JP2014038063A - Concentration measuring apparatus and concentration measuring method - Google Patents

Concentration measuring apparatus and concentration measuring method Download PDF

Info

Publication number
JP2014038063A
JP2014038063A JP2012181594A JP2012181594A JP2014038063A JP 2014038063 A JP2014038063 A JP 2014038063A JP 2012181594 A JP2012181594 A JP 2012181594A JP 2012181594 A JP2012181594 A JP 2012181594A JP 2014038063 A JP2014038063 A JP 2014038063A
Authority
JP
Japan
Prior art keywords
light
probe
concentration
wavelength
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012181594A
Other languages
Japanese (ja)
Other versions
JP6089493B2 (en
Inventor
Atsushi Izawa
淳 伊澤
Soichiro Omi
聡一郎 大海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012181594A priority Critical patent/JP6089493B2/en
Publication of JP2014038063A publication Critical patent/JP2014038063A/en
Application granted granted Critical
Publication of JP6089493B2 publication Critical patent/JP6089493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentration measuring apparatus capable of accurately measuring a concentration of a measuring object with a simple structure without being affected by a state change of the measuring object.SOLUTION: The concentration measuring apparatus comprises: a laser light source 22 for generating laser light as excitation light 23; a probe light generation section 24 for simultaneously generating probe light 10 of an ON wavelength and reference light 12 of an OFF wavelength for a measuring object S from the excitation light 23 by an optical parametric oscillation; a light separation section M2 for separating the probe light 10 and the reference light 12, each having transmitted through the measuring object S or reflected from the measuring object S into different optical paths respectively; a photodetector 26 for detecting the probe light 10 separated by the light separation section M2; a photodetector 27 for detecting the reference light 12 separated by the light separation section M2; and a concentration calculation section 29 for calculating a concentration of the measuring object S from each transmittance of the probe light 10 and the reference light 12 that are detected by the photodetectors 26 and 27.

Description

本発明は、レーザ光を用いた差分吸収法により物質の濃度を測定する濃度測定装置及び濃度測定方法に関する。   The present invention relates to a concentration measuring apparatus and a concentration measuring method for measuring a concentration of a substance by a differential absorption method using laser light.

二酸化炭素ガスやメタンガス等の測定対象物の濃度を測定する方法の1つとして、レーザ光を用いた差分吸収法が知られている。この方法では、測定対象物で吸収される波長(即ち、オン波長)と測定対象物で吸収されない波長(即ち、オフ波長)の各透過率を基に測定対象物の濃度を算出する。通常は回折格子やエタロン等で構成された波長切替機構を用いて、オン波長とオフ波長の光を交互に測定対象物に照射している。特許文献1乃至特許文献4は、上記の差分吸収法を用いた濃度測定装置を開示している。   As one of methods for measuring the concentration of a measurement object such as carbon dioxide gas or methane gas, a differential absorption method using laser light is known. In this method, the concentration of the measurement object is calculated based on the transmittances of the wavelength absorbed by the measurement object (that is, the on wavelength) and the wavelength that is not absorbed by the measurement object (that is, the off wavelength). Usually, the object to be measured is alternately irradiated with light having an on wavelength and an off wavelength by using a wavelength switching mechanism composed of a diffraction grating, an etalon, or the like. Patent Documents 1 to 4 disclose a concentration measuring device using the differential absorption method.

特開2010−50894号公報JP 2010-50894 A 特開平10−185804号公報Japanese Patent Laid-Open No. 10-185804 特開2011−21996号公報JP 2011-21996 A 特開2001−159604号公報JP 2001-159604 A

上述したように、従来の濃度測定方法では、オン波長の光の照射とオフ波長の光の照射を交互に切り替えており、各光の照射時刻にはズレが生じている。従って、測定対象物の状態の変化が早い場合は、基準となるオフ波長の透過率が各照射時刻で異なっている可能性があり、算出した濃度の信頼性が低下する恐れがある。また、波長切替機構は波長の切り替えを機械的に行っているので構造が複雑であり、各部品に対して高い加工精度や組立精度も要求される。その結果、製造コストが嵩む問題がある。   As described above, in the conventional concentration measurement method, the irradiation of the on-wavelength light and the irradiation of the off-wavelength light are alternately switched, and a deviation occurs in the irradiation time of each light. Therefore, when the state of the measurement object changes quickly, the reference off-wavelength transmittance may be different at each irradiation time, and the reliability of the calculated concentration may be reduced. Further, since the wavelength switching mechanism mechanically switches the wavelength, the structure is complicated, and high processing accuracy and assembly accuracy are required for each component. As a result, there is a problem that the manufacturing cost increases.

このような事情を鑑み、本発明は、測定対象物の状態変化に影響されず、且つ、簡便な構成で当該測定対象物の濃度を精度良く測定できる濃度測定装置及び濃度測定方法の提供を目的とする。   In view of such circumstances, it is an object of the present invention to provide a concentration measuring apparatus and a concentration measuring method that are not affected by a change in the state of the measuring object and that can accurately measure the concentration of the measuring object with a simple configuration. And

本発明の第1の態様は濃度測定装置であって、励起光としてのレーザ光を発生するレーザ光源と、光パラメトリック発振によって前記励起光から、測定対象物に対するオン波長のプローブ光及びオフ波長の参照光を同時に発生するプローブ光発生部と、前記測定対象物を透過した又は前記測定対象物から反射した前記プローブ光及び前記参照光をそれぞれ別の光路に分離する光分離部と、前記光分離部によって分離された前記プローブ光を検出する第1の光検出器と、前記光分離部によって分離された前記参照光を検出する第2の光検出器と、前記第1及び第2の光検出器によって検出された前記プローブ光及び前記参照光の各透過率から前記測定対象物の濃度を算出する濃度算出部とを備えることを要旨とする。   A first aspect of the present invention is a concentration measurement apparatus, which includes a laser light source that generates laser light as excitation light, and an on-wavelength probe light and an off-wavelength of an object to be measured from the excitation light by optical parametric oscillation. A probe light generation unit that simultaneously generates reference light, a light separation unit that separates the probe light and the reference light transmitted through the measurement object or reflected from the measurement object into separate optical paths, and the light separation A first photodetector for detecting the probe light separated by the optical detector, a second photodetector for detecting the reference light separated by the optical separator, and the first and second optical detectors. And a concentration calculation unit that calculates the concentration of the measurement object from the transmittances of the probe light and the reference light detected by a detector.

前記プローブ光発生部は、前記波長変換を行う光学素子として、第2種の位相整合をとる非線形光学結晶を有してもよく、前記光分離部は偏光ビームスプリッタであってもよい。   The probe light generation unit may include a nonlinear optical crystal that performs the second type of phase matching as the optical element that performs the wavelength conversion, and the light separation unit may be a polarization beam splitter.

前記光分離部は、前記プローブ光及び前記参照光の各波長間にカットオフ波長をもつダイクロイックミラーであってもよい。   The light separation unit may be a dichroic mirror having a cutoff wavelength between the wavelengths of the probe light and the reference light.

本発明の第2の態様は濃度測定方法であって、励起光としてのレーザ光を発生し、光パラメトリック発振によって前記励起光から、測定対象物に対するオン波長のプローブ光及びオフ波長の参照光を同時に発生し、前記測定対象物を透過した又は前記測定対象物から反射した前記プローブ光及び前記参照光をそれぞれ別の光路に分離し、前記光分離部によって分離された前記プローブ光及び前記参照光を検出し、検出された前記プローブ光及び前記参照光の各透過率から前記測定対象物の濃度を算出することを要旨とする。   A second aspect of the present invention is a concentration measurement method, which generates laser light as excitation light, and generates on-wavelength probe light and off-wavelength reference light for the measurement object from the excitation light by optical parametric oscillation. The probe light and the reference light, which are generated at the same time, are separated from the probe light and the reference light transmitted through the measurement object or reflected from the measurement object into separate optical paths, and are separated by the light separation unit. And the concentration of the measurement object is calculated from the detected transmittances of the probe light and the reference light.

本発明によれば、測定対象物の状態変化に影響されず、且つ、簡便な構成で当該測定対象物の濃度を精度良く測定できる濃度測定装置及び濃度測定方法を提供できる。   According to the present invention, it is possible to provide a concentration measuring apparatus and a concentration measuring method that can accurately measure the concentration of an object to be measured with a simple configuration without being affected by the state change of the object to be measured.

本発明の第1実施形態に係る濃度測定装置の構成図である。It is a block diagram of the density | concentration measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の一実施形態に係るプローブ光発生部の構成図である。It is a block diagram of the probe light generation part which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプローブ光及び参照光の各波長と、測定対象物の吸収線の波長との関係を示す模式図である。It is a schematic diagram which shows the relationship between each wavelength of the probe light and reference light which concern on one Embodiment of this invention, and the wavelength of the absorption line of a measuring object. 本発明の一実施形態に係る濃度測定方法によって得られる測定結果の一例である。It is an example of the measurement result obtained by the density | concentration measuring method which concerns on one Embodiment of this invention. 本発明の第2実施形態に係る濃度測定装置の構成図である。It is a block diagram of the density | concentration measuring apparatus which concerns on 2nd Embodiment of this invention.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係る濃度測定装置の構成図である。図2は、本実施形態に係るプローブ光発生部の構成図である。図3は、本実施形態に係るプローブ光及び参照光の各波長と、測定対象物の吸収線の波長との関係を示す模式図である。図4は、本実施形態に係る濃度測定方法によって得られる測定結果の一例である。
(First embodiment)
FIG. 1 is a configuration diagram of a concentration measuring apparatus according to the first embodiment of the present invention. FIG. 2 is a configuration diagram of the probe light generator according to the present embodiment. FIG. 3 is a schematic diagram showing the relationship between the wavelengths of the probe light and the reference light according to this embodiment and the wavelength of the absorption line of the measurement object. FIG. 4 is an example of a measurement result obtained by the concentration measurement method according to the present embodiment.

図1に示すように、本実施形態の濃度測定装置は、レーザ光源22と、プローブ光発生部24と、ビームスプリッタM1と、光分離部M2と、4台の光検出器25、26、27、28と、濃度算出部29とを備える。   As shown in FIG. 1, the concentration measuring apparatus according to the present embodiment includes a laser light source 22, a probe light generator 24, a beam splitter M1, a light separator M2, and four photodetectors 25, 26, and 27. , 28 and a density calculation unit 29.

