JP2014037606A - Cobalt extractant and cobalt extraction method - Google Patents

Cobalt extractant and cobalt extraction method Download PDF

Info

Publication number
JP2014037606A
JP2014037606A JP2012181883A JP2012181883A JP2014037606A JP 2014037606 A JP2014037606 A JP 2014037606A JP 2012181883 A JP2012181883 A JP 2012181883A JP 2012181883 A JP2012181883 A JP 2012181883A JP 2014037606 A JP2014037606 A JP 2014037606A
Authority
JP
Japan
Prior art keywords
cobalt
extractant
manganese
amine
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012181883A
Other languages
Japanese (ja)
Other versions
JP5882164B2 (en
Inventor
Masahiro Goto
雅宏 後藤
Fukiko Kubota
富生子 久保田
Yuzo Baba
雄三 馬場
Masatoshi Takano
雅俊 高野
Keichi Ozaki
佳智 尾崎
Satoshi Asano
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Kyushu University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Kyushu University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012181883A priority Critical patent/JP5882164B2/en
Publication of JP2014037606A publication Critical patent/JP2014037606A/en
Application granted granted Critical
Publication of JP5882164B2 publication Critical patent/JP5882164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cobalt extractant that enables selective extraction of cobalt from an acidic solution containing manganese at a high concentration, and to provide a method for cobalt extraction with the use of the cobalt extractant.SOLUTION: The cobalt extractant in this invention contains an amine-based extractant and an oxime-based extractant. The amine-based extractant is preferably a primary amine-based extractant, and the primary amine-based extractant preferably contains tertiary butyl amine and/or octyl amine. The cobalt extractant in this invention is suitable for an acidic solution containing manganese and cobalt. More preferably, the pH of the acidic solution should be adjusted to a range of 4.0-6.0 prior to the solvent extraction with the cobalt extractant in this invention.

Description

本発明は、コバルト抽出剤及びコバルト抽出方法に関する。   The present invention relates to a cobalt extractant and a cobalt extraction method.

コバルトは、二次電池の正極材のほか、航空機のジェットエンジン等に使用されるスーパーアロイ(高強度耐熱合金)等、産業で様々な用途として用いられている。近年、省エネルギーが強く推進されており、自動車業界においては、従来のガソリン車から、コバルトを使用した二次電池を搭載したハイブリッド車や電気自動車への移行が急速に進んでいる。   Cobalt is used for various applications in industries such as superalloys (high strength heat-resistant alloys) used in aircraft jet engines and the like, in addition to positive electrode materials for secondary batteries. In recent years, energy conservation has been strongly promoted, and in the automobile industry, a shift from a conventional gasoline vehicle to a hybrid vehicle or an electric vehicle equipped with a secondary battery using cobalt is rapidly progressing.

上記の工業製品は、耐用年数が過ぎると、使用済み製品として大量に廃棄物になることが予想される。しかし、コバルトは希少資源であり、そのほとんどを輸入に頼っていることから、コバルトを使用済み製品からリサイクルせずに廃棄物にすることは資源節約や資源セキュリティーの観点から好ましくない。最近ではこのような使用済み製品からコバルトを効果的に回収する方法を確立することが強く望まれている。   The above-mentioned industrial products are expected to become a large amount of waste as used products after their useful lives have passed. However, since cobalt is a scarce resource and most of it relies on imports, it is not preferable from the viewpoint of resource saving and resource security to make cobalt a waste product without recycling it from used products. Recently, it has been strongly desired to establish a method for effectively recovering cobalt from such used products.

ところで、上記の二次電池として、ニッケル水素電池やリチウムイオン電池等が挙げられ、これらの正極剤には、希少金属であるコバルトの他にマンガンが使用されている。そして、リチウムイオン電池の正極材においては、高価なコバルトに替わって安価なマンガンの比率を高くする傾向にある。最近では使用済み電池から有価金属の回収が試みられており、回収法の一つとして使用済み電池を炉に投入して溶解させ、メタルとスラグに分離してメタルを回収する乾式法がある。しかし、この方法ではマンガンはスラグに移行するため、コバルトのみしか回収できない。   By the way, as said secondary battery, a nickel metal hydride battery, a lithium ion battery, etc. are mentioned, Manganese other than cobalt which is a rare metal is used for these positive electrode agents. And in the positive electrode material of a lithium ion battery, it tends to increase the ratio of inexpensive manganese instead of expensive cobalt. Recently, recovery of valuable metals from used batteries has been attempted. As one of the recovery methods, there is a dry method in which used batteries are put into a furnace and dissolved, and separated into metal and slag to recover the metal. However, in this method, since manganese is transferred to slag, only cobalt can be recovered.

その他、使用済み電池を酸に溶解して沈澱法、溶媒抽出法、電解採取等の分離方法を用いて金属を回収する湿式法も知られている。例えば、沈澱法では、コバルトとマンガンを含む溶液のpHを調整し、硫化剤を添加してコバルトの硫化澱物を得る方法や酸化剤を添加することでマンガンの酸化物澱物を得る方法が知られている(特許文献1参照)。しかし、この方法では、共沈が発生する等の課題があり、コバルトとマンガンとを完全に分離することは難しい。   In addition, a wet method is also known in which a used battery is dissolved in an acid, and a metal is recovered using a separation method such as a precipitation method, a solvent extraction method, or electrolytic collection. For example, in the precipitation method, there are a method of adjusting the pH of a solution containing cobalt and manganese, a method of obtaining a cobalt sulfide starch by adding a sulfurizing agent, and a method of obtaining a manganese oxide starch by adding an oxidizing agent. It is known (see Patent Document 1). However, this method has problems such as coprecipitation, and it is difficult to completely separate cobalt and manganese.

また、電解採取法によってコバルトをメタルとして回収しようとした場合、高濃度のマンガンが存在する系では陽極表面にマンガン酸化物が析出し、陽極の劣化が促進されることが知られている。また、特有の着色した微細なマンガン酸化物が電解液中に浮遊し、電解採取で使用する濾布の目詰まりや、マンガン酸化物によるコバルトメタルの汚染を生じる等、安定した操業が難しい。   Further, it is known that when cobalt is recovered as a metal by electrolytic collection, manganese oxide is deposited on the anode surface in a system in which a high concentration of manganese is present, and the deterioration of the anode is promoted. In addition, the specific colored fine manganese oxide floats in the electrolytic solution, and the filter cloth used for electrolytic collection is clogged, and the cobalt metal is contaminated with the manganese oxide, so that stable operation is difficult.

また、溶媒抽出法を用いてコバルトを回収しようとした場合、酸性抽出剤が広く用いられている。しかし、前述したように、最近ではリチウムイオン電池の正極剤に多くのマンガンが使用されていることから、電池の溶解液は高濃度のマンガンが存在し、このような系からコバルトを選択的かつ効果的に抽出する効果的な抽出剤は無い状況である。   Moreover, when trying to collect cobalt using a solvent extraction method, an acidic extractant is widely used. However, as described above, since a large amount of manganese is recently used in the positive electrode of lithium ion batteries, the battery solution contains a high concentration of manganese. There is no effective extractant to extract effectively.

ところで、2種類以上の抽出剤を混合して用いる場合、1種類の抽出剤を単独で用いる場合とは抽出挙動が変わることがある。このことを協同効果(共同効果ともいう)と呼んでいる。協同効果として、2種類以上の抽出剤を混合して用いることで、1種類の抽出剤を単独で用いる場合に比べて高収率で無電解ニッケル廃液からニッケルを回収できることが提案されている(特許文献2参照)。特許文献2に記載の発明によると、1種類の抽出剤を単独で用いる場合はニッケルをほとんど抽出できないにもかかわらず、2種類以上の抽出剤を混合して用いることで、pH調整を行うことなく、1回のバッチ抽出で98〜99%のニッケルを回収できる。   By the way, when two or more kinds of extractants are mixed and used, the extraction behavior may be different from the case of using one kind of extractant alone. This is called a cooperative effect (also called a joint effect). As a cooperative effect, it has been proposed that two or more kinds of extractants can be mixed and used to recover nickel from electroless nickel waste liquor in a higher yield than when one kind of extractant is used alone ( Patent Document 2). According to the invention described in Patent Document 2, when one type of extractant is used alone, the pH can be adjusted by mixing and using two or more types of extractants even though nickel can hardly be extracted. In addition, 98 to 99% of nickel can be recovered by one batch extraction.

また、カルボン酸系の抽出剤と、オキシム系の抽出剤とを混合し、コバルト、マンガン、カルシウム及びマグネシウムの混合溶液からコバルト及びマンガンを抽出することが提案されている(特許文献3参照)。   It has also been proposed to extract a cobalt and manganese from a mixed solution of cobalt, manganese, calcium and magnesium by mixing a carboxylic acid-based extractant and an oxime-based extractant (see Patent Document 3).

特開2000−234130号公報JP 2000-234130 A 特開2011−52250号公報JP 2011-52250 A 米国特許出願公開第2008−0038168号明細書US Patent Application Publication No. 2008-0038168

しかしながら、従来の溶媒抽出法では、コバルト、マンガン、カルシウム及びマグネシウムの混合溶液からコバルト及びマンガンを抽出できるにとどまり、コバルト及びマンガンの混合物からマンガンだけを選択的に抽出することは難しい。使用済み電池のリサイクルの他、現在コバルトを生産するために行われているコバルト製錬では原料がニッケル酸化鉱等のニッケル鉱石であるが、ニッケル酸化鉱にはコバルトに比してマンガンの比率が高く、その存在比率はコバルトの5〜10倍程度である。そのため、コバルトを製錬するにあたり、コバルトとマンガンとの混合物からコバルトを選択的に抽出することは大きな課題となっている。   However, conventional solvent extraction methods can only extract cobalt and manganese from a mixed solution of cobalt, manganese, calcium and magnesium, and it is difficult to selectively extract only manganese from a mixture of cobalt and manganese. In addition to recycling used batteries, cobalt smelting currently used to produce cobalt is made of nickel ore such as nickel oxide ore, but nickel oxide ore has a manganese ratio compared to cobalt. The existence ratio is about 5 to 10 times that of cobalt. Therefore, in refining cobalt, it is a big subject to selectively extract cobalt from a mixture of cobalt and manganese.

本発明は、マンガンを高濃度に含む酸性溶液からコバルトを選択的に抽出できるコバルト抽出剤及びこのコバルト抽出剤を用いたコバルト抽出方法を提供することを目的とする。   An object of the present invention is to provide a cobalt extractant capable of selectively extracting cobalt from an acidic solution containing manganese at a high concentration, and a cobalt extraction method using the cobalt extractant.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、アミン系抽出剤とオキシム系抽出剤との混合物を用いることで上記の目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by using a mixture of an amine-based extractant and an oxime-based extractant, and to complete the present invention. It came.

具体的には、本発明では、以下のようなものを提供する。   Specifically, the present invention provides the following.

(1)本発明は、アミン系抽出剤とオキシム系抽出剤とを含有するコバルト抽出剤である。   (1) The present invention is a cobalt extractant containing an amine extractant and an oxime extractant.

(2)また、本発明は、前記アミン系抽出剤が1級アミン系抽出剤である、(1)に記載のコバルト抽出剤である。   (2) Moreover, this invention is a cobalt extractant as described in (1) whose said amine extractant is a primary amine extractant.

(3)また、本発明は、前記1級アミン系抽出剤がターシャルブチルアミン及び/又はオクチルアミンを含有する、(2)に記載のコバルト抽出剤である。   (3) Moreover, this invention is a cobalt extractant as described in (2) in which the said primary amine type extractant contains tertiary butylamine and / or octylamine.

(4)また、本発明は、マンガン及びコバルトを含有する酸性溶液を、(1)から(3)のいずれかに記載のコバルト抽出剤による溶媒抽出に付し、前記酸性溶液から前記コバルトを抽出するコバルト抽出方法である。   (4) Moreover, this invention attaches | subjects the acidic solution containing manganese and cobalt to the solvent extraction by the cobalt extractant in any one of (1) to (3), and extracts the said cobalt from the said acidic solution This is a cobalt extraction method.

(5)また、本発明は、前記酸性溶液のpHを4.0以上、6.0以下の範囲に調整した後に前記酸性溶液を前記溶媒抽出に付す、(4)に記載のコバルト抽出方法である。   (5) Further, the present invention provides the cobalt extraction method according to (4), wherein the acidic solution is subjected to the solvent extraction after adjusting the pH of the acidic solution to a range of 4.0 or more and 6.0 or less. is there.

本発明によって、高濃度のマンガンを含む溶液からコバルトを選択的かつ工業的に分離するのに適した抽出剤及び操業方法を得ることができる。   According to the present invention, an extractant and an operation method suitable for selectively and industrially separating cobalt from a solution containing a high concentration of manganese can be obtained.

コバルト及びマンガンを含み、アミン系抽出剤がターシャルブチルアミンであるコバルト抽出剤AをpHが異なる種々の酸性溶液に加えたときのpHとコバルト抽出率との関係を示す。The relationship between pH and cobalt extraction rate when cobalt extractant A containing cobalt and manganese and whose amine-based extractant is tertiary butylamine is added to various acidic solutions having different pHs is shown. コバルト及びマンガンを含み、pHが異なる種々の酸性溶液に上記コバルト抽出剤Aを加えたときのpHと分離係数との関係を示す。The relationship between pH and separation factor when the cobalt extractant A is added to various acidic solutions containing cobalt and manganese and having different pHs is shown. コバルト及びマンガンを含み、アミン系抽出剤がモノオクチルアミンであるコバルト抽出剤BをpHが異なる種々の酸性溶液に加えたときのpHとコバルト抽出率との関係を示す。The relationship between pH and cobalt extraction rate when cobalt extractant B containing cobalt and manganese and whose amine extractant is monooctylamine is added to various acidic solutions having different pHs is shown. コバルト及びマンガンを含み、pHが異なる種々の酸性溶液に上記コバルト抽出剤Bを加えたときのpHと分離係数との関係を示す。The relationship between pH and a separation factor is shown when the cobalt extractant B is added to various acidic solutions containing cobalt and manganese and having different pHs.

以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. Can do.

<コバルト抽出剤>
本発明におけるコバルト抽出剤は、アミン系抽出剤とオキシム系抽出剤との混合物である。アミン系抽出剤は官能基が1級アミンであれば、どのような構造のものでも構わない。具体的には、ターシャルブチルアミンやモノオクチルアミンのほか、PRIMENE(登録商標)JM−T型(ダウケミカル社製)等が挙げられる。これらの1級アミンは単独で用いてもよいし、2種類以上を混合して用いてもよい。
<Cobalt extractant>
The cobalt extractant in the present invention is a mixture of an amine extractant and an oxime extractant. The amine extractant may have any structure as long as the functional group is a primary amine. Specifically, in addition to tertiary butylamine and monooctylamine, PRIMENE (registered trademark) JM-T type (manufactured by Dow Chemical Company) and the like can be mentioned. These primary amines may be used alone or in combination of two or more.

オキシム系抽出剤は、官能基にオキシムを持つものであればケトキシム、アルドキシムなどの形態は問わず、どのような構造であってもよい。市販品として、ケトキシムである5,8−ジエチル−7−ヒドロキシ−6−ドデカンオキシム(商品名:LIX63,コグニス社製)等が知られている。   The oxime-based extractant may have any structure regardless of the form of ketoxime, aldoxime, etc., as long as it has an oxime in the functional group. As a commercially available product, ketoxime 5,8-diethyl-7-hydroxy-6-dodecane oxime (trade name: LIX63, manufactured by Cognis) is known.

アミン系抽出剤とオキシム系抽出剤とのモル比は、20:80〜80:20であればよいが、工業生産としての実用性が高まる点で40:60〜60:40であることが好ましい。また、高濃度のマンガンを含む溶液からコバルトだけをより選択的に抽出できる点で、50:50であることがより好ましい。   The molar ratio of the amine-based extractant to the oxime-based extractant may be 20:80 to 80:20, but is preferably 40:60 to 60:40 in terms of increasing practicality as industrial production. . Moreover, it is more preferable that it is 50:50 at the point which can extract only cobalt from the solution containing a high concentration manganese more selectively.

また、通常、抽出剤は粘度が高く、そのまま溶媒抽出に使用した場合、水相との相分離性が悪くなるなど操業面への悪影響がある。粘度を下げるため、抽出剤を希釈剤で希釈することが一般的に行われる。希釈剤は、抽出剤と、有価金属であるコバルトの錯体とを溶解できるものであればどのようなものであってもよく、例えば、クロロホルム、ジクロロメタン等の塩素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素等が挙げられる。希釈剤は、単独でも複数混合しても良く、1−オクタノールのようなアルコール類を混合しても良い。   In general, the extractant has a high viscosity, and when used as it is for solvent extraction, there are adverse effects on the operation, such as poor phase separation from the aqueous phase. In order to reduce the viscosity, it is common to dilute the extractant with a diluent. The diluent may be any as long as it can dissolve the extractant and the complex of cobalt, which is a valuable metal, for example, chlorinated solvents such as chloroform and dichloromethane, benzene, toluene, xylene and the like. And aromatic hydrocarbons such as hexane and the like. The diluents may be used alone or in combination, and alcohols such as 1-octanol may be mixed.

<コバルト抽出方法>
上記のコバルト抽出剤を用いてコバルトを抽出するには、コバルトイオンを含む酸性水溶液を調整し、この酸性水溶液と上記コバルト抽出剤とを混合して撹拌する。その後、混合溶液の水相と有機相とを分液漏斗で分離することで、有機相にコバルトイオンを選択的に抽出することができる。
<Cobalt extraction method>
In order to extract cobalt using the cobalt extractant, an acidic aqueous solution containing cobalt ions is prepared, and the acidic aqueous solution and the cobalt extractant are mixed and stirred. Thereafter, cobalt ions can be selectively extracted into the organic phase by separating the aqueous phase and the organic phase of the mixed solution with a separatory funnel.

酸性水溶液に含まれるコバルト及びマンガンの比率は、コバルト1重量部に対してマンガン50重量部未満であれば、どのような比率であってもよい。マンガンの量がコバルト1重量部に対して50質量部を超えると、コバルトだけでなく、マンガンも抽出されてしまう可能性があるため、好ましくない。   The ratio of cobalt and manganese contained in the acidic aqueous solution may be any ratio as long as it is less than 50 parts by weight of manganese with respect to 1 part by weight of cobalt. If the amount of manganese exceeds 50 parts by mass with respect to 1 part by weight of cobalt, not only cobalt but also manganese may be extracted, which is not preferable.

コバルトとマンガンを含有する酸性水溶液から、コバルトを効率的に回収するためには、コバルトとマンガンを含む酸性水溶液のpHを4.0以上、6.0以下に調整した後に、上記コバルト抽出剤を加えることが好ましい。pHが4.0未満であると、コバルトを十分に抽出できない可能性があるため、好ましくない。pHが6.0を超えると、コバルトだけでなく、マンガンも抽出されてしまう可能性があるため、好ましくない。   In order to efficiently recover cobalt from an acidic aqueous solution containing cobalt and manganese, the pH of the acidic aqueous solution containing cobalt and manganese is adjusted to 4.0 or more and 6.0 or less, and then the cobalt extractant is used. It is preferable to add. If the pH is less than 4.0, cobalt may not be sufficiently extracted, which is not preferable. If the pH exceeds 6.0, not only cobalt but also manganese may be extracted, which is not preferable.

撹拌は、コバルト抽出剤と酸性水溶液とを混合したときに有機相と水相とが分離しない程度に充分な回転数で行えばよい。酸性水溶液からコバルトを高収率で抽出できるようにするため、撹拌時間は、20分以上であることが好ましい。その際、水溶液中のpHが低下するため、適宜、アルカリ水溶液を添加して所定のpHに維持する。   Stirring may be performed at a sufficient number of revolutions such that the organic phase and the aqueous phase are not separated when the cobalt extractant and the acidic aqueous solution are mixed. The stirring time is preferably 20 minutes or longer so that cobalt can be extracted from the acidic aqueous solution in a high yield. At this time, since the pH in the aqueous solution decreases, an aqueous alkaline solution is appropriately added to maintain the pH at a predetermined level.

以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.

<実施例1〜5、比較例1〜5:アミン系抽出剤がターシャルブチルアミンである場合>
[ターシャルブチルアミン含有コバルト抽出剤の調製]
アミン系抽出剤としてターシャルブチルアミンを使用し、オキシム系抽出剤として上記LIX63を使用した。ターシャルブチルアミン及びLIX63のいずれもが0.5mol/lとなるように各々の抽出剤をトルエンに溶解させることで、本発明に係るターシャルブチルアミン含有コバルト抽出剤(以下、「コバルト抽出剤A」という。)を得た。
<Examples 1 to 5 and Comparative Examples 1 to 5: When the amine-based extractant is tertiary butylamine>
[Preparation of cobalt extractant containing tertiary butylamine]
Tertiary butylamine was used as an amine extractant, and the above LIX63 was used as an oxime extractant. Each of the extractants is dissolved in toluene so that both of the tertiary butylamine and LIX63 are 0.5 mol / l, whereby the tertiary butylamine-containing cobalt extractant (hereinafter referred to as “cobalt extractant A”) according to the present invention is used. It was obtained.

[至適pHの検討]

Figure 2014037606
[Examination of optimum pH]
Figure 2014037606

マンガンを5.0g/lと、コバルトを0.1g/lとを含み、表1に示す値にpHが調整された硫酸水溶液20mlと、上記コバルト抽出剤A20mlとを混合し、回転数650rpmで20分間撹拌した。このとき、硫酸水溶液中のpHを表1に示す値に維持するため、1mol/lの水酸化ナトリウム水溶液を適宜添加した。その後、混合溶液の水相と有機相とを分液漏斗で分離し、抽出残液(水相)に対して、誘導プラズマ発光分光分析装置(ICP−AES)を用いた元素分析を行うことによって、コバルト及びマンガンの水相から有機相への抽出率と、マンガンに対するコバルトの分離係数(コバルト/マンガン)とを求めた。結果を表2に示す。また、pHと抽出率との関係を図1に示し、pHと分離係数との関係を図2に示す。   20 ml of sulfuric acid aqueous solution containing 5.0 g / l of manganese and 0.1 g / l of cobalt and having the pH adjusted to the values shown in Table 1 and 20 ml of the above cobalt extractant A are mixed and rotated at 650 rpm. Stir for 20 minutes. At this time, in order to maintain the pH in the sulfuric acid aqueous solution at the value shown in Table 1, a 1 mol / l sodium hydroxide aqueous solution was appropriately added. Thereafter, the aqueous phase and the organic phase of the mixed solution are separated by a separatory funnel, and the extraction residual liquid (aqueous phase) is subjected to elemental analysis using an induction plasma emission spectrometer (ICP-AES). The extraction rate of cobalt and manganese from the aqueous phase to the organic phase and the separation factor of cobalt from manganese (cobalt / manganese) were determined. The results are shown in Table 2. Moreover, the relationship between pH and an extraction rate is shown in FIG. 1, and the relationship between pH and a separation factor is shown in FIG.

Figure 2014037606
Figure 2014037606

酸性溶液のpHを4.0以上6.0以下の範囲に調整した後に溶媒抽出に付すと、極めて高濃度(コバルトの50倍)の濃度のマンガンを含むコバルト/マンガンの混合溶液からコバルトだけを高収率かつ高純度で回収できることが確認された(実施例1〜5)。   When the pH of the acidic solution is adjusted to a range of 4.0 or more and 6.0 or less and then subjected to solvent extraction, only cobalt from a cobalt / manganese mixed solution containing manganese at a very high concentration (50 times that of cobalt) is obtained. It was confirmed that it can be recovered with high yield and high purity (Examples 1 to 5).

一方、酸性溶液のpHが4.0未満であると、コバルトの抽出率が30%以下であり、コバルト/マンガンの混合溶液からコバルトを高収率で回収できない可能性があることが確認された(比較例1〜3)。また、酸性溶液のpHを4.0以下であると、分離係数も低いことが確認された。   On the other hand, when the pH of the acidic solution is less than 4.0, the extraction rate of cobalt is 30% or less, and it was confirmed that cobalt may not be recovered in a high yield from the cobalt / manganese mixed solution. (Comparative Examples 1-3). It was also confirmed that the separation factor was low when the pH of the acidic solution was 4.0 or less.

そして、酸性溶液のpHが6.0を超える場合、マンガンの抽出率が20%以上となる。すなわち、酸性溶液のpHが6.0を超える場合、コバルトだけでなく、マンガンも抽出され得ることが確認された(比較例4、5)。これは、コバルトを抽出した有機溶媒に対して逆抽出を行って精製コバルト水溶液を得ようとした場合、コバルトと同時に逆抽出されるマンガンによる汚染が酷くなることから好ましい条件ではない。   And when the pH of an acidic solution exceeds 6.0, the extraction rate of manganese will be 20% or more. That is, when the pH of the acidic solution exceeded 6.0, it was confirmed that not only cobalt but also manganese could be extracted (Comparative Examples 4 and 5). This is not a preferable condition because when a reverse cobalt extraction is performed on an organic solvent from which cobalt is extracted to obtain a purified cobalt aqueous solution, contamination by manganese that is back extracted simultaneously with cobalt becomes severe.

以上のように、コバルト濃度の50倍にも達するような極めて高濃度の濃度のマンガンを含有したコバルト・マンガンの混合した酸性水溶液を、pHが4.0以上、6.0以下になるように調整し、当該酸性水溶液を、オキシム系抽出剤とアミン系抽出剤の混合溶媒を用いて溶媒抽出を行うことでコバルトを高純度かつ高収率で抽出でき、工業生産としての実用性も高いことが確認された。   As described above, an acidic aqueous solution containing cobalt and manganese containing manganese at a very high concentration that reaches 50 times the cobalt concentration is adjusted so that the pH is 4.0 or more and 6.0 or less. Cobalt can be extracted with high purity and high yield by adjusting the acid aqueous solution using a mixed solvent of oxime-based extractant and amine-based extractant, and it is also highly practical for industrial production. Was confirmed.

<実施例6〜8、比較例6、7:アミン系抽出剤がモノオクチルアミンである場合>
[モノオクチルアミン含有コバルト抽出剤の調製]
アミン系抽出剤としてモノオクチルアミンを使用し、オキシム系抽出剤として上記LIX63を使用した。モノオクチルアミン及びLIX63のいずれもが0.5mol/lとなるように各々の抽出剤をトルエンに溶解させることで、本発明に係るモノオクチルアミン含有コバルト抽出剤(以下、「コバルト抽出剤B」という。)を得た。
<Examples 6 to 8, Comparative Examples 6 and 7: When the amine-based extractant is monooctylamine>
[Preparation of monooctylamine-containing cobalt extractant]
Monooctylamine was used as the amine extractant, and the above LIX63 was used as the oxime extractant. By dissolving each extractant in toluene so that both monooctylamine and LIX63 are 0.5 mol / l, the monooctylamine-containing cobalt extractant (hereinafter, “cobalt extractant B”) according to the present invention is used. It was obtained.

[至適pHの検討]

Figure 2014037606
[Examination of optimum pH]
Figure 2014037606

コバルト抽出剤としてコバルト抽出剤Bを用い、硫酸水溶液中のpHを表3に示す値に維持させたこと以外は、実施例1と同じ方法にて、コバルト及びマンガンの水相から有機相への抽出率と、マンガンに対するコバルトの分離係数(コバルト/マンガン)とを求めた。結果を表4に示す。また、pHと抽出率との関係を図3に示し、pHと分離係数との関係を図4に示す。   Using the cobalt extractant B as the cobalt extractant and maintaining the pH in the sulfuric acid aqueous solution at the value shown in Table 3, the same method as in Example 1 was used to convert the cobalt and manganese aqueous phase to the organic phase. The extraction rate and the separation factor of cobalt relative to manganese (cobalt / manganese) were determined. The results are shown in Table 4. Moreover, the relationship between pH and an extraction rate is shown in FIG. 3, and the relationship between pH and a separation factor is shown in FIG.

Figure 2014037606
Figure 2014037606

酸性溶液のpHを4.0以上6.0以下の範囲に調整した後に溶媒抽出に付すと、極めて高濃度(コバルトの50倍)の濃度のマンガンを含むコバルト/マンガンの混合溶液からコバルトだけを高収率かつ高純度で回収できることが確認された(実施例6〜8)。   When the pH of the acidic solution is adjusted to a range of 4.0 or more and 6.0 or less and then subjected to solvent extraction, only cobalt from a cobalt / manganese mixed solution containing manganese at a very high concentration (50 times that of cobalt) is obtained. It was confirmed that it can be recovered with high yield and high purity (Examples 6 to 8).

一方、酸性溶液のpHが4.0未満であると、例えば、比較例6の場合はコバルトの抽出率が9%であり、コバルト/マンガンの混合溶液からコバルトを高収率で回収できない可能性があることが確認された。また、酸性溶液のpHを4.0以下であると、分離係数も低いことが確認された。   On the other hand, if the pH of the acidic solution is less than 4.0, for example, in the case of Comparative Example 6, the extraction rate of cobalt is 9%, and there is a possibility that cobalt cannot be recovered from the cobalt / manganese mixed solution in a high yield. It was confirmed that there is. It was also confirmed that the separation factor was low when the pH of the acidic solution was 4.0 or less.

そして、酸性溶液のpHが6.0を超える場合、例えば、比較例7の場合はコバルトの抽出率が19%であり、コバルトだけでなく、マンガンも抽出され得ることが確認された。これは、コバルトを抽出した有機溶媒に対して逆抽出を行って精製コバルト水溶液を得ようとした場合、コバルトと同時に逆抽出されるマンガンによる汚染が酷くなることから好ましい条件ではない。   Then, when the pH of the acidic solution exceeds 6.0, for example, in the case of Comparative Example 7, it was confirmed that the extraction rate of cobalt was 19%, and not only cobalt but also manganese could be extracted. This is not a preferable condition because when a reverse cobalt extraction is performed on an organic solvent from which cobalt is extracted to obtain a purified cobalt aqueous solution, contamination by manganese that is back extracted simultaneously with cobalt becomes severe.

以上のように、コバルト濃度の50倍にも達するような極めて高濃度の濃度のマンガンを含有したコバルト・マンガンの混合した酸性水溶液を、pHが4.0以上、6.0以下になるように調整し、当該酸性水溶液を、オキシム系抽出剤とアミン系抽出剤の混合溶媒を用いて溶媒抽出を行うことでコバルトを高純度かつ高収率で抽出でき、工業生産としての実用性も高いことが確認された。   As described above, an acidic aqueous solution containing cobalt and manganese containing manganese at a very high concentration that reaches 50 times the cobalt concentration is adjusted so that the pH is 4.0 or more and 6.0 or less. Cobalt can be extracted with high purity and high yield by adjusting the acid aqueous solution using a mixed solvent of oxime-based extractant and amine-based extractant, and it is also highly practical for industrial production. Was confirmed.

Claims (5)

アミン系抽出剤とオキシム系抽出剤とを含有するコバルト抽出剤。   A cobalt extractant containing an amine extractant and an oxime extractant. 前記アミン系抽出剤は1級アミン系抽出剤である、請求項1に記載のコバルト抽出剤。   The cobalt extractant according to claim 1, wherein the amine extractant is a primary amine extractant. 前記1級アミン系抽出剤はターシャルブチルアミン及び/又はオクチルアミンを含有する、請求項2に記載のコバルト抽出剤。   The cobalt extractant according to claim 2, wherein the primary amine extractant contains tertiary butylamine and / or octylamine. マンガン及びコバルトを含有する酸性溶液を、請求項1から3のいずれか記載のコバルト抽出剤による溶媒抽出に付し、前記酸性溶液から前記コバルトを抽出するコバルト抽出方法。   The cobalt extraction method which attaches | subjects the acidic solution containing manganese and cobalt to the solvent extraction by the cobalt extractant in any one of Claim 1 to 3, and extracts the said cobalt from the said acidic solution. 前記酸性溶液のpHを4.0以上、6.0以下の範囲に調整した後に前記酸性溶液を前記溶媒抽出に付す、請求項4に記載のコバルト抽出方法。   The cobalt extraction method according to claim 4, wherein the acidic solution is subjected to the solvent extraction after adjusting the pH of the acidic solution to a range of 4.0 or more and 6.0 or less.
JP2012181883A 2012-08-20 2012-08-20 Cobalt extractant and cobalt extraction method Active JP5882164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181883A JP5882164B2 (en) 2012-08-20 2012-08-20 Cobalt extractant and cobalt extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181883A JP5882164B2 (en) 2012-08-20 2012-08-20 Cobalt extractant and cobalt extraction method

Publications (2)

Publication Number Publication Date
JP2014037606A true JP2014037606A (en) 2014-02-27
JP5882164B2 JP5882164B2 (en) 2016-03-09

Family

ID=50285964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181883A Active JP5882164B2 (en) 2012-08-20 2012-08-20 Cobalt extractant and cobalt extraction method

Country Status (1)

Country Link
JP (1) JP5882164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515719A (en) * 2018-01-10 2020-05-28 北京工業大学 Method for separating nickel and cobalt from solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208028A (en) * 1983-05-11 1984-11-26 Nippon Mining Co Ltd Organic liquid extracting reagent for extracting metal
JPH07150262A (en) * 1993-11-26 1995-06-13 Japan Energy Corp Decomposition preventive method of extracting agent
JP2011038182A (en) * 1998-12-12 2011-02-24 Cytec Technology Corp Solvent extraction composition, and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208028A (en) * 1983-05-11 1984-11-26 Nippon Mining Co Ltd Organic liquid extracting reagent for extracting metal
JPH07150262A (en) * 1993-11-26 1995-06-13 Japan Energy Corp Decomposition preventive method of extracting agent
JP2011038182A (en) * 1998-12-12 2011-02-24 Cytec Technology Corp Solvent extraction composition, and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515719A (en) * 2018-01-10 2020-05-28 北京工業大学 Method for separating nickel and cobalt from solution

Also Published As

Publication number Publication date
JP5882164B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5326610B2 (en) Method for recovering metals from used nickel metal hydride batteries
JP5014394B2 (en) Method for separating and recovering nickel and lithium
JP5791917B2 (en) Lithium recovery method
CN108517409A (en) A method of recycling valuable metal from waste and old power battery anode waste material
KR101420501B1 (en) Method for separating metal in metal mixed solution
CN109097599A (en) A kind of method of synergic solvent extraction separation manganese and calcium, magnesium
CN102051477B (en) Method for chemically separating bastnaesite and urdite from mixed rare earth concentrate
CN105112674A (en) All-wet recovery process for waste circuit boards
JP2008231522A (en) Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
CN104928475B (en) A kind of recovery method of the aluminium scrap silicon containing rare earth
CN112981139B (en) Hydrophobic eutectic solvent for separating nickel and cobalt ions, preparation method thereof and method for separating nickel and cobalt ions
JP5004106B2 (en) Method for separating and recovering nickel and lithium
CN106460092A (en) Method for separating scandium
CN105087935A (en) Method for recycling copper, indium and gallium from waste copper-indium-gallium target
JP2013112859A (en) Method for manufacturing manganese sulfate
JP5103541B2 (en) Niobium separation and purification method and production method
JP5902601B2 (en) Method for separating metal in mixed metal solution
JP4078838B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP5882164B2 (en) Cobalt extractant and cobalt extraction method
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
CN106834681B (en) A kind of method that Fe impurity in Pr is removed using research of Amido Podands Extractant
CN109133178A (en) A kind of production technology of manganese sulfate
WO2013077168A1 (en) Cobalt extractant and cobalt extraction method
CN103805782A (en) Purification method of nickel-containing solution
CN105112693A (en) Method for pressure leaching of rhenium in rhenium-rich slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5882164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250