JP2014035479A - Variable power optical system, optical device, and method for manufacturing the variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing the variable power optical system Download PDF

Info

Publication number
JP2014035479A
JP2014035479A JP2012177144A JP2012177144A JP2014035479A JP 2014035479 A JP2014035479 A JP 2014035479A JP 2012177144 A JP2012177144 A JP 2012177144A JP 2012177144 A JP2012177144 A JP 2012177144A JP 2014035479 A JP2014035479 A JP 2014035479A
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
optical system
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012177144A
Other languages
Japanese (ja)
Other versions
JP6149359B2 (en
Inventor
Satoshi Yamaguchi
悟史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012177144A priority Critical patent/JP6149359B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to CN201380042190.7A priority patent/CN104603665B/en
Priority to EP18165849.3A priority patent/EP3361300A1/en
Priority to EP13827812.2A priority patent/EP2884322A4/en
Priority to PCT/JP2013/071660 priority patent/WO2014025015A1/en
Publication of JP2014035479A publication Critical patent/JP2014035479A/en
Priority to US14/616,718 priority patent/US9726869B2/en
Application granted granted Critical
Publication of JP6149359B2 publication Critical patent/JP6149359B2/en
Priority to US15/650,817 priority patent/US20170315337A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system in which deterioration of optical performance during vibration reduction is suppressed, and excellent optical performance is achieved from the wide angle state to the telephoto state.SOLUTION: The variable power optical system comprises, in order from the object side: a positive first lens group G1; a negative second lens group G2; a positive third lens group G3; and a positive fourth lens group G4. When varying power from the wide angle state to the telephoto state, the position of the first lens group G1 in the optical axis direction is fixed, and at least the second lens group G2 and the third lens group G3 are moved in the optical axis direction so that the distance between the first lens group G1 and the second lens group G2 is increased, and the distance between the second lens group G2 and the third lens group G3 is decreased. The fourth lens group G4 includes, in order from the object side, a positive first partial lens group G4A, a negative second partial lens group G4B, and a positive third partial lens group G4C. At least a part of the second partial lens group G4B is moved so as to include a component in a direction perpendicular to the optical axis. The variable power optical system satisfies predetermined conditional expressions.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2008−70450号公報JP 2008-70450 A

しかしながら、上述のような従来の変倍光学系は、防振時の光学性能の劣化が大きいという問題があった。
そこで本発明は上記問題点に鑑みてなされたものであり、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系、光学装置、及び変倍光学系の製造方法を提供することを目的とする。
However, the conventional variable power optical system as described above has a problem that the optical performance is greatly deteriorated during image stabilization.
Therefore, the present invention has been made in view of the above-described problems, suppressing deterioration of optical performance during vibration isolation, and a variable power optical system, an optical apparatus, and a favorable optical performance from a wide-angle end state to a telephoto end state, It is another object of the present invention to provide a method for manufacturing a variable magnification optical system.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、光軸方向の位置が固定であり、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群とが光軸方向へ移動し、
前記第4レンズ群は、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有し、
前記第2部分レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
−1.60 < f4B/f4C < −0.50
−1.60 < f4/f4B < −0.60
但し、
f4 :前記第4レンズ群の焦点距離
f4B:前記第2部分レンズ群の焦点距離
f4C:前記第3部分レンズ群の焦点距離
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power And having a group
During zooming from the wide-angle end state to the telephoto end state, the first lens group has a fixed position in the optical axis direction, the distance between the first lens group and the second lens group increases, and the first lens group At least the second lens group and the third lens group move in the optical axis direction so that the distance between the second lens group and the third lens group decreases,
The fourth lens group includes, in order from the object side, a first partial lens group having a positive refractive power, a second partial lens group having a negative refractive power, and a third partial lens group having a positive refractive power. Have
Moving so that at least a part of the second partial lens group includes a component in a direction orthogonal to the optical axis;
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
−1.60 <f4B / f4C <−0.50
−1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法において、
前記第4レンズ群が、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有するようにし、
前記第4レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、光軸方向の位置が固定であり、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群とが光軸方向へ移動するようにし、
前記第2部分レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動するようにすることを特徴とする変倍光学系の製造方法を提供する。
−1.60 < f4B/f4C < −0.50
−1.60 < f4/f4B < −0.60
但し、
f4 :前記第4レンズ群の焦点距離
f4B:前記第2部分レンズ群の焦点距離
f4C:前記第3部分レンズ群の焦点距離
The present invention also provides
Provided is an optical device comprising the variable magnification optical system.
The present invention also provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power In a manufacturing method of a variable magnification optical system having a group
The fourth lens group, in order from the object side, a first partial lens group having a positive refractive power, a second partial lens group having a negative refractive power, and a third partial lens group having a positive refractive power; And have
The fourth lens group satisfies the following conditional expression:
During zooming from the wide-angle end state to the telephoto end state, the first lens group has a fixed position in the optical axis direction, the distance between the first lens group and the second lens group increases, and the first lens group At least the second lens group and the third lens group are moved in the optical axis direction so that the distance between the second lens group and the third lens group is reduced;
There is provided a method for manufacturing a variable magnification optical system, wherein at least a part of the second partial lens group moves so as to include a component in a direction orthogonal to the optical axis.
−1.60 <f4B / f4C <−0.50
−1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group

本発明によれば、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系、光学装置、及び変倍光学系の製造方法を提供することができる。   According to the present invention, there are provided a variable magnification optical system, an optical device, and a method for manufacturing the variable magnification optical system, which have excellent optical performance from the wide-angle end state to the telephoto end state while suppressing deterioration of optical performance during vibration isolation. can do.

本願の第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various figures at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional lateral aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the first example of the present application. It is. 本願の第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is. 本願の第3実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 3rd Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the third example of the present application. It is. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、光軸方向の位置が固定であり、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群とが光軸方向へ移動し、前記第4レンズ群は、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有し、前記第2部分レンズ群の少なくとも一部が防振レンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(1)、(2)を満足することを特徴とする。
(1) −1.60 < f4B/f4C < −0.50
(2) −1.60 < f4/f4B < −0.60
但し、
f4 :前記第4レンズ群の焦点距離
f4B:前記第2部分レンズ群の焦点距離
f4C:前記第3部分レンズ群の焦点距離
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, And a fourth lens group having a refractive power of 1 at the time of zooming from the wide-angle end state to the telephoto end state, the first lens group has a fixed position in the optical axis direction. At least the second lens group and the third lens group are in the optical axis direction so that the distance between the second lens group increases and the distance between the second lens group and the third lens group decreases. The fourth lens group moves in order from the object side, a first partial lens group having a positive refractive power, a second partial lens group having a negative refractive power, and a third part having a positive refractive power. And at least a part of the second partial lens group is directly connected to the optical axis as an anti-vibration lens group. Move in a direction including a component, the following conditional expressions (1), characterized by satisfying the expression (2).
(1) -1.60 <f4B / f4C <−0.50
(2) −1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group

本願の変倍光学系は、前述のように第4レンズ群中の第2部分レンズ群の少なくとも一部が防振レンズ群として光軸と直交する方向の成分を含むように移動することにより、手ぶれ発生時の像位置の補正、即ち防振を行うことができる。また、このように光線高の低い負の屈折力を有するレンズ群の少なくとも一部を防振レンズ群にすることにより、防振レンズ群の外径の小型化を図ることができる。また、斯かる構成により、開口絞りを第3レンズ群と第4レンズ群との間に配置すれば、防振レンズ群を開口絞りと像面の中間位置付近に配置することができる。このため、防振時に光線高の変化を小さく抑え、偏芯コマ収差の発生を小さく抑えることができる。
条件式(1)は、第4レンズ群中の第2部分レンズ群と第3部分レンズ群との屈折力の比を規定するものである。条件式(2)は、第4レンズ群全体と第2部分レンズ群との屈折力の比を規定するものである。本願の変倍光学系は、条件式(1)、(2)を満足することにより、防振レンズ群の小型軽量化を図りながら、防振時の諸収差の変動を小さく抑えることができる。
The variable magnification optical system of the present application moves as described above so that at least a part of the second partial lens group in the fourth lens group includes a component in a direction orthogonal to the optical axis as an anti-vibration lens group. It is possible to correct the image position when camera shake occurs, that is, to perform image stabilization. Further, by using at least a part of the lens group having a negative refractive power with a low light beam height as described above, the outer diameter of the image stabilizing lens group can be reduced. Further, with this configuration, if the aperture stop is disposed between the third lens group and the fourth lens group, the anti-vibration lens group can be disposed in the vicinity of the intermediate position between the aperture stop and the image plane. For this reason, it is possible to suppress the change in the height of the light beam at the time of image stabilization and to suppress the occurrence of the eccentric coma aberration.
Conditional expression (1) defines the ratio of the refractive powers of the second partial lens group and the third partial lens group in the fourth lens group. Conditional expression (2) defines the ratio of refractive power between the entire fourth lens group and the second partial lens group. By satisfying conditional expressions (1) and (2), the variable magnification optical system of the present application can suppress fluctuations in various aberrations during image stabilization while reducing the size and weight of the image stabilization lens group.

本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、第2部分レンズ群の屈折力が過大になり、像面湾曲とコマ収差が大きくなる。また、防振時の収差変動、具体的には所謂偏芯像面タオレが大きくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(1)の上限値を−0.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の上限値を−1.10とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第2部分レンズ群の屈折力が過小になり、防振係数(防振時の防振レンズ群の移動量に対する像面上での像の移動量の比)が小さくなる。したがって、防振レンズ群が所定の防振効果を奏するための当該防振レンズ群の移動量が過大になるため好ましくない。また、防振時の収差変動、具体的には偏芯像面タオレが大きくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(1)の下限値を−1.30とすることがより好ましい。
When the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the second partial lens unit becomes excessive, and the field curvature and coma become large. In addition, aberration fluctuation at the time of image stabilization, specifically, so-called decentered image plane taole becomes large, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1) to −0.70. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to −1.10.
On the other hand, when the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application is below the lower limit value, the refractive power of the second partial lens group becomes excessively small, and the image stabilization coefficient (the image stabilization lens group during image stabilization is The ratio of the amount of movement of the image on the image plane to the amount of movement) becomes small. Therefore, the movement amount of the anti-vibration lens group for the anti-vibration lens group to exhibit a predetermined anti-vibration effect is not preferable. In addition, aberration fluctuation at the time of image stabilization, specifically, an eccentric image plane taole becomes large, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to -1.30.

本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第1〜第3部分レンズ群の屈折力がそれぞれ過小になり、第2部分レンズ群の外径が過大になるため好ましくない。なお、本願の効果をより確実にするために、条件式(2)の上限値を−1.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の上限値を−1.20とすることがより好ましい。   When the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive powers of the first to third partial lens groups become too small, and the outer diameter of the second partial lens group becomes excessive. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2) to −1.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to −1.20.

一方、本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、第1〜第3部分レンズ群の屈折力がそれぞれ過大になり、防振時の収差変動、具体的には偏芯像面タオレが大きくなるため好ましくない。また、レンズ群どうしの偏芯等の製造誤差による結像性能の劣化、特に第2部分レンズ群のチルト偏芯による偏芯コマ収差と偏芯像面タオレが過大になるため好ましくない。なお、本願の効果をより確実にするために、条件式(2)の下限値を−1.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を−1.40とすることがより好ましい。
以上の構成により、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系を実現することができる。
On the other hand, if the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application is below the lower limit value, the refractive powers of the first to third partial lens groups will be excessive, respectively, and aberration fluctuations during vibration isolation, This is not preferable because the eccentric image surface tilt becomes large. Further, the imaging performance is deteriorated due to a manufacturing error such as decentering between the lens groups, in particular, the decentration coma aberration and the decentered image plane taole due to the tilt decentering of the second partial lens group are not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to -1.50. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to −1.40.
With the above configuration, it is possible to realize a variable power optical system that suppresses deterioration in optical performance during image stabilization and has good optical performance from the wide-angle end state to the telephoto end state.

また、本願の変倍光学系は、前記変倍光学系の最も像側に位置するレンズ群が、正の屈折力を有しており、広角端状態から望遠端状態への変倍に際して、光軸方向の位置が固定であることが望ましい。
この構成により、本願の変倍光学系は、変倍時のFナンバーを一定にすることが容易となり、変倍光学系中に配置される開口絞りの絞り機構を簡便なものにすることができる。また、レンズ群どうしの偏芯等を低減することが可能になり、偏芯等の製造誤差による結像性能の劣化、具体的には偏芯コマ収差と偏芯像面タオレを低減することができる。
Further, in the zoom optical system of the present application, the lens group located closest to the image side of the zoom optical system has a positive refractive power, and the optical power is changed during zooming from the wide-angle end state to the telephoto end state. It is desirable that the axial position is fixed.
With this configuration, the variable magnification optical system of the present application can easily make the F number constant at the time of variable magnification, and the aperture mechanism of the aperture stop arranged in the variable magnification optical system can be simplified. . In addition, it is possible to reduce the decentration between lens groups, and it is possible to reduce imaging performance deterioration due to manufacturing errors such as decentration, specifically decentration coma aberration and decentered image plane taole. it can.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍に際して、前記第2レンズ群の倍率が等倍を跨ぐように変化し、以下の条件式(3)を満足することが望ましい。
(3) 0.30 < β2w×β2t < 0.90
但し、
β2w:広角端状態における前記第2レンズ群の倍率
β2t:望遠端状態における前記第2レンズ群の倍率
In the variable power optical system of the present application, the magnification of the second lens unit changes so as to straddle the same magnification upon zooming from the wide-angle end state to the telephoto end state, and the following conditional expression (3) is satisfied. It is desirable.
(3) 0.30 <β2w × β2t <0.90
However,
β2w: magnification of the second lens group in the wide-angle end state β2t: magnification of the second lens group in the telephoto end state

本願の変倍光学系は、前述のように広角端状態から望遠端状態への変倍に際して、第2レンズ群の倍率が等倍を跨ぐように変化する、言い換えれば第2レンズ群の倍率が変倍途中で一度−1倍になる。この構成により、変倍に際して、第2レンズ群における光線高の変化を小さくすることができ、これによって像面湾曲やコマ収差の変動を小さくすることができる。   In the variable power optical system of the present application, the magnification of the second lens group changes so as to straddle the same magnification upon zooming from the wide-angle end state to the telephoto end state as described above, in other words, the magnification of the second lens group is In the middle of zooming, it becomes -1 times. With this configuration, it is possible to reduce the change in the light ray height in the second lens group upon zooming, and thereby to reduce variations in field curvature and coma.

条件式(3)は、第2レンズ群の倍率の範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、変倍時の第2レンズ群と第3レンズ群との間隔の変動を小さくすることができる。このため、中間焦点距離状態においてコマ収差と球面収差の劣化を小さく抑えることができる。   Conditional expression (3) defines the magnification range of the second lens group. The zoom optical system of the present application can reduce the variation in the distance between the second lens group and the third lens group during zooming by satisfying conditional expression (3). For this reason, it is possible to suppress deterioration of coma and spherical aberration in the intermediate focal length state.

本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、変倍時の第2レンズ群と第3レンズ群との間隔の変化量が増大する。このため、像面湾曲やコマ収差等の諸収差の変動が過大になり、中間焦点距離状態においてこれらの収差を補正することが困難になる。また、変倍時の第3レンズ群の物体側への移動量が増大し、第2レンズ群の移動スペースが小さくなる。これにより、広角端状態及び望遠端状態において、像面湾曲、球面収差及びコマ収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(3)の上限値を0.80とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を0.70とすることがより好ましい。   When the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, the amount of change in the interval between the second lens group and the third lens group during zooming increases. For this reason, fluctuations in various aberrations such as field curvature and coma become excessive, and it becomes difficult to correct these aberrations in the intermediate focal length state. Further, the amount of movement of the third lens group toward the object side during zooming increases, and the movement space of the second lens group decreases. This is not preferable because it becomes difficult to correct curvature of field, spherical aberration, and coma in the wide-angle end state and the telephoto end state. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 0.80. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 0.70.

一方、本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、広角端状態において、第1レンズ群から第3レンズ群までの各レンズ群が互いに接近し過ぎる。このため、コマ収差と像面湾曲を補正することが困難になる。また、第4レンズ群の焦点距離の増大を招き、本願の変倍光学系の全長と外径が大きくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(3)の下限値を0.50とすることがより好ましい。   On the other hand, when the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is below the lower limit value, the lens groups from the first lens group to the third lens group are too close to each other in the wide-angle end state. For this reason, it becomes difficult to correct coma and curvature of field. Further, it is not preferable because the focal length of the fourth lens group is increased, and the total length and outer diameter of the variable magnification optical system of the present application are increased. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 0.50.

また、本願の変倍光学系は、以下の条件式(4)、(5)を満足することが望ましい。
(4) 0.290 < N1n−N1p
(5) 0.160 < N3n−N3p
但し、
N1n:前記第1レンズ群中の屈折率の最も大きな負レンズの屈折率
N1p:前記第1レンズ群中の屈折率の最も小さな正レンズの屈折率
N3n:前記第3レンズ群中の屈折率の最も大きな負レンズの屈折率
N3p:前記第3レンズ群中の屈折率の最も小さな正レンズの屈折率
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expressions (4) and (5).
(4) 0.290 <N1n-N1p
(5) 0.160 <N3n-N3p
However,
N1n: Refractive index of the negative lens having the largest refractive index in the first lens group N1p: Refractive index of the positive lens having the smallest refractive index in the first lens group N3n: Refractive index of the third lens group Refractive index N3p of the largest negative lens: Refractive index of the positive lens having the smallest refractive index in the third lens group

条件式(4)は、第1レンズ群中の屈折率の最も大きな負レンズと屈折率の最も小さな正レンズとの屈折率差を規定するものである。本願の変倍光学系は、条件式(4)を満足することにより、第1レンズ群中の各レンズの曲率を小さくすることができる。このため、広角端状態から望遠端状態にわたってコマ収差を良好に補正することができる。
本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、広角端状態から望遠端状態にわたってコマ収差を補正することが困難になる。また、無限遠物体から近距離物体への合焦時に球面収差の変動が大きくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.350とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の下限値を0.400とすることがより好ましい。
Conditional expression (4) defines the refractive index difference between the negative lens having the largest refractive index and the positive lens having the smallest refractive index in the first lens group. The variable power optical system of the present application can reduce the curvature of each lens in the first lens group by satisfying conditional expression (4). For this reason, coma can be favorably corrected from the wide-angle end state to the telephoto end state.
If the corresponding value of conditional expression (4) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to correct coma from the wide-angle end state to the telephoto end state. Further, it is not preferable because the variation of spherical aberration becomes large when focusing from an object at infinity to an object at a short distance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.350. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.400.

条件式(5)は、第3レンズ群中の屈折率の最も大きな負レンズと屈折率の最も小さな正レンズとの屈折率差を規定するものである。本願の変倍光学系は、条件式(5)を満足することにより、第3レンズ群中の各レンズの曲率を小さくすることができる。このため、広角端状態から望遠端状態にわたってコマ収差を良好に補正することができる。
本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、広角端状態から望遠端状態にわたってコマ収差を補正することが困難になる。なお、本願の効果をより確実にするために、条件式(5)の下限値を0.180とすることがより好ましい。
Conditional expression (5) defines the refractive index difference between the negative lens having the largest refractive index and the positive lens having the smallest refractive index in the third lens group. The variable magnification optical system of the present application can reduce the curvature of each lens in the third lens group by satisfying conditional expression (5). For this reason, coma can be favorably corrected from the wide-angle end state to the telephoto end state.
If the corresponding value of conditional expression (5) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to correct coma from the wide-angle end state to the telephoto end state. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.180.

また、本願の変倍光学系は、前記第2レンズ群が、物体側から順に、負レンズと、負の屈折力を有する第1負部分群と、負の屈折力を有する第2負部分群とを含み、前記第1負部分群と前記第2負部分群がそれぞれ、正負一枚ずつ合計2枚のレンズで構成されていることが望ましい。
この構成により、変倍時に光線高の変化が大きい第2レンズ群において、各レンズ面での光線偏角を小さくすることができる。このため、変倍時の像面湾曲や球面収差の変動、及びコマ収差の発生を小さく抑えることができる。また、第2レンズ群全体の屈折力を大きくすることができるため、本願の変倍光学系の全長を短縮することができる。さらに、第2レンズ群内のレンズどうしの偏芯等の製造誤差による結像性能の劣化、具体的には偏芯コマ収差と偏芯像面タオレを低減することができる。
In the variable magnification optical system of the present application, the second lens group includes, in order from the object side, a negative lens, a first negative subgroup having negative refractive power, and a second negative subgroup having negative refractive power. The first negative subgroup and the second negative subgroup are each preferably composed of two lenses, one positive and one negative.
With this configuration, it is possible to reduce the light beam deflection angle at each lens surface in the second lens group having a large change in light beam height when zooming. For this reason, it is possible to suppress the occurrence of curvature of field, spherical aberration, and coma during zooming. Further, since the refractive power of the entire second lens group can be increased, the overall length of the variable magnification optical system of the present application can be shortened. Further, it is possible to reduce image formation performance degradation due to manufacturing errors such as decentration of lenses in the second lens group, specifically, decentration coma aberration and decentered image plane taole.

また、本願の変倍光学系は、前記第1レンズ群が、物体側から順に、正の屈折力を有する前群と、正の屈折力を有する後群とから構成されており、無限遠物体から近距離物体への合焦に際して、前記後群が合焦レンズ群として物体側へ移動することが望ましい。
この構成により、本願の変倍光学系は、合焦レンズ群の外径を小さくして重量を軽減することができる。したがって、本願の変倍光学系でオートフォーカスを行う場合には、合焦レンズ群を駆動するためのモータの負荷を軽減することができる。また、本願の変倍光学系の近距離物体合焦時の倍率を大きくしながら、近距離物体合焦時の球面収差等の収差変動を小さく抑えることができる。
In the variable magnification optical system of the present application, the first lens group includes, in order from the object side, a front group having a positive refractive power and a rear group having a positive refractive power. It is desirable that the rear group moves to the object side as a focusing lens group when focusing on an object at a short distance.
With this configuration, the variable magnification optical system of the present application can reduce the weight by reducing the outer diameter of the focusing lens group. Therefore, when autofocusing is performed with the variable magnification optical system of the present application, the load on the motor for driving the focusing lens group can be reduced. In addition, while the magnification of the variable power optical system of the present application is increased at the time of focusing on a close object, aberration fluctuation such as spherical aberration at the time of focusing on the close object can be suppressed.

また、本願の変倍光学系は、前記第1レンズ群の前記前群が、正の屈折力を有する単レンズで構成されており、前記第1レンズ群の前記後群が、物体側から順に、負レンズと、正レンズと、正レンズとから構成されていることが望ましい。
この構成により、合焦レンズ群である後群の外径の小型化と軽量化を図りつつ、合焦時の球面収差と像面湾曲の変動を小さく抑えることができる。
In the variable magnification optical system of the present application, the front group of the first lens group is configured by a single lens having a positive refractive power, and the rear group of the first lens group is in order from the object side. It is desirable that the lens is composed of a negative lens, a positive lens, and a positive lens.
With this configuration, it is possible to reduce the variation in spherical aberration and field curvature during focusing while reducing the outer diameter and weight of the rear lens group that is the focusing lens group.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴とする。これにより、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた光学装置を実現することができる。   The optical apparatus according to the present application includes the variable magnification optical system having the above-described configuration. Thereby, it is possible to realize an optical device that suppresses deterioration of optical performance during image stabilization and has good optical performance from the wide-angle end state to the telephoto end state.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法において、前記第4レンズ群が、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有するようにし、前記第4レンズ群が以下の条件式(1)、(2)を満足するようにし、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、光軸方向の位置が固定であり、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群とが光軸方向へ移動するようにし、前記第2部分レンズ群の少なくとも一部が防振レンズ群として光軸と直交する方向の成分を含むように移動するようにすることを特徴とする。これにより、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系を製造することができる。
(1) −1.60 < f4B/f4C < −0.50
(2) −1.60 < f4/f4B < −0.60
但し、
f4 :前記第4レンズ群の焦点距離
f4B:前記第2部分レンズ群の焦点距離
f4C:前記第3部分レンズ群の焦点距離
The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a fourth lens group having a positive refractive power, wherein the fourth lens group includes, in order from the object side, a first partial lens group having a positive refractive power, and a negative lens group. A second partial lens group having a refractive power of 3 and a third partial lens group having a positive refractive power, so that the fourth lens group satisfies the following conditional expressions (1) and (2): In the zooming from the wide-angle end state to the telephoto end state, the position of the first lens group in the optical axis direction is fixed, and the distance between the first lens group and the second lens group increases. At least the second lens group and the third lens group may be reduced so that the distance between the second lens group and the third lens group decreases. The lens group and the third lens group are moved in the optical axis direction, and at least a part of the second partial lens group is moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis. It is characterized by. As a result, it is possible to manufacture a variable magnification optical system having excellent optical performance from the wide-angle end state to the telephoto end state while suppressing deterioration of the optical performance during image stabilization.
(1) -1.60 <f4B / f4C <−0.50
(2) −1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1は本願の第1実施例に係る変倍光学系のレンズ構成を示す断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a sectional view showing the lens configuration of a variable magnification optical system according to the first example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、正の屈折力を有する前群G1Aと、正の屈折力を有する後群G1Bとからなる。
前群G1Aは、物体側に凸面を向けた正メニスカスレンズL11からなる。
後群G1Bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14とからなる。
The first lens group G1 includes, in order from the object side, a front group G1A having a positive refractive power and a rear group G1B having a positive refractive power.
The front group G1A includes a positive meniscus lens L11 having a convex surface directed toward the object side.
The rear group G1B includes, in order from the object side, a cemented lens of a negative meniscus lens L12 having a convex surface facing the object side and a biconvex positive lens L13, and a positive meniscus lens L14 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、負の屈折力を有する第1負部分群G2Aと、負の屈折力を有する第2負部分群G2Bとからなる。
第1負部分群G2Aは、物体側から順に、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズからなる。
第2負部分群G2Bは、物体側から順に、両凹形状の負レンズL24と物体側に凸面を向けた平凸形状の正レンズL25との接合レンズからなる。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a first negative subgroup G2A having negative refractive power, and a second negative subgroup G2B having negative refractive power. .
The first negative subgroup G2A includes, in order from the object side, a cemented lens of a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side.
The second negative subgroup G2B includes, in order from the object side, a cemented lens of a biconcave negative lens L24 and a planoconvex positive lens L25 having a convex surface facing the object side.
The third lens group G3 includes, in order from the object side, a cemented lens of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface directed toward the object side.

第4レンズ群G4は、物体側から順に、正の屈折力を有する第1部分レンズ群G4Aと、負の屈折力を有する第2部分レンズ群G4Bと、正の屈折力を有する第3部分レンズ群G4Cとからなる。
第1部分レンズ群G4Aは、物体側から順に、物体側に凸面を向けた平凸形状の正レンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合レンズとからなる。
第2部分レンズ群G4Bは、物体側から順に、両凸形状の正レンズL44と両凹形状の負レンズL45との接合レンズと、両凹形状の負レンズL46とからなる。
第3部分レンズ群G4Cは、物体側から順に、両凸形状の正レンズL47と、両凸形状の正レンズL48と、物体側に凹面を向けた負メニスカスレンズL49とからなる。
The fourth lens group G4 includes, in order from the object side, a first partial lens group G4A having a positive refractive power, a second partial lens group G4B having a negative refractive power, and a third partial lens having a positive refractive power. It consists of group G4C.
The first partial lens group G4A includes, in order from the object side, a planoconvex positive lens L41 having a convex surface directed toward the object side, and a cemented lens of a biconvex positive lens L42 and a biconcave negative lens L43. Become.
The second partial lens group G4B includes, in order from the object side, a cemented lens of a biconvex positive lens L44 and a biconcave negative lens L45, and a biconcave negative lens L46.
The third partial lens group G4C includes, in order from the object side, a biconvex positive lens L47, a biconvex positive lens L48, and a negative meniscus lens L49 with a concave surface facing the object side.

本実施例に係る変倍光学系において、第3レンズ群G3と第4レンズ群G4との間には、開口絞りSが配置されている。第4レンズ群G4中の第1部分レンズ群G4Aと第2部分レンズ群G4Bとの間には、フレアカット絞りFSが配置されている。
本実施例に係る変倍光学系は、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少するように、第2レンズ群G2と第3レンズ群G3とを光軸方向へ移動させることにより、広角端状態から望遠端状態への変倍を行う。このとき、第1レンズ群G1、第4レンズ群G4及び開口絞りSは、いずれも光軸方向の位置が固定である。
本実施例に係る変倍光学系は、第1レンズ群G1中の後群G1Bを合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
In the variable magnification optical system according to the present example, an aperture stop S is disposed between the third lens group G3 and the fourth lens group G4. A flare cut stop FS is disposed between the first partial lens group G4A and the second partial lens group G4B in the fourth lens group G4.
In the variable magnification optical system according to the present example, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases. The zooming from the wide-angle end state to the telephoto end state is performed by moving the second lens group G2 and the third lens group G3 in the optical axis direction. At this time, the positions of the first lens group G1, the fourth lens group G4, and the aperture stop S are all fixed in the optical axis direction.
The variable magnification optical system according to the present example moves the rear group G1B in the first lens group G1 to the object side along the optical axis as a focusing lens group, so that focusing from an infinite object to a close object is performed. Do chariot.

本実施例に係る変倍光学系は、第4レンズ群G4中の第2部分レンズ群G4Bを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
ここで、レンズ全系の焦点距離がf、防振係数(防振時の防振レンズ群の移動量に対する像面I上での像の移動量の比)がKであるレンズにおいて、角度θの回転ぶれを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。
したがって、本実施例に係る変倍光学系は、広角端状態において防振係数が−1.28、焦点距離が71.40(mm)であるため、0.60°の回転ぶれを補正するための第2部分レンズ群G4Bの移動量は0.58(mm)となる。また、望遠端状態においては防振係数が−1.28、焦点距離が194.00(mm)であるため、0.40°の回転ぶれを補正するための第2部分レンズ群G4Bの移動量は1.06(mm)となる。
The variable magnification optical system according to the present example performs image stabilization by moving the second partial lens group G4B in the fourth lens group G4 as a vibration isolation lens group so as to include a component in a direction orthogonal to the optical axis. .
Here, in a lens in which the focal length of the entire lens system is f and the image stabilization coefficient (ratio of the image movement amount on the image plane I to the movement amount of the image stabilization lens group during image stabilization) is K, the angle θ In order to correct the rotational blur of the lens, the anti-vibration lens group may be moved in a direction orthogonal to the optical axis by (f · tan θ) / K.
Therefore, the variable magnification optical system according to the present example has a vibration isolation coefficient of −1.28 and a focal length of 71.40 (mm) in the wide-angle end state, and thus corrects a rotation blur of 0.60 °. The amount of movement of the second partial lens group G4B is 0.58 (mm). In the telephoto end state, the image stabilization coefficient is −1.28 and the focal length is 194.00 (mm). Therefore, the amount of movement of the second partial lens group G4B for correcting the rotation blur of 0.40 °. Is 1.06 (mm).

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、絞りFSはフレアカット絞りFS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、非球面には面番号に*を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index with respect to the d-line (wavelength λ = 587.6 nm) and νd indicate the Abbe number with respect to the d-line (wavelength λ = 587.6 nm), respectively. The object plane is the object plane, the variable is the variable plane spacing, the aperture S is the aperture stop S, the aperture FS is the flare-cut aperture FS, and the image plane is the image plane I. The radius of curvature r = ∞ indicates a plane. Further, the aspherical surface is marked with * as the surface number, and the paraxial radius of curvature is shown in the column of the radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2]+A4h+A6h
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1-κ (h / r) 2 } 1/2 ] + A4h 4 + A6h 6
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. A4 and A6 are aspheric coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
In [Various data], FNO is the F number, ω is the half field angle (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system (on the optical axis from the first surface to the image surface I) Dn and dn respectively indicate variable intervals between the nth surface and the (n + 1) th surface. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 140.3879 3.2500 1.487490 70.31
2 399.4846 16.2331 1.000000

3 151.1551 2.0000 1.903660 31.27
4 77.3360 6.2000 1.497820 82.57
5 -417.8459 0.1000 1.000000
6 72.3229 5.2000 1.497820 82.57
7 810.3397 可変 1.000000

8 -398.4538 1.3000 1.834810 42.73
9 49.6681 3.9000 1.000000
10 -83.0944 1.2500 1.618000 63.34
11 54.6110 2.5500 1.846660 23.80
12 399.8540 1.4500 1.000000
13 -70.8083 1.2500 1.729160 54.61
14 84.0230 2.1500 1.846660 23.80
15 ∞ 可変 1.000000

16 204.9027 5.2000 1.717000 47.98
17 -32.6310 1.4000 1.903660 31.27
18 -73.6790 可変 1.000000

19(絞りS) ∞ 0.4000 1.000000
20 49.2393 3.7500 1.772500 49.62
21 ∞ 0.3000 1.000000
22 35.5052 4.9000 1.497820 82.57
23 -162.2410 1.8500 1.903660 31.27
24 41.9940 14.3500 1.000000
25(絞りFS) ∞ 0.5000 1.000000
26 85.3575 4.0000 1.805180 25.45
27 -47.5520 1.2000 1.603110 60.69
28 54.4401 4.0000 1.000000
29 -254.0256 1.2000 2.000690 25.46
30 63.7889 3.9000 1.000000
31 81.7216 4.0000 1.589130 61.22
32 -81.7216 0.7000 1.000000
33 77.7312 4.2000 1.719990 50.27
34 -77.7312 6.5000 1.000000
35 -41.7728 2.0000 1.834000 37.18
36 -200.4805 BF 1.000000

像面 ∞

[各種データ]
変倍比 2.72

W M T
f 71.4 135.0 194.0
FNO 4.1 4.1 4.1
ω 17.4° 8.9° 6.2°
Y 21.6 21.6 21.6
TL 218.3 218.3 218.3
BF 63.693 63.693 63.693

W M T
d7 2.435 27.748 37.096
d15 25.093 13.529 1.423
d18 15.877 2.127 4.886

[レンズ群データ]
群 始面 f
1 1 100.018
1A 1 442.202
1B 3 122.385
2 8 -28.545
3 16 100.062
4 19 85.726

[条件式対応値]
(1)f4B/f4C = -1.29
(2) f4/f4B= -1.37
(3) β2w×β2t = 0.70
(4) N1n−N1p= 0.416
(5) N3n−N3p= 0.187
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞

1 140.3879 3.2500 1.487490 70.31
2 399.4846 16.2331 1.000000

3 151.1551 2.0000 1.903660 31.27
4 77.3360 6.2000 1.497820 82.57
5 -417.8459 0.1000 1.000000
6 72.3229 5.2000 1.497820 82.57
7 810.3397 Variable 1.000000

8 -398.4538 1.3000 1.834810 42.73
9 49.6681 3.9000 1.000000
10 -83.0944 1.2500 1.618000 63.34
11 54.6110 2.5500 1.846660 23.80
12 399.8540 1.4500 1.000000
13 -70.8083 1.2500 1.729160 54.61
14 84.0230 2.1500 1.846660 23.80
15 ∞ Variable 1.000000

16 204.9027 5.2000 1.717000 47.98
17 -32.6310 1.4000 1.903660 31.27
18 -73.6790 Variable 1.000000

19 (Aperture S) ∞ 0.4000 1.000000
20 49.2393 3.7500 1.772500 49.62
21 ∞ 0.3000 1.000000
22 35.5052 4.9000 1.497820 82.57
23 -162.2410 1.8500 1.903660 31.27
24 41.9940 14.3500 1.000000
25 (Aperture FS) ∞ 0.5000 1.000000
26 85.3575 4.0000 1.805180 25.45
27 -47.5520 1.2000 1.603110 60.69
28 54.4401 4.0000 1.000000
29 -254.0256 1.2000 2.000690 25.46
30 63.7889 3.9000 1.000000
31 81.7216 4.0000 1.589130 61.22
32 -81.7216 0.7000 1.000000
33 77.7312 4.2000 1.719990 50.27
34 -77.7312 6.5000 1.000000
35 -41.7728 2.0000 1.834000 37.18
36 -200.4805 BF 1.000000

Image plane ∞

[Various data]
Scaling ratio 2.72

W M T
f 71.4 135.0 194.0
FNO 4.1 4.1 4.1
ω 17.4 ° 8.9 ° 6.2 °
Y 21.6 21.6 21.6
TL 218.3 218.3 218.3
BF 63.693 63.693 63.693

W M T
d7 2.435 27.748 37.096
d15 25.093 13.529 1.423
d18 15.877 2.127 4.886

[Lens group data]
Group start surface f
1 1 100.018
1A 1 442.202
1B 3 122.385
2 8 -28.545
3 16 100.062
4 19 85.726

[Conditional expression values]
(1) f4B / f4C = -1.29
(2) f4 / f4B = -1.37
(3) β2w × β2t = 0.70
(4) N1n-N1p = 0.416
(5) N3n-N3p = 0.187

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。
2 (a), 2 (b), and 2 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object.
FIGS. 3 (a) and 3 (b) show the results when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is a meridional lateral aberration diagram.

各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。
なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正されて優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
In each aberration diagram, FNO represents an F number, and Y represents an image height. d represents the aberration at the d-line (λ = 587.6 nm), and g represents the aberration at the g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.
Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第2実施例)
図4は本願の第2実施例に係る変倍光学系のレンズ構成を示す断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Second embodiment)
FIG. 4 is a sectional view showing the lens configuration of a variable magnification optical system according to the second example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、正の屈折力を有する前群G1Aと、正の屈折力を有する後群G1Bとからなる。
前群G1Aは、物体側に凸面を向けた正メニスカスレンズL11からなる。
後群G1Bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14とからなる。
The first lens group G1 includes, in order from the object side, a front group G1A having a positive refractive power and a rear group G1B having a positive refractive power.
The front group G1A includes a positive meniscus lens L11 having a convex surface directed toward the object side.
The rear group G1B includes, in order from the object side, a cemented lens of a negative meniscus lens L12 having a convex surface facing the object side and a biconvex positive lens L13, and a positive meniscus lens L14 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、負の屈折力を有する第1負部分群G2Aと、負の屈折力を有する第2負部分群G2Bとからなる。
第1負部分群G2Aは、物体側から順に、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズからなる。
第2負部分群G2Bは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズからなる。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズからなる。
The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a first negative subgroup G2A having negative refractive power, and a second negative subgroup G2B having negative refractive power. .
The first negative subgroup G2A includes, in order from the object side, a cemented lens of a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side.
The second negative subgroup G2B includes, in order from the object side, a cemented lens of a positive meniscus lens L24 having a concave surface facing the object side and a negative meniscus lens L25 having a concave surface facing the object side.
The third lens group G3 includes, in order from the object side, a cemented lens of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface directed toward the object side.

第4レンズ群G4は、物体側から順に、正の屈折力を有する第1部分レンズ群G4Aと、負の屈折力を有する第2部分レンズ群G4Bと、正の屈折力を有する第3部分レンズ群G4Cとからなる。
第1部分レンズ群G4Aは、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合レンズとからなる。
第2部分レンズ群G4Bは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL44と両凹形状の負レンズL45との接合レンズからなる。
第3部分レンズ群G4Cは、物体側から順に、両凸形状の正レンズL46と、両凸形状の正レンズL47と、物体側に凹面を向けた負メニスカスレンズL48とからなる。
The fourth lens group G4 includes, in order from the object side, a first partial lens group G4A having a positive refractive power, a second partial lens group G4B having a negative refractive power, and a third partial lens having a positive refractive power. It consists of group G4C.
The first partial lens group G4A is composed of, in order from the object side, a biconvex positive lens L41, and a cemented lens of a biconvex positive lens L42 and a biconcave negative lens L43.
The second partial lens group G4B is composed of a cemented lens of a positive meniscus lens L44 having a concave surface directed toward the object side and a biconcave negative lens L45 in order from the object side.
The third partial lens group G4C is composed of, in order from the object side, a biconvex positive lens L46, a biconvex positive lens L47, and a negative meniscus lens L48 with a concave surface facing the object side.

本実施例に係る変倍光学系において、第3レンズ群G3と第4レンズ群G4との間には、開口絞りSが配置されている。第4レンズ群G4中の第1部分レンズ群G4Aと第2部分レンズ群G4Bとの間には、フレアカット絞りFSが配置されている。
本実施例に係る変倍光学系は、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少するように、第2レンズ群G2と第3レンズ群G3とを光軸方向へ移動させることにより、広角端状態から望遠端状態への変倍を行う。このとき、第1レンズ群G1、第4レンズ群G4及び開口絞りSは、いずれも光軸方向の位置が固定である。
本実施例に係る変倍光学系は、第1レンズ群G1中の後群G1Bを合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
In the variable magnification optical system according to the present example, an aperture stop S is disposed between the third lens group G3 and the fourth lens group G4. A flare cut stop FS is disposed between the first partial lens group G4A and the second partial lens group G4B in the fourth lens group G4.
In the variable magnification optical system according to the present example, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases. The zooming from the wide-angle end state to the telephoto end state is performed by moving the second lens group G2 and the third lens group G3 in the optical axis direction. At this time, the positions of the first lens group G1, the fourth lens group G4, and the aperture stop S are all fixed in the optical axis direction.
The variable magnification optical system according to the present example moves the rear group G1B in the first lens group G1 to the object side along the optical axis as a focusing lens group, so that focusing from an infinite object to a close object is performed. Do chariot.

本実施例に係る変倍光学系は、第4レンズ群G4中の第2部分レンズ群G4Bを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
本実施例に係る変倍光学系は、広角端状態において防振係数が−1.30、焦点距離が71.40(mm)であるため、0.60°の回転ぶれを補正するための第2部分レンズ群G4Bの移動量は0.58(mm)となる。また、望遠端状態においては防振係数が−1.30、焦点距離が196.00(mm)であるため、0.40°の回転ぶれを補正するための第2部分レンズ群G4Bの移動量は1.05(mm)となる。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
The variable magnification optical system according to the present example performs image stabilization by moving the second partial lens group G4B in the fourth lens group G4 as a vibration isolation lens group so as to include a component in a direction orthogonal to the optical axis. .
The variable magnification optical system according to the present example has an anti-vibration coefficient of -1.30 and a focal length of 71.40 (mm) in the wide-angle end state. The moving amount of the two-part lens group G4B is 0.58 (mm). In the telephoto end state, since the image stabilization coefficient is -1.30 and the focal length is 196.00 (mm), the movement amount of the second partial lens group G4B for correcting the rotation blur of 0.40 °. Is 1.05 (mm).
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 114.3117 3.1000 1.487490 70.40
2 250.6300 1.5381 1.000000

3 116.4884 2.0000 1.999900 31.27
4 70.4720 5.9000 1.497820 82.51
5 -987.3232 0.1000 1.000000
6 76.0165 5.0000 1.497820 82.51
7 1015.1759 可変 1.000000

8 -447.0787 1.3000 1.834807 42.72
9 48.2871 3.4185 1.000000
10 -86.5586 1.2500 1.618000 63.37
11 54.3572 2.5000 1.846660 23.78
12 382.7325 1.8985 1.000000
13 -56.0641 2.2926 1.846660 23.78
14 -33.9578 0.9753 1.729157 54.66
15 -479.7755 可変 1.000000

16 185.6879 5.0000 1.717004 47.93
17 -32.9760 1.4000 1.983660 31.27
18 -68.7091 可変 1.000000

19(絞りS) ∞ 0.4000 1.000000
20 42.8768 5.0000 1.772499 49.61
21 -206.7745 0.3000 1.000000
22 76.8439 4.2000 1.497820 82.51
23 -58.3375 1.8000 1.903660 31.27
24 79.4740 13.0000 1.000000
25(絞りFS) ∞ 1.0000 1.000000
26 -114.4458 4.2000 1.831206 36.74
27 -24.6196 1.2000 1.714409 53.89
28 56.2022 3.7170 1.000000
29 77.4062 4.0000 1.589130 61.16
30 -86.5707 0.2588 1.000000
31 173.1935 4.0000 1.719995 50.23
32 -55.2566 4.9362 1.000000
33 -33.3186 2.0400 1.834000 37.16
34 -123.8827 BF 1.000000

像面 ∞

[各種データ]
変倍比 2.75

W M T
f 71.4 133.0 196.0
FNO 4.1 4.1 4.1
ω 17.4° 9.1° 6.1°
Y 21.6 21.6 21.6
TL 215.0 215.0 215.0
BF 70.4 70.4 70.4

W M T
d7 1.877 27.161 37.583
d15 21.821 12.568 1.200
d18 18.430 2.400 3.347

[レンズ群データ]
群 始面 f
1 1 100.977
1A 1 427.937
1B 3 125.000
2 8 -27.635
3 16 99.374
4 19 80.000

[条件式対応値]
(1)f4B/f4C = -1.05
(2) f4/f4B= -1.23
(3) β2w×β2t = 0.61
(4) N1n−N1p = 0.512
(5) N3n−N3p = 0.267
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞

1 114.3117 3.1000 1.487490 70.40
2 250.6300 1.5381 1.000000

3 116.4884 2.0000 1.999900 31.27
4 70.4720 5.9000 1.497820 82.51
5 -987.3232 0.1000 1.000000
6 76.0165 5.0000 1.497820 82.51
7 1015.1759 Variable 1.000000

8 -447.0787 1.3000 1.834807 42.72
9 48.2871 3.4185 1.000000
10 -86.5586 1.2500 1.618000 63.37
11 54.3572 2.5000 1.846660 23.78
12 382.7325 1.8985 1.000000
13 -56.0641 2.2926 1.846660 23.78
14 -33.9578 0.9753 1.729157 54.66
15 -479.7755 Variable 1.000000

16 185.6879 5.0000 1.717004 47.93
17 -32.9760 1.4000 1.983660 31.27
18 -68.7091 Variable 1.000000

19 (Aperture S) ∞ 0.4000 1.000000
20 42.8768 5.0000 1.772499 49.61
21 -206.7745 0.3000 1.000000
22 76.8439 4.2000 1.497820 82.51
23 -58.3375 1.8000 1.903660 31.27
24 79.4740 13.0000 1.000000
25 (Aperture FS) ∞ 1.0000 1.000000
26 -114.4458 4.2000 1.831206 36.74
27 -24.6196 1.2000 1.714409 53.89
28 56.2022 3.7170 1.000000
29 77.4062 4.0000 1.589130 61.16
30 -86.5707 0.2588 1.000000
31 173.1935 4.0000 1.719995 50.23
32 -55.2566 4.9362 1.000000
33 -33.3186 2.0400 1.834000 37.16
34 -123.8827 BF 1.000000

Image plane ∞

[Various data]
Scaling ratio 2.75

W M T
f 71.4 133.0 196.0
FNO 4.1 4.1 4.1
ω 17.4 ° 9.1 ° 6.1 °
Y 21.6 21.6 21.6
TL 215.0 215.0 215.0
BF 70.4 70.4 70.4

W M T
d7 1.877 27.161 37.583
d15 21.821 12.568 1.200
d18 18.430 2.400 3.347

[Lens group data]
Group start surface f
1 1 100.977
1A 1 427.937
1B 3 125.000
2 8 -27.635
3 16 99.374
4 19 80.000

[Conditional expression values]
(1) f4B / f4C = -1.05
(2) f4 / f4B = -1.23
(3) β2w × β2t = 0.61
(4) N1n-N1p = 0.512
(5) N3n-N3p = 0.267

図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図6(a)、及び図6(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正されて優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 5 (a), 5 (b), and 5 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object.
6 (a) and 6 (b) respectively show the vibration-proofing at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is a meridional lateral aberration diagram.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第3実施例)
図7は本願の第3実施例に係る変倍光学系のレンズ構成を示す断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Third embodiment)
FIG. 7 is a sectional view showing the lens configuration of a variable magnification optical system according to the third example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、正の屈折力を有する前群G1Aと、正の屈折力を有する後群G1Bとからなる。
前群G1Aは、物体側に凸面を向けた正メニスカスレンズL11からなる。
後群G1Bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL12と、両凸形状の正レンズL13と、物体側に凸面を向けた正メニスカスレンズL14とからなる。
The first lens group G1 includes, in order from the object side, a front group G1A having a positive refractive power and a rear group G1B having a positive refractive power.
The front group G1A includes a positive meniscus lens L11 having a convex surface directed toward the object side.
The rear group G1B includes, in order from the object side, a negative meniscus lens L12 having a convex surface facing the object side, a positive lens L13 having a biconvex shape, and a positive meniscus lens L14 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、負の屈折力を有する第1負部分群G2Aと、負の屈折力を有する第2負部分群G2Bと、物体側に凸面を向けた負メニスカスレンズL26と物体側に凸面を向けた正メニスカスレンズL27との接合レンズとからなる。
第1負部分群G2Aは、物体側から順に、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズからなる。
第2負部分群G2Bは、物体側から順に、両凹形状の負レンズL24と物体側に凸面を向けた正メニスカスレンズL25との接合レンズからなる。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズからなる。
In order from the object side, the second lens group G2 includes a biconcave negative lens L21, a first negative subgroup G2A having negative refractive power, a second negative subgroup G2B having negative refractive power, and an object It consists of a cemented lens of a negative meniscus lens L26 with a convex surface facing the side and a positive meniscus lens L27 with a convex surface facing the object side.
The first negative subgroup G2A is composed of a cemented lens of a biconcave negative lens L22 and a biconvex positive lens L23 in order from the object side.
The second negative subgroup G2B includes, in order from the object side, a cemented lens of a biconcave negative lens L24 and a positive meniscus lens L25 having a convex surface facing the object side.
The third lens group G3 includes, in order from the object side, a cemented lens of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface directed toward the object side.

第4レンズ群G4は、物体側から順に、正の屈折力を有する第1部分レンズ群G4Aと、負の屈折力を有する第2部分レンズ群G4Bと、正の屈折力を有する第3部分レンズ群G4Cとからなる。
第1部分レンズ群G4Aは、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合レンズとからなる。
第2部分レンズ群G4Bは、物体側から順に、両凸形状の正レンズL44と両凹形状の負レンズL45との接合レンズと、両凹形状の負レンズL46とからなる。
第3部分レンズ群G4Cは、物体側から順に、両凸形状の正レンズL47と、両凸形状の正レンズL48と、物体側に凹面を向けた負メニスカスレンズL49とからなる。
The fourth lens group G4 includes, in order from the object side, a first partial lens group G4A having a positive refractive power, a second partial lens group G4B having a negative refractive power, and a third partial lens having a positive refractive power. It consists of group G4C.
The first partial lens group G4A is composed of, in order from the object side, a biconvex positive lens L41, and a cemented lens of a biconvex positive lens L42 and a biconcave negative lens L43.
The second partial lens group G4B includes, in order from the object side, a cemented lens of a biconvex positive lens L44 and a biconcave negative lens L45, and a biconcave negative lens L46.
The third partial lens group G4C includes, in order from the object side, a biconvex positive lens L47, a biconvex positive lens L48, and a negative meniscus lens L49 with a concave surface facing the object side.

本実施例に係る変倍光学系において、第3レンズ群G3と第4レンズ群G4との間には、開口絞りSが配置されている。第4レンズ群G4中の第1部分レンズ群G4Aと第2部分レンズ群G4Bとの間には、フレアカット絞りFSが配置されている。
本実施例に係る変倍光学系は、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少するように、第2レンズ群G2と第3レンズ群G3とを光軸方向へ移動させることにより、広角端状態から望遠端状態への変倍を行う。このとき、第1レンズ群G1、第4レンズ群G4及び開口絞りSは、いずれも光軸方向の位置が固定である。
本実施例に係る変倍光学系は、第1レンズ群G1中の後群G1Bを合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
In the variable magnification optical system according to the present example, an aperture stop S is disposed between the third lens group G3 and the fourth lens group G4. A flare cut stop FS is disposed between the first partial lens group G4A and the second partial lens group G4B in the fourth lens group G4.
In the variable magnification optical system according to the present example, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases. The zooming from the wide-angle end state to the telephoto end state is performed by moving the second lens group G2 and the third lens group G3 in the optical axis direction. At this time, the positions of the first lens group G1, the fourth lens group G4, and the aperture stop S are all fixed in the optical axis direction.
The variable magnification optical system according to the present example moves the rear group G1B in the first lens group G1 to the object side along the optical axis as a focusing lens group, so that focusing from an infinite object to a close object is performed. Do chariot.

本実施例に係る変倍光学系は、第4レンズ群G4中の第2部分レンズ群G4Bを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
本実施例に係る変倍光学系は、広角端状態において防振係数が−1.25、焦点距離が71.40(mm)であるため、0.60°の回転ぶれを補正するための第2部分レンズ群G4Bの移動量は0.60(mm)となる。また、望遠端状態においては防振係数が−1.25、焦点距離が196.00(mm)であるため、0.40°の回転ぶれを補正するための第2部分レンズ群G4Bの移動量は1.09(mm)となる。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
The variable magnification optical system according to the present example performs image stabilization by moving the second partial lens group G4B in the fourth lens group G4 as a vibration isolation lens group so as to include a component in a direction orthogonal to the optical axis. .
The variable magnification optical system according to the present example has the anti-vibration coefficient of −1.25 and the focal length of 71.40 (mm) in the wide-angle end state. The moving amount of the two-part lens group G4B is 0.60 (mm). In the telephoto end state, the image stabilization coefficient is −1.25 and the focal length is 196.00 (mm). Therefore, the amount of movement of the second partial lens group G4B for correcting the rotation blur of 0.40 °. Is 1.09 (mm).
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 106.6632 3.1000 1.487490 70.40
2 199.7941 1.5692 1.000000

3 142.3931 2.0000 1.903660 31.27
4 75.6158 0.2868 1.000000
5 78.7661 5.9000 1.497820 82.51
6 -383.8553 0.1000 1.000000
7 71.4936 5.0000 1.497820 82.51
8 699.8249 可変 1.000000

9 -393.6712 1.3000 1.834807 42.72
*10 49.0673 3.4211 1.000000
11 -82.1898 1.2500 1.618000 63.37
12 101.6648 2.5000 1.846660 23.78
13 -582.9212 1.3136 1.000000
14 -63.2759 1.2500 1.729157 54.66
15 72.4825 2.0000 1.846660 23.78
16 140.1819 0.5000 1.000000
17 130.0000 1.0000 1.729157 54.66
18 72.4791 2.0000 1.846660 23.78
19 267.6447 可変 1.000000

20 197.2091 5.0000 1.717004 47.93
21 -30.9148 1.4000 1.903660 31.27
22 -68.1545 可変 1.000000

23(絞りS) ∞ 0.4000 1.000000
24 54.9704 3.5621 1.772499 49.61
25 -382.1637 0.3000 1.000000
26 35.3228 4.7657 1.497820 82.51
27 -153.2875 1.8000 1.903660 31.27
28 43.4698 14.5500 1.000000
29(絞りFS) ∞ 2.4000 1.000000
30 75.1521 4.0926 1.805181 25.43
31 -49.2642 1.2000 1.603112 60.67
32 54.1850 4.0000 1.000000
33 -255.8175 1.2000 2.000690 25.45
34 59.1251 3.6931 1.000000
35 89.8085 4.6000 1.589130 61.16
36 -89.8089 0.7000 1.000000
37 74.8902 4.9136 1.719995 50.23
38 -74.8919 6.3038 1.000000
39 -43.2382 2.0400 1.834000 37.16
40 -284.0645 BF 1.000000

像面 ∞

[非球面データ]
面番号 κ A4 A6
10 0.8103 2.25086E-08 -4.50461E-10

[各種データ]
変倍比 2.75

W M T
f 71.4 133.0 196.0
FNO 4.1 4.1 4.1
ω 17.4° 9.1° 6.1°
Y 21.6 21.6 21.6
TL 219.5 219.5 219.5
BF 61.581 61.581 61.581

W M T
d8 1.964 27.551 37.966
d19 21.203 11.989 1.200
d22 18.836 2.400 2.787

[レンズ群データ]
群 始面 f
1 1 100.147
1A 1 464.329
1B 3 120.905
2 9 -27.080
3 20 92.564
4 23 84.614

[条件式対応値]
(1)f4B/f4C = -1.23
(2) f4/f4B= -1.34
(3) β2w×β2t = 0.58
(4) N1n−N1p = 0.416
(5) N3n−N3p = 0.187
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞

1 106.6632 3.1000 1.487490 70.40
2 199.7941 1.5692 1.000000

3 142.3931 2.0000 1.903660 31.27
4 75.6158 0.2868 1.000000
5 78.7661 5.9000 1.497820 82.51
6 -383.8553 0.1000 1.000000
7 71.4936 5.0000 1.497820 82.51
8 699.8249 Variable 1.000000

9 -393.6712 1.3000 1.834807 42.72
* 10 49.0673 3.4211 1.000000
11 -82.1898 1.2500 1.618000 63.37
12 101.6648 2.5000 1.846660 23.78
13 -582.9212 1.3136 1.000000
14 -63.2759 1.2500 1.729157 54.66
15 72.4825 2.0000 1.846660 23.78
16 140.1819 0.5000 1.000000
17 130.0000 1.0000 1.729157 54.66
18 72.4791 2.0000 1.846660 23.78
19 267.6447 Variable 1.000000

20 197.2091 5.0000 1.717004 47.93
21 -30.9148 1.4000 1.903660 31.27
22 -68.1545 Variable 1.000000

23 (Aperture S) ∞ 0.4000 1.000000
24 54.9704 3.5621 1.772499 49.61
25 -382.1637 0.3000 1.000000
26 35.3228 4.7657 1.497820 82.51
27 -153.2875 1.8000 1.903660 31.27
28 43.4698 14.5500 1.000000
29 (Aperture FS) ∞ 2.4000 1.000000
30 75.1521 4.0926 1.805181 25.43
31 -49.2642 1.2000 1.603112 60.67
32 54.1850 4.0000 1.000000
33 -255.8175 1.2000 2.000690 25.45
34 59.1251 3.6931 1.000000
35 89.8085 4.6000 1.589130 61.16
36 -89.8089 0.7000 1.000000
37 74.8902 4.9136 1.719995 50.23
38 -74.8919 6.3038 1.000000
39 -43.2382 2.0400 1.834000 37.16
40 -284.0645 BF 1.000000

Image plane ∞

[Aspherical data]
Surface number κ A4 A6
10 0.8103 2.25086E-08 -4.50461E-10

[Various data]
Scaling ratio 2.75

W M T
f 71.4 133.0 196.0
FNO 4.1 4.1 4.1
ω 17.4 ° 9.1 ° 6.1 °
Y 21.6 21.6 21.6
TL 219.5 219.5 219.5
BF 61.581 61.581 61.581

W M T
d8 1.964 27.551 37.966
d19 21.203 11.989 1.200
d22 18.836 2.400 2.787

[Lens group data]
Group start surface f
1 1 100.147
1A 1 464.329
1B 3 120.905
2 9 -27.080
3 20 92.564
4 23 84.614

[Conditional expression values]
(1) f4B / f4C = -1.23
(2) f4 / f4B = -1.34
(3) β2w × β2t = 0.58
(4) N1n-N1p = 0.416
(5) N3n-N3p = 0.187

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9(a)、及び図9(b)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正されて優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
8 (a), 8 (b), and 8 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application. It is an aberration diagram at the time of focusing on an object.
FIG. 9A and FIG. 9B are the results when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is a meridional lateral aberration diagram.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

上記各実施例によれば、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系を実現することができる。特に、各実施例に係る変倍光学系は、変倍時の収差変動を抑え、中間焦点距離状態においても良好な光学性能を達成することができる。   According to each of the above embodiments, it is possible to realize a variable power optical system that suppresses deterioration of optical performance during image stabilization and has good optical performance from the wide-angle end state to the telephoto end state. In particular, the variable magnification optical system according to each embodiment can suppress aberration fluctuations at the time of variable magnification and can achieve good optical performance even in an intermediate focal length state.

なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。
In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.
Although a four-group configuration is shown as a numerical example of the variable magnification optical system of the present application, the present application is not limited to this, and a variable magnification optical system of another group configuration (for example, five groups) can also be configured. . Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第1レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least a part of the first lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the fourth lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群と第4レンズ群との間に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the variable magnification optical system of the present application, it is preferable that the aperture stop be disposed between the third lens group and the fourth lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の変倍光学系を備えたカメラを図10に基づいて説明する。
図10は、本願の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 10 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
The camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and imaged on the focusing screen 4 through the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、上述のように防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を有している。即ち本カメラ1は、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を実現することができる。なお、上記第2、第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the variable magnification optical system according to the first embodiment mounted as the photographing lens 2 on the camera 1 suppresses deterioration of the optical performance at the time of image stabilization as described above, and is excellent from the wide-angle end state to the telephoto end state. Have excellent optical performance. That is, the camera 1 can suppress the deterioration of the optical performance at the time of image stabilization and can realize a good optical performance from the wide-angle end state to the telephoto end state. Even if a camera equipped with the variable magnification optical system according to the second and third examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. In addition, even when the zoom optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effects as those of the camera 1 can be obtained.

最後に、本願の変倍光学系の製造方法の概略を図11に基づいて説明する。
図11は本願の変倍光学系の製造方法の概略を示す図である。
図11に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1〜S4を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
FIG. 11 is a diagram showing an outline of the manufacturing method of the variable magnification optical system of the present application.
The variable power optical system manufacturing method shown in FIG. 11 has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method for manufacturing a variable magnification optical system having a third lens group and a fourth lens group having a positive refractive power, and includes the following steps S1 to S4.

ステップS1:第4レンズ群が、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有するようにする。
ステップS2:第4レンズ群が以下の条件式(1)、(2)を満足するように、第1レンズ群から第4レンズ群を準備し、各レンズ群を鏡筒内に物体側から順に配置する。
(1) −1.60 < f4B/f4C < −0.50
(2) −1.60 < f4/f4B < −0.60
但し、
f4 :第4レンズ群の焦点距離
f4B:第2部分レンズ群の焦点距離
f4C:第3部分レンズ群の焦点距離
Step S1: The fourth lens group, in order from the object side, a first partial lens group having a positive refractive power, a second partial lens group having a negative refractive power, and a third partial lens having a positive refractive power To have a group.
Step S2: The fourth lens group is prepared from the first lens group so that the fourth lens group satisfies the following conditional expressions (1) and (2), and each lens group is sequentially installed in the lens barrel from the object side. Deploy.
(1) -1.60 <f4B / f4C <−0.50
(2) −1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group

ステップS3:公知の移動機構を設けることにより、広角端状態から望遠端状態への変倍に際して、第1レンズ群は光軸方向の位置が固定であり、第1レンズ群と第2レンズ群との間隔が増加し、第2レンズ群と第3レンズ群との間隔が減少するように、少なくとも第2レンズ群と第3レンズ群とが光軸方向へ移動するようにする。
ステップS4:公知の移動機構を設けることにより、第2部分レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動するようにする。
斯かる本願の変倍光学系の製造方法によれば、防振時の光学性能の劣化を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系を製造することができる。
Step S3: By providing a known moving mechanism, the position of the first lens group in the optical axis direction is fixed when zooming from the wide-angle end state to the telephoto end state, and the first lens group and the second lens group At least the second lens group and the third lens group are moved in the optical axis direction so that the distance between the second lens group and the third lens group decreases.
Step S4: By providing a known moving mechanism, at least a part of the second partial lens group is moved so as to include a component in a direction orthogonal to the optical axis.
According to the method for manufacturing a variable power optical system of the present application, it is possible to manufacture a variable power optical system having excellent optical performance from the wide-angle end state to the telephoto end state while suppressing deterioration of the optical performance during image stabilization. it can.

G1 第1レンズ群
G1A 第1レンズ群中の前群
G1B 第1レンズ群中の後群
G2 第2レンズ群
G2A 第2レンズ群中の第1負部分群
G2B 第2レンズ群中の第2負部分群
G3 第3レンズ群
G4 第4レンズ群
G4A 第4レンズ群中の第1部分レンズ群
G4B 第4レンズ群中の第2部分レンズ群
G4C 第4レンズ群中の第3部分レンズ群
S 開口絞り
I 像面
W 広角端状態
T 望遠端状態
G1 First lens group G1A Front group G1B in the first lens group Rear group G2 in the first lens group Second lens group G2A First negative subgroup G2B in the second lens group Second negative in the second lens group Partial group G3 Third lens group G4 Fourth lens group G4A First partial lens group G4B in the fourth lens group Second partial lens group G4C in the fourth lens group Third partial lens group S in the fourth lens group Aperture I Image plane W Wide angle end state T Telephoto end state

Claims (9)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、光軸方向の位置が固定であり、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群とが光軸方向へ移動し、
前記第4レンズ群は、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有し、
前記第2部分レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系。
−1.60 < f4B/f4C < −0.50
−1.60 < f4/f4B < −0.60
但し、
f4 :前記第4レンズ群の焦点距離
f4B:前記第2部分レンズ群の焦点距離
f4C:前記第3部分レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power And having a group
During zooming from the wide-angle end state to the telephoto end state, the first lens group has a fixed position in the optical axis direction, the distance between the first lens group and the second lens group increases, and the first lens group At least the second lens group and the third lens group move in the optical axis direction so that the distance between the second lens group and the third lens group decreases,
The fourth lens group includes, in order from the object side, a first partial lens group having a positive refractive power, a second partial lens group having a negative refractive power, and a third partial lens group having a positive refractive power. Have
Moving so that at least a part of the second partial lens group includes a component in a direction orthogonal to the optical axis;
A zoom optical system characterized by satisfying the following conditional expression:
−1.60 <f4B / f4C <−0.50
−1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group
前記変倍光学系の最も像側に位置するレンズ群は、正の屈折力を有しており、広角端状態から望遠端状態への変倍に際して、光軸方向の位置が固定であることを特徴とする請求項1に記載の変倍光学系。   The lens group located closest to the image side of the zoom optical system has a positive refractive power, and the position in the optical axis direction is fixed when zooming from the wide-angle end state to the telephoto end state. 2. The variable magnification optical system according to claim 1, wherein 広角端状態から望遠端状態への変倍に際して、前記第2レンズ群の倍率が等倍を跨ぐように変化し、
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
0.30 < β2w×β2t < 0.90
但し、
β2w:広角端状態における前記第2レンズ群の倍率
β2t:望遠端状態における前記第2レンズ群の倍率
Upon zooming from the wide-angle end state to the telephoto end state, the magnification of the second lens group changes so as to straddle the same magnification,
The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.30 <β2w × β2t <0.90
However,
β2w: magnification of the second lens group in the wide-angle end state β2t: magnification of the second lens group in the telephoto end state
以下の条件式を満足することを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。
0.290 < N1n−N1p
0.160 < N3n−N3p
但し、
N1n:前記第1レンズ群中の屈折率の最も大きな負レンズの屈折率
N1p:前記第1レンズ群中の屈折率の最も小さな正レンズの屈折率
N3n:前記第3レンズ群中の屈折率の最も大きな負レンズの屈折率
N3p:前記第3レンズ群中の屈折率の最も小さな正レンズの屈折率
The zoom lens system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.290 <N1n-N1p
0.160 <N3n-N3p
However,
N1n: Refractive index of the negative lens having the largest refractive index in the first lens group N1p: Refractive index of the positive lens having the smallest refractive index in the first lens group N3n: Refractive index of the third lens group Refractive index N3p of the largest negative lens: Refractive index of the positive lens having the smallest refractive index in the third lens group
前記第2レンズ群は、物体側から順に、負レンズと、負の屈折力を有する第1負部分群と、負の屈折力を有する第2負部分群とを含み、
前記第1負部分群と前記第2負部分群はそれぞれ、正負一枚ずつ合計2枚のレンズで構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。
The second lens group includes, in order from the object side, a negative lens, a first negative subgroup having negative refractive power, and a second negative subgroup having negative refractive power,
The said 1st negative partial group and the said 2nd negative partial group are respectively comprised by the lens of a total of two positive and negative one each, The Claim 1 characterized by the above-mentioned. Variable magnification optical system.
前記第1レンズ群は、物体側から順に、正の屈折力を有する前群と、正の屈折力を有する後群とから構成されており、
無限遠物体から近距離物体への合焦に際して、前記後群が物体側へ移動することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。
The first lens group includes, in order from the object side, a front group having a positive refractive power and a rear group having a positive refractive power,
6. The zoom optical system according to claim 1, wherein the rear group moves toward the object side when focusing from an object at infinity to an object at a short distance.
前記第1レンズ群の前記前群は、正の屈折力を有する単レンズで構成されており、
前記第1レンズ群の前記後群は、物体側から順に、負レンズと、正レンズと、正レンズとから構成されていることを特徴とする請求項6に記載の変倍光学系。
The front group of the first lens group is composed of a single lens having a positive refractive power,
The variable power optical system according to claim 6, wherein the rear group of the first lens group includes a negative lens, a positive lens, and a positive lens in order from the object side.
請求項1から請求項7のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法において、
前記第4レンズ群が、物体側から順に、正の屈折力を有する第1部分レンズ群と、負の屈折力を有する第2部分レンズ群と、正の屈折力を有する第3部分レンズ群とを有するようにし、
前記第4レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、光軸方向の位置が固定であり、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群とが光軸方向へ移動するようにし、
前記第2部分レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動するようにすることを特徴とする変倍光学系の製造方法。
−1.60 < f4B/f4C < −0.50
−1.60 < f4/f4B < −0.60
但し、
f4 :前記第4レンズ群の焦点距離
f4B:前記第2部分レンズ群の焦点距離
f4C:前記第3部分レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power In a manufacturing method of a variable magnification optical system having a group,
The fourth lens group, in order from the object side, a first partial lens group having a positive refractive power, a second partial lens group having a negative refractive power, and a third partial lens group having a positive refractive power; And have
The fourth lens group satisfies the following conditional expression:
During zooming from the wide-angle end state to the telephoto end state, the first lens group has a fixed position in the optical axis direction, the distance between the first lens group and the second lens group increases, and the first lens group At least the second lens group and the third lens group are moved in the optical axis direction so that the distance between the second lens group and the third lens group is reduced;
A method of manufacturing a variable magnification optical system, wherein at least a part of the second partial lens group moves so as to include a component in a direction orthogonal to the optical axis.
−1.60 <f4B / f4C <−0.50
−1.60 <f4 / f4B <−0.60
However,
f4: focal length of the fourth lens group f4B: focal length of the second partial lens group f4C: focal length of the third partial lens group
JP2012177144A 2012-08-09 2012-08-09 Variable magnification optical system, optical device Active JP6149359B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012177144A JP6149359B2 (en) 2012-08-09 2012-08-09 Variable magnification optical system, optical device
EP18165849.3A EP3361300A1 (en) 2012-08-09 2013-08-09 Variable magnification optical system comprising four lens groups with positive-negative-positive-positive refractive powers
EP13827812.2A EP2884322A4 (en) 2012-08-09 2013-08-09 Variable magnification optical system, optical device, and production method for variable magnification optical system
PCT/JP2013/071660 WO2014025015A1 (en) 2012-08-09 2013-08-09 Variable magnification optical system, optical device, and production method for variable magnification optical system
CN201380042190.7A CN104603665B (en) 2012-08-09 2013-08-09 The manufacture method of variable magnification optical system, Optical devices and variable magnification optical system
US14/616,718 US9726869B2 (en) 2012-08-09 2015-02-08 Variable magnification optical system, optical device, and production method for variable magnification optical system
US15/650,817 US20170315337A1 (en) 2012-08-09 2017-07-14 Variable magnification optical system, optical device, and production method for variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177144A JP6149359B2 (en) 2012-08-09 2012-08-09 Variable magnification optical system, optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017101738A Division JP6436184B2 (en) 2017-05-23 2017-05-23 Variable magnification optical system, optical device

Publications (2)

Publication Number Publication Date
JP2014035479A true JP2014035479A (en) 2014-02-24
JP6149359B2 JP6149359B2 (en) 2017-06-21

Family

ID=50284488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177144A Active JP6149359B2 (en) 2012-08-09 2012-08-09 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP6149359B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090086321A1 (en) * 2007-10-02 2009-04-02 Nikon Corporation Zoom lens system, optical apparatus, and method for manufacturing zoom lens system
US20090161228A1 (en) * 2007-12-24 2009-06-25 Samsung Techwin Co., Ltd. Zoom lens system
JP2009156893A (en) * 2007-12-25 2009-07-16 Nikon Corp Variable power optical system, optical equipment equipped with variable power optical system and variable power method for variable power optical system
US20110228407A1 (en) * 2010-03-18 2011-09-22 Nikon Corporation Zoom optical system, optical apparatus and method of manufacturing zoom optical system
JP2012118097A (en) * 2010-11-29 2012-06-21 Sigma Corp Large-aperture telephoto zoom lens having vibration control function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090086321A1 (en) * 2007-10-02 2009-04-02 Nikon Corporation Zoom lens system, optical apparatus, and method for manufacturing zoom lens system
US20090161228A1 (en) * 2007-12-24 2009-06-25 Samsung Techwin Co., Ltd. Zoom lens system
JP2009156893A (en) * 2007-12-25 2009-07-16 Nikon Corp Variable power optical system, optical equipment equipped with variable power optical system and variable power method for variable power optical system
US20110228407A1 (en) * 2010-03-18 2011-09-22 Nikon Corporation Zoom optical system, optical apparatus and method of manufacturing zoom optical system
JP2011197302A (en) * 2010-03-18 2011-10-06 Nikon Corp Zoom optical system, optical apparatus, and method of manufacturing the zoom optical system
JP2012118097A (en) * 2010-11-29 2012-06-21 Sigma Corp Large-aperture telephoto zoom lens having vibration control function

Also Published As

Publication number Publication date
JP6149359B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP5544959B2 (en) Variable-magnification optical system, optical apparatus, and variable-magnification optical system manufacturing method
JP5521496B2 (en) Variable magnification optical system, optical device
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5448028B2 (en) Zoom lens and optical apparatus having the same
JP5125009B2 (en) Zoom lens, imaging device, zoom lens vibration isolation method, zoom lens zoom method
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP5176410B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP6725000B2 (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP5974722B2 (en) Variable magnification optical system, optical device
JP5845972B2 (en) Variable magnification optical system, optical device
JP2012155087A (en) Variable power optical system, optical device, and manufacturing method for variable power optical system
JP5839062B2 (en) Zoom lens, optical device
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP2009300993A (en) Variable power optical system, optical apparatus equipped with variable power optical system, and method for varying power of variable power optical system
JP5565676B2 (en) Optical element, imaging optical system having the same, and optical instrument
JP6436184B2 (en) Variable magnification optical system, optical device
JP7243884B2 (en) Variable magnification optical system, optical equipment and imaging equipment using the same
JP6149359B2 (en) Variable magnification optical system, optical device
JP6349801B2 (en) Zoom lens, optical device
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP2023058744A (en) Variable power optical system, and optical instrument using the same
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6251947B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6149359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250