JP2014033666A - Cellulose-based biomass raw material - Google Patents

Cellulose-based biomass raw material Download PDF

Info

Publication number
JP2014033666A
JP2014033666A JP2012178404A JP2012178404A JP2014033666A JP 2014033666 A JP2014033666 A JP 2014033666A JP 2012178404 A JP2012178404 A JP 2012178404A JP 2012178404 A JP2012178404 A JP 2012178404A JP 2014033666 A JP2014033666 A JP 2014033666A
Authority
JP
Japan
Prior art keywords
cellulose
raw material
biomass
water
biomass raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012178404A
Other languages
Japanese (ja)
Inventor
Toru Joboji
亨 上坊寺
Koichi Shiraishi
剛一 白石
Norito Taneda
憲人 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2012178404A priority Critical patent/JP2014033666A/en
Publication of JP2014033666A publication Critical patent/JP2014033666A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for solubilizing a cellulose-based biomass raw material, which can reduce the number of processes, shorten a production period of time and reduce a production cost.SOLUTION: The method for solubilizing the cellulose-based biomass raw material comprises: a biomass modification step S3 of modifying lignin contained in a biomass raw material containing cellulose by using plasma treatment or ammonia to separate lignin from cellulose; a solubilization step S5 of heating the modified biomass raw material in an atmosphere of a saturated water vapor pressure or lower to change the biomass raw material into a water-soluble mixture; and then an extraction step S6 of extracting the water-soluble mixture by using water to separate the water-soluble mixture into a soluble liquid and a residue containing lignin.

Description

本発明は、セルロースを含有するバイオマス原料を水に可溶な成分に変換するセルロース系バイオマス原料の可溶化方法に関する。   The present invention relates to a method for solubilizing a cellulose-based biomass material, which converts a biomass material containing cellulose into a water-soluble component.

近年、石油代替燃料としてバイオ燃料が注目され、サトウキビやとうもろこし等のバイオマスを原料としたバイオエタノールの生産が実用化されている。しかし、食料品をバイオエタノールの原料とした場合、食料品との競合によって価格が大きく変動する等の問題が生ずる。このため、木材、草、稲わらなど非食料品であるセルロース系バイオマスを原料としたバイオ燃料の生産が望まれている。   In recent years, biofuel has attracted attention as an alternative fuel for petroleum, and production of bioethanol using biomass such as sugar cane and corn has been put into practical use. However, when food is used as a raw material for bioethanol, there is a problem that the price fluctuates greatly due to competition with food. For this reason, production of biofuels using cellulosic biomass, which is a non-food product such as wood, grass, and rice straw, as a raw material is desired.

セルロース系バイオマス原料からエタノールを取り出すためには、まずセルロースを加水分解して水に可溶な状態にしなければならない。しかし、セルロース系バイオマス原料にはセルロース以外にリグニンも多く含まれており、これがセルロースと結合し、セルロースどうしを強力に接着・固化する役割を担っている。このため、この状態のままでセルロースを水に可溶な状態に加水分解するのは容易ではない。   In order to extract ethanol from a cellulosic biomass raw material, cellulose must first be hydrolyzed to a soluble state in water. However, the cellulosic biomass material contains a large amount of lignin in addition to cellulose, which binds to cellulose and plays a role in strongly bonding and solidifying cellulose. For this reason, it is not easy to hydrolyze cellulose to a state soluble in water in this state.

この問題を解決するため、従来、セルロース系バイオマス原料をアルカリ水溶液、塩素ガス、過酸化水素水、水蒸気、アンモニアガス、液体アンモニア等によってリグニンを溶解あるいは軟化させ、固液分離によってリグニンを除去してから、セルロースの加水分解工程を行うということが提案されている(特許文献1〜4)。   In order to solve this problem, conventionally, cellulosic biomass raw materials are dissolved or softened with alkaline aqueous solution, chlorine gas, hydrogen peroxide solution, water vapor, ammonia gas, liquid ammonia, etc., and lignin is removed by solid-liquid separation. Therefore, it has been proposed to perform a cellulose hydrolysis step (Patent Documents 1 to 4).

特開2011−101608号公報JP 2011-101608 A 特開2009−125050号公報JP 2009-125050 A 特開2009−114181号公報JP 2009-114181 A 特表2002−541355号公報JP-T-2002-541355

しかし、上記従来のセルロースの可溶化方法では、セルロース系バイオマス原料中のリグニンをアルカリ液等で可溶化してから固液分離によって除去しているため、工程数が多くなり、製造に時間がかかり、ひいては製造コストの高騰化を招いていた。
本発明は、上記従来の実情に鑑みてなされたものであり、工程数が少なく、製造時間が短く、製造コストの低廉化を図ることのできるセルロース系バイオマス原料の可溶化方法を提供することを解決すべき課題としている。
However, in the above conventional cellulose solubilization method, the lignin in the cellulosic biomass raw material is solubilized with an alkaline solution and then removed by solid-liquid separation, which increases the number of processes and takes time for production. As a result, the manufacturing cost has increased.
The present invention has been made in view of the above-described conventional situation, and provides a method for solubilizing a cellulose-based biomass material that has a small number of steps, a short production time, and a reduction in production cost. This is a problem to be solved.

本発明のセルロース系バイオマス原料の可溶化方法では、前処理としてセルロースを含有するバイオマス原料に含まれるリグニンを改質してセルロースから引き離す(バイオマス改質工程)。こうして改質されたバイオマス原料を、飽和水蒸気圧以下の雰囲気で加熱して水可溶化混合物に変換する(可溶化工程)。最後に、可溶化混合物を水で抽出して可溶化液とリグニンを含む残渣とに分離する(抽出工程)。   In the method for solubilizing a cellulose-based biomass material of the present invention, lignin contained in a biomass material containing cellulose is modified as a pretreatment and separated from the cellulose (biomass modification step). The biomass raw material thus reformed is heated in an atmosphere below a saturated water vapor pressure to be converted into a water-solubilized mixture (solubilization step). Finally, the solubilized mixture is extracted with water and separated into a solubilized solution and a residue containing lignin (extraction step).

可溶化工程では、飽和水蒸気圧以下の雰囲気で加熱して水可溶化混合物に変換するため、酸触媒やセルロース分解酵素を添加して可溶化工程を行う場合のように、リグニンが酸触媒やセルロース分解酵素の周囲に纏わりついて可溶化の大きな障害となるということはない。このため、可溶化工程でリグニンを除去しないで行うことができる。また、バイオマス原料が飽和水蒸気圧以下の雰囲気(すなわち乾燥した状態)でバイオマス改質工程を行うため、可溶化工程に移行する場合に水分を蒸発させる必要がなく、製造のためのエネルギー消費量が少なくて済む。さらには、バイオマス改質工程から可溶化工程に移行する途中で固液分離を行う必要がないため、工程数が少なくなり、製造時間が短く、製造コストの低廉化を図ることができる。   In the solubilization process, the lignin is converted into a water-solubilized mixture by heating in an atmosphere below the saturated water vapor pressure. There is no major obstacle to solubilization by clumping around the degradation enzyme. For this reason, it can carry out without removing a lignin at a solubilization process. In addition, since the biomass raw material is subjected to the biomass reforming process in an atmosphere of saturated steam pressure or lower (that is, in a dry state), there is no need to evaporate water when shifting to the solubilization process, and energy consumption for production is reduced. Less is enough. Furthermore, since it is not necessary to perform solid-liquid separation during the transition from the biomass reforming process to the solubilization process, the number of processes is reduced, the manufacturing time is shortened, and the manufacturing cost can be reduced.

バイオマス改質工程としては、例えば次のような方法を用いることができる。
1)バイオマス原料に、アンモニアガスを接触させる方法。
2)バイオマス原料をプラズマ処理する方法。
3)バイオマス原料に、液体アンモニアを接触させた後、乾燥させる方法。
For example, the following method can be used as the biomass reforming step.
1) A method of bringing ammonia gas into contact with a biomass raw material.
2) A method of plasma processing biomass material.
3) A method in which liquid ammonia is brought into contact with a biomass raw material and then dried.

また、可溶化工程は、バイオマス原料に含まれるセルロースの結晶化度を下げつつ加熱することが好ましい。こうすることにより、可溶化工程をさらに迅速かつ高収率で行うことができる。   Moreover, it is preferable to heat a solubilization process, reducing the crystallinity degree of the cellulose contained in a biomass raw material. By so doing, the solubilization step can be performed more rapidly and with a high yield.

実施形態1のセルロース系バイオマス原料の可溶化方法を示す工程図である。It is process drawing which shows the solubilization method of the cellulose biomass raw material of Embodiment 1. 水の状態図及びセルロースを含有するバイオマス原料の処理領域を示すである。It is a phase diagram of water and a processing region of biomass material containing cellulose.

<実施形態1>
本発明のセルロース系バイオマス原料の可溶化方法を具体化した実施形態1の工程図を図1に示す。以下、詳述する。
(原 料)
セルロースを含有するバイオマス原料となるのは、セルロースを含む植物系の原料であり、セルロースの他に、でん粉、ヘミセルロース、ペクチンなど、セルロース以外の多糖を含むものであっても用いることができる。具体的には、稲わら、麦わら、バガス等の草類、竹、笹などの間伐材、おがくず、チップ、端材などの木材加工木屑、街路樹剪定材、木質建築廃材、樹皮、流木等の木質系バイオマス、古紙等のセルロース製品からのバイオマス等が挙げられる。また、セルロースを原料として使用可能な程度含むものであれば、汚泥、畜糞、農業廃棄物、都市ゴミ等も用いることができる。
<Embodiment 1>
The process diagram of Embodiment 1 which materialized the solubilization method of the cellulose biomass raw material of this invention is shown in FIG. Details will be described below.
(material)
The biomass material containing cellulose is a plant-based material containing cellulose, and it can be used even if it contains polysaccharides other than cellulose, such as starch, hemicellulose, and pectin, in addition to cellulose. Specifically, grasses such as rice straw, wheat straw, bagasse, thinned timber such as bamboo and firewood, sawn wood, chips, wood chips such as wood chips, pruned roadside trees, wood construction waste, bark, driftwood, etc. Examples include woody biomass and biomass from cellulose products such as waste paper. In addition, sludge, livestock excrement, agricultural waste, municipal waste, etc. can be used as long as cellulose can be used as a raw material.

(粗粉砕工程S1)
セルロース含有バイオマス原料を乾燥やハンドリングし易い状態にするため、数〜数十mm程度に粗粉砕する。粗粉砕方法は原料の形態に応じて適当な方法を適宜選択すればよいが、ハンマーミルやカッターミルなどの汎用粉砕機が使用できる。
(Coarse grinding step S1)
In order to make the cellulose-containing biomass raw material easy to dry and handle, it is roughly pulverized to several to several tens of millimeters. The coarse pulverization method may be appropriately selected according to the form of the raw material, but a general-purpose pulverizer such as a hammer mill or a cutter mill can be used.

(乾燥工程S2)
次に、粗粉砕されたセルロース含有バイオマス原料を乾燥する。乾燥は自然乾燥、真空乾燥、加熱乾燥などによって行うことができる。
(Drying step S2)
Next, the coarsely pulverized cellulose-containing biomass material is dried. Drying can be performed by natural drying, vacuum drying, heat drying, or the like.

(バイオマス改質工程S3)
そして、真空チャンバーに粗粉砕されたセルロース含有バイオマス原料をいれ、プラズマ処理を行う。これにより、バイオマス原料中のリグニンは親水化され水に可溶性となる。プラズマ処理に用いる処理ガスとしては、オゾン、窒素ガス、ヘリウムガス、アルゴンガス、フッ素を分子内に含むガス(例えばテトラフルオロメタンガス等)等が挙げられる。特に、オゾン存在下でのプラズマ処理ではリグニンが酸化分解され、セルロースが反応しやすくなる。また、これらのガスを混合したガスを用いてもよい。また、プラズマ処理を行う時の圧力についてもバイオマスの種類等によって適宜決定すればよく、大気圧と同程度の大気圧プラズマによる処理であってもよい。
(Biomass reforming step S3)
Then, the coarsely pulverized cellulose-containing biomass material is put into a vacuum chamber, and plasma treatment is performed. Thereby, the lignin in the biomass raw material becomes hydrophilic and becomes soluble in water. Examples of the processing gas used for the plasma processing include ozone, nitrogen gas, helium gas, argon gas, and a gas containing fluorine in the molecule (for example, tetrafluoromethane gas). In particular, in plasma treatment in the presence of ozone, lignin is oxidatively decomposed and cellulose easily reacts. Moreover, you may use the gas which mixed these gas. Moreover, what is necessary is just to determine suitably the pressure at the time of performing a plasma process by the kind etc. of biomass, etc., and the process by atmospheric pressure plasma comparable as atmospheric pressure may be sufficient.

(水分調整工程S4)
プラズマ処理によって改質されたバイオマス原料をチャンバーから取り出し、水分割合の調整を行う。適切な水分割合の計算方法については、次の可溶化工程において説明する。
(Moisture adjustment step S4)
The biomass raw material modified by the plasma treatment is taken out from the chamber, and the moisture content is adjusted. An appropriate method for calculating the water content will be described in the next solubilization step.

・可溶化工程(S5)
そして、水分割合を調整した粗粉砕原料を温度と圧力を制御することによって、水可溶化混合物とする。温度及び圧力の制御としては、1)水熱処理を行うための制御法や、2)低温低圧での制御法が挙げられる。
水熱処理とは飽和水蒸気圧以上に加圧された加圧熱水(液体状態で存在する高温高圧の水)によってセルロース含有バイオマス原料を水可溶性にする処理であり、図2に示した亜臨界領域や超臨界領域で処理を行う。亜臨界領域では飽和水蒸気圧よりも全圧が高い領域であり、換言すれば水が水蒸気以外に液体の水として安定に共存する領域である。このため、亜臨界領域でのセルロースの加水分解反応は、イオン積が大きくなっている液体の水によって進行するものと推定される。また、超臨界領域でのセルロースの加水分解反応は、気−液の区別ができなくなった超臨界状態という特殊な状態の水による加水分解反応である。加圧熱水はイオン積が増加するため、セルロースの加水分解反応を促進すると考えられている(特許文献2 段落番号[0024]参照)。このため、水熱処理法は、特別な薬品を使うことなく、短時間でセルロース原料を可溶化することができるという長所を有しており、環境に対する負荷も小さいセルロース原料の可溶化法であるということができる。
・ Solubilization step (S5)
Then, the coarsely pulverized raw material with the moisture content adjusted is made into a water-solubilized mixture by controlling the temperature and pressure. Examples of temperature and pressure control include 1) a control method for performing hydrothermal treatment, and 2) a control method at low temperature and low pressure.
Hydrothermal treatment is a treatment that makes a cellulose-containing biomass raw material water-soluble by pressurized hot water (high-temperature and high-pressure water that exists in a liquid state) pressurized to a saturation water vapor pressure or higher, and is a subcritical region shown in FIG. Or in the supercritical region. In the subcritical region, the total pressure is higher than the saturated water vapor pressure. In other words, water is a region where water stably coexists as liquid water in addition to water vapor. For this reason, it is presumed that the hydrolysis reaction of cellulose in the subcritical region proceeds with liquid water having a large ionic product. In addition, the hydrolysis reaction of cellulose in the supercritical region is a hydrolysis reaction with water in a special state called a supercritical state where gas-liquid cannot be distinguished. Pressurized hot water is thought to accelerate the hydrolysis reaction of cellulose because the ionic product increases (see paragraph [0024] in Patent Document 2). For this reason, the hydrothermal treatment method has the advantage that the cellulose raw material can be solubilized in a short time without using a special chemical, and is said to be a solubilizing method of the cellulose raw material with a small environmental load. be able to.

一方、低温低圧での制御法では、水熱処理とは全く異なった温度−圧力の領域を用いる。すなわち、100℃以上300℃未満であって、且つ、全圧が0.05MPa以上10MPa未満という低温−低圧の領域で加水分解反応を行うことが特徴である。このような領域は、図2における斜線内の部分で示され、全圧が飽和水蒸気圧よりも小さい領域(すなわち、水が安定に存在せず、水蒸気のみが存在する領域)か、液体の水と水蒸気とが共存はするが全圧は10MPa未満と小さい領域であり、亜臨界領域や超臨界領域とは全く異なる状況である。この低温低圧での制御法は、加圧熱水を用いた方法よりもヒドロキシメチルフルフラール(HMF)等の過分解物の生成が少なく、最終的な糖化の収率を高くすることができる。   On the other hand, the control method at low temperature and low pressure uses a temperature-pressure region which is completely different from that of hydrothermal treatment. That is, it is characterized in that the hydrolysis reaction is carried out in a low temperature-low pressure region where the total pressure is from 0.05 MPa to less than 10 MPa. Such a region is indicated by a hatched portion in FIG. 2 and is a region where the total pressure is smaller than the saturated water vapor pressure (that is, a region where water does not exist stably and only water vapor exists) or liquid water. Coexists with water vapor, but the total pressure is a small region of less than 10 MPa, which is completely different from the subcritical region and the supercritical region. This low temperature and low pressure control method produces less overdegradation products such as hydroxymethylfurfural (HMF) than the method using pressurized hot water, and can increase the final saccharification yield.

可溶化工程(S5)では、温度や圧力を制御するために反応容器は蓋付きの密閉容器を用いることができる。このような容器としては、耐食性金属からなるオートクレーブ装置や、PTFE等のフッ素樹脂からなる蓋付き容器を内側に収容する金属性耐圧容器といった、二重構造の容器を用いることもできる。
そして、これらの容器内に水分割合を調整した粗粉砕原料と水とを所定量投入し、蓋を閉めて温度を設定する。これにより原料にもともと含まれていた水分及び添加した水は、水蒸気となり体積を増す。このとき、最終的に到達する圧力は、実ガスに対する補正がなされた状態方程式に、温度、水の量及び容器体積を代入することにより、容易に求めることができる。このため、可溶化工程に先立って行われる、粉砕されたセルロース原料の水分調整は、計算で求められた量となるように行う。加熱方法は特に制限されず、電気ヒータ、高周波、マイクロ波、スチーム等を用いることができる。
In the solubilization step (S5), a closed vessel with a lid can be used as the reaction vessel in order to control temperature and pressure. As such a container, a double-structure container such as an autoclave apparatus made of a corrosion-resistant metal or a metal pressure-resistant container that houses a lidded container made of a fluororesin such as PTFE can be used.
Then, a predetermined amount of the coarsely pulverized raw material and water adjusted in the water ratio are put into these containers, and the lid is closed to set the temperature. As a result, the water originally contained in the raw material and the added water become water vapor and increase in volume. At this time, the finally reached pressure can be easily obtained by substituting the temperature, the amount of water, and the container volume into the state equation corrected for the actual gas. For this reason, the water | moisture content adjustment of the pulverized cellulose raw material performed prior to a solubilization process is performed so that it may become the quantity calculated | required by calculation. The heating method is not particularly limited, and an electric heater, high frequency, microwave, steam, or the like can be used.

・抽出工程(S6)
こうして得られた水可溶化混合物に対して0.1〜500倍量となるように水を加えて混合し、固液分離装置で固液分離を行い、可溶化液を得る。固液分離装置としては、例えば、重力沈降方式、遠心分離方式、膜分離方式、凝集分離方式、浮上分離方式等を用いた装置が挙げられる。
・ Extraction process (S6)
Water is added and mixed to the water-solubilized mixture thus obtained in an amount of 0.1 to 500 times, and solid-liquid separation is performed with a solid-liquid separator to obtain a solubilized liquid. Examples of the solid-liquid separation device include devices using a gravity sedimentation method, a centrifugal separation method, a membrane separation method, a coagulation separation method, a flotation separation method, and the like.

(糖化工程S7)
上記のようにして得られた可溶化液は、必要に応じて、さらに糖化工程S7を行うことにより、グルコース等の単糖を主成分として含有するする糖化液とすることもできる。すなわち、可溶化液を固体酸触媒と混合撹拌して加水分解を行い、グルコース等の単糖を主成分として含有するする糖化液を得る。このとき、加温して反応を促進させることもできる。固体酸触媒としては、特に限定はないが、例えば、ゼオライト触媒、シリカアルミナ触媒、ヘテロポリ酸触媒、硫酸化ジルコニア触媒、スルホン化カーボン触媒等が挙げられる。ここでスルホン化カーボンとは、有機物を炭化処理してなるカーボンをスルホン化処理して得られるカーボンをいう。スルホン化カーボンはセルロースの加水分解に対して特に優れた触媒活性を有している。中でも、多孔性のカーボンをスルホン化処理して得られた多孔性スルホン化カーボンがさらに好ましい。また、異なる固体酸触媒を2種以上用いてもよい。
(Saccharification step S7)
The solubilized solution obtained as described above can be converted into a saccharified solution containing a monosaccharide such as glucose as a main component by further performing a saccharification step S7 as necessary. That is, the solubilized solution is mixed and stirred with a solid acid catalyst to be hydrolyzed to obtain a saccharified solution containing a monosaccharide such as glucose as a main component. At this time, the reaction can be promoted by heating. Although it does not specifically limit as a solid acid catalyst, For example, a zeolite catalyst, a silica alumina catalyst, a heteropoly acid catalyst, a sulfated zirconia catalyst, a sulfonated carbon catalyst etc. are mentioned. Here, the sulfonated carbon refers to carbon obtained by sulfonating carbon obtained by carbonizing an organic substance. Sulfonated carbon has particularly excellent catalytic activity for hydrolysis of cellulose. Among these, porous sulfonated carbon obtained by sulfonating porous carbon is more preferable. Two or more different solid acid catalysts may be used.

<実施形態2>
実施形態2では、実施形態1におけるプラズマ処理を用いたバイオマス改質工程S3の代わりに、アンモニアガスによるバイオマス改質を行った。その他については実施形態1と同様であり、説明を省略する。アンモニアガスによるバイオマス改質でリグニンとヘミセルロースの結合が切断され、可溶化工程においてリグニンがセルロース繊維から離れやすくなる。さらには、セルロースの結晶構造が変化することも相俟って、セルロースの加水分解による可溶化が促進される。
<Embodiment 2>
In Embodiment 2, instead of the biomass reforming step S3 using the plasma treatment in Embodiment 1, biomass reforming with ammonia gas was performed. Others are the same as in the first embodiment, and a description thereof will be omitted. The biomass reforming with ammonia gas breaks the bond between lignin and hemicellulose, and the lignin is easily separated from the cellulose fiber in the solubilization process. Furthermore, solubilization by hydrolysis of cellulose is promoted in combination with the change in the crystal structure of cellulose.

<実施形態3>
実施形態3では、実施形態1におけるプラズマ処理を用いたバイオマス改質工程S3の代わりに、液化アンモニアによるバイオマス改質を行った。その他については実施形態1と同様であり、説明を省略する。液化アンモニアによるバイオマス改質では、アンモニアガスと同様、リグニンとヘミセルロースの結合が切断され、可溶化工程においてリグニンがセルロース繊維から離れやすくなる。さらには、セルロースの結晶構造が変化することも相俟って、セルロースの加水分解による可溶化が促進される。
<Embodiment 3>
In Embodiment 3, instead of the biomass reforming step S3 using the plasma treatment in Embodiment 1, biomass reforming with liquefied ammonia was performed. Others are the same as in the first embodiment, and a description thereof will be omitted. In biomass reforming with liquefied ammonia, like ammonia gas, the bond between lignin and hemicellulose is broken, and the lignin is easily separated from the cellulose fibers in the solubilization step. Furthermore, solubilization by hydrolysis of cellulose is promoted in combination with the change in the crystal structure of cellulose.

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

Claims (3)

セルロースを含有するバイオマス原料に含まれるリグニンを改質してセルロースから引き離すバイオマス改質工程と、
該改質されたバイオマス原料を、飽和水蒸気圧以下の雰囲気で加熱して水可溶化混合物に変換する可溶化工程と、
該可溶化混合物を水で抽出して可溶化液とリグニンを含む残渣とに分離する抽出工程と、
を備えたことを特徴とするセルロース系バイオマス原料の可溶化方法。
A biomass reforming step of modifying lignin contained in a biomass raw material containing cellulose and separating it from cellulose;
A solubilization step of converting the modified biomass raw material into a water-solubilized mixture by heating in an atmosphere below a saturated water vapor pressure;
An extraction step in which the solubilized mixture is extracted with water and separated into a solubilized solution and a residue containing lignin;
A method for solubilizing a cellulosic biomass material, comprising:
前記バイオマス改質工程は、前記バイオマス原料に、アンモニアガスを接触させるか又はプラズマ処理を行なうか、もしくは液体アンモニアを接触させた後、乾燥させる請求項1に記載のセルロース系バイオマス原料の可溶化方法。   The method for solubilizing a cellulosic biomass raw material according to claim 1, wherein the biomass reforming step comprises contacting the biomass raw material with ammonia gas, performing a plasma treatment, or contacting liquid ammonia and then drying. . 前記可溶化工程は、前記バイオマス原料に含まれるセルロースの結晶化度を下げつつ加熱する請求項1又は2に記載のセルロース系バイオマス原料の可溶化方法。   The said solubilization process is a solubilization method of the cellulose biomass raw material of Claim 1 or 2 heated while reducing the crystallinity degree of the cellulose contained in the said biomass raw material.
JP2012178404A 2012-08-10 2012-08-10 Cellulose-based biomass raw material Pending JP2014033666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178404A JP2014033666A (en) 2012-08-10 2012-08-10 Cellulose-based biomass raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178404A JP2014033666A (en) 2012-08-10 2012-08-10 Cellulose-based biomass raw material

Publications (1)

Publication Number Publication Date
JP2014033666A true JP2014033666A (en) 2014-02-24

Family

ID=50283059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178404A Pending JP2014033666A (en) 2012-08-10 2012-08-10 Cellulose-based biomass raw material

Country Status (1)

Country Link
JP (1) JP2014033666A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166831A (en) * 2009-01-20 2010-08-05 National Institute Of Advanced Industrial Science & Technology Method for producing monosaccharide
JP2011045277A (en) * 2009-08-26 2011-03-10 Toshiba Corp Production system for cellulose-based ethanol, and method for producing the same
WO2011115040A1 (en) * 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166831A (en) * 2009-01-20 2010-08-05 National Institute Of Advanced Industrial Science & Technology Method for producing monosaccharide
JP2011045277A (en) * 2009-08-26 2011-03-10 Toshiba Corp Production system for cellulose-based ethanol, and method for producing the same
WO2011115040A1 (en) * 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same

Similar Documents

Publication Publication Date Title
Sarker et al. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis
Ferreira et al. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment
Bhutto et al. Insight into progress in pre-treatment of lignocellulosic biomass
Tomás-Pejó et al. Pretreatment technologies for lignocellulose-to-bioethanol conversion
Muktham et al. A review on 1st and 2nd generation bioethanol production-recent progress
Alvira et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
Sánchez et al. Furfural production from corn cobs autohydrolysis liquors by microwave technology
JP2024059830A (en) Methods and systems for producing pulp, energy and bio-derived products from plant and recycled materials
CA2783201C (en) Pre-treatment of cellulosic material
Chambon et al. Efficient fractionation of lignin-and ash-rich agricultural residues following treatment with a low-cost protic ionic liquid
Candido et al. Sugarcane straw as feedstock for 2G ethanol: evaluation of pretreatments and enzymatic hydrolysis
Peral Biomass pretreatment strategies (technologies, environmental performance, economic considerations, industrial implementation)
Rabelo et al. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges
Xu et al. Modified simultaneous saccharification and fermentation to enhance bioethanol titers and yields
Zhang et al. Enhanced enzymatic hydrolysis of sorghum stalk by supercritical carbon dioxide and ultrasonic pretreatment
Vargas et al. Biorefinery scheme for residual biomass using autohydrolysis and organosolv stages for oligomers and bioethanol production
Smichi et al. Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production
Rahardjo et al. Pretreatment of tropical lignocellulosic biomass for industrial biofuel production: a review
Cheng et al. Using solubility parameter analysis to understand delignification of poplar and rice straw with catalyzed organosolv fractionation processes
Abril et al. Sugar cane bagasse prehydrolysis using hot water
US9902982B2 (en) Continuous countercurrent enzymatic hydrolysis of pretreated biomass at high solids concentrations
Rabelo et al. Enhancement of the enzymatic digestibility of sugarcane bagasse by steam pretreatment impregnated with hydrogen peroxide
US20150184260A1 (en) Production of fermentable c5 and c6 sugars from lignocellulosic biomass
Ortíz et al. Recent advancements in pretreatment Technologies of Biomass to produce bioenergy
JP5849464B2 (en) Extraction method for extracting water-soluble components from cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220