JP2014038874A - Plasma-induced cvd method - Google Patents

Plasma-induced cvd method Download PDF

Info

Publication number
JP2014038874A
JP2014038874A JP2010250138A JP2010250138A JP2014038874A JP 2014038874 A JP2014038874 A JP 2014038874A JP 2010250138 A JP2010250138 A JP 2010250138A JP 2010250138 A JP2010250138 A JP 2010250138A JP 2014038874 A JP2014038874 A JP 2014038874A
Authority
JP
Japan
Prior art keywords
gas
plasma
cvd method
containing gas
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010250138A
Other languages
Japanese (ja)
Inventor
Ryo Someya
亮 染矢
Tetsuo Ogata
哲郎 尾形
Eisaku Watanabe
栄作 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2010250138A priority Critical patent/JP2014038874A/en
Priority to PCT/JP2011/075604 priority patent/WO2012063779A1/en
Publication of JP2014038874A publication Critical patent/JP2014038874A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a time period required for a seasoning process when a silicon compound is deposited in a remote plasma-induced CVD method to improve productivity.SOLUTION: In a seasoning process of a remote plasma-induced CVD method in which a vacuum vessel is separated into a plasma generation space and a substrate processing space with a partition wall, while in general a material gas is flowed in the plasma generation space and a silicon containing gas is flowed in the substrate processing space, by flowing in both material gas and silicon containing gas into the plasma generation space, a time period required for the seasoning process can be significantly reduced.

Description

本発明は、プラズマ誘起CVD(Chemical Vapor Deposition)方法に関し、特に、プラズマ生成空間と基板処理空間とに分離されたリモートプラズマ誘起CVD方法に関する。   The present invention relates to a plasma-induced CVD (Chemical Vapor Deposition) method, and more particularly, to a remote plasma-induced CVD method separated into a plasma generation space and a substrate processing space.

一般にプラズマ誘起CVD方法は,原料ガスをプラズマによって化学反応させて目的の基板の表面に薄膜を成膜する方法である.通常,このプラズマ誘起CVD方法は処理基板の表面にプラズマが直接晒されている状態で成膜を実施している.
このため,プラズマ中の荷電粒子などの影響で成膜する薄膜やあらかじめ下地に形成されている素子にダメージが生じてしまう問題があった.このダメージを回避するために該プラズマを該基板の表面から隔離した、リモートプラズマ誘起CVD方法が提案されている(特許文献1、特許文献2)。
In general, the plasma-induced CVD method is a method in which a raw material gas is chemically reacted with plasma to form a thin film on the surface of a target substrate. In general, this plasma-induced CVD method is performed with the plasma directly exposed to the surface of the processed substrate.
For this reason, there was a problem that the thin film to be deposited and the element previously formed on the substrate were damaged by the influence of charged particles in the plasma. In order to avoid this damage, a remote plasma induced CVD method in which the plasma is isolated from the surface of the substrate has been proposed (Patent Documents 1 and 2).

このリモートプラズマ誘起CVD装置では、高エネルギーのプラズマ粒子の入射を抑制し、リモートプラズマを実現するために、チャンバー内をプラズマ生成空間と基板処理空間に画す隔壁を有している。隔壁はプラズマ生成空間と基板処理空間を繋ぐ複数の貫通孔を有す。また隔壁にはガスを基板処理空間に流入させるためのガス流入口が設けられている。   In this remote plasma induced CVD apparatus, in order to suppress the incidence of high energy plasma particles and realize remote plasma, the remote plasma induction CVD apparatus has a partition wall that divides the chamber into a plasma generation space and a substrate processing space. The partition wall has a plurality of through holes that connect the plasma generation space and the substrate processing space. The partition wall is provided with a gas inlet for allowing gas to flow into the substrate processing space.

一般にCVD処理では堆積される膜が基板上に堆積するだけでなく、例えばチャンバー内のシールド、基板ホルダ、チャンバーの内壁などにも堆積する。この基板以外への堆積膜の剥離が、CVD処理中の条件に影響を与えることにより、所望の膜質が得られない問題がある。そのため、CVDチャンバーは定期的にクリーニングが行われる。CVD処理によって処理基板上に珪素化合物を成膜した場合、クリーニングは一般に三フッ化窒素(NF)のようなフッ素含有ガスをチャンバー内に流入させ、放電させることによってなされる。フッ素含有ガスはチャンバー内の堆積膜と反応し、ガス状のフッ素含有生成物を形成する。該生成物はチャンバー排気システムを通して排気される。またクリーニング工程後にチャンバー内のコンディションを整え、所望の膜質を得るためのシーズニング工程が行われることもある。 In general, in a CVD process, a film to be deposited is not only deposited on a substrate but also deposited on a shield in a chamber, a substrate holder, an inner wall of the chamber, and the like. The peeling of the deposited film other than the substrate affects the conditions during the CVD process, so that a desired film quality cannot be obtained. Therefore, the CVD chamber is periodically cleaned. When a silicon compound film is formed on a processing substrate by a CVD process, cleaning is generally performed by flowing a fluorine-containing gas such as nitrogen trifluoride (NF 3 ) into the chamber and discharging it. The fluorine-containing gas reacts with the deposited film in the chamber to form a gaseous fluorine-containing product. The product is exhausted through a chamber exhaust system. In addition, a seasoning process for adjusting the condition in the chamber after the cleaning process and obtaining a desired film quality may be performed.

ここで、上述したリモートプラズマ誘起CVD方法に係る装置におけるシリコン化合物の成膜では、クリーニング工程及びシーズニング工程は以下のように行われていた。
即ち、クリーニング工程においては、プラズマ生成空間にNFを流入してNFのプラズマを形成し、該プラズマを隔壁を通して基板処理空間に流入させることでチャンバー内に付着した珪素化合物を除去していた。
シーズニング工程においては、プラズマ生成空間に原料ガスを流入させてプラズマを形成して活性種を生成し、該活性種を隔壁を通して基板処理空間に流入させ、一方で基板処理空間に珪素含有ガスを流入させることで、原料ガスの活性種と珪素含有ガスを反応させ、チャンバー内のコンディションを整えていた。なお、このシーズニング工程は、一般的にチャンバー内の雰囲気を成膜する際のコンディションに整えるために、成膜時と同条件のプロセスで行われる。
Here, in the silicon compound film formation in the apparatus related to the remote plasma induced CVD method described above, the cleaning process and the seasoning process are performed as follows.
That is, in the cleaning process, NF 3 was introduced into the plasma generation space to form NF 3 plasma, and the silicon compound adhering in the chamber was removed by flowing the plasma into the substrate processing space through the partition walls. .
In the seasoning process, a raw material gas is introduced into the plasma generation space to form plasma to generate active species, and the active species are introduced into the substrate processing space through the partition wall, while a silicon-containing gas is introduced into the substrate processing space. As a result, the active species of the source gas and the silicon-containing gas were reacted to adjust the condition in the chamber. This seasoning step is generally performed by a process under the same conditions as those for film formation in order to adjust the atmosphere in the chamber to a condition for film formation.

特開2000−345349号公報JP 2000-345349 A 特開2001−135628号公報JP 2001-135628 A

しかし、上述した従来のリモートプラズマ誘起CVD法では、シーズニングに要する時間が長く、更なる生産性向上のため、シーズニングに要する時間の短縮が望まれるようになった。
本発明はこの課題に鑑み成されたものであり、基板処理空間とプラズマ生成空間を有するリモートプラズマ誘起CVD方法における珪素化合物の成膜において、シーズニングに要する時間を短縮することを目的とする。
However, in the conventional remote plasma induced CVD method described above, the time required for seasoning is long, and it has become desirable to reduce the time required for seasoning in order to further improve productivity.
The present invention has been made in view of this problem, and an object thereof is to shorten the time required for seasoning in the formation of a silicon compound in a remote plasma induced CVD method having a substrate processing space and a plasma generation space.

上記課題を解決するため、本願発明は、成膜工程、クリーニング工程及びシーズニング工程を有するリモートプラズマ誘起CVD方法であって、前記成膜工程は、前記プラズマ生成空間に原料ガスを流入させる工程と、前記プラズマ生成空間で前記原料ガスのプラズマを形成し、前記原料ガスの活性種を生成する工程と、前記基板処理空間に珪素含有ガスを流入させる工程と、前記原料ガスの活性種を隔壁を通じて前記基板処理空間に流入させる工程と、前記原料ガスの活性種と前記珪素含有ガスを反応させて珪素化合物を処理基板上に成膜する工程を有し、前記シーズニング工程は、前記プラズマ生成空間に前記珪素含有ガス及び前記原料ガスを流入させる工程と、前記プラズマ生成空間で前記珪素含有ガス及び前記原料ガスのプラズマを形成し反応させる工程を有することを特徴とする。   In order to solve the above problems, the present invention is a remote plasma induced CVD method having a film forming process, a cleaning process, and a seasoning process, wherein the film forming process includes a step of flowing a source gas into the plasma generation space; Forming a plasma of the source gas in the plasma generation space to generate active species of the source gas; flowing a silicon-containing gas into the substrate processing space; and A step of flowing into the substrate processing space; and a step of reacting an active species of the source gas with the silicon-containing gas to form a silicon compound on the processing substrate, wherein the seasoning step is performed in the plasma generation space. A step of flowing a silicon-containing gas and the source gas, and a plasma of the silicon-containing gas and the source gas in the plasma generation space. It characterized by having a step of no response.

本発明によればシーズニング工程に要する時間を短縮することができ、生産性を向上させることが可能となる。   According to the present invention, the time required for the seasoning process can be shortened, and productivity can be improved.

本発明に係るリモートプラズマ誘起CVD方法を行うための装置を示す図である。It is a figure which shows the apparatus for performing the remote plasma induction CVD method which concerns on this invention. 図1に示す装置の貫通孔部分を拡大した図である。It is the figure which expanded the through-hole part of the apparatus shown in FIG. 図1に示す装置の隔壁を上から見た図である。It is the figure which looked at the partition of the apparatus shown in FIG. 1 from the top.

以下図面を参照しながら本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明に係るリモートプラズマ誘起CVD装置100の模式図である。図1において、1は真空容器、2は電極、2aは電極に穿孔された孔、3は電力導入棒、4は電力導入棒3の外周部を覆う絶縁物、5は第一のガスを導入する第一のガス導入手段、6はクリーニングガス導入手段、7及び8は絶縁物、9は後述する隔壁を地絡するための金属等から出来ている電気的導体、10は電極2の上、孔2aの中及び電極2の下に拡がるプラズマ生成空間を示す。   FIG. 1 is a schematic view of a remote plasma induced CVD apparatus 100 according to the present invention. In FIG. 1, 1 is a vacuum vessel, 2 is an electrode, 2a is a hole drilled in the electrode, 3 is a power introduction rod, 4 is an insulator covering the outer periphery of the power introduction rod 3, and 5 is a first gas introduction First gas introducing means, 6 is a cleaning gas introducing means, 7 and 8 are insulators, 9 is an electrical conductor made of metal for grounding a partition wall to be described later, 10 is on the electrode 2, A plasma generation space extending in the hole 2a and under the electrode 2 is shown.

20は隔壁を示している。21は貫通孔、22は拡散孔、23は内部空間、24は原料ガスを導入する第二のガス導入手段、25は孔形成領域を表している。ここで、貫通孔21はプラズマが発生している部分よりなるプラズマ生成空間10(第一の空間)と隔壁20の下に位置する基板処理空間11(第二の空間)を繋ぐ複数の孔であり、隔壁20を柱状の形をして貫いている。   Reference numeral 20 denotes a partition wall. Reference numeral 21 denotes a through hole, 22 denotes a diffusion hole, 23 denotes an internal space, 24 denotes a second gas introduction means for introducing a source gas, and 25 denotes a hole forming region. Here, the through-hole 21 is a plurality of holes that connect the plasma generation space 10 (first space) formed of a portion where plasma is generated and the substrate processing space 11 (second space) located below the partition wall 20. Yes, penetrating the partition wall 20 in a columnar shape.

内部空間23は柱状部以外で繋がっており、内部空間23の全面に亘ってほぼ一定の圧力になっている。従って、拡散孔22を通して噴出されるガスの流量も、拡散孔22の位置によらずほぼ一定となっている。   The internal space 23 is connected except for the columnar part, and the pressure is almost constant over the entire surface of the internal space 23. Therefore, the flow rate of the gas ejected through the diffusion hole 22 is also substantially constant regardless of the position of the diffusion hole 22.

30は基板ホルダ、31はその内部に埋設されているヒータである。そして、基板ホルダ30の上部には基板14が載置されている。11は基板処理空間、12は排気ポート、13はターボ分子ポンプ等の排気手段である。   Reference numeral 30 denotes a substrate holder, and 31 denotes a heater embedded therein. A substrate 14 is placed on the substrate holder 30. Reference numeral 11 denotes a substrate processing space, 12 denotes an exhaust port, and 13 denotes exhaust means such as a turbo molecular pump.

図2は、隔壁20の一部の拡大図である。同一の構成要素には同一の符号を付して、説
明は省略する。
FIG. 2 is an enlarged view of a part of the partition wall 20. The same components are denoted by the same reference numerals, and description thereof is omitted.

プラズマ10aはプラズマ生成空間10で発生するプラズマである。矢印41は該プラズマの活性種が貫通孔21を通り基板処理空間11に供給される方向を示し、矢印42は第二のガス導入手段24より内部空間23に導入された原料ガスが拡散孔22を通り基板処理空間11に供給される方向を示している。   The plasma 10 a is plasma generated in the plasma generation space 10. An arrow 41 indicates the direction in which the active species of the plasma is supplied to the substrate processing space 11 through the through-hole 21, and an arrow 42 indicates that the source gas introduced into the internal space 23 from the second gas introduction means 24 is diffused 22. The direction of supply to the substrate processing space 11 is shown.

貫通孔21は、3つの部分に分けることが出来る。プラズマ生成空間10の側の21aはより小さな直径を有している。一方、基板処理空間11の側の21cは大きな直径となっている。その間は錐状の形状をした21bで繋がっている。なお本実施形態においては、21aの直径が21cの直径よりも小さい構造としたが、これが逆であっても問題は無い。詳細な条件については特開2000−345349に開示されている。   The through hole 21 can be divided into three parts. 21a on the side of the plasma generation space 10 has a smaller diameter. On the other hand, 21c on the substrate processing space 11 side has a large diameter. In the meantime, it is connected by a cone-shaped 21b. In the present embodiment, the diameter of 21a is smaller than the diameter of 21c, but there is no problem even if this is reversed. Detailed conditions are disclosed in JP-A-2000-345349.

このような形状をしているので、孔部に放電が入り込み、その結果プラズマが基板処理空間11に漏れるのを防止できる。また、孔部では放電が生じ易いが、図2の構造ではプラズマ10に対しては、隔壁は以下で記述する形状に比べてよりフラットである為、異常放電も起こり難い。また、径の小さな部分21aの長さが短いので製作も容易であるというメリットがある。   Since it has such a shape, it is possible to prevent discharge from entering the hole, and as a result, leakage of plasma into the substrate processing space 11. Further, although discharge is likely to occur in the hole portion, in the structure shown in FIG. 2, since the partition wall is flatter than the shape described below, abnormal discharge hardly occurs with respect to the plasma 10. Moreover, since the length of the small diameter part 21a is short, there exists an advantage that manufacture is also easy.

図3は、本発明に係わる隔壁20に形成される貫通孔21及び拡散孔22の穿孔の仕方
を説明するための図である。ここで、今まで説明した実質同一の構成要素には同一の符号
を付して、説明を省略する。
FIG. 3 is a view for explaining how to drill the through holes 21 and the diffusion holes 22 formed in the partition wall 20 according to the present invention. Here, substantially the same components as described above are denoted by the same reference numerals, and description thereof is omitted.

貫通孔21及び拡散孔22は、孔形成領域25の内側に形成される。例えば、円板状の
基板を処理する場合には孔形成領域25は円状に形成すると良い。そして、例えば貫通孔
21及び拡散孔22はその孔形成領域と同心の異なる径を持つ円周上に形成することで実
現できる。
The through hole 21 and the diffusion hole 22 are formed inside the hole forming region 25. For example, when processing a disk-shaped substrate, the hole forming region 25 is preferably formed in a circular shape. For example, the through hole 21 and the diffusion hole 22 can be realized by forming them on a circumference having different diameters concentric with the hole forming region.

拡散孔22は孔形成領域25内全域に亘って単位面積あたり同一の開口率で配置されている。このような配置は、同一の孔径を持つ拡散孔22を、同一のピッチで円周上に配置し、且つ隣接する円の径方向のピッチを同一にして配置することにより実現できる。   The diffusion holes 22 are arranged with the same aperture ratio per unit area over the whole area of the hole forming region 25. Such an arrangement can be realized by arranging the diffusion holes 22 having the same hole diameter on the circumference at the same pitch and arranging the adjacent circles at the same radial pitch.

一方、貫通孔21については周辺部における配置を増やし、中心部に比べ周辺部での単位面積あたりの開口率を大きくしている。   On the other hand, about the through-hole 21, the arrangement | positioning in a peripheral part is increased and the aperture ratio per unit area in a peripheral part is enlarged compared with the center part.

上述した装置を用いて、処理基板上に珪素化合物の成膜を行う。まず、第一のガス導入手段5によりプラズマ生成空間10に原料ガスを流入させてプラズマを形成し、第二のガス導入手段24により基板処理空間11に珪素含有ガスを流入させて窒素含有ガスの活性種と反応させることで行う。   Using the above-described apparatus, a silicon compound is formed on the processing substrate. First, a source gas is introduced into the plasma generation space 10 by the first gas introduction means 5 to form a plasma, and a silicon-containing gas is introduced into the substrate processing space 11 by the second gas introduction means 24 so that the nitrogen-containing gas is formed. This is done by reacting with active species.

次のクリーニング工程は、珪素化合物の成膜後にフッ化ガスを用いた従来のクリーニング方法と同様に行うことができる。例として、プラズマ生成空間10にNFガスを流入させてプラズマを形成し、基板処理空間11に窒素(N)ガスを流入させることでチャンバー内に堆積した膜の除去を行う。 The next cleaning step can be performed in the same manner as a conventional cleaning method using a fluorinated gas after the silicon compound film is formed. As an example, NF 3 gas is introduced into the plasma generation space 10 to form plasma, and nitrogen (N 2 ) gas is introduced into the substrate processing space 11 to remove the film deposited in the chamber.

次にシーズニング工程を行う。ここで本発明者はシーズニング工程において、通常成膜工程と同条件で行われるところを、成膜工程に用いた原料ガス及び珪素含有ガスをプラズマ生成空間10に流入させ、プラズマを形成することでシーズニングに要する時間を大幅に短縮できることを見出した。   Next, a seasoning process is performed. Here, the inventor performs the seasoning process under the same conditions as the normal film forming process by flowing the source gas and silicon-containing gas used in the film forming process into the plasma generation space 10 to form plasma. It has been found that the time required for seasoning can be greatly reduced.

(実施例)
以下に本実施形態に係る具体的な実施例を示す。
(Example)
Specific examples according to this embodiment will be described below.

真空状態においてリモートプラズマ誘起CVD方法によりSiNを処理基板上に成膜した。SiNの成膜条件としてプラズマ生成空間10にアンモニア(NH)ガスを流入させ、NHガスのプラズマを形成した。NHガスのプラズマ形成から10秒後に基板処理空間11にモノシラン(SiH)ガスとArガスの混合ガスを流入させ、貫通孔21を通ったNHの活性種と反応させた。各ガスの流量はNHガスが1500sccm、SiHガスが40sccm、Arガスが250sccmとした。この反応によりSiNを30nm成膜した。 In a vacuum state, SiN was formed on the processing substrate by a remote plasma induced CVD method. As a SiN film forming condition, ammonia (NH 3 ) gas was introduced into the plasma generation space 10 to form NH 3 gas plasma. Ten seconds after the NH 3 gas plasma was formed, a mixed gas of monosilane (SiH 4 ) gas and Ar gas was introduced into the substrate processing space 11 to react with the active species of NH 3 that passed through the through holes 21. The flow rates of the respective gases were 1500 sccm for NH 3 gas, 40 sccm for SiH 4 gas, and 250 sccm for Ar gas. A 30 nm SiN film was formed by this reaction.

成膜工程を行った後にクリーニング工程を行った。クリーニング工程の条件としては、プラズマ生成空間10にNFガスを600sccmで流入させ、基板処理空間11にArガスを150sccmで流入させる。NFガスのプラズマを形成することで、チャンバー内に残留したNHガスの活性種やチャンバー内に堆積したSiN膜の除去を行う。本実施例におけるクリーニング工程の所要時間は20秒であった。 A cleaning process was performed after the film forming process. As conditions for the cleaning process, NF 3 gas is flowed into the plasma generation space 10 at 600 sccm, and Ar gas is flowed into the substrate processing space 11 at 150 sccm. By forming plasma of NF 3 gas, the active species of NH 3 gas remaining in the chamber and the SiN film deposited in the chamber are removed. The time required for the cleaning process in this example was 20 seconds.

クリーニング工程の後にシーズニング工程を行った。シーズニング工程の条件としては、プラズマ生成空間10にNHガスを1500sccm及びSiHガスを200sccmで流入させる。その後NHガス及びSiHガスのプラズマを形成し、反応させることでチャンバー内にSiNを形成しシーズニングを行う。本実施例におけるシーズニング工程の所要時間は10秒であった。 A seasoning process was performed after the cleaning process. As a condition for the seasoning process, NH 3 gas is flowed into the plasma generation space 10 at 1500 sccm and SiH 4 gas is flowed at 200 sccm. Thereafter, plasma of NH 3 gas and SiH 4 gas is formed and reacted to form SiN in the chamber for seasoning. The time required for the seasoning process in this example was 10 seconds.

ここで、本発明に係るシーズニング工程を行う場合、SiNの成膜量に対してクリーニング工程を行う頻度を高くすることが好ましい。何故ならば、後述する本発明に係るシーズニング工程においては、NHガスとSiHガスを共にプラズマ生成空間10に流入させてプラズマを形成するため、プラズマ生成空間10に反応生成物であるSiNの堆積量が増加する。従って、クリーニング工程が1回の成膜毎に行われることが最も好ましい。 Here, when performing the seasoning process according to the present invention, it is preferable to increase the frequency of performing the cleaning process with respect to the SiN film formation amount. This is because, in the seasoning process according to the present invention, which will be described later, NH 3 gas and SiH 4 gas are caused to flow into the plasma generation space 10 to form plasma, so that the reaction product SiN is formed in the plasma generation space 10. The amount of deposition increases. Therefore, it is most preferable that the cleaning process is performed for each film formation.

ここで比較例として従来行っていたシーズニング工程による所要時間を示す。また、成膜工程及びクリーニング工程については上述した実施例と同条件で行った。   Here, as a comparative example, the time required for the seasoning process conventionally performed is shown. The film forming process and the cleaning process were performed under the same conditions as in the above-described examples.

次にシーズニング工程を行った。シーズニング工程の条件としては、プラズマ生成空間10にNHガスを2250sccm流入させ、基板処理空間11にArを250sccm流入させる。その後NHガスのプラズマを形成し、貫通孔21を通してNHガスの活性種を基板処理空間11に流す。NHガスのプラズマを形成後、SiHガスを基板処理空間11に2250sccmで流入させ、NHガスの活性種と反応させる。本比較例におけるシーズニング工程に要した時間は1.5時間であった。 Next, a seasoning process was performed. As the conditions for the seasoning process, NH 3 gas is introduced into the plasma generation space 10 at 2250 sccm, and Ar is introduced into the substrate processing space 11 at 250 sccm. Thereafter, plasma of NH 3 gas is formed, and activated species of NH 3 gas is flowed into the substrate processing space 11 through the through hole 21. After the NH 3 gas plasma is formed, SiH 4 gas is flowed into the substrate processing space 11 at 2250 sccm, and reacted with the activated species of NH 3 gas. The time required for the seasoning process in this comparative example was 1.5 hours.

従って、本発明に係るシーズニング工程を用いることで、従来1.5時間要していたシーズニング工程が10秒で完了する。   Therefore, by using the seasoning process according to the present invention, the seasoning process, which conventionally took 1.5 hours, is completed in 10 seconds.

なお、本実施例で示したガス流量は本発明を実施する上での一例に過ぎず、ガス流量は本発明の本質的な部分ではない。即ち、プラズマ生成空間10に窒素含有ガスと珪素含有ガスを流入させてプラズマを形成し、反応させることが肝要である。他の窒素含有ガスの例としては亜酸化窒素(NO)ガスやNガス、またはこれらの混合を用いることができ、珪素含有ガスとしてはジシラン(Si)ガスを用いることができる。 In addition, the gas flow rate shown in the present embodiment is merely an example for carrying out the present invention, and the gas flow rate is not an essential part of the present invention. In other words, it is important to cause a nitrogen-containing gas and a silicon-containing gas to flow into the plasma generation space 10 to form and react with the plasma. Examples of other nitrogen-containing gas may include nitrous oxide (N 2 O) gas, N 2 gas, or a mixture thereof, and disilane (Si 2 H 6 ) gas may be used as the silicon-containing gas. it can.

なおシーズニング工程に要した時間とは、その後の成膜工程において所望の膜質が得られる状態となるまでに要した時間であって、実施例及び比較例における所望の膜質の条件は同じとした。   The time required for the seasoning process is the time required until a desired film quality is obtained in the subsequent film forming process, and the conditions for the desired film quality in the examples and comparative examples are the same.

以上の実施例ではSiN膜の成膜について説明したが、SiN膜以外に酸化シリコン(SiO)膜をリモートプラズマ誘起CVD法で成膜する際にも本発明は適用可能である。その場合、窒素含有ガスの代わりに酸素含有ガスを用いる。例えば、珪素含有ガスとしてSiHガスまたはSiガス、酸素含有ガスとしては酸素ガス(O)を好適に用いることができる。 In the above embodiments, the formation of the SiN film has been described. However, the present invention can also be applied when a silicon oxide (SiO 2 ) film is formed by a remote plasma induced CVD method in addition to the SiN film. In that case, oxygen-containing gas is used instead of nitrogen-containing gas. For example, SiH 4 gas or Si 2 H 6 gas can be suitably used as the silicon-containing gas, and oxygen gas (O 2 ) can be suitably used as the oxygen-containing gas.

