JP2014029035A - Carbon fiber felt, method for producing the same and electrode - Google Patents

Carbon fiber felt, method for producing the same and electrode Download PDF

Info

Publication number
JP2014029035A
JP2014029035A JP2012169176A JP2012169176A JP2014029035A JP 2014029035 A JP2014029035 A JP 2014029035A JP 2012169176 A JP2012169176 A JP 2012169176A JP 2012169176 A JP2012169176 A JP 2012169176A JP 2014029035 A JP2014029035 A JP 2014029035A
Authority
JP
Japan
Prior art keywords
felt
carbon fiber
groove
fiber felt
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169176A
Other languages
Japanese (ja)
Other versions
JP6018450B2 (en
Inventor
Yusuke Takami
祐介 高見
Tetsuya Akamatsu
哲也 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2012169176A priority Critical patent/JP6018450B2/en
Publication of JP2014029035A publication Critical patent/JP2014029035A/en
Application granted granted Critical
Publication of JP6018450B2 publication Critical patent/JP6018450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber felt which reduces a pressure loss when an electrolyte is passed through an electrode, has adequate liquid permeability in a thickness direction, and is used as a material for an electrode having excellent conductivity.SOLUTION: A carbon fiber felt 2 has a concavo-convex shape comprising a plurality of ridge parts 4 which are formed on at least one face of the carbon fiber felt 2 so as to protrude toward the outside in a belt-like shape, and groove parts 6 which are formed between the plurality of ridge parts 4. A bulk density of a felt in the ridge part 4 is higher than a bulk density of a felt constituting a bottom wall 8 of the groove part. It is preferable that the groove 6 is formed on a surface of the felt so as to have a linear shape, a lattice shape, a diamond shape or a wavy shape.

Description

本発明は、導電性が高く、電解質液など流体の透過性、浸透性の良い炭素繊維フェルトとその製造方法、及び炭素繊維フェルトからなる電極に関する。   TECHNICAL FIELD The present invention relates to a carbon fiber felt having high conductivity and good fluid permeability such as an electrolyte solution and good permeability, a method for producing the same, and an electrode comprising the carbon fiber felt.

近年、クリーンな電気エネルギーの需要が急速に伸び、太陽光発電や風力発電といった新エネルギーの導入が積極的に進められている。しかし、これらの発電方式は、天候に左右される為、発電周波数や出力が安定化せず、制御が難しいという課題がある。その対策として、蓄電池を経由して出力することで、出力変動の平準化、余剰電力の貯蔵、負荷平準化を図ることが検討されている。   In recent years, the demand for clean electric energy has increased rapidly, and the introduction of new energy such as solar power generation and wind power generation has been actively promoted. However, since these power generation methods are influenced by the weather, the power generation frequency and output are not stabilized, and there is a problem that control is difficult. As countermeasures, it has been studied to achieve output leveling, surplus power storage, and load leveling by outputting via a storage battery.

蓄電池の一つであるレドックスフロー型蓄電池は、比較的安全なイオンを用いること、室温で作動する為、熱源が必要なく、高効率で運転できること、サイクル寿命が1万回以上と長寿命であるなどの優れた特徴を備え、また容易に大型化が可能であることから、大型の二次蓄電池として期待されている。   Redox flow storage batteries, one of the storage batteries, use relatively safe ions, operate at room temperature, do not require a heat source, can be operated with high efficiency, and have a long cycle life of 10,000 cycles or more. Therefore, it is expected to be a large-sized secondary storage battery.

図11は、レドックスフロー型電池の動作原理を示す概念図である。   FIG. 11 is a conceptual diagram showing the operating principle of the redox flow battery.

レドックスフロー型電池42の主要部は、充電/放電反応を行うセル部44と、電力を貯蔵する電解液タンク部46、48とから構成されている。セル部44には、2種類の電解液(送液ポンプ56、58によるそれぞれの電解液の流れ方向を矢印X、Yで示す)が隔膜54で隔てられて供給されている。更に、供給されるそれぞれの電解液に接して、正極60及び負極62が設けられる。充電時においては、正極60で溶質の酸化反応が行われ、負極62で溶質の還元反応が行われる。放電時には、正極60で溶質の還元反応が行われ、負極62で溶質の酸化反応が行われる。これらの酸化還元反応を繰り返すことにより、充放電が行われる。   The main part of the redox flow battery 42 includes a cell part 44 that performs a charge / discharge reaction and electrolyte tank parts 46 and 48 that store electric power. Two types of electrolytic solutions (the flow directions of the electrolytic solutions by the liquid feed pumps 56 and 58 are indicated by arrows X and Y) are supplied to the cell unit 44 separated by a diaphragm 54. Furthermore, the positive electrode 60 and the negative electrode 62 are provided in contact with each supplied electrolyte solution. During charging, a solute oxidation reaction is performed at the positive electrode 60, and a solute reduction reaction is performed at the negative electrode 62. During discharge, a solute reduction reaction is performed at the positive electrode 60, and a solute oxidation reaction is performed at the negative electrode 62. Charging / discharging is performed by repeating these oxidation-reduction reactions.

その電極としては、導電性があり、化学的に安定な素材であることから炭素材料が好ましく用いられている。この炭素材料のうちでも、電極反応を効率的に実施する必要から表面積が大きいことが好ましいため、細い繊維の集合体である炭素繊維フェルトが更に好ましく用いられている。電極として使用されるフェルトには、電解液を少ない流通抵抗で循環させるため、液体透過性、浸透性が良いことが求められる。その解決策として、熱プレスや切削加工などにより炭素繊維フェルト表面に電解液流通用の溝を形成することが提案されている(例えば、特許文献1)。   As the electrode, a carbon material is preferably used because it is electrically conductive and is a chemically stable material. Among these carbon materials, since it is preferable that the surface area is large because it is necessary to efficiently perform the electrode reaction, a carbon fiber felt that is an aggregate of thin fibers is more preferably used. Felts used as electrodes are required to have good liquid permeability and permeability in order to circulate the electrolyte solution with a small flow resistance. As a solution to this problem, it has been proposed to form grooves for circulating an electrolytic solution on the surface of the carbon fiber felt by hot pressing or cutting (for example, Patent Document 1).

特許文献1では、炭素繊維前駆体フェルトの片面に熱プレス又は切削加工により溝を形成させた後、フェルトを炭素化することで、片面に溝が形成された炭素繊維フェルトを得ている。   In patent document 1, after forming a groove | channel on the single side | surface of a carbon fiber precursor felt by hot press or cutting, the carbon fiber felt by which the groove | channel was formed in the single side | surface is obtained by carbonizing a felt.

しかし、このようにして得られる炭素繊維フェルトは、熱プレス又は切削加工などが施された部分の繊維が損傷するため、炭素繊維フェルトの強度が低下し、取扱性が低下する。また、熱プレスされていない部分(畝)は密度が低く、電極として使用する時の圧力により、畝が潰れ、溝が閉塞されてしまうため、通液が阻害される場合もある。   However, in the carbon fiber felt obtained in this manner, the fiber in the portion subjected to hot pressing or cutting is damaged, so that the strength of the carbon fiber felt is lowered and the handleability is lowered. In addition, the density of the portion that is not hot-pressed (wrinkle) is low, and the wrinkle is crushed and the groove is blocked by the pressure when used as an electrode.

この問題を避けるため、嵩密度の高いフェルトを用いると、熱プレスされた部分の嵩密度が更に高くなり、この部分の通液性が悪くなる問題がある。   In order to avoid this problem, when a felt having a high bulk density is used, there is a problem that the bulk density of the hot-pressed portion is further increased and the liquid permeability of this portion is deteriorated.

特許3560181号公報Japanese Patent No. 3560181

本発明は、電解質液などの流体の透過性、浸透性が良く、厚み方向の導電性が高く、取扱性に優れる炭素繊維フェルト、そのフェルトの製造方法、及びそのフェルトからなる電極を提供することを目的とする。   The present invention provides a carbon fiber felt having good permeability and permeability of an electrolyte solution and the like, high conductivity in the thickness direction, and excellent handleability, a method for producing the felt, and an electrode comprising the felt. With the goal.

本発明者らは、上記課題について鋭意検討しているうち、炭素繊維前駆体フェルトの一面に切込みを形成し、このフェルトの表裏の熱収縮率の制御や、炭素化工程での張力を制御して炭素化することで、その切込みから溝が形成され、溝でない部分は畝になることを見出した。   The inventors of the present invention have been diligently studying the above problems, and forming a cut on one surface of the carbon fiber precursor felt to control the thermal contraction rate of the front and back of the felt and to control the tension in the carbonization process. As a result of the carbonization, it was found that a groove was formed from the cut, and the non-groove portion became a wrinkle.

得られる炭素繊維フェルトは、畝部の嵩密度が、溝部の嵩密度より高く、電解質液など流体の透過性、浸透性が良く、厚み方向への導電性に優れ、取扱性に優れていることを見出し、本発明を完成するに至った。   The resulting carbon fiber felt has a bulk density higher than that of the groove, good permeability and permeability of fluid such as electrolyte solution, excellent conductivity in the thickness direction, and excellent handling properties. As a result, the present invention has been completed.

上記目的を達成する本発明は、以下に記載のものである。   The present invention for achieving the above object is as follows.

[1] 少なくとも片面に帯状に外方に突出する複数の畝部分と、前記複数の畝部分の間に形成される溝部分とからなる凹凸形状を有する炭素繊維フェルトであって、畝部分のフェルトの嵩密度が、溝部分の底壁を構成するフェルトの嵩密度よりも高いことを特徴とする炭素繊維フェルト。   [1] A carbon fiber felt having a concavo-convex shape including a plurality of ridge portions protruding outward in a band shape on at least one surface and a groove portion formed between the plurality of ridge portions, A carbon fiber felt, wherein the bulk density of the felt is higher than the bulk density of the felt constituting the bottom wall of the groove portion.

[2] 溝が、フェルト表面において、直線状、格子状、ダイヤ状、又は、波状に形成されている[1]に記載の炭素繊維フェルト。   [2] The carbon fiber felt according to [1], wherein the groove is formed in a linear shape, a lattice shape, a diamond shape, or a wave shape on the felt surface.

[3] 溝幅が0.5〜10mm、溝深さが炭素繊維フェルトの厚みに対して10〜90%、溝ピッチが0.5〜100mmで形成されている[1]又は[2]に記載の炭素繊維フェルト。   [3] In [1] or [2], the groove width is 0.5 to 10 mm, the groove depth is 10 to 90% with respect to the thickness of the carbon fiber felt, and the groove pitch is 0.5 to 100 mm. The described carbon fiber felt.

[4] 厚みが0.5〜10mm、目付が100〜1000g/m2、厚み方向の電気抵抗値が500mΩ/cm2以下である[1]乃至[3]の何れかに記載の炭素繊維フェルト。 [4] The carbon fiber felt according to any one of [1] to [3], wherein the thickness is 0.5 to 10 mm, the basis weight is 100 to 1000 g / m 2 , and the electric resistance value in the thickness direction is 500 mΩ / cm 2 or less. .

[5] [1]乃至[4]の何れかに記載の炭素繊維フェルトからなる電極。   [5] An electrode comprising the carbon fiber felt according to any one of [1] to [4].

[6] 炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する炭素繊維フェルトの製造方法であって、片面又は両面に切込みを入れた前駆体フェルトを、切込み方向と直交する方向に張力を付与しながら炭素化することを特徴とする炭素繊維フェルトの製造方法。   [6] A carbon fiber felt manufacturing method in which carbon fiber precursor felt is carbonized under an inert atmosphere, and a tension is applied to the precursor felt incised on one or both sides in a direction perpendicular to the incision direction. And carbonizing the carbon fiber felt.

[7] 炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する炭素繊維フェルトの製造方法であって、前駆体フェルトが表裏面で熱収縮率が異なる構造のフェルトであり、且つその高収縮側のフェルトに切込みを入れたフェルトを炭素化することを特徴とする炭素繊維フェルトの製造方法。   [7] A method for producing a carbon fiber felt in which a carbon fiber precursor felt is carbonized under an inert atmosphere, wherein the precursor felt is a felt having a structure having different heat shrinkage rates on the front and back surfaces, and the high shrinkage side thereof. A method for producing a carbon fiber felt, characterized by carbonizing a felt having a notch formed therein.

本発明の炭素繊維フェルトは、畝部分の嵩密度が高いため、炭素繊維フェルト表面に形成された溝が潰れにくく、電解液の流通を阻害しないため電極の材料として、好適に使用できる。   Since the carbon fiber felt of the present invention has a high bulk density at the heel portion, the groove formed on the surface of the carbon fiber felt is not easily crushed and does not hinder the flow of the electrolyte solution, and therefore can be suitably used as an electrode material.

本発明の炭素繊維フェルトの製造方法によれば、表裏での熱収縮率の制御や、炭素化工程での張力を制御しながら不活性雰囲気下で炭素化しているので、得られる炭素繊維フェルトの畝部分の嵩密度を高くでき、炭素繊維フェルト表面に形成される溝は潰れにくい。そのため、レドックスフロー型電池に用いる場合、電解液の流通を阻害しないので、電極の材料として好適に使用できる炭素繊維フェルトを得ることができる。   According to the method for producing a carbon fiber felt of the present invention, since carbonization is performed in an inert atmosphere while controlling the thermal contraction rate on the front and back sides and controlling the tension in the carbonization process, The bulk density of the heel portion can be increased, and the grooves formed on the surface of the carbon fiber felt are not easily crushed. Therefore, when used in a redox flow type battery, the carbon fiber felt that can be suitably used as an electrode material can be obtained because it does not hinder the flow of the electrolyte.

本発明の炭素繊維フェルトの一例であってフェルト表面における溝の形状が直線状である例を示す概念図であって、(A)は溝の長手方向に直交する面に沿った断面図であり、(B)は平面図である。FIG. 2 is a conceptual diagram showing an example of the carbon fiber felt of the present invention, in which the shape of the groove on the felt surface is a straight line, and (A) is a cross-sectional view along a plane orthogonal to the longitudinal direction of the groove. , (B) are plan views. 本発明の炭素繊維フェルトの一例であってフェルト表面における溝の形状が直線状である例を示す概略平面図である。It is a schematic plan view which shows an example which is an example of the carbon fiber felt of this invention, and the shape of the groove | channel on the felt surface is linear. 本発明の炭素繊維フェルトの他の例であってフェルト表面における溝の形状が格子状である例を示す概略平面図である。It is a schematic plan view which shows the other example of the carbon fiber felt of this invention, and the example where the shape of the groove | channel on the felt surface is a grid | lattice form. 本発明の炭素繊維フェルトの更に他の例であってフェルト表面における溝の形状がダイヤ状である例を示す概略平面図である。FIG. 6 is a schematic plan view showing still another example of the carbon fiber felt of the present invention and showing an example in which the shape of the groove on the felt surface is a diamond shape. 本発明の炭素繊維フェルトの更に他の例であってフェルト表面における溝の形状が波状である例を示す概略平面図である。It is a schematic plan view which shows another example of the carbon fiber felt of this invention, and shows the example where the shape of the groove | channel on the felt surface is a wave shape. 本発明の炭素繊維フェルトの一例において溝の断面形状を示す概念図であって、溝の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the cross-sectional shape of a groove | channel in an example of the carbon fiber felt of this invention, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove | channel. 本発明の炭素繊維フェルトの他の例において溝の断面形状を示す概念図であって、溝の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the cross-sectional shape of a groove | channel in the other example of the carbon fiber felt of this invention, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove | channel. 本発明の炭素繊維フェルトの更に他の例において溝の断面形状を示す概念図であって、溝の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the cross-sectional shape of a groove | channel in the further another example of the carbon fiber felt of this invention, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove | channel. 本発明の炭素繊維フェルトの製造方法に原料として用いる、フェルトに切込みを入れた炭素繊維前駆体フェルトの一例を示す概念図であって、炭素繊維前駆体フェルトの表面に直交する面に沿った断面図である。It is a conceptual diagram which shows an example of the carbon fiber precursor felt which cut into the felt used as a raw material for the manufacturing method of the carbon fiber felt of this invention, Comprising: Section along a surface orthogonal to the surface of a carbon fiber precursor felt FIG. 本発明の炭素繊維フェルトの製造方法に原料として用いる、フェルトに切込みを入れた炭素繊維前駆体フェルトの他の例を示す概念図であって、炭素繊維前駆体フェルトの表面に直交する面に沿った断面図である。It is a conceptual diagram which shows the other example of the carbon fiber precursor felt which used the raw material for the manufacturing method of the carbon fiber felt of this invention, and cut the felt, Comprising: It is along the surface orthogonal to the surface of a carbon fiber precursor felt FIG. レドックスフロー型電池の動作原理を示す概念図である。It is a conceptual diagram which shows the operating principle of a redox flow type battery.

本発明の炭素繊維フェルトの一例を図1に示す。図1中、2は炭素繊維フェルトで、このフェルト2の片面には所定間隔で離れた複数(本図では5本)の畝部4が、フェルト2の片面から外方に帯状に突出して形成されている。6は溝部で、前記互いに隣接する畝部4の間に、フェルト2の内方に向かって形成されている。   An example of the carbon fiber felt of the present invention is shown in FIG. In FIG. 1, reference numeral 2 denotes a carbon fiber felt, and a plurality of (five in this figure) flanges 4 are formed on one side of the felt 2 so as to project outward from the one side of the felt 2 in a band shape. Has been. Reference numeral 6 denotes a groove, which is formed between the flanges 4 adjacent to each other toward the inside of the felt 2.

畝部4の嵩密度は、溝部の底壁8の嵩密度より高い。本発明において、畝部4の嵩密度は、溝部の底壁8の嵩密度の1.01〜2倍であることが好ましい。   The bulk density of the flange 4 is higher than the bulk density of the bottom wall 8 of the groove. In this invention, it is preferable that the bulk density of the collar part 4 is 1.01-2 times the bulk density of the bottom wall 8 of a groove part.

畝部4の嵩密度が、溝部の底壁8の嵩密度より高く構成することで、セルに組み込まれる時に、圧力で畝が潰され難く、溝が確保できるため、循環する電解液の流通を阻害しない。   Since the bulk density of the flange portion 4 is higher than the bulk density of the bottom wall 8 of the groove portion, when it is incorporated into the cell, it is difficult for the ridge to be crushed by pressure and a groove can be secured. Does not interfere.

そのため、本発明の炭素繊維フェルトを用いた電極は、循環させる電解液の通液圧力損失が低く、電解液循環に必要なポンプ稼動のエネルギー消費量を低減できる。   Therefore, the electrode using the carbon fiber felt of the present invention has a low flow pressure loss of the electrolyte to be circulated, and can reduce the energy consumption of the pump operation necessary for the electrolyte circulation.

本発明の炭素繊維フェルトにおいては、畝及び溝をフェルト2の片面のみに有する炭素繊維フェルトが、フェルト2の両面に有する炭素繊維フェルトよりも好ましい。後述する集電体との接触面積を広く確保でき、導電抵抗による発熱ロスを低減でき、発電効率を高めることができるためである。   In the carbon fiber felt of the present invention, a carbon fiber felt having ridges and grooves only on one side of the felt 2 is more preferable than a carbon fiber felt having both sides of the felt 2. This is because a large contact area with a current collector, which will be described later, can be secured, heat loss due to conductive resistance can be reduced, and power generation efficiency can be increased.

畝部の嵩密度は、0.08g/cm3以上が好ましい。0.08g/cm3未満の場合は、セルに組み込まれた時の圧力により、畝が潰れ、溝が閉塞しやすい傾向がある。 The bulk density of the buttocks is preferably 0.08 g / cm 3 or more. In the case of less than 0.08 g / cm 3, the wrinkles tend to be crushed and the grooves tend to close due to the pressure when incorporated in the cell.

溝部の底壁を構成するフェルトの嵩密度は、0.05g/cm3以上が好ましい。0.05g/cm3未満の場合は、厚み方向の電気抵抗値が高く、セル抵抗が高くなる傾向がある。 The bulk density of the felt constituting the bottom wall of the groove is preferably 0.05 g / cm 3 or more. When it is less than 0.05 g / cm 3 , the electric resistance value in the thickness direction is high, and the cell resistance tends to be high.

嵩密度は、炭素繊維前駆体フェルト作製時のパンチング数、原料繊維となる前駆体繊維、特に耐炎繊維の比重、原料繊維に混合する物質(混綿物質)の種類や量により制御できる。   The bulk density can be controlled by the number of punching at the time of producing the carbon fiber precursor felt, the specific gravity of the precursor fiber as the raw fiber, particularly the flame resistant fiber, and the kind and amount of the substance (mixed cotton substance) mixed with the raw fiber.

本発明の炭素繊維フェルトの畝部の嵩密度は、溝部の嵩密度より高い。畝部の嵩密度が、溝部の嵩密度と同一又は低い場合は、セルに組み込まれた時の圧力により、畝が潰れ、溝が閉塞する。嵩密度の差は、用いる前駆体繊維又は耐炎繊維の比重の差や、混合する物質(混綿物質)の種類や量を調節することで制御できる。   The bulk density of the collar part of the carbon fiber felt of the present invention is higher than the bulk density of the groove part. When the bulk density of the heel portion is the same as or lower than the bulk density of the groove portion, the heel is crushed and the groove is closed by the pressure when incorporated in the cell. The difference in bulk density can be controlled by adjusting the difference in specific gravity of the precursor fiber or flame resistant fiber to be used and the type and amount of the substance to be mixed (mixed cotton substance).

本発明においてフェルト表面における溝の形態は、図2〜5に示すような、直線状、格子状、ダイヤ状、波状であることが好ましい。   In the present invention, the shape of the groove on the felt surface is preferably a linear shape, a lattice shape, a diamond shape, or a wave shape as shown in FIGS.

また、本発明における溝の断面形状の例を、図6〜8に示す。図6は、フェルト2の内部に向かうに従って狭くなる断面V形状の溝を示す。図7は、断面が矩形の溝を示す。図8は、断面形状が逆台形の溝を示す。   Moreover, the example of the cross-sectional shape of the groove | channel in this invention is shown to FIGS. FIG. 6 shows a groove having a V-shaped cross section that becomes narrower toward the inside of the felt 2. FIG. 7 shows a groove having a rectangular cross section. FIG. 8 shows a groove having an inverted trapezoidal cross-sectional shape.

図2〜8において、4は畝であり、6は溝であり、10は電池セル部材である。溝は電解液の流路として働く。また、畝4自体も炭素繊維から構成されている為、電極として機能し、反応可能な有効面積を低下させることがない。   2 to 8, 4 is a ridge, 6 is a groove, and 10 is a battery cell member. The groove serves as a flow path for the electrolyte. Moreover, since the cage | basket 4 itself is also comprised from the carbon fiber, it functions as an electrode and does not reduce the effective area which can react.

フェルト2の表面における溝幅は、0.5〜10mmが好ましく、0.7〜5mmがより好ましい。0.5mm未満の場合は、圧力損失の低減効果が十分でなく、ポンプの消費エネルギーロスが大きい。10mmを超える場合は、切込み(スリット)から溝を形成する方法では作製が困難である。   The groove width on the surface of the felt 2 is preferably 0.5 to 10 mm, and more preferably 0.7 to 5 mm. If it is less than 0.5 mm, the effect of reducing the pressure loss is not sufficient, and the energy consumption loss of the pump is large. If it exceeds 10 mm, it is difficult to produce by a method of forming a groove from a slit (slit).

図6〜8に示すように、溝の深さ(t)は、フェルト厚み(T)に対し、10〜90%が好ましく、20〜80%がより好ましい。10%未満の場合は、圧力損失の低減効果が十分でなく、ポンプの消費エネルギーロスが大きい。90%を超える場合は、強力が低減し、炭素化時の張力や、積層時の張力により破断する可能性がある為、好ましくない。溝の深さ(t)は、後述するスリットの深さにより制御できる。   As shown in FIGS. 6 to 8, the depth (t) of the groove is preferably 10 to 90% and more preferably 20 to 80% with respect to the felt thickness (T). If it is less than 10%, the effect of reducing the pressure loss is not sufficient, and the energy consumption loss of the pump is large. If it exceeds 90%, the strength is reduced, and there is a possibility of breakage due to the tension during carbonization or the tension during lamination, such being undesirable. The depth (t) of the groove can be controlled by the depth of the slit described later.

溝ピッチ(並行する溝の中心間の距離)は、0.5〜100mmが好ましく、0.8〜50mmがより好ましい。0.5mm未満の場合は、間隔が狭く、スリット加工できない。100mmを超えると圧力損失の低減効果が十分でなく、ポンプの消費エネルギーロスが大きい。溝ピッチは、スリット刃の間隔等で制御できる。   The groove pitch (distance between the centers of the parallel grooves) is preferably 0.5 to 100 mm, and more preferably 0.8 to 50 mm. When it is less than 0.5 mm, the interval is narrow and slit processing cannot be performed. If it exceeds 100 mm, the effect of reducing the pressure loss is not sufficient, and the energy consumption loss of the pump is large. The groove pitch can be controlled by the interval of the slit blades.

溝の断面形状は、スリット刃の形状や工程張力で制御できる。   The cross-sectional shape of the groove can be controlled by the shape of the slit blade and the process tension.

炭素繊維フェルトの厚み(T)は、0.5〜10mmが好ましく、0.8〜7mmがより好ましい。0.5mm未満の場合は、溝付きの炭素繊維フェルトであっても圧力損失低減効果が小さく、ポンプの消費エネルギーロスが大きくなる為、好ましくない。10mmを超えると、システムが大きくなりすぎ、設計の自由度が下がる為、好ましくない。厚みは、混綿物質の仕込み量(目付)やパンチング数により制御できる。   The thickness (T) of the carbon fiber felