JP2014035827A - Inorganic el element light emitting device - Google Patents

Inorganic el element light emitting device Download PDF

Info

Publication number
JP2014035827A
JP2014035827A JP2012175161A JP2012175161A JP2014035827A JP 2014035827 A JP2014035827 A JP 2014035827A JP 2012175161 A JP2012175161 A JP 2012175161A JP 2012175161 A JP2012175161 A JP 2012175161A JP 2014035827 A JP2014035827 A JP 2014035827A
Authority
JP
Japan
Prior art keywords
rare earth
light emitting
substrate
inorganic
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012175161A
Other languages
Japanese (ja)
Inventor
Michimasa Ito
道昌 井東
Yuta Matsushima
雄太 松嶋
Midori Yoshida
みどり 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Tokai Rika Co Ltd
Original Assignee
Yamagata University NUC
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Tokai Rika Co Ltd filed Critical Yamagata University NUC
Priority to JP2012175161A priority Critical patent/JP2014035827A/en
Publication of JP2014035827A publication Critical patent/JP2014035827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inorganic EL element light emitting device capable of minimizing luminance unevenness.SOLUTION: An inorganic EL element 1 includes a rare earth diffusion prevention film 4 between a substrate 2 and a light emitting layer 3. The substrate 2 comprises, for example, a substrate using zirconia ZrO(YSZ substrate). The light emitting layer 3 comprises an RE-ZnO layer including a rare earth element (RE) contained in ZnO. The rare earth diffusion prevention film 4 comprises, for example, an MgO layer, and plays the role of preventing REin the light emitting layer 3 from diffusing into the substrate 2 during a firing process.

Description

本発明は、希土類元素を原料とする発光層から光を放射する無機EL素子発光デバイスに関する。   The present invention relates to an inorganic EL element light emitting device that emits light from a light emitting layer made of a rare earth element as a raw material.

従来、EL(Electroluminescence)の一種として、無機蛍光体を発光層として使用する無機EL素子が周知である。無機EL素子は、例えば一対の電極の間に発光層が設けられ、一対の電極の間に電圧を印加して発光層が光ることにより、周囲を照明する。無機ELは、コストが安く、発光に発熱を伴わないという利点があり、今後の普及が期待されている。無機EL素子蛍光体としては、酸化亜鉛に希土類元素を添加して直流駆動無機EL発光層として利用した技術が周知である(非特許文献1等参照)。   Conventionally, an inorganic EL element using an inorganic phosphor as a light emitting layer is well known as a type of EL (Electroluminescence). Inorganic EL elements, for example, are provided with a light emitting layer between a pair of electrodes, and a voltage is applied between the pair of electrodes to light the light emitting layer, thereby illuminating the surroundings. Inorganic EL is advantageous in that it is low in cost and does not generate heat in light emission, and is expected to spread in the future. As the inorganic EL element phosphor, a technique in which a rare earth element is added to zinc oxide and used as a direct-current driven inorganic EL light emitting layer is well known (see Non-Patent Document 1, etc.).

J.C.Ronfard-Haret,J.Kossanyi,"Electro- and photoluminescence of the Tm3+ ion in Tm3+ -and Li+ -doped ZnO ceramics.Influence of the sintering temperature",Chem.Phys.241(1999)339-349J.C.Ronfard-Haret, J.Kossanyi, "Electro- and photoluminescence of the Tm3 + ion in Tm3 + -and Li + -doped ZnO ceramics.Influence of the thermal temperature", Chem. Phys.

ところで、希土類元素(例えばEu3+)は、イオン半径的に見ると、発光層(例えば4配位のZnO)の結晶中にいるよりも、基板(例えば8配位のZrO2)の結晶中にいる方が結晶構造的に居心地がよいという場合がある。よって、発光層に含まれる希土類元素が基板に拡散してしまうので、結果として、特定の発光色(拡散した希土類元素が発光する色)の発光強度が低下してしまう問題があった。よって、これが発光色の輝度ムラに繋がるので、何らかの対策が必要であった。 By the way, the rare earth element (for example, Eu 3+ ) is not present in the crystal of the light emitting layer (for example, 4-coordinate ZnO), but in the crystal of the substrate (for example, 8-coordinate ZrO 2 ) in terms of ionic radius. In some cases, the crystal structure is more comfortable. Therefore, since the rare earth element contained in the light emitting layer diffuses into the substrate, as a result, there is a problem that the emission intensity of a specific emission color (the color from which the diffused rare earth element emits light) is lowered. Therefore, this leads to luminance unevenness of the luminescent color, and some measures are necessary.

本発明の目的は、発光の輝度ムラを少なく抑えることができる無機EL素子発光デバイスを提供することにある。   An object of the present invention is to provide an inorganic EL element light emitting device that can suppress uneven luminance of light emission.

前記問題点を解決するために、本発明では、希土類元素を原料とする発光層から光を放射する無機EL素子発光デバイスにおいて、無機EL素子の基板と前記発光層との間に、前記希土類元素が前記基板へ拡散することを抑制する希土類拡散防止膜を設けたことを要旨とする。   In order to solve the above problems, in the present invention, in an inorganic EL element light emitting device that emits light from a light emitting layer made of a rare earth element as a raw material, the rare earth element is interposed between the substrate of the inorganic EL element and the light emitting layer. The gist of the invention is that a rare earth diffusion preventive film that suppresses the diffusion of sapphire into the substrate is provided.

本発明の構成によれば、発光層の希土類元素が希土類拡散防止膜によってブロックされて、基板に拡散し難くなる。このため、発光層の希土類元素が減少し難くなるので、発光層として必要となる希土類元素が確保される。よって、発光の輝度ムラを少なく抑えることが可能となる。   According to the configuration of the present invention, the rare earth element in the light emitting layer is blocked by the rare earth diffusion preventing film, and is difficult to diffuse into the substrate. For this reason, rare earth elements in the light emitting layer are difficult to decrease, so that the rare earth elements necessary for the light emitting layer are secured. Therefore, it is possible to suppress the luminance unevenness of light emission.

本発明では、前記希土類拡散防止膜は、前記発光層及び前記基板のいずれとも異なる結晶構造をとることを要旨とする。この構成によれば、希土類拡散防止膜を発光層及び基板のいずれとも異なる結晶構造としたので、高い拡散防止効果を得ることが可能となる。   The gist of the present invention is that the rare earth diffusion prevention film has a crystal structure different from that of either the light emitting layer or the substrate. According to this configuration, since the rare earth diffusion prevention film has a different crystal structure from both the light emitting layer and the substrate, a high diffusion prevention effect can be obtained.

本発明では、前記希土類拡散防止膜は、自身に含まれるイオンの半径が前記希土類元素のイオン半径よりも小さく形成されていることを要旨とする。この構成によれば、希土類拡散防止膜に含まれるイオンの半径を希土類元素のイオン半径よりも小さくしたので、イオン半径の大きさの違いによって希土類元素の拡散が抑制される。よって、高い拡散防止効果を得ることが可能となる。   The gist of the present invention is that the rare earth diffusion prevention film is formed such that the radius of ions contained therein is smaller than the ion radius of the rare earth element. According to this configuration, since the radius of the ions contained in the rare earth diffusion prevention film is made smaller than the ion radius of the rare earth element, the diffusion of the rare earth element is suppressed by the difference in the size of the ion radius. Therefore, a high diffusion preventing effect can be obtained.

本発明では、前記発光層及び前記基板は、熱膨張係数が同じとなるように形成されていることを要旨とする。この構成によれば、発光層及び基板を同じ熱膨張係数としたので、無機EL素子発光デバイスの製造時に熱処理を加える過程で、これらを割れ難くすることが可能となる。   The gist of the present invention is that the light emitting layer and the substrate are formed to have the same thermal expansion coefficient. According to this configuration, since the light emitting layer and the substrate have the same thermal expansion coefficient, it is possible to make them difficult to break in the process of applying heat treatment during the manufacture of the inorganic EL element light emitting device.

本発明によれば、無機EL素子発光デバイスにおいて、発光の輝度ムラを少なく抑えることができる。   According to the present invention, in the inorganic EL element light emitting device, luminance unevenness of light emission can be reduced.

無機EL素子の構造を示す断面図。Sectional drawing which shows the structure of an inorganic EL element. ディップコート法による希土類拡散防止膜の製造を説明する概要図。The schematic diagram explaining manufacture of the rare earth diffusion prevention film by a dip coat method. ディップコート法による発光層の製造を説明する概要図。The schematic diagram explaining manufacture of the light emitting layer by a dip coat method. 発光層製造時に使用するコーティング溶液の調製工程を示す説明図。Explanatory drawing which shows the preparation process of the coating solution used at the time of light emitting layer manufacture. Eu2O3−ZrO2系の相図。Phase diagram of Eu 2 O 3 —ZrO 2 system. Gd2O3−MgO系の相図。Phase diagram of the Gd 2 O 3 —MgO system.

以下、本発明を具体化した無機EL素子発光デバイスの一実施形態を図1〜図6に従って説明する。
図1に示すように、本例の薄膜型無機EL素子1は、発光の材料として希土類元素が使用されている。本例の無機EL素子1は、基板2及び発光層3の各層が設けられ、これら層の間に希土類拡散防止膜4が介装されている。発光層3は、ZnOに希土類元素(RE)が含有されたRE−ZnO層からなり、本例の場合、希土類元素としてユーロピウムEuを添加したバリスタ型酸化亜鉛薄膜からなる。発光層3のZnOの粒界相には、希土類元素イオンであるRE3+が偏析する。基板2は、例えばジルコニアZrO2を使用した基板(YSZ基板)であって、ZnOと熱膨張係数が一致するように形成される。これは、YSZ基板とZnO相との相性を確保することで、これらを割れ難くするためである。
Hereinafter, an embodiment of an inorganic EL element light-emitting device embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, the thin film inorganic EL element 1 of this example uses a rare earth element as a light emitting material. In the inorganic EL element 1 of this example, a substrate 2 and a light emitting layer 3 are provided, and a rare earth diffusion prevention film 4 is interposed between these layers. The light emitting layer 3 is composed of a RE-ZnO layer in which a rare earth element (RE) is contained in ZnO. In this example, the light emitting layer 3 is composed of a varistor type zinc oxide thin film to which europium Eu is added as a rare earth element. In the grain boundary phase of ZnO in the light emitting layer 3, RE 3+ that is a rare earth element ion is segregated. The substrate 2 is a substrate (YSZ substrate) using, for example, zirconia ZrO 2 and is formed so that the thermal expansion coefficient coincides with ZnO. This is because the compatibility between the YSZ substrate and the ZnO phase is ensured to make them difficult to break.

希土類拡散防止膜4は、希土類元素に比較してイオン半径の小さい材料で形成することにより、希土類元素の拡散防止膜として形成され、例えばMgO層が使用されている。希土類拡散防止膜4は、発光層3のRE3+が焼成工程で基板2中へ拡散するのを防ぐ役目を有する。MgO層の場合、Mg2+はイオン半径が小さいので、このイオン半径の大小の違いにより、基板2側への希土類元素の拡散が抑制される。希土類拡散防止膜4は、基板2の表面全域に亘り形成される。 The rare earth diffusion preventive film 4 is formed as a rare earth element diffusion preventive film by using a material having a smaller ionic radius than that of the rare earth element. For example, an MgO layer is used. The rare earth diffusion preventing film 4 has a function of preventing RE 3+ of the light emitting layer 3 from diffusing into the substrate 2 in the firing step. In the case of the MgO layer, Mg 2+ has a small ionic radius, and the diffusion of rare earth elements to the substrate 2 side is suppressed by the difference in the ionic radius. The rare earth diffusion prevention film 4 is formed over the entire surface of the substrate 2.

発光層3の表面には、例えばITO透明電極と金電極とからなる一対の電極5が形成されている。これら電極5の間に電圧を印加すると、発光層3から光が放射される。なお、電極5に印加する電圧は、直流又は交流のいずれを使用してもよい。   On the surface of the light emitting layer 3, a pair of electrodes 5 made of, for example, an ITO transparent electrode and a gold electrode is formed. When a voltage is applied between these electrodes 5, light is emitted from the light emitting layer 3. Note that the voltage applied to the electrode 5 may be either direct current or alternating current.

次に、無機EL素子1の製造手順を、図2〜図6を用いて説明する。
[希土類拡散防止膜の製造方法]
図2に示すように、ジルコニア材の基板2にMgOの希土類拡散防止膜4を形成するには、酢酸マグネシウム四水和物Mg(CH3COO)2・4H2Oの0.29mol/Lのメタノール溶液に、ゾル安定剤としてジエタノールアミンDEA(20mLの溶液に対し0.9mL添加)を加えた溶液をコート液とし、ディップコート法により成膜する。ディップコート法は、液中にワークを浸漬し、液中の粘性力、表面張力及び重力による力と速度とを調整してワークを引き上げ、これを所定回数繰り返す製法である。ワークの引き上げ速度は、必要とする膜厚に応じて制御する。引き上げ後の焼成は、例えば500℃/5分間で、コートが8回繰り返される。
Next, the manufacturing procedure of the inorganic EL element 1 will be described with reference to FIGS.
[Method of manufacturing rare earth diffusion prevention film]
As shown in FIG. 2, in order to form the MgO rare earth diffusion prevention film 4 on the zirconia substrate 2, the magnesium acetate tetrahydrate Mg (CH 3 COO) 2 .4H 2 O of 0.29 mol / L A solution obtained by adding diethanolamine DEA (0.9 mL to 20 mL of solution) as a sol stabilizer to a methanol solution is used as a coating solution to form a film by dip coating. The dip coating method is a manufacturing method in which a workpiece is immersed in a liquid, the workpiece is pulled up by adjusting the viscosity force, surface tension, and force and speed due to gravity in the liquid, and this is repeated a predetermined number of times. The workpiece lifting speed is controlled according to the required film thickness. The firing after the pulling is repeated, for example, at 500 ° C./5 minutes for 8 times.

ちなみに、希土類拡散防止膜4は、基板2と反応(それほど反応)せず、希土類元素の拡散を抑制することができる条件を満たせばよい。また、基板2は、ディップコート法による熱処理の際に変質せず、熱膨張係数がZnO発光層に近いという条件を満たせばよい。このように、基板2及び希土類拡散防止膜4は、前述の条件を満たせば、様々な種類の組み合わせが可能である。   Incidentally, the rare earth diffusion preventing film 4 does not react with the substrate 2 (react so much), and it is only necessary to satisfy a condition capable of suppressing the diffusion of the rare earth element. Further, the substrate 2 only needs to satisfy the condition that the thermal expansion coefficient is close to that of the ZnO light emitting layer without being deteriorated during the heat treatment by the dip coating method. As described above, the substrate 2 and the rare earth diffusion prevention film 4 can be combined in various types as long as the above-described conditions are satisfied.

なお、ディップコート法では、5面(ぶら下がる金具が付いている面は液に浸らない)にコーティングを行うことになるが、片面へのコーティングのための前処理は実施しておらず、液のコートは全面でも、その後の熱処理等の過程により、ほぼ表の1面のみしか成膜されない。これは、電気炉で焼成する際に、コートした液に含まれる原料が一旦蒸発し、空気に触れて酸化することで基板2上に生成されるプロセスを踏むからである。   In the dip coating method, coating is performed on 5 surfaces (surfaces with hanging metal fittings are not immersed in the liquid), but no pretreatment for coating on one side is performed, Even on the entire surface, only one surface of the surface is formed by the subsequent heat treatment or the like. This is because, when firing in an electric furnace, the raw material contained in the coated liquid once evaporates and steps on a process generated on the substrate 2 by being oxidized by contact with air.

[発光層の製造方法]
図3に示すように、希土類拡散防止膜4が成膜された基板2には、前述のディップコート法により発光層3が形成される。この場合、亜鉛(酢酸亜鉛/塩化亜鉛)を溶解したコーティング溶液(メタノール溶液前駆体)に、希土類拡散防止膜4が成膜された基板2を浸して引き上げる作業を所定回数繰り返すことにより、希土類拡散防止膜4の表面に発光層3が成膜される。ちなみに、1回のコート当たり、発光層3が約10〜20nmの成膜となっている。
[Method for producing light emitting layer]
As shown in FIG. 3, the light emitting layer 3 is formed on the substrate 2 on which the rare earth diffusion preventing film 4 is formed by the dip coating method described above. In this case, rare earth diffusion is performed by repeating the operation of immersing and lifting the substrate 2 on which the rare earth diffusion prevention film 4 is formed in a coating solution (methanol solution precursor) in which zinc (zinc acetate / zinc chloride) is dissolved. The light emitting layer 3 is formed on the surface of the prevention film 4. Incidentally, the light emitting layer 3 is formed to a thickness of about 10 to 20 nm per one coat.

図4に、コーティング溶液の製造手順を示す。ここでは、希土類元素としてEuを使用した例を示す。まず、希土類酸化物を用意し、これに塩酸HClを加える。そして、希土類酸化物と塩酸との混合物をウォーターバスで溶解し、ホットプレートで蒸発乾固する。続いて、この材料にメタノールMeOH及びアセチルアセトンを加えることにより、希土類原料溶液を製造する。   FIG. 4 shows a manufacturing procedure of the coating solution. Here, an example in which Eu is used as the rare earth element is shown. First, a rare earth oxide is prepared, and hydrochloric acid HCl is added thereto. A mixture of rare earth oxide and hydrochloric acid is dissolved in a water bath and evaporated to dryness on a hot plate. Subsequently, a rare earth material solution is produced by adding methanol MeOH and acetylacetone to this material.

一方、別工程において、塩化亜鉛ZnCl2又は酢酸亜鉛二水和物Zn(CH3COO)2・2H2Oに、メタノールMeOH及びジエタノールアミンDEAを加えて、前駆体溶液を製造する。そして、希土類原材料溶液と前駆体溶液とを混合して、コーティング溶液を製造する。なお、コーティング溶液のEuの濃度は、例えば5%を基準とし、広義として0.01〜50%の範囲内の値であればよい。 On the other hand, in a separate step, methanol MeOH and diethanolamine DEA are added to zinc chloride ZnCl 2 or zinc acetate dihydrate Zn (CH 3 COO) 2 .2H 2 O to produce a precursor solution. Then, the rare earth raw material solution and the precursor solution are mixed to produce a coating solution. The concentration of Eu in the coating solution may be a value within a range of 0.01 to 50% in a broad sense with 5% as a reference.

[希土類元素の拡散について]
ZrO2からなる基板2への希土類元素(例えばEu)の拡散は、イオン半径のみで決まるものではなく、例えば酸化数及び母酸化数の結晶構造で決まる。即ち、ある希土類元素が他の結晶中に固溶するかどうかは、イオン半径とともに、酸化数及び母酸化数の結晶構造が強く影響する。
[Diffusion of rare earth elements]
The diffusion of rare earth elements (for example, Eu) into the substrate 2 made of ZrO 2 is not determined only by the ion radius, but is determined by, for example, the crystal structure of the oxidation number and the mother oxidation number. That is, whether a certain rare earth element is dissolved in another crystal is strongly influenced by the crystal structure of the oxidation number and the mother oxidation number as well as the ionic radius.

図5に、Eu2O3−ZrO2系の相図を示す。ZrO2は、基本的に蛍石型構造をとる(室温では格子がかなり歪んでいる)。一方、コーティング溶液中のEu2O3は、相図によれば、室温では希土類C型と呼ばれる結晶構造をとり、これは蛍石関連型構造であるため、両者の構造的親和性は非常に高いという特徴がある。そのため、ZrO2はEuを始めとする希土類元素を固溶する能力が非常に高く、相図によれば、ZrO2−Eu2O3擬二成分系では28mol%Eu2O3−ZrO2までZrO2ベースの蛍石型構造の固溶体を形成する。 FIG. 5 shows a phase diagram of the Eu 2 O 3 —ZrO 2 system. ZrO 2 basically has a fluorite structure (the lattice is considerably distorted at room temperature). On the other hand, according to the phase diagram, Eu 2 O 3 in the coating solution has a crystal structure called rare earth C-type at room temperature, and this is a fluorite-related type structure. It is characterized by being expensive. Therefore, ZrO 2 has a very high ability to solid solution of rare earth elements, including Eu, according to the phase diagram, in the ZrO 2 -Eu 2 O 3 pseudo binary system up to 28mol% Eu 2 O 3 -ZrO 2 Form a solid solution of ZrO 2 based fluorite structure.

発光層3のZnOは、四面体4配位のウルツ鉱型構造をとる。これは、イオン半径が大きく、立方体型配位構造を好むEu3+にとって非常に居心地の悪い構造ということになる。そのため、RE−ZnO/YSZというデバイス構成で高温焼成すると、REは居心地のよいYSZ基板、つまり本例で言えば基板2側へ移動することになってしまう。一方、希土類拡散防止膜4であるMgOは、岩塩型八面体をとり、ウルツ鉱型、希土類C型、蛍石型のいずれとも、全く異なる結晶構造となる。Mg2+は、Eu3+を始めとする希土類金属の陽イオンに比べて非常に小さいため、基本的に希土類元素は、MgOの中に固溶することができない。即ち、希土類元素の基板2への拡散が抑制可能であることが分かる。 ZnO of the light emitting layer 3 has a tetrahedral and tetracoordinate wurtzite structure. This is a very uncomfortable structure for Eu 3+ , which has a large ionic radius and prefers a cubic coordination structure. Therefore, when firing at a high temperature with a device configuration of RE-ZnO / YSZ, the RE moves to a comfortable YSZ substrate, that is, the substrate 2 in this example. On the other hand, MgO as the rare earth diffusion preventing film 4 takes a rock salt type octahedron and has a completely different crystal structure from any of the wurtzite type, rare earth C type, and fluorite type. Since Mg 2+ is very small compared to cations of rare earth metals such as Eu 3+ , basically rare earth elements cannot be dissolved in MgO. That is, it can be seen that diffusion of rare earth elements into the substrate 2 can be suppressed.

図6に、Euの隣のMgO−Gd2O3系の相図を示す。同図に示されるように、MgOを母相とする固溶体は形成されず、基本的には不純物以上の濃度には取り込まれないことが分かる。
本実施形態の構成によれば、以下に記載の効果を得ることができる。
FIG. 6 shows a phase diagram of the MgO—Gd 2 O 3 system next to Eu. As shown in the figure, it can be seen that a solid solution containing MgO as a matrix is not formed, and basically it is not incorporated at a concentration higher than the impurity.
According to the configuration of the present embodiment, the following effects can be obtained.

(1)希土類元素を用いた無機EL素子1において、ジルコニア材を材質とする基板2と希土類元素を含有した発光層3との間に、発光層3の希土類が基板2側に拡散することを抑制する希土類拡散防止膜4を設けた。このため、発光層3に含有される希土類元素が焼成等の工程で減少し難くなるので、発光層3として必要となる希土類元素が確保される。よって、無機EL素子1の発光の輝度ムラを少なく抑えることができる。   (1) In the inorganic EL element 1 using a rare earth element, the rare earth of the light emitting layer 3 diffuses toward the substrate 2 between the substrate 2 made of a zirconia material and the light emitting layer 3 containing the rare earth element. A rare earth diffusion prevention film 4 to be suppressed was provided. For this reason, since the rare earth elements contained in the light emitting layer 3 are difficult to decrease in a process such as firing, the rare earth elements necessary for the light emitting layer 3 are ensured. Therefore, luminance unevenness of light emission of the inorganic EL element 1 can be suppressed to a small extent.

(2)MgOを成分とする希土類拡散防止膜4は岩塩型八面体であるので、ウルツ型構造の発光層3や蛍石型構造の基板2のいずれに対しても、種類の異なる結晶構造となる。よって、希土類拡散防止膜4を拡散防止効果の高いものとすることができる。   (2) Since the rare earth diffusion prevention film 4 containing MgO as a component is a rock salt type octahedron, different types of crystal structures are used for both the wurtzite type light emitting layer 3 and the fluorite type structure substrate 2. Become. Therefore, the rare earth diffusion preventing film 4 can have a high diffusion preventing effect.

(3)希土類拡散防止膜4に含まれるMg2+は、希土類元素のイオン半径よりも小さい。このように、希土類拡散防止膜4に含まれるイオンの半径を、希土類元素のイオン半径よりも小さくすれば、希土類元素が希土類拡散防止膜4を通過し難くなるので、高い拡散防止効果を得ることができる。 (3) Mg 2+ contained in the rare earth diffusion prevention film 4 is smaller than the ion radius of the rare earth element. Thus, if the radius of the ions contained in the rare earth diffusion prevention film 4 is made smaller than the ion radius of the rare earth element, the rare earth element will not easily pass through the rare earth diffusion prevention film 4, thereby obtaining a high diffusion prevention effect. Can do.

(4)基板2及び発光層3を同じ熱膨張係数としたので、無機EL素子1の作製時に熱処理を加える過程(焼成工程)で、これらを割れ難くすることができる。
(5)仮に、MgOそのものを基板2に使用すると、焼成工程−冷却工程の過程でZnO層にクラックが生じ、電気伝導が損なわれる。しかし、本例のように希土類拡散防止膜4を別の層で設けるようにすれば、基板2にクラックが生じるようなことがないので、この点で効果が高い。なお、希土類拡散防止膜4は基板2及び発光層3と熱膨張係数が異なるので、基板2で希土類拡散防止膜4の熱膨張を抑制する。
(4) Since the substrate 2 and the light emitting layer 3 have the same thermal expansion coefficient, they can be made difficult to crack in the process of applying heat treatment (firing process) when the inorganic EL element 1 is manufactured.
(5) If MgO itself is used for the substrate 2, cracks are generated in the ZnO layer in the course of the firing step and the cooling step, and electrical conduction is impaired. However, if the rare earth diffusion prevention film 4 is provided as a separate layer as in this example, the substrate 2 is not cracked, and this is highly effective. Since the rare earth diffusion prevention film 4 has a different thermal expansion coefficient from the substrate 2 and the light emitting layer 3, the substrate 2 suppresses the thermal expansion of the rare earth diffusion prevention film 4.

なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
・希土類拡散防止膜4の厚さは、特に限定されず、必要な膜厚が確保されていればよい。
Note that the embodiment is not limited to the configuration described so far, and may be modified as follows.
The thickness of the rare earth diffusion preventing film 4 is not particularly limited as long as a necessary film thickness is secured.

・希土類拡散防止膜4の材質は、希土類拡散を抑制できるものであれば、他の材料に適宜変更可能である。
・基板2は、ジルコニア材から形成されることに限らず、他の材質に適宜変更可能である。
The material of the rare earth diffusion preventing film 4 can be appropriately changed to other materials as long as the rare earth diffusion can be suppressed.
-The board | substrate 2 is not restricted to being formed from a zirconia material, and can be suitably changed into another material.

・希土類拡散防止膜4の製造方法は、ディップコート法以外の他の製法を採用可能である。なお、これは、発光層3の製造方法でも同様に言える。
・希土類元素は、Eu以外の他の希土類を使用してもよい。
-The manufacturing method of the rare earth diffusion prevention film 4 can employ a manufacturing method other than the dip coating method. This is also true for the manufacturing method of the light emitting layer 3.
-Rare earth elements other than Eu may be used as the rare earth element.

・無機EL素子1は、例えば一対の電極が発光層3を挟み込むように配設される構造をとってもよい。即ち、無機EL素子1は、図1に述べた層構造をとることに限定されず、種々のタイプが採用可能である。   The inorganic EL element 1 may have a structure in which, for example, a pair of electrodes are disposed so as to sandwich the light emitting layer 3. That is, the inorganic EL element 1 is not limited to the layer structure described in FIG. 1, and various types can be employed.

次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
(イ)希土類元素を原料とする発光層から光を放射する無機EL素子発光デバイスの製造方法において、無機EL素子の基板の表面に、前記希土類元素が前記基板へ拡散することを抑制する希土類拡散防止膜を形成するステップと、前記希土類拡散防止膜が成膜された前記基板の表面に前記発光層を形成するステップとを備えた。この構成によれば、請求項1と同様の作用効果を得ることが可能である。
Next, technical ideas that can be grasped from the above-described embodiment and other examples will be described below together with their effects.
(A) In a method for manufacturing an inorganic EL element light emitting device that emits light from a light emitting layer made of a rare earth element as a raw material, rare earth diffusion that suppresses diffusion of the rare earth element to the substrate on the surface of the substrate of the inorganic EL element Forming a prevention film, and forming the light emitting layer on the surface of the substrate on which the rare earth diffusion prevention film is formed. According to this configuration, it is possible to obtain the same effect as that of the first aspect.

1…無機EL素子、2…基板、3…発光層、4…希土類拡散防止膜。   DESCRIPTION OF SYMBOLS 1 ... Inorganic EL element, 2 ... Substrate, 3 ... Light emitting layer, 4 ... Rare earth diffusion prevention film

Claims (4)

希土類元素を原料とする発光層から光を放射する無機EL素子発光デバイスにおいて、
無機EL素子の基板と前記発光層との間に、前記希土類元素が前記基板へ拡散することを抑制する希土類拡散防止膜を設けた
ことを特徴とする無機EL素子発光デバイス。
In an inorganic EL element light emitting device that emits light from a light emitting layer made of a rare earth element as a raw material,
An inorganic EL element light emitting device comprising a rare earth diffusion preventing film for suppressing diffusion of the rare earth element into the substrate between a substrate of the inorganic EL element and the light emitting layer.
前記希土類拡散防止膜は、前記発光層及び前記基板のいずれとも異なる結晶構造をとる
ことを特徴とする請求項1に記載の無機EL素子発光デバイス。
The inorganic EL element light emitting device according to claim 1, wherein the rare earth diffusion prevention film has a crystal structure different from any of the light emitting layer and the substrate.
前記希土類拡散防止膜は、自身に含まれるイオンの半径が前記希土類元素のイオン半径よりも小さく形成されている
ことを特徴とする請求項1又は2に記載の無機EL素子発光デバイス。
The inorganic EL element light-emitting device according to claim 1, wherein the rare earth diffusion prevention film is formed such that a radius of ions contained in the rare earth diffusion prevention film is smaller than an ion radius of the rare earth element.
前記発光層及び前記基板は、熱膨張係数が同じとなるように形成されている
ことを特徴とする請求項1〜3のうちいずれか一項に記載の無機EL素子発光デバイス。
The inorganic EL element light emitting device according to any one of claims 1 to 3, wherein the light emitting layer and the substrate are formed to have the same thermal expansion coefficient.
JP2012175161A 2012-08-07 2012-08-07 Inorganic el element light emitting device Pending JP2014035827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175161A JP2014035827A (en) 2012-08-07 2012-08-07 Inorganic el element light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175161A JP2014035827A (en) 2012-08-07 2012-08-07 Inorganic el element light emitting device

Publications (1)

Publication Number Publication Date
JP2014035827A true JP2014035827A (en) 2014-02-24

Family

ID=50284735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175161A Pending JP2014035827A (en) 2012-08-07 2012-08-07 Inorganic el element light emitting device

Country Status (1)

Country Link
JP (1) JP2014035827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181686A1 (en) 2018-03-19 2019-09-26 Ricoh Company, Ltd. Inorganic el element, display element, image display device, and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181686A1 (en) 2018-03-19 2019-09-26 Ricoh Company, Ltd. Inorganic el element, display element, image display device, and system
US11374054B2 (en) 2018-03-19 2022-06-28 Ricoh Company, Ltd. Inorganic el element, display element, image display device, and system

Similar Documents

Publication Publication Date Title
TWI640604B (en) Process for preparing red-emitting phosphors
Zhou et al. Water Passivation of Perovskite Nanocrystals Enables Air‐Stable Intrinsically Stretchable Color‐Conversion Layers for Stretchable Displays
Zhang et al. A Multifunctional “Halide‐Equivalent” Anion Enabling Efficient CsPb (Br/I) 3 Nanocrystals Pure‐Red Light‐Emitting Diodes with External Quantum Efficiency Exceeding 23%
Zou et al. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes
TW201545863A (en) Ceramic phosphor plate and lighting device including the same
Liu et al. CsPbX3 nanocrystals films coated on YAG: Ce3+ PiG for warm white lighting source
Talbot et al. Electrophoretic deposition of phosphors for solid-state lighting
JP2013203766A (en) Oxide ceramic fluorescent material having rare earth element diffused therein
US9458549B2 (en) Method for manufacturing of an object having phosphorescent properties
JP2004131583A (en) El phosphor powder and el fluorescence element
TWI242037B (en) Phosphor thin film, manufacturing method of the same and electroluminescence panel
JP5965551B2 (en) Silicate luminescent material and method for producing the same
TW201406929A (en) Wavelength converting member, making method, and light-emitting device
JP2013053279A (en) Inorganic fluorescent material
JP2014035827A (en) Inorganic el element light emitting device
JP6340674B2 (en) Light extraction substrate for organic light emitting device, manufacturing method thereof, and organic light emitting device including the same
CN1354218A (en) EL fluorophor cascade film and EL element
JP5649717B2 (en) Lanthanum gallate luminescent material doped with rare earth ions containing metal particles and method for producing the same
WO2010143618A1 (en) Fluorescent material and luminescent device
TWI503399B (en) Preparation of Mn - Activated Zinc - Aluminum Spinel Fluorescent Films
JP4330475B2 (en) Method for producing electroluminescent phosphor
JP4498464B1 (en) Phosphor for inorganic EL device and manufacturing method
KR101980346B1 (en) Method of producing phosphor coated with glass using glass firt and white LEDs comprising the phosphor coated with glass
TWI593780B (en) Fluorescent materials of light-emitting diodes and the method for preparing the same
Choi Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs