された側の外周部に測定子103が固定されている。   As shown in FIGS. 2 and 3, the moving body 102 has a driving device 111 having a motor fixed to the tip, and an output shaft 112 extending along the axis of the moving body 102 and is rotatably supported. ing. The output shaft 112 has an eccentric portion 113 fixed to the outer peripheral portion, and a support disk 114 is fitted to the outer peripheral portion of the eccentric portion 113 so as to be relatively movable. The support disk 114 is formed with a long hole 114a along the radial direction, and a support pin 115 fixed to the moving body 102 is engaged with the long hole 114a. In the support disk 114, the measuring element 103 is fixed to the outer peripheral portion on the side where the long hole 114a is formed.

測定子103は、伝熱管66の内面に向けて超音波(計測信号)を送信する送信部103aと、伝熱管66の内面を伝播する超音波を受信する受信部103bとから構成され、送信部103aと受信部103bが伝熱管66(伝熱管66)の周方向に所定間隔をもって配置されている。制御装置104は、ケーブル101を介して測定子103(送信部103a、受信部103b)に接続されている。そして、制御装置104は、送信部103aが超音波を送信した送信時間と、受信部103bが超音波を受信した受信時間から超音波伝播速度を求める。この場合、伝熱管66に応力が作用していないときの基準超音波伝播速度を求めておき、基準超音波伝播速度と測定した超音波伝播速度との変化量(差)から伝熱管66の応力を求める。   The probe 103 includes a transmission unit 103a that transmits ultrasonic waves (measurement signals) toward the inner surface of the heat transfer tube 66, and a reception unit 103b that receives ultrasonic waves that propagate through the inner surface of the heat transfer tube 66. 103a and the receiving part 103b are arrange | positioned at predetermined intervals in the circumferential direction of the heat exchanger tube 66 (heat exchanger tube 66). The control device 104 is connected to the measuring element 103 (the transmission unit 103a and the reception unit 103b) via the cable 101. And the control apparatus 104 calculates | requires an ultrasonic propagation speed from the transmission time when the transmission part 103a transmitted the ultrasonic wave, and the reception time when the receiving part 103b received the ultrasonic wave. In this case, the reference ultrasonic wave propagation velocity when no stress is applied to the heat transfer tube 66 is obtained, and the stress of the heat transfer tube 66 is determined from the amount of change (difference) between the reference ultrasonic wave propagation velocity and the measured ultrasonic wave propagation velocity. Ask for.

この伝熱管66の応力を求める手法は、超音波を用いた残留応力の測定方法である音弾性法を用いた手法であり、伝熱管66の表面(内面)を周方向に伝播する値用音波の速度を計測するものである。   The method of obtaining the stress of the heat transfer tube 66 is a method using the acoustoelastic method, which is a method of measuring residual stress using ultrasonic waves, and a sound wave for value propagating in the circumferential direction on the surface (inner surface) of the heat transfer tube 66. It measures the speed of.

そして、移動体102は、4組の測定子103(送信部103a、受信部103b)が設けられていることから、各測定子103の測定結果から求めた4つの超音波伝播速度を平均化して伝熱管66の応力を求める。なお、4組の測定子103(送信部103a、受信部103b)とは別に、校正用の測定子(図示略)を設けることで、伝熱管66の加工時による測定値のばらつきを補正するようにするとよい。   Since the moving body 102 is provided with four sets of measuring elements 103 (transmitting section 103a and receiving section 103b), the four ultrasonic propagation speeds obtained from the measurement results of the measuring elements 103 are averaged. The stress of the heat transfer tube 66 is obtained. In addition, by providing a calibration probe (not shown) separately from the four sets of probe 103 (transmission unit 103a, reception unit 103b), it is possible to correct variations in measurement values when the heat transfer tube 66 is processed. It is good to.

伝熱管の支持力測定装置100による支持力測定方法は、ケーブル101により伝熱管66の端部から移動体102を内部に挿入する工程と、伝熱管66における移動体102の所定の挿入位置で測定子103(送信部103a、受信部103b)から超音波を送信すると共に伝播する超音波を受信する測定信号送受信工程と、送受信した測定信号に基づいて振れ止め金具68による伝熱管66の支持力を求める演算工程と、を有している。   The supporting force measuring method by the supporting force measuring device 100 of the heat transfer tube is measured at the step of inserting the moving body 102 from the end of the heat transfer tube 66 by the cable 101 and the predetermined insertion position of the moving body 102 in the heat transfer tube 66. A measurement signal transmission / reception step of transmitting ultrasonic waves from the child 103 (transmission unit 103a, reception unit 103b) and receiving propagating ultrasonic waves, and a supporting force of the heat transfer tube 66 by the steady brace 68 based on the transmitted / received measurement signals. And a calculation process to be obtained.