レーザ光源22は、後段のプローブ光発生部24に入力される励起光(ポンプ光)23としてのレーザ光を発生する。レーザ光の波長や発振モード(パルス発振又は連続発振)は、プローブ光発生部24における波長変換の仕様(変換方法、出力波長など)に応じて選定する。本実施形態では、パルスレーザ光源であるNd:YAGレーザを使用する。Nd:YAGレーザは、基本波である1064nmのパルスレーザ光を、数ns〜数十nsのパルス幅、且つ、10Hz〜数kHzの繰り返し周波数で出力する。   The laser light source 22 generates laser light as excitation light (pump light) 23 input to the probe light generation unit 24 at the subsequent stage. The wavelength and oscillation mode (pulse oscillation or continuous oscillation) of the laser light are selected according to the wavelength conversion specifications (conversion method, output wavelength, etc.) in the probe light generator 24. In this embodiment, an Nd: YAG laser that is a pulse laser light source is used. The Nd: YAG laser outputs a fundamental laser beam of 1064 nm with a pulse width of several ns to several tens of ns and a repetition frequency of 10 Hz to several kHz.

プローブ光発生部24は、励起光23の波長変換によって、測定対象物Sに対するオン波長のプローブ光10及びオフ波長の参照光12を発生する。吸収の感度を高める観点からは、図3に示すように、プローブ光10の波長λonが測定対象物Sの吸収線14の波長に一致していることが好ましい。しかしながら、少なくとも吸収線14の波長が、プローブ光10の線幅内に含まれていれば吸収を確認することは可能である。   The probe light generator 24 generates the on-wavelength probe light 10 and the off-wavelength reference light 12 for the measurement object S by wavelength conversion of the excitation light 23. From the viewpoint of increasing the sensitivity of absorption, it is preferable that the wavelength λon of the probe light 10 coincides with the wavelength of the absorption line 14 of the measurement object S, as shown in FIG. However, absorption can be confirmed if at least the wavelength of the absorption line 14 is included in the line width of the probe light 10.

図2に示すように、プローブ光発生部24は、光軸(光路)20に沿って、反射面を対向させるように配置された終端鏡32と出力鏡34とを有する。出力鏡34と終端鏡32との間隔Dは例えば20mmである。更に、終端鏡32と出力鏡34の間の光軸20上には、波長変換を行う光学素子として、非線形光学結晶36が設けられている。後述するように、非線形光学結晶36は、励起光23の光パラメトリック発振によってプローブ光10及び参照光12を発生する。   As shown in FIG. 2, the probe light generator 24 includes a terminal mirror 32 and an output mirror 34 that are arranged so that the reflecting surfaces thereof face each other along the optical axis (optical path) 20. The distance D between the output mirror 34 and the terminal mirror 32 is, for example, 20 mm. Further, on the optical axis 20 between the terminal mirror 32 and the output mirror 34, a nonlinear optical crystal 36 is provided as an optical element for performing wavelength conversion. As will be described later, the nonlinear optical crystal 36 generates the probe light 10 and the reference light 12 by optical parametric oscillation of the excitation light 23.

終端鏡32は、励起光23を透過させ、且つ、非線形光学結晶36によって発生したプローブ光10及び参照光12を反射する波長特性を有する。通常、励起光23の波長はプローブ光10及び参照光12の各波長よりも短いので、終端鏡32は所謂ロングパスフィルター(LPF)である。一方、出力鏡34も、終端鏡32と同じく、プローブ光10及び参照光12を反射する波長特性を有する。従って、終端鏡32及び出力鏡34は所謂光共振器を構成する。終端鏡32及び出力鏡34のプローブ光10及び参照光12に対する反射率は50〜99.5%であり、プローブ光10及び参照光12の一部は最終的に出力鏡34から出射する。   The terminal mirror 32 has a wavelength characteristic that transmits the excitation light 23 and reflects the probe light 10 and the reference light 12 generated by the nonlinear optical crystal 36. Since the wavelength of the excitation light 23 is usually shorter than the wavelengths of the probe light 10 and the reference light 12, the terminal mirror 32 is a so-called long pass filter (LPF). On the other hand, the output mirror 34 also has a wavelength characteristic that reflects the probe light 10 and the reference light 12, similarly to the terminal mirror 32. Accordingly, the terminal mirror 32 and the output mirror 34 constitute a so-called optical resonator. The reflectance of the terminal mirror 32 and the output mirror 34 with respect to the probe light 10 and the reference light 12 is 50 to 99.5%, and part of the probe light 10 and the reference light 12 is finally emitted from the output mirror 34.

非線形光学結晶36は、上述したように、励起光23よる光パラメトリック発振によってプローブ光10及び参照光12を発生する。非線形光学結晶36として、例えばKTP結晶が使用される。プローブ光10の波長(オン波長)をλon、参照光12の波長(オフ波長)をλoff、励起光23の波長をλexとすると、非線形光学結晶36は、一般的な特性である(1/λex)=(1/λon)+(1/λoff)の条件を満たす波長変換を行う。本実施形態では、測定対象物が二酸化炭素ガスであるため、オン波長λon及びオフ波長λoffを、例えば2015nm及び2254nmに設定する。なお、これらオン波長λon及びオフ波長λoffは、励起光23の光軸に対する結晶の光学軸の角度を調整することで適宜変更できる。この角度調整は、例えば、非線形光学結晶36を支持する回転ステージ38によって実行可能である。   As described above, the nonlinear optical crystal 36 generates the probe light 10 and the reference light 12 by optical parametric oscillation by the excitation light 23. As the nonlinear optical crystal 36, for example, a KTP crystal is used. When the wavelength of the probe light 10 (on wavelength) is λon, the wavelength of the reference light 12 (off wavelength) is λoff, and the wavelength of the excitation light 23 is λex, the nonlinear optical crystal 36 has general characteristics (1 / λex ) = (1 / λon) + (1 / λoff) The wavelength conversion that satisfies the condition is performed. In this embodiment, since the measurement object is carbon dioxide gas, the on wavelength λon and the off wavelength λoff are set to, for example, 2015 nm and 2254 nm. The on wavelength λon and the off wavelength λoff can be appropriately changed by adjusting the angle of the optical axis of the crystal with respect to the optical axis of the excitation light 23. This angle adjustment can be performed by, for example, the rotary stage 38 that supports the nonlinear optical crystal 36.

本実施形態の非線形光学結晶36には、第2種の位相整合が得られる結晶(所謂タイプIIの結晶)を用いる。上述のKTP結晶は、この位相整合が得られる結晶である。即ち、非線形光学結晶36から出射したプローブ光10及び参照光12は何れも直線偏光であり、しかも、その偏光方向が互いに直交している。また、非線形光学結晶36におけるプローブ光10及び参照光12の強度比も既知である。   As the nonlinear optical crystal 36 of the present embodiment, a crystal (so-called type II crystal) capable of obtaining the second type of phase matching is used. The above KTP crystal is a crystal that can achieve this phase matching. That is, the probe light 10 and the reference light 12 emitted from the nonlinear optical crystal 36 are both linearly polarized light, and the polarization directions thereof are orthogonal to each other. The intensity ratio of the probe light 10 and the reference light 12 in the nonlinear optical crystal 36 is also known.

ビームスプリッタM1は、出力鏡34から出射したプローブ光10及び参照光12の一部をそれぞれのサンプル光10p、12pとして、後段の光分離部M3に反射すると共に、その残りを透過させる。ビームスプリッタM1の反射率は予め規定されており、後述するように、反射した光の強度を測定することで、ビームスプリッタM1に入射した光の強度を逆算できる。   The beam splitter M1 reflects a part of the probe light 10 and the reference light 12 emitted from the output mirror 34 as the respective sample light 10p and 12p to the subsequent light separation unit M3 and transmits the remainder. The reflectance of the beam splitter M1 is defined in advance, and the intensity of the light incident on the beam splitter M1 can be calculated backward by measuring the intensity of the reflected light, as will be described later.

光分離部M3は、ビームスプリッタM1から反射したプローブ光10のサンプル光10p及び参照光12のサンプル光12pをそれぞれ別の光路に分離する。このような機能をもつ光分離部M3は、例えば、偏光ビームスプリッタである。偏光ビームスプリッタは、誘電多層膜を入射面にもち、入射光の偏光方向に応じて当該入射光の透過または反射を行う。本実施形態では、KTP結晶における第2種の位相整合によって、プローブ光10及び参照光12の偏光方向が互いに直交している。偏光方向は、ビームスプリッタM1の反射によって影響されないので、サンプル光10p、12pの各偏光方向も互いに直交している。従って、サンプル光10p、12pが光分離部M3に入射すると、一方は反射し、他方は透過する。図1の光分離部M3はプローブ光10のサンプル光10pを反射し、参照光12のサンプル光12pを透過させているが、この反対に、プローブ光10を透過させ、参照光12を反射してもよい。   The light separation unit M3 separates the sample light 10p of the probe light 10 and the sample light 12p of the reference light 12 reflected from the beam splitter M1 into separate optical paths. The light separation unit M3 having such a function is, for example, a polarization beam splitter. The polarization beam splitter has a dielectric multilayer film on the incident surface, and transmits or reflects the incident light according to the polarization direction of the incident light. In the present embodiment, the polarization directions of the probe light 10 and the reference light 12 are orthogonal to each other by the second type phase matching in the KTP crystal. Since the polarization direction is not affected by the reflection of the beam splitter M1, the polarization directions of the sample lights 10p and 12p are also orthogonal to each other. Accordingly, when the sample lights 10p and 12p are incident on the light separating portion M3, one of them is reflected and the other is transmitted. The light separation unit M3 in FIG. 1 reflects the sample light 10p of the probe light 10 and transmits the sample light 12p of the reference light 12, but conversely transmits the probe light 10 and reflects the reference light 12. May be.

光分離部M3から分岐した各光路には、光検出器25、26がそれぞれ設けられている。光検出器25は、光分離部M3によって反射したプローブ光10のサンプル光10pを検出し、その強度に比例した電圧の電気信号を検出信号として出力する。一方、光検出器26は、光分離部M3を透過した参照光12のサンプル光12pを検出し、その強度に比例した電圧の電気信号を検出信号として出力する。上述したように、ビームスプリッタM1の反射率は予め規定されている。従って、光検出部25、26で検出したサンプル光10p、12pの各強度から、出力鏡34から出射した直後のプローブ光10及び参照光12の各強度を逆算できる。なお、光検出部25、26は周知の半導体検出器である。   Photodetectors 25 and 26 are provided in the respective optical paths branched from the light separation unit M3. The photodetector 25 detects the sample light 10p of the probe light 10 reflected by the light separation unit M3, and outputs an electrical signal having a voltage proportional to the intensity as a detection signal. On the other hand, the photodetector 26 detects the sample light 12p of the reference light 12 that has passed through the light separation unit M3, and outputs an electric signal having a voltage proportional to the intensity as a detection signal. As described above, the reflectance of the beam splitter M1 is defined in advance. Therefore, the intensities of the probe light 10 and the reference light 12 immediately after being emitted from the output mirror 34 can be calculated backward from the intensities of the sample lights 10p and 12p detected by the light detection units 25 and 26. The light detection units 25 and 26 are well-known semiconductor detectors.

光分離部M2は、測定対象物Sを透過した又は測定対象物Sから反射したプローブ光10及び参照光12をそれぞれ別の光路に分離する。このような機能をもつ光分離部M2は、例えば、偏光ビームスプリッタである。上述したように、入射したプローブ項10及び参照光12のうちの一方を反射し、他方を透過させる。図1の光分離部M2はプローブ光10を反射し、参照光12を透過させているが、この反対に、プローブ光10を透過させ、参照光12を反射してもよい。なお、光分離部M2の前段にはプローブ光10を光検出器27に集光すると共に、参照光12を光検出器28に集光するためのレンズ等の光学系(図示せず)が設けられている。   The light separation unit M2 separates the probe light 10 and the reference light 12 that have passed through the measurement object S or reflected from the measurement object S into separate optical paths. The light separation unit M2 having such a function is, for example, a polarization beam splitter. As described above, one of the incident probe term 10 and the reference light 12 is reflected and the other is transmitted. The light separation unit M2 in FIG. 1 reflects the probe light 10 and transmits the reference light 12. However, on the contrary, the probe light 10 may be transmitted and the reference light 12 may be reflected. An optical system (not shown) such as a lens for condensing the probe light 10 on the light detector 27 and condensing the reference light 12 on the light detector 28 is provided in the front stage of the light separation unit M2. It has been.

光検出器(第1の光検出器)27は、光分離部M2によって反射したプローブ光10を検出し、光検出器(第2の光検出器)28は、光分離部M2を透過した参照光12を検出する。光検出器27及び光検出器28は、光検出器25、26と同じく、周知の半導体検出器であり、検出した光の強度に比例した電圧の電気信号を検出信号として出力する。   The light detector (first light detector) 27 detects the probe light 10 reflected by the light separation unit M2, and the light detector (second light detector) 28 passes through the light separation unit M2. The light 12 is detected. The photodetector 27 and the photodetector 28 are well-known semiconductor detectors like the photodetectors 25 and 26, and output an electric signal having a voltage proportional to the detected light intensity as a detection signal.

濃度算出部29は、濃度測定装置の全体を制御する制御部(図示せず)の一部として構成され、各光検出器25〜28から出力されたプローブ光10、参照光12、及びこれらのサンプル光10p、12pの各検出信号を時間分解しながら受信する。プローブ光10及び参照光12の照射は、通常、複数回行われる。濃度算出部29は、照射タイミングに同期して光検出器25、26、27、28からの検出信号を受信し、これらの信号を検出信号毎に積算する。図4はその測定結果の一例であり、光検出器25又は光検出器26によって検出されたプローブ光10のサンプル光10p又は参照光12のサンプル光12pの検出信号のピークをP1、光検出器27によって検出されたプローブ光10の検出信号のピークをP2、光検出器28によって検出された参照光12の検出信号のピークをP3で示す。この図に示すように、時刻t1に光検出器25または光検出器26からの検出信号が得られるとすると、光検出器27、28からの各信号は測定対象物Sを経由した光路差によって、時刻t1よりも遅い時刻t2に受信される。時刻t1と時刻t2の時間差は、濃度測定装置と測定対象物S間の往復距離に比例する。従って、測定対象物Sが濃度測定装置から非常に遠方にあるほど、サンプル光10p、12pからプローブ光10及び参照光12を分離することが容易になる。   The concentration calculation unit 29 is configured as a part of a control unit (not shown) that controls the entire concentration measuring device, and the probe light 10 and the reference light 12 output from the respective light detectors 25 to 28, and these The detection signals of the sample lights 10p and 12p are received while being time-resolved. Irradiation of the probe light 10 and the reference light 12 is usually performed a plurality of times. The concentration calculation unit 29 receives detection signals from the photodetectors 25, 26, 27, and 28 in synchronization with the irradiation timing, and integrates these signals for each detection signal. FIG. 4 shows an example of the measurement result. The peak of the detection signal of the sample light 10p of the probe light 10 or the sample light 12p of the reference light 12 detected by the light detector 25 or the light detector 26 is P1, and the light detector The peak of the detection signal of the probe light 10 detected by 27 is indicated by P2, and the peak of the detection signal of the reference light 12 detected by the photodetector 28 is indicated by P3. As shown in this figure, if a detection signal from the light detector 25 or the light detector 26 is obtained at time t1, each signal from the light detectors 27 and 28 is caused by an optical path difference passing through the measurement object S. , Received at time t2 later than time t1. The time difference between time t1 and time t2 is proportional to the reciprocating distance between the concentration measuring device and the measuring object S. Therefore, the farther the measuring object S is from the concentration measuring device, the easier it is to separate the probe light 10 and the reference light 12 from the sample light 10p, 12p.

濃度算出部29は、これらの信号からプローブ光10及び参照光12の各透過率を算出し、これらの透過率から測定対象物Sの濃度を算出する。具体的には、濃度算出部29は、光検出器26と光検出器28によって得られた参照光12とそのサンプル光12pの強度比から、測定対象物Sにおける参照光12の透過率(第1の透過率)を算出する。さらに、光検出器25と光検出器27によって得られたプローブ光10とそのサンプル光10pの強度比から、測定対象物Sにおけるプローブ光10の透過率(第2の透過率)を算出する。第2の透過率は第1の透過率に、測定対象物Sへの吸収による透過率(第3の透過率)を乗じたものであるので、濃度算出部29は、第1の透過率を用いて、第2の透過率から第3の透過率を逆算し、第3の透過率から測定対象物Sの濃度を算出する。   The concentration calculation unit 29 calculates the transmittances of the probe light 10 and the reference light 12 from these signals, and calculates the concentration of the measurement object S from these transmittances. Specifically, the concentration calculator 29 calculates the transmittance of the reference light 12 in the measuring object S (the first transmittance) based on the intensity ratio between the reference light 12 obtained by the light detector 26 and the light detector 28 and the sample light 12p. 1). Further, the transmittance (second transmittance) of the probe light 10 in the measuring object S is calculated from the intensity ratio between the probe light 10 obtained by the light detector 25 and the light detector 27 and the sample light 10p. Since the second transmittance is obtained by multiplying the first transmittance by the transmittance (third transmittance) due to the absorption to the measuring object S, the density calculating unit 29 calculates the first transmittance. The third transmittance is calculated backward from the second transmittance, and the concentration of the measuring object S is calculated from the third transmittance.

このように本実施形態の濃度測定では、測定対象物Sにオン波長のプローブ光と、オフ波長の参照光とを同時に照射する。従って、従来のようにプローブ光の照射と参照光の照射を切り替える機構が不要になる。従って、装置の構成が簡便なものになる。また、上記2種類の光を同時に照射しているので、測定対象物の状態変化に伴った濃度の誤差が発生しない。すなわち、測定対象物の濃度を精度良く測定できる。   Thus, in the concentration measurement of the present embodiment, the measurement object S is irradiated with the on-wavelength probe light and the off-wavelength reference light simultaneously. Therefore, a mechanism for switching between irradiation of the probe light and irradiation of the reference light as in the prior art becomes unnecessary. Therefore, the configuration of the apparatus becomes simple. In addition, since the two types of light are simultaneously irradiated, a density error accompanying a change in the state of the measurement object does not occur. That is, the concentration of the measurement object can be measured with high accuracy.

なお、本実施形態の光分離部M2はダイクロイックミラーでもよい。このダイクロイックミラーは、プローブ光10及び参照光12の各波長λon、λoff間にカットオフ波長をもつ。ダイクロイックミラーはプローブ光10及び参照光12のうちの一方を反射し、他方を透過させる。光検出器27はこれらの光の何れか一方を検出し、光検出器28はその他方を検出する。従って、偏光ビームスプリッタを使用した場合と同じく、図4に示すような測定結果が得られる。さらに、プローブ光10及び参照光12の分離にダイクロイックミラーを用いる場合、非線形光学結晶36で発生するプローブ光10及び参照光12の各偏光状態はこれらの分離に無関係になる。従って、非線形光学結晶36は、第2種の位相整合が得られる結晶に限られず、BBOなどの第1種の位相整合が得られる結晶を用いることができる。   Note that the light separation unit M2 of the present embodiment may be a dichroic mirror. This dichroic mirror has a cutoff wavelength between the wavelengths λon and λoff of the probe light 10 and the reference light 12. The dichroic mirror reflects one of the probe light 10 and the reference light 12 and transmits the other. The photodetector 27 detects one of these lights, and the photodetector 28 detects the other. Accordingly, the measurement result as shown in FIG. 4 is obtained as in the case of using the polarization beam splitter. Further, when a dichroic mirror is used to separate the probe light 10 and the reference light 12, the polarization states of the probe light 10 and the reference light 12 generated in the nonlinear optical crystal 36 are irrelevant to the separation. Therefore, the nonlinear optical crystal 36 is not limited to a crystal that can obtain the second type of phase matching, and a crystal that can obtain the first type of phase matching such as BBO can be used.

(第2実施形態)
以下、本発明の第2実施形態を図5に基づいて詳細に説明する。なお、図5において、図1乃至図4と共通する部分には同一の符号を付し、重複した説明を省略する。図5は、第2実施形態に係る濃度測定装置の構成図である。
(Second Embodiment)
Hereinafter, the second embodiment of the present invention will be described in detail with reference to FIG. In FIG. 5, the same reference numerals are given to portions common to those in FIGS. 1 to 4, and redundant description is omitted. FIG. 5 is a configuration diagram of the concentration measuring apparatus according to the second embodiment.

本実施形態の濃度測定装置では、ビームスプリッタM1によって取り出されたサンプル光10p、12pを、測定対象物Sを通過したプローブ光10及び参照光12の光路に戻している。つまり、本実施形態では、第1実施形態の光検出器25、26が省略され、光検出器27がプローブ光10の検出だけでなく、そのサンプル光10pの検出も行う。同様に、光検出器28は、参照光12とそのサンプル光12pを検出する。   In the concentration measurement apparatus of the present embodiment, the sample lights 10p and 12p extracted by the beam splitter M1 are returned to the optical paths of the probe light 10 and the reference light 12 that have passed through the measurement object S. That is, in the present embodiment, the photodetectors 25 and 26 of the first embodiment are omitted, and the photodetector 27 not only detects the probe light 10 but also detects the sample light 10p. Similarly, the photodetector 28 detects the reference light 12 and its sample light 12p.

従って、測定対象物Sからのプローブ光10及び参照光12を集光する光学系(図示せず)と、光分離部M2との間には、光路合流部M4が設けられる。光路合流部M4は、例えばハーフミラーであり、ビームスプリッタM1によって取り出されたサンプル光10p、12pの光路と、測定対象物Sから到達したプローブ光10及び参照光12の光路を合流させ、これらの光を光分離部M2に導くものである。   Therefore, an optical path merging portion M4 is provided between the optical system (not shown) that collects the probe light 10 and the reference light 12 from the measurement object S and the light separation portion M2. The optical path merging unit M4 is, for example, a half mirror, and combines the optical paths of the sample lights 10p and 12p extracted by the beam splitter M1 with the optical paths of the probe light 10 and the reference light 12 that have arrived from the measurement object S. The light is guided to the light separation unit M2.

上記以外の構成については、第1実施形態と同様であるため、詳細な説明は割愛する。   Since the configuration other than the above is the same as that of the first embodiment, a detailed description thereof is omitted.

第2実施形態の濃度測定装置は、同一の光から派生した2つの光を同一の検出器が検出する。従って、使用する光検出器の個数が削減できると共に、濃度算出における検出器の個体差(検出効率の差など)による影響を低減できる。また、本実施形態でも、第1実施形態と同じ効果が得られる。例えば、本実施形態においても、測定対象物Sにオン波長のプローブ光と、オフ波長の参照光とが同時に照射され、従来のようにプローブ光の照射と参照光の照射を切り替える機構が不要になる。従って、装置の構成が簡便なものになる。また、上記2種類の光を同時に照射しているので、測定対象物の状態変化に伴った濃度の誤差が発生しない。すなわち、測定対象物の濃度を精度良く測定できる。   In the concentration measurement apparatus of the second embodiment, the same detector detects two lights derived from the same light. Therefore, the number of photodetectors to be used can be reduced, and the influence of individual detector differences (detection efficiency differences, etc.) in concentration calculation can be reduced. Also in this embodiment, the same effect as in the first embodiment can be obtained. For example, also in the present embodiment, the measuring object S is simultaneously irradiated with the on-wavelength probe light and the off-wavelength reference light, and a conventional mechanism for switching between the probe light irradiation and the reference light irradiation is unnecessary. Become. Therefore, the configuration of the apparatus becomes simple. In addition, since the two types of light are simultaneously irradiated, a density error accompanying a change in the state of the measurement object does not occur. That is, the concentration of the measurement object can be measured with high accuracy.

本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   The present invention is not limited to the above-described embodiment, but is shown by the description of the scope of claims, and further includes all modifications within the meaning and scope equivalent to the description of the scope of claims.

10…プローブ光、10p…プローブ光のサンプル光、12…参照光、12p…参照光のサンプル光、14…吸収線、20…光軸、22…レーザ光源、23…励起光、24…プローブ光発生部、25,26,27,28…光検出器、29…濃度算出部、32…終端鏡、34…出力鏡、36…非線形光学結晶、38…回転ステージ DESCRIPTION OF SYMBOLS 10 ... Probe light, 10p ... Sample light of probe light, 12 ... Reference light, 12p ... Sample light of reference light, 14 ... Absorption line, 20 ... Optical axis, 22 ... Laser light source, 23 ... Excitation light, 24 ... Probe light Generation unit, 25, 26, 27, 28 ... photodetector, 29 ... concentration calculation unit, 32 ... terminal mirror, 34 ... output mirror, 36 ... nonlinear optical crystal, 38 ... rotation stage

Claims (4)

励起光としてのレーザ光を発生するレーザ光源と、
光パラメトリック発振によって前記励起光から、測定対象物に対するオン波長のプローブ光及びオフ波長の参照光を同時に発生するプローブ光発生部と、
前記測定対象物を透過した又は前記測定対象物から反射した前記プローブ光及び前記参照光をそれぞれ別の光路に分離する光分離部と、
前記光分離部によって分離された前記プローブ光を検出する第1の光検出器と、
前記光分離部によって分離された前記参照光を検出する第2の光検出器と、
前記第1及び第2の光検出器によって検出された前記プローブ光及び前記参照光の各透過率から前記測定対象物の濃度を算出する濃度算出部と
を備えることを特徴とする濃度測定装置。
A laser light source that generates laser light as excitation light;
A probe light generator for simultaneously generating on-wavelength probe light and off-wavelength reference light for the measurement object from the excitation light by optical parametric oscillation;
A light separating unit that separates the probe light and the reference light that have passed through the measurement object or reflected from the measurement object into separate optical paths;
A first photodetector for detecting the probe light separated by the light separation unit;
A second photodetector for detecting the reference light separated by the light separation unit;
A concentration measurement apparatus comprising: a concentration calculation unit that calculates a concentration of the measurement object from each transmittance of the probe light and the reference light detected by the first and second photodetectors.
前記プローブ光発生部は、前記波長変換を行う光学素子として、第2種の位相整合が得られる非線形光学結晶を有し、
前記光分離部は偏光ビームスプリッタであることを特徴とする請求項1に記載の濃度測定装置。
The probe light generation unit has a nonlinear optical crystal capable of obtaining the second type of phase matching as an optical element for performing the wavelength conversion,
The concentration measuring apparatus according to claim 1, wherein the light separation unit is a polarization beam splitter.
前記光分離部は、前記プローブ光及び前記参照光の各波長間にカットオフ波長をもつダイクロイックミラーであることを特徴とする請求項1に記載の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein the light separation unit is a dichroic mirror having a cutoff wavelength between wavelengths of the probe light and the reference light. 励起光としてのレーザ光を発生し、
光パラメトリック発振によって前記励起光から、測定対象物に対するオン波長のプローブ光及びオフ波長の参照光を同時に発生し、
前記測定対象物を透過した又は前記測定対象物から反射した前記プローブ光及び前記参照光をそれぞれ別の光路に分離し、
前記光分離部によって分離された前記プローブ光及び前記参照光を検出し、
検出された前記プローブ光及び前記参照光の各透過率から前記測定対象物の濃度を算出する
ことを特徴とする濃度測定方法。
Generates laser light as excitation light,
An on-wavelength probe light and an off-wavelength reference light for the measurement object are simultaneously generated from the excitation light by optical parametric oscillation,
Separating the probe light and the reference light transmitted through the measurement object or reflected from the measurement object into separate optical paths;
Detecting the probe light and the reference light separated by the light separation unit;
A concentration measurement method, wherein the concentration of the measurement object is calculated from each detected transmittance of the probe light and the reference light.
JP2012181594A 2012-08-20 2012-08-20 Concentration measuring device and concentration measuring method Active JP6089493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181594A JP6089493B2 (en) 2012-08-20 2012-08-20 Concentration measuring device and concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181594A JP6089493B2 (en) 2012-08-20 2012-08-20 Concentration measuring device and concentration measuring method

Publications (2)

Publication Number Publication Date
JP2014038063A true JP2014038063A (en) 2014-02-27
JP6089493B2 JP6089493B2 (en) 2017-03-08

Family

ID=50286311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181594A Active JP6089493B2 (en) 2012-08-20 2012-08-20 Concentration measuring device and concentration measuring method

Country Status (1)

Country Link
JP (1) JP6089493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873910B1 (en) * 2018-01-30 2018-07-04 한국건설기술연구원 Light Detection and Ranging(LIDAR) for Detecting Gas Distribution And Unmanned Aerial Vehicle Having the Same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055698A (en) * 1990-08-15 1993-01-14 Hitachi Ltd Light measuring instrument and optically measuring method
JPH09146136A (en) * 1995-11-20 1997-06-06 Ishikawajima Harima Heavy Ind Co Ltd Laser beam source for simultaneous oscillation of multiple wavelengths and component measuring instrument for vegetable and fruit by using the same
US20040095579A1 (en) * 2002-11-19 2004-05-20 Bisson Scott E. Tunable light source for use in photoacoustic spectrometers
JP2005077606A (en) * 2003-08-29 2005-03-24 Toshiba Corp Laser oscillation device and air pollutant monitoring device
US20070064748A1 (en) * 2001-09-20 2007-03-22 Sergey Mirov Mid-IR laser instrument for analyzing a gaseous sample and method for using the same
JP2008026190A (en) * 2006-07-21 2008-02-07 Univ Of Fukui Gas detector
JP2010286854A (en) * 2010-08-12 2010-12-24 Hamamatsu Photonics Kk Coherent light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055698A (en) * 1990-08-15 1993-01-14 Hitachi Ltd Light measuring instrument and optically measuring method
JPH09146136A (en) * 1995-11-20 1997-06-06 Ishikawajima Harima Heavy Ind Co Ltd Laser beam source for simultaneous oscillation of multiple wavelengths and component measuring instrument for vegetable and fruit by using the same
US20070064748A1 (en) * 2001-09-20 2007-03-22 Sergey Mirov Mid-IR laser instrument for analyzing a gaseous sample and method for using the same
US20040095579A1 (en) * 2002-11-19 2004-05-20 Bisson Scott E. Tunable light source for use in photoacoustic spectrometers
JP2005077606A (en) * 2003-08-29 2005-03-24 Toshiba Corp Laser oscillation device and air pollutant monitoring device
JP2008026190A (en) * 2006-07-21 2008-02-07 Univ Of Fukui Gas detector
JP2010286854A (en) * 2010-08-12 2010-12-24 Hamamatsu Photonics Kk Coherent light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873910B1 (en) * 2018-01-30 2018-07-04 한국건설기술연구원 Light Detection and Ranging(LIDAR) for Detecting Gas Distribution And Unmanned Aerial Vehicle Having the Same

Also Published As

Publication number Publication date
JP6089493B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
US8237514B2 (en) Quantum interference device, atomic oscillator, and magnetic sensor
JP2013062484A (en) Laser device
TW201213924A (en) Displacement detecting device
US10811145B2 (en) Plasma diagnosis system using multiple-path Thomson scattering
US20060279741A1 (en) Optical characteristic measuring apparatus
EP3401919B1 (en) Plasma diagnosis system using multiple path thomson scattering
JPH0545230A (en) Method and device for measuring width of optical pulse
US20080123099A1 (en) Photothermal conversion measuring instrument
JP2006284315A (en) Device for deriving wavelength, wave-meter equipped with the same, method of deriving wavelength, program and recording medium
WO2016170643A1 (en) Laser device and measuring device
CN111239100A (en) Gas detection device in transformer oil
JP6089493B2 (en) Concentration measuring device and concentration measuring method
US20160147016A1 (en) Noise reduction device and detection apparatus including same
JP5600374B2 (en) Terahertz spectrometer
JP2007101370A (en) Terahertz spectral device
JP6144881B2 (en) Concentration measuring device and concentration measuring method
JP2020122904A (en) Plasma analysis system
EP3401920B1 (en) Plasma diagnostic system using multiple reciprocating path thomson scattering
JP2012132711A (en) Interpulse phase shift measurement device, offset frequency controller, interpulse phase shift measurement method, and offset frequency control method
JP7110686B2 (en) Concentration measuring device
US10132681B2 (en) Noise reduction apparatus and detection apparatus including the same
JP2006269631A (en) Laser apparatus having multi-wavelength measurement means
JP5962327B2 (en) Concentration measuring device and concentration measuring method
JP5665042B2 (en) Reference signal generator and reference signal generation method using phase-preserving Ramsey method
JP6414257B2 (en) Concentration measuring device and concentration measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6089493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250