さらに別の実施形態としてSiN膜の代わりにSiNとSiOが混在した膜をリモートプラズマ誘起CVD方法で成膜する際にも本発明は適用可能である。その場合、窒素含有ガスだけでなく酸素含有ガスも混合させる。例えば、珪素含有ガスとしてSIHガスまたはSiガス、窒素含有ガスとしてNHガス、酸素含有ガスとしてOガスを好適に用いることができる。 As another embodiment, the present invention can also be applied when a film containing SiN and SiO 2 is formed by a remote plasma induced CVD method instead of the SiN film. In that case, not only nitrogen-containing gas but also oxygen-containing gas is mixed. For example, SIH 4 gas or Si 2 H 6 gas can be suitably used as the silicon-containing gas, NH 3 gas as the nitrogen-containing gas, and O 2 gas as the oxygen-containing gas.

100 リモートプラズマ誘起CVD装置
1 真空容器
2 電極
2a 電極に穿孔された孔
3 電力導入棒
4 、7、8 絶縁物
5 原料ガス導入手段
6 クリーニングガス導入手段
9 電気的導体
10 プラズマ生成空間
10a プラズマ
11 基板処理空間
12 排気ポート
13 排気手段
14 基板
20 隔壁
21 貫通孔
22 拡散孔
23 内部空間
24 珪素含有ガス導入手段
30 基板ホルダ
31 ヒータ
41 活性種の流れの方向
42 原料ガスの流れの方向
DESCRIPTION OF SYMBOLS 100 Remote plasma induction CVD apparatus 1 Vacuum vessel 2 Electrode 2a Hole 3 drilled in electrode 3 Power introduction rods 4, 7, 8 Insulator 5 Source gas introduction means 6 Cleaning gas introduction means 9 Electrical conductor 10 Plasma generation space 10a Plasma 11 Substrate processing space 12 Exhaust port 13 Exhaust means 14 Substrate 20 Partition wall 21 Through hole 22 Diffusion hole 23 Internal space 24 Silicon-containing gas introduction means 30 Substrate holder 31 Heater 41 Flow direction of active species 42 Flow direction of source gas

Claims (7)

真空容器内で被処理基板上に珪素化合物を堆積させるCVD方法であって、
前記CVD方法は、前記真空容器の内部を複数の孔が形成された隔壁によってプラズマ生成空間と基板処理空間に分けて行われ、
前記CVD方法は成膜工程、クリーニング工程及びシーズニング工程を有し、
前記成膜工程は、
前記プラズマ生成空間に原料ガスを流入させる工程と、
前記プラズマ生成空間で前記原料ガスのプラズマを形成し、前記原料ガスの活性種を生成する工程と、
前記基板処理空間に珪素含有ガスを流入させる工程と、
前記原料ガスの活性種を隔壁を通じて前記基板処理空間に流入させる工程と、
前記原料ガスの活性種と前記珪素含有ガスを反応させて珪素化合物を前記被処理基板上に成膜する工程を有し、
前記シーズニング工程は、
前記プラズマ生成空間に前記珪素含有ガス及び前記原料ガスを流入させる工程と、
前記プラズマ生成空間で前記珪素含有ガス及び前記原料ガスのプラズマを形成し反応させる工程を有することを特徴とするCVD方法。
A CVD method for depositing a silicon compound on a substrate to be processed in a vacuum container,
The CVD method is performed by dividing the inside of the vacuum vessel into a plasma generation space and a substrate processing space by a partition wall in which a plurality of holes are formed.
The CVD method includes a film forming process, a cleaning process, and a seasoning process,
The film forming step includes
Flowing a source gas into the plasma generation space;
Forming a plasma of the source gas in the plasma generation space to generate active species of the source gas;
Flowing a silicon-containing gas into the substrate processing space;
Allowing the active species of the source gas to flow into the substrate processing space through a partition;
Reacting the active species of the source gas with the silicon-containing gas to form a silicon compound on the substrate to be processed;
The seasoning step includes
Flowing the silicon-containing gas and the source gas into the plasma generation space;
A CVD method comprising a step of forming and reacting plasma of the silicon-containing gas and the source gas in the plasma generation space.
前記原料ガスは窒素含有ガスであることを特徴とする請求項1に記載のCVD方法。   The CVD method according to claim 1, wherein the source gas is a nitrogen-containing gas. 前記窒素含有ガスはアンモニアガス、窒素ガスまたは亜酸化窒素、もしくはこれらの混合ガスであり、前記珪素含有ガスはモノシランガスまたはジシランガスであることを特徴とする請求項2に記載のCVD方法。   The CVD method according to claim 2, wherein the nitrogen-containing gas is ammonia gas, nitrogen gas, nitrous oxide, or a mixed gas thereof, and the silicon-containing gas is monosilane gas or disilane gas. 前記原料ガスは酸素含有ガスであることを特徴とする請求項1に記載のCVD方法。   The CVD method according to claim 1, wherein the source gas is an oxygen-containing gas. 前記酸素含有ガスは酸素ガスであり、前記珪素含有ガスはモノシランガスまたはジシランガスであることを特徴とする請求項4に記載のCVD方法。   The CVD method according to claim 4, wherein the oxygen-containing gas is an oxygen gas, and the silicon-containing gas is a monosilane gas or a disilane gas. 前記原料ガスは窒素含有ガスと酸素含有ガスの混合ガスであることを特徴とする請求項1に記載のCVD方法。   The CVD method according to claim 1, wherein the source gas is a mixed gas of a nitrogen-containing gas and an oxygen-containing gas. 前記窒素含有ガスはアンモニアガス、窒素ガスまたは亜酸化窒素、もしくはこれらの混合ガスであり、
前記酸素含有ガスは酸素ガスであり、
前記珪素含有ガスはモノシランガスまたはジシランガスであることを特徴とする請求項6に記載のCVD方法。
The nitrogen-containing gas is ammonia gas, nitrogen gas or nitrous oxide, or a mixed gas thereof,
The oxygen-containing gas is oxygen gas;
The CVD method according to claim 6, wherein the silicon-containing gas is monosilane gas or disilane gas.
JP2010250138A 2010-11-08 2010-11-08 Plasma-induced cvd method Pending JP2014038874A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010250138A JP2014038874A (en) 2010-11-08 2010-11-08 Plasma-induced cvd method
PCT/JP2011/075604 WO2012063779A1 (en) 2010-11-08 2011-11-07 Plasma-induced cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250138A JP2014038874A (en) 2010-11-08 2010-11-08 Plasma-induced cvd method

Publications (1)

Publication Number Publication Date
JP2014038874A true JP2014038874A (en) 2014-02-27

Family

ID=46050925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250138A Pending JP2014038874A (en) 2010-11-08 2010-11-08 Plasma-induced cvd method

Country Status (2)

Country Link
JP (1) JP2014038874A (en)
WO (1) WO2012063779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029271A1 (en) * 2022-08-02 2024-02-08 東京エレクトロン株式会社 SiN FILM FORMATION METHOD, AND PLASMA TREATMENT APPARATUS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319041A (en) * 2005-05-11 2006-11-24 Tokyo Electron Ltd Plasma cleaning method and method for forming film
JP4978355B2 (en) * 2007-07-19 2012-07-18 富士通セミコンダクター株式会社 Film forming apparatus and coating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029271A1 (en) * 2022-08-02 2024-02-08 東京エレクトロン株式会社 SiN FILM FORMATION METHOD, AND PLASMA TREATMENT APPARATUS

Also Published As

Publication number Publication date
WO2012063779A1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
JP4329403B2 (en) Plasma processing equipment
JP5363478B2 (en) Method and apparatus for generating group IV nanoparticles in a flow-through plasma reactor
US20200109484A1 (en) Susceptor and susceptor coating method
JP4179311B2 (en) Film forming method, film forming apparatus, and storage medium
JP4434149B2 (en) Film forming method, film forming apparatus, and storage medium
CN102978586B (en) Film deposition system and film
US20130337653A1 (en) Semiconductor processing apparatus with compact free radical source
JP4935684B2 (en) Film forming method and film forming apparatus
JP5887962B2 (en) Deposition equipment
US20100209624A1 (en) Film-forming apparatus and film-forming method
KR101774086B1 (en) Film deposition method and storage medium and film deposition apparatus
JP2003045864A (en) Substrate processing system
JP2010010497A (en) Film forming method, film forming device, and recording medium
JP3657942B2 (en) Method for cleaning semiconductor manufacturing apparatus and method for manufacturing semiconductor device
US20210198787A1 (en) Film forming method and system
KR20130095119A (en) Atomospheric pressure plasma generating apparatus
TWI812827B (en) Method for depositing nitride film
US9922820B2 (en) Film forming method and film forming apparatus
JP2014038874A (en) Plasma-induced cvd method
JP2006049544A (en) Substrate processing apparatus and substrate processing method using same
JP2003229425A (en) Substrate processing apparatus
JP5082595B2 (en) Deposition equipment
JP7047371B2 (en) Manufacturing method of semiconductor device
JP3365742B2 (en) Plasma CVD equipment
US20230049118A1 (en) Substrate processing device and substrate processing method