即ち、図1及び図6に示すように、作業者は、蒸気発生器13の胴部61の入室71に入り、この位置から支持力測定装置100、つまり、ケーブル101により伝熱管66の端部から移動体102を内部に挿入する。このとき、各測定子103は、移動体102内に収納された位置にあり、伝熱管66の内面と擦れ合うことはない。そして、作業者は、ケーブル101を伝熱管66内に送り込み、移動体102をUベンド部68における所定の計測位置、つまり、振れ止め金具69による伝熱管66の支持位置に停止させる。この場合、事前に計測プローブなどを伝熱管66内に挿入し、計測位置、つまり、伝熱管66の端部からの距離を予め測定しておく。   That is, as shown in FIGS. 1 and 6, the worker enters the entrance 71 of the body 61 of the steam generator 13, and from this position, the end of the heat transfer tube 66 is supported by the supporting force measuring device 100, that is, the cable 101. The moving body 102 is inserted into the inside. At this time, each measuring element 103 is in a position accommodated in the moving body 102 and does not rub against the inner surface of the heat transfer tube 66. Then, the operator sends the cable 101 into the heat transfer tube 66 and stops the moving body 102 at a predetermined measurement position in the U bend portion 68, that is, a position where the heat transfer tube 66 is supported by the steady rest fitting 69. In this case, a measurement probe or the like is inserted into the heat transfer tube 66 in advance, and the measurement position, that is, the distance from the end of the heat transfer tube 66 is measured in advance.

移動体102をUベンド部68における所定の計測位置に停止させると、ここで、作業者は、制御装置104を用いて送信部103aから超音波を送信すると共に、受信部103bにより超音波を受信する。即ち、図3及び図4に示すように、駆動装置111を駆動し、出力軸112を回動させ、出力軸112と一体の偏心部113を180度回動させる。図4及び図5に示すように、偏心部113が180度回動すると、支持円盤114は、長孔114aに支持ピン115が係合していることから、回動せずに長孔114aの長手方向に沿って移動する。すると、支持円盤114が移動体102の径方向の外方、つまり、伝熱管66の径方向に沿って内面に接近し、測定子103が伝熱管66の内面に接触するように押付けられる。   When the moving body 102 is stopped at a predetermined measurement position in the U-bend unit 68, the operator transmits ultrasonic waves from the transmission unit 103a using the control device 104 and receives ultrasonic waves from the reception unit 103b. To do. That is, as shown in FIGS. 3 and 4, the driving device 111 is driven, the output shaft 112 is rotated, and the eccentric portion 113 integral with the output shaft 112 is rotated 180 degrees. As shown in FIGS. 4 and 5, when the eccentric portion 113 is rotated 180 degrees, the support disk 114 is engaged with the support pin 115 in the long hole 114 a, so that the long hole 114 a is not rotated. Move along the longitudinal direction. Then, the support disk 114 approaches the inner surface along the radial direction of the moving body 102, that is, along the radial direction of the heat transfer tube 66, and the probe 103 is pressed so as to contact the inner surface of the heat transfer tube 66.

そして、4つの測定子103が全て伝熱管66の内面に押付けられると、測定子103から超音波を送信すると共に超音波を受信する。制御装置104は、超音波を送信した時間と超音波を受信した時間から超音波伝播速度を求め、4つの超音波伝播速度を平均化して伝熱管66の応力を求める。このとき、移動装置105は、移動体103から4つの支持円盤114を同期して移動し、4つの測定子103を全て伝熱管66の内面に押付けるため、移動体102が伝熱管66に対して適正に支持され、高精度な測定が行われる。   When all of the four measuring elements 103 are pressed against the inner surface of the heat transfer tube 66, the measuring element 103 transmits ultrasonic waves and receives ultrasonic waves. The control device 104 obtains the ultrasonic wave propagation speed from the time when the ultrasonic wave is transmitted and the time when the ultrasonic wave is received, and obtains the stress of the heat transfer tube 66 by averaging the four ultrasonic wave propagation speeds. At this time, the moving device 105 moves the four support disks 114 synchronously from the moving body 103 and presses all the four measuring elements 103 against the inner surface of the heat transfer tube 66, so that the moving body 102 moves against the heat transfer tube 66. It is supported properly and high-precision measurement is performed.

このように実施例1の伝熱管の支持力測定装置にあっては、可撓性を有して伝熱管66の端部から内部に挿入可能なケーブル101と、ケーブル101の先端部に伝熱管66の内面に所定隙間をもって連結される移動体102と、移動体102の外周部に設けられて伝熱管66の内面に対して超音波の送受信を行う測定子103と、測定子103からの測定信号に基づいて振れ止め金具68による伝熱管66の支持力を求める制御装置104とを設けている。   As described above, in the heat transfer tube supporting force measuring apparatus according to the first embodiment, the cable 101 has flexibility and can be inserted into the heat transfer tube 66 from the end thereof, and the heat transfer tube is connected to the tip of the cable 101. A moving body 102 connected to the inner surface of the moving body 66 with a predetermined gap, a measuring element 103 provided on the outer peripheral portion of the moving body 102 to transmit and receive ultrasonic waves to and from the inner surface of the heat transfer tube 66, and a measurement from the measuring element 103 A control device 104 for obtaining the supporting force of the heat transfer tube 66 by the steady rest metal fitting 68 based on the signal is provided.

従って、ケーブル101を用いて移動体102を伝熱管66内に挿入し、移動体102に設けられた測定子103から伝熱管66の内面へ超音波の送受信を行い、制御装置104が測定子103からの超音波に基づいて振れ止め金具68による伝熱管66の支持力を求める。そのため、伝熱管66の内部から振れ止め金具68による支持力を測定することができ、作業者が蒸気発生器13に入り、振れ止め金具68による伝熱管66の支持部にアクセスする必要はなく、被爆を低減しながら、伝熱管66などを切断する必要もなく、伝熱管66と振れ止め金具68との接触力を高精度に測定することができる。   Accordingly, the moving body 102 is inserted into the heat transfer tube 66 using the cable 101, and ultrasonic waves are transmitted and received from the probe 103 provided on the moving body 102 to the inner surface of the heat transfer tube 66. The supporting force of the heat transfer tube 66 by the steady rest metal fitting 68 is obtained based on the ultrasonic wave from Therefore, it is possible to measure the support force by the steady fitting 68 from the inside of the heat transfer tube 66, and it is not necessary for the operator to enter the steam generator 13 and access the support portion of the heat transfer tube 66 by the steady fixture 68, While reducing the exposure, it is not necessary to cut the heat transfer tube 66 or the like, and the contact force between the heat transfer tube 66 and the steady fitting 68 can be measured with high accuracy.

実施例1の伝熱管の支持力測定装置では、測定子103を伝熱管66の内面に向けて超音波を送信する送信部103aと、伝熱管66を伝播する超音波を受信する受信部103bとにより構成し、制御装置104は、送信部103a及び受信部103bからの信号に基づいて超音波伝播速度の変化を求め、この超音波伝播速度の変化から伝熱管66の応力を求めている。従って、音弾性法を用いて伝熱管66の応力を求めるため、被爆を低減しながら、伝熱管66などを切断する必要もなく、容易に振れ止め金具68による伝熱管66の支持力を測定することができる。   In the heat transfer tube supporting force measuring apparatus according to the first embodiment, a transmitter 103a that transmits ultrasonic waves toward the inner surface of the heat transfer tube 66, and a receiver 103b that receives ultrasonic waves that propagate through the heat transfer tube 66. The control device 104 obtains a change in the ultrasonic propagation velocity based on the signals from the transmission unit 103a and the reception unit 103b, and obtains the stress of the heat transfer tube 66 from the change in the ultrasonic propagation velocity. Accordingly, since the stress of the heat transfer tube 66 is obtained using the acoustoelastic method, it is not necessary to cut the heat transfer tube 66 or the like while reducing the exposure, and the supporting force of the heat transfer tube 66 by the steady rest fitting 68 is easily measured. be able to.

実施例1の伝熱管の支持力測定装置では、測定子103を伝熱管66の内面に接触させる移動装置105を設けている。従って、移動装置105により測定子103を伝熱管66の内面に接触させた状態で、この測定子103から伝熱管66の内面へ超音波の送受信を行い、制御装置104が測定子103からの信号に基づいて振れ止め金具68による伝熱管66の支持力を求めるため、測定精度を向上することができる。   In the heat transfer tube supporting force measuring apparatus according to the first embodiment, a moving device 105 that brings the probe 103 into contact with the inner surface of the heat transfer tube 66 is provided. Accordingly, ultrasonic waves are transmitted and received from the measuring element 103 to the inner surface of the heat transfer tube 66 in a state where the measuring element 103 is in contact with the inner surface of the heat transfer tube 66 by the moving device 105, and the control device 104 transmits a signal from the measuring element 103. Since the supporting force of the heat transfer tube 66 by the steady rest metal fitting 68 is obtained based on the above, the measurement accuracy can be improved.

実施例1の伝熱管の支持力測定装置では、測定子103を移動体102の周方向にずれた位置に複数配置している。従って、伝熱管66における周方向にずれた位置での応力を測定することができることから、伝熱管66における異なる位置での応力を平均化することで、測定精度を向上することができる。   In the heat transfer tube supporting force measuring apparatus according to the first embodiment, a plurality of measuring elements 103 are arranged at positions shifted in the circumferential direction of the moving body 102. Therefore, since the stress at the position shifted in the circumferential direction in the heat transfer tube 66 can be measured, the measurement accuracy can be improved by averaging the stress at different positions in the heat transfer tube 66.

実施例1の伝熱管の支持力測定装置では、移動装置105は、複数の測定子103を同期して移動可能としている。従って、移動装置105は、複数の測定子103を同期して伝熱管66の内面に接触させることができ、装置を簡素化して操作性を向上することができる。   In the heat transfer tube supporting force measuring apparatus according to the first embodiment, the moving device 105 can move the plurality of measuring elements 103 in synchronization. Accordingly, the moving device 105 can synchronously bring the plurality of measuring elements 103 into contact with the inner surface of the heat transfer tube 66, simplify the device, and improve operability.

実施例1の伝熱管の支持力測定装置では、移動装置105は、測定子103を伝熱管66の径方向に沿って移動可能としている。従って、測定子が伝熱管66の周方向や長手方向に沿って移動することはなく、測定子103と伝熱管66の内面との擦れをなくして測定子103の損傷を防止することができる。   In the heat transfer tube supporting force measuring apparatus according to the first embodiment, the moving device 105 can move the measuring element 103 along the radial direction of the heat transfer tube 66. Therefore, the measuring element does not move along the circumferential direction or the longitudinal direction of the heat transfer tube 66, and the rubbing between the measuring element 103 and the inner surface of the heat transfer tube 66 can be eliminated to prevent the measuring element 103 from being damaged.

また、実施例1の伝熱管の支持力測定方法にあっては、可撓性を有するケーブル101により伝熱管66の端部から移動体102を内部に挿入する工程と、伝熱管66における移動体102の所定の挿入位置で移動体102の測定子103から超音波を送信すると共に超音波を受信する測定信号送受信工程と、送受信した超音波に基づいて振れ止め金具68による伝熱管66の支持力を求める演算工程とを設けている。   In the method for measuring the supporting force of the heat transfer tube of the first embodiment, the step of inserting the moving body 102 from the end of the heat transfer tube 66 by the flexible cable 101 and the moving body in the heat transfer tube 66 are performed. A measurement signal transmitting / receiving step of transmitting and receiving ultrasonic waves from the probe 103 of the moving body 102 at a predetermined insertion position 102, and a supporting force of the heat transfer tube 66 by the steady fitting 68 based on the transmitted / received ultrasonic waves And a calculation process for obtaining.

従って、伝熱管66の内部から振れ止め金具68による支持力を測定することができ、作業者が蒸気発生器13に入り、振れ止め金具68による伝熱管66の支持部にアクセスする必要はなく、被爆を低減しながら、伝熱管66などを切断する必要もなく、伝熱管66と振れ止め金具68との接触力を高精度に測定することができる。   Therefore, it is possible to measure the supporting force by the steadying metal fitting 68 from the inside of the heat transfer tube 66, and it is not necessary for the operator to enter the steam generator 13 and access the support part of the heat transfer tube 66 by the steadying metal fitting 68. While reducing the exposure, it is not necessary to cut the heat transfer tube 66 or the like, and the contact force between the heat transfer tube 66 and the steady fitting 68 can be measured with high accuracy.

図8は、実施例1の蒸気発生器を表す概略構成図、図9は、本発明の実施例2に係る伝熱管の支持力測定装置の要部を表す断面図である。   FIG. 8 is a schematic configuration diagram illustrating the steam generator according to the first embodiment, and FIG. 9 is a cross-sectional view illustrating the main part of the supporting force measuring apparatus for heat transfer tubes according to the second embodiment of the present invention.

実施例2にて、図9及び図10に示すように、伝熱管の支持力測定装置200は、ケーブル(索状部材)201と移動体202と測定子203と制御装置(演算装置)204とから構成されている。   In Example 2, as shown in FIGS. 9 and 10, the heat transfer tube supporting force measuring device 200 includes a cable (corrugated member) 201, a moving body 202, a measuring element 203, a control device (computing device) 204, and the like. It is composed of

ケーブル201は、図示しないが、電源用ケーブル、制御用ケーブル、信号送受信用ケーブルなどが集合され、被覆ケーブルで被覆されて構成されており、伝熱管内に挿通可能となっている。移動体202は、このケーブル201の先端部に連結され、伝熱管の内面に所定隙間をもつ円柱形状をなしている。測定子203は、移動体102の外周部に設けられており、伝熱管の内面に対して測定信号の送受信を行うことができる。制御装置204は、測定子202からの測定信号に基づいて振れ止め金具による伝熱管の支持力を求めることができる。   Although not shown, the cable 201 is configured by collecting a power cable, a control cable, a signal transmission / reception cable, and the like, and is covered with a covered cable, and can be inserted into the heat transfer tube. The moving body 202 is connected to the tip of the cable 201 and has a cylindrical shape with a predetermined gap on the inner surface of the heat transfer tube. The measuring element 203 is provided in the outer peripheral part of the moving body 102, and can transmit / receive a measurement signal with respect to the inner surface of a heat exchanger tube. The control device 204 can determine the supporting force of the heat transfer tube by the steady rest fitting based on the measurement signal from the probe 202.

この場合、測定子203は、移動体102の周方向に複数(本実施例では、4組)設けられており、各測定子203は、移動体102の周方向に沿って等間隔で設けられている。そして、各測定子202は、移動装置205により移動体202(伝熱管)の径方向にそれぞれ移動可能であり、伝熱管の内面に接触させることができる。このとき、移動装置205は、複数の測定子203を同期して移動させることができる。   In this case, a plurality of measuring elements 203 are provided in the circumferential direction of the moving body 102 (four sets in this embodiment), and the measuring elements 203 are provided at equal intervals along the circumferential direction of the moving body 102. ing. Each measuring element 202 can be moved in the radial direction of the moving body 202 (heat transfer tube) by the moving device 205, and can be brought into contact with the inner surface of the heat transfer tube. At this time, the moving device 205 can move the plurality of measuring elements 203 in synchronization.

移動体202は、先端部にモータを有する駆動装置211が固定され、出力軸212が移動体202の軸心に沿って延出され、回転自在に支持されている。この出力軸212は、先周部に駆動傘歯車(ベベルギア)213が固定されている。また、移動体202(本実施例では、4組)は、軸心が径方向に沿う4つの従動傘歯車(ベベルギア)214が周方向に均等間隔で複数回転自在に支持されている。そして、駆動傘歯車213が4つの従動傘歯車214に噛合っている。   The moving body 202 has a driving device 211 having a motor at the tip, and an output shaft 212 that extends along the axis of the moving body 202 and is rotatably supported. The output shaft 212 has a driving bevel gear (bevel gear) 213 fixed to the front periphery. Further, the movable body 202 (four sets in this embodiment) is supported by a plurality of driven bevel gears (bevel gears) 214 whose axial centers extend in the radial direction at a plurality of intervals at equal intervals in the circumferential direction. The driving bevel gear 213 meshes with the four driven bevel gears 214.

また、各従動傘歯車214は、軸部の先端部にそれぞれねじ部215が形成されており、この各ねじ部215に支持部材216がそれぞれ螺合している。この各支持部材216は、移動体202に対してその径方向には移動自在であるが、自身が回転不能に支持されている。そして、各支持部材216は、その先周部にそれぞれ測定子203が固定されている。   Further, each driven bevel gear 214 has a threaded portion 215 formed at the tip of the shaft portion, and a support member 216 is screwed into each threaded portion 215. Each support member 216 is movable in the radial direction with respect to the moving body 202 but is supported so as not to rotate. Each support member 216 has a measuring element 203 fixed to its tip.

この測定子203は、伝熱管の内面に向けて超音波(計測信号)を送信する送信部と、伝熱管の内面を伝播する超音波を受信する受信部とから構成され、同位置に配置されている。制御装置204は、ケーブル201を介して測定子203に接続されており、超音波の送信時間と受信時間から超音波伝播速度を求める。そして、移動体202は、4組の測定子203が設けられていることから、各測定子203の測定結果から求めた4つの超音波伝播速度を平均化して伝熱管の応力を求める。   The measuring element 203 includes a transmitter that transmits ultrasonic waves (measurement signals) toward the inner surface of the heat transfer tube and a receiver that receives ultrasonic waves that propagate through the inner surface of the heat transfer tube, and is disposed at the same position. ing. The control device 204 is connected to the measuring element 203 via the cable 201, and obtains the ultrasonic wave propagation speed from the ultrasonic wave transmission time and reception time. Since the moving body 202 is provided with four sets of measuring elements 203, the four ultrasonic propagation speeds obtained from the measurement results of the measuring elements 203 are averaged to obtain the heat transfer tube stress.

この伝熱管の応力を求める手法は、超音波を用いた残留応力の測定方法である音弾性法を用いた手法であり、伝熱管の内部を径方向(板厚方向)に伝播する値用音波の速度を計測するものである。   This method of calculating the stress of the heat transfer tube is a method using the acoustoelastic method, which is a method of measuring residual stress using ultrasonic waves, and the sound wave for the value propagating in the radial direction (plate thickness direction) inside the heat transfer tube It measures the speed of.

伝熱管の支持力測定装置200による支持力測定方法は、ケーブル201により伝熱管の端部から移動体202を内部に挿入する工程と、伝熱管における移動体202の所定の挿入位置で測定子203から超音波を送信すると共に伝播する超音波を受信する測定信号送受信工程と、送受信した測定信号に基づいて振れ止め金具による伝熱管の支持力を求める演算工程と、を有している。   The supporting force measuring method by the heat transfer tube supporting force measuring apparatus 200 includes a step of inserting the moving body 202 into the heat transfer tube from the end of the heat transfer tube by the cable 201 and a measuring element 203 at a predetermined insertion position of the moving body 202 in the heat transfer tube. A measurement signal transmission / reception step for transmitting ultrasonic waves and receiving propagating ultrasonic waves, and a calculation step for obtaining the supporting force of the heat transfer tube by the steady rest metal fitting based on the transmitted / received measurement signals.

即ち、作業者は、ケーブル201により伝熱管の端部から移動体202を内部に挿入する。このとき、各測定子203は、移動体202内に収納された位置にあり、伝熱管66の内面と擦れ合うことはない。そして、作業者は、ケーブル201を伝熱管内に送り込み、移動体202を所定の計測位置に停止させる。移動体202を所定の計測位置に停止させると、ここで、作業者は、制御装置204を用いて測定子203から超音波を送信すると共に超音波を受信する。即ち、駆動装置211を駆動し、出力軸212を回転させ、出力軸212と一体の駆動傘歯車213を回転させる。駆動傘歯車213を回転すると、駆動傘歯車213と噛合う4つの従動傘歯車214が同時に回転し、各ねじ部215を介して4つの支持部材216が前進する。すると、各支持部材216が移動体102の径方向の外方、つまり、伝熱管の径方向に沿って内面に接近し、各測定子203が伝熱管の内面に接触するように押付けられる。   That is, the operator inserts the moving body 202 into the inside from the end of the heat transfer tube by the cable 201. At this time, each measuring element 203 is in a position accommodated in the moving body 202 and does not rub against the inner surface of the heat transfer tube 66. Then, the operator sends the cable 201 into the heat transfer tube and stops the moving body 202 at a predetermined measurement position. When the moving body 202 is stopped at a predetermined measurement position, the operator uses the control device 204 to transmit an ultrasonic wave from the measuring element 203 and receive the ultrasonic wave. That is, the drive device 211 is driven, the output shaft 212 is rotated, and the drive bevel gear 213 integrated with the output shaft 212 is rotated. When the drive bevel gear 213 is rotated, the four driven bevel gears 214 meshing with the drive bevel gear 213 are simultaneously rotated, and the four support members 216 are advanced through the respective screw portions 215. Then, each support member 216 approaches the inner surface along the radial direction of the moving body 102, that is, along the radial direction of the heat transfer tube, and is pressed so that each measuring element 203 contacts the inner surface of the heat transfer tube.

そして、4つの測定子203が全て伝熱管の内面に押付けられると、測定子203から超音波を送信すると共に超音波を受信する。制御装置204は、超音波を送信した時間と超音波を受信した時間から超音波伝播速度を求め、4つの超音波伝播速度を平均化して伝熱管の応力を求める。このとき、移動装置205は、移動体203から4つの支持部材216を同期して移動し、4つの測定子203を全て伝熱管の内面に押付けるため、移動体202が伝熱管に対して適正に支持され、高精度な測定が行われる。   When all four measuring elements 203 are pressed against the inner surface of the heat transfer tube, ultrasonic waves are transmitted from the measuring elements 203 and the ultrasonic waves are received. The control device 204 obtains an ultrasonic wave propagation speed from the time when the ultrasonic wave is transmitted and the time when the ultrasonic wave is received, and obtains the stress of the heat transfer tube by averaging the four ultrasonic wave propagation speeds. At this time, the moving device 205 moves the four support members 216 synchronously from the moving body 203 and presses all four measuring elements 203 against the inner surface of the heat transfer tube. High-precision measurement is performed.

このように実施例2の伝熱管の支持力測定装置にあっては、可撓性を有して伝熱管の端部から内部に挿入可能なケーブル201と、ケーブル201の先端部に伝熱管の内面に所定隙間をもって連結される移動体202と、移動体202の外周部に設けられて伝熱管の内面に対して超音波の送受信を行う測定子203と、測定子203からの測定信号に基づいて振れ止め金具による伝熱管の支持力を求める制御装置204とを設けている。   As described above, in the heat transfer tube supporting force measuring apparatus according to the second embodiment, the cable 201 has flexibility and can be inserted into the heat transfer tube from the end thereof. Based on a moving body 202 connected to the inner surface with a predetermined gap, a measuring element 203 provided on the outer periphery of the moving body 202 for transmitting and receiving ultrasonic waves to the inner surface of the heat transfer tube, and a measurement signal from the measuring element 203 And a control device 204 for obtaining the supporting force of the heat transfer tube by the steady rest metal fitting.

従って、ケーブル201を用いて移動体202を伝熱管内に挿入し、移動体202に設けられた測定子203から伝熱管の内面へ超音波の送受信を行い、制御装置204が測定子203からの超音波に基づいて振れ止め金具による伝熱管の支持力を求める。そのため、伝熱管の内部から振れ止め金具による支持力を測定することができ、作業者が蒸気発生器に入り、振れ止め金具による伝熱管の支持部にアクセスする必要はなく、被爆を低減しながら、伝熱管などを切断する必要もなく、伝熱管と振れ止め金具との接触力を高精度に測定することができる。   Therefore, the moving body 202 is inserted into the heat transfer tube using the cable 201, ultrasonic waves are transmitted and received from the probe 203 provided on the moving body 202 to the inner surface of the heat transfer tube, and the control device 204 is connected to the probe 203 from the probe 203. Based on the ultrasonic wave, the support capacity of the heat transfer tube by the steady rest fitting is obtained. Therefore, it is possible to measure the supporting force by the steady fitting from the inside of the heat transfer tube, and it is not necessary for the operator to enter the steam generator and access the support portion of the heat transfer tube by the steady fitting, while reducing the exposure. The contact force between the heat transfer tube and the steady rest can be measured with high accuracy without the need to cut the heat transfer tube or the like.

実施例1の伝熱管の支持力測定装置では、4つの測定子203を移動体202の周方向に沿って等間隔で配置している。従って、移動体202を短くすることができ、装置の小型軽量化を可能とすることができる。   In the heat transfer tube supporting force measuring apparatus of the first embodiment, four measuring elements 203 are arranged at equal intervals along the circumferential direction of the moving body 202. Therefore, the moving body 202 can be shortened, and the apparatus can be reduced in size and weight.

なお、上述した実施例では、偏心カム機構や歯車機構により移動体102,202に対して測定子103,203を径方向に移動するように構成したが、この構成に限定されるものではない。   In the embodiment described above, the measuring elements 103 and 203 are moved in the radial direction with respect to the moving bodies 102 and 202 by the eccentric cam mechanism or the gear mechanism, but the present invention is not limited to this structure.

また、上述した実施例では、作業者が入室71には入り、ここからケーブル101,201を用いて移動体102,202を伝熱管66内に挿入したが、機械を入室71に持ち込み、作業者が遠隔操作により機械を駆動制御し、ケーブル101,201を介して移動体102,202を伝熱管66内に挿入するようにしてもよい。   In the above-described embodiment, an operator enters the entry room 71, and the moving bodies 102 and 202 are inserted into the heat transfer tube 66 using the cables 101 and 201 from here. However, the machine may be driven and controlled by remote operation, and the moving bodies 102 and 202 may be inserted into the heat transfer tube 66 via the cables 101 and 201.

また、上述した実施例では、音弾性法を利用して振れ止め金具68による伝熱管66の支持力を求めるようにしたが、この構成に限定されるものではない。   In the above-described embodiment, the support force of the heat transfer tube 66 by the steady fitting 68 is obtained by using the acoustoelastic method, but the present invention is not limited to this configuration.

11 原子炉格納容器
12 加圧水型原子炉
13 蒸気発生器
32 蒸気タービン
36 発電機
61 胴部
62 管群外筒
63 管支持板
64 管板
66 伝熱管
67 伝熱管群
68 Uベンド部
69 振れ止め金具(振れ止め部材)
100,200 支持力測定装置
101,201 ケーブル(索状部材)
102,202 移動体
103,203 測定子
104,204 制御装置(演算装置)
105,205 移動装置
DESCRIPTION OF SYMBOLS 11 Reactor containment vessel 12 Pressurized water reactor 13 Steam generator 32 Steam turbine 36 Generator 61 Trunk portion 62 Tube group outer cylinder 63 Tube support plate 64 Tube plate 66 Heat transfer tube 67 Heat transfer tube group 68 U Bend portion 69 Stabilizing bracket (Stabilizer)
100, 200 Supporting force measuring device 101, 201 Cable (corrugated member)
102, 202 Moving object 103, 203 Measuring element 104, 204 Control device (computing device)
105,205 mobile device

Claims (7)

複数の伝熱管の間に振れ止め部材が介装された蒸気発生器において、
可撓性を有して前記伝熱管の端部から内部に挿入可能な索状部材と、
前記索状部材の先端部に前記伝熱管の内面に所定隙間をもって連結される移動体と、
前記移動体の外周部に設けられて前記伝熱管の内面に対して測定信号の送受信を行う測定子と、
前記測定子からの測定信号に基づいて前記振れ止め部材による前記伝熱管の支持力を求める演算装置と、
を有することを特徴とする伝熱管の支持力測定装置。
In a steam generator in which a steady member is interposed between a plurality of heat transfer tubes,
A cord-like member that has flexibility and can be inserted into the inside from an end of the heat transfer tube;
A movable body connected to the inner surface of the heat transfer tube with a predetermined gap at the tip of the cord-like member;
A probe that is provided on the outer periphery of the moving body and transmits and receives measurement signals to and from the inner surface of the heat transfer tube;
An arithmetic unit for obtaining a supporting force of the heat transfer tube by the steadying member based on a measurement signal from the probe;
A support capacity measuring device for a heat transfer tube.
前記測定子は、前記伝熱管の内面に向けて超音波を送信する送信部と、前記伝熱管を伝播する超音波を受信する受信部とを有し、前記演算装置は、前記送信部及び受信部からの信号に基づいて超音波伝播速度の変化を求め、この超音波伝播速度の変化から前記伝熱管の応力を求めることを特徴とする請求項1に記載の伝熱管の支持力測定装置。   The measuring element includes a transmitting unit that transmits ultrasonic waves toward the inner surface of the heat transfer tube, and a receiving unit that receives ultrasonic waves propagating through the heat transfer tube, and the arithmetic device includes the transmitting unit and the receiving unit. The apparatus for measuring a bearing capacity of a heat transfer tube according to claim 1, wherein a change in the ultrasonic propagation velocity is obtained based on a signal from the section, and a stress of the heat transfer tube is obtained from the change in the ultrasonic propagation velocity. 前記測定子を前記伝熱管の内面に接触させる移動装置が設けられることを特徴とする請求項1または2に記載の伝熱管の支持力測定装置。   The apparatus for measuring a supporting force of a heat transfer tube according to claim 1 or 2, further comprising a moving device for bringing the probe into contact with an inner surface of the heat transfer tube. 前記測定子は、前記移動体の周方向にずれた位置に複数配置されることを特徴とする請求項1から3のいずれか一つに記載の伝熱管の支持力測定装置。   4. The heat transfer tube supporting force measuring device according to claim 1, wherein a plurality of the measuring elements are arranged at positions shifted in a circumferential direction of the movable body. 5. 前記移動装置は、前記複数の測定子を同期して移動可能であることを特徴とする請求項4に記載の伝熱管の支持力測定装置。   The heat transfer tube supporting force measuring device according to claim 4, wherein the moving device is capable of moving the plurality of measuring elements synchronously. 前記移動装置は、前記測定子を伝熱管の径方向に沿って移動可能であることを特徴とする請求項3から5のいずれか一つに記載の伝熱管の支持力測定装置。   The said moving device can move the said measuring element along the radial direction of a heat exchanger tube, The supporting force measuring apparatus of the heat exchanger tube as described in any one of Claim 3 to 5 characterized by the above-mentioned. 複数の伝熱管の間に振れ止め部材が介装された蒸気発生器において、
可撓性を有する索状部材により前記伝熱管の端部から移動体を内部に挿入する工程と、
前記伝熱管における前記移動体の所定の挿入位置で前記移動体から測定信号を送信すると共に測定信号を受信する測定信号送受信工程と、
送受信した測定信号に基づいて前記振れ止め部材による前記伝熱管の支持力を求める演算工程と、
を有することを特徴とする伝熱管の支持力測定方法。
In a steam generator in which a steady member is interposed between a plurality of heat transfer tubes,
A step of inserting a moving body from the end of the heat transfer tube by a flexible cable-shaped member;
A measurement signal transmitting / receiving step of transmitting a measurement signal from the moving body at a predetermined insertion position of the moving body in the heat transfer tube and receiving the measurement signal;
A calculation step for obtaining a supporting force of the heat transfer tube by the steadying member based on the transmitted and received measurement signals;
A method for measuring the bearing capacity of a heat transfer tube.
JP2012184515A 2012-08-23 2012-08-23 Apparatus and method for measuring bearing capacity of heat transfer tube Active JP5968160B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012184515A JP5968160B2 (en) 2012-08-23 2012-08-23 Apparatus and method for measuring bearing capacity of heat transfer tube
PCT/JP2013/072465 WO2014030718A1 (en) 2012-08-23 2013-08-22 Device and method for measuring support force of heat exchanger tube, and moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184515A JP5968160B2 (en) 2012-08-23 2012-08-23 Apparatus and method for measuring bearing capacity of heat transfer tube

Publications (2)

Publication Number Publication Date
JP2014041102A true JP2014041102A (en) 2014-03-06
JP5968160B2 JP5968160B2 (en) 2016-08-10

Family

ID=50150022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184515A Active JP5968160B2 (en) 2012-08-23 2012-08-23 Apparatus and method for measuring bearing capacity of heat transfer tube

Country Status (2)

Country Link
JP (1) JP5968160B2 (en)
WO (1) WO2014030718A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092352A1 (en) * 2016-11-21 2018-05-24 三菱重工業株式会社 Pressing force measurement method
WO2018225292A1 (en) 2017-06-07 2018-12-13 三菱重工業株式会社 Supporting force inspection device and supporting force inspection method
US10990712B2 (en) 2016-05-30 2021-04-27 Mitsubishi Heavy Industries, Ltd. Contact force evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245755A (en) * 1988-08-05 1990-02-15 Ishikawajima Harima Heavy Ind Co Ltd Contactness inspecting method for tube expansion part
JPH02259405A (en) * 1989-03-31 1990-10-22 Nuclear Fuel Ind Ltd Measurement of gap of steady arm in heat exchanger of pressurized water reactor and measuring probe therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025215A (en) * 1989-08-16 1991-06-18 Westinghouse Electric Corp. Support equipment for a combination eddy current and ultrasonic testing probe for inspection of steam generator tubing
JP3297348B2 (en) * 1997-05-27 2002-07-02 三菱重工業株式会社 Ultrasonic probe
JP2001050936A (en) * 1999-08-11 2001-02-23 Hitachi Eng Co Ltd Ultrasonic probe for detecting flaw in heat transfer pipe and ultrasonic flaw-detecting device
JP5187483B2 (en) * 2007-06-29 2013-04-24 東京電力株式会社 Pipe evaluation method and pipe evaluation program
JP2010236892A (en) * 2009-03-30 2010-10-21 Toshiba Corp Ultrasonic stress measuring apparatus and ultrasonic stress measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245755A (en) * 1988-08-05 1990-02-15 Ishikawajima Harima Heavy Ind Co Ltd Contactness inspecting method for tube expansion part
JPH02259405A (en) * 1989-03-31 1990-10-22 Nuclear Fuel Ind Ltd Measurement of gap of steady arm in heat exchanger of pressurized water reactor and measuring probe therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10990712B2 (en) 2016-05-30 2021-04-27 Mitsubishi Heavy Industries, Ltd. Contact force evaluation method
WO2018092352A1 (en) * 2016-11-21 2018-05-24 三菱重工業株式会社 Pressing force measurement method
US11079290B2 (en) 2016-11-21 2021-08-03 Mitsubishi Heavy Industries, Ltd. Contact force measurement method
WO2018225292A1 (en) 2017-06-07 2018-12-13 三菱重工業株式会社 Supporting force inspection device and supporting force inspection method
US11462335B2 (en) 2017-06-07 2022-10-04 Mitsubishi Heavy Industries, Ltd. Supporting force inspection device and supporting force inspection method

Also Published As

Publication number Publication date
JP5968160B2 (en) 2016-08-10
WO2014030718A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5968160B2 (en) Apparatus and method for measuring bearing capacity of heat transfer tube
EP2960614B1 (en) Device and method for suppressing vibration of heat transfer tube, and steam generator
US9212881B2 (en) Hole examining device
US20130340971A1 (en) Vibration suppression device of heat transfer tube and steam generator
CN114203316A (en) Method and system for measuring reactor power under non-thermal balance working condition of high-temperature gas cooled reactor
US11079290B2 (en) Contact force measurement method
WO2018225292A1 (en) Supporting force inspection device and supporting force inspection method
JP2014040981A (en) Repair device and method of heat transfer pipe and steam generator
US20130044853A1 (en) Feed water and steam header and nuclear reactor having the same
JP2016148556A (en) Thermoacoustic sensor and temperature measurement device
CN103928067B (en) Winding displacement is nuclear power evaporator heat-transfer pipe endoporus failure detector easily
JP2012093140A (en) Temperature coefficient measuring apparatus and temperature coefficient measuring method for moderator
CN204045221U (en) There is the nuclear power evaporator heat-transfer pipe endoporus failure detector of thickness measuring function
US20130209185A1 (en) Hole drilling device and method
CN204045222U (en) Nuclear power evaporator heat-transfer pipe endoporus failure detector
CN204045223U (en) Winding displacement is nuclear power evaporator heat-transfer pipe endoporus failure detector easily
JP6161462B2 (en) Drain hole closing tool
JP2015031543A (en) Leakage detector and nuclear facility
JP2014163760A (en) Reactor vessel lid structure
JP2016161503A (en) Water level measuring apparatus
CN103943155B (en) Flaw detection device for inner hole of heat transfer pipe of nuclear-power evaporator
JP2017040198A (en) Steam turbine plant
JP2015169265A (en) Pipe connector support structure
JP2014134241A (en) Supporting structure of pipe connecting device
JP2017036693A (en) Steam turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R151 Written notification of patent or utility model registration

Ref document number: 5968160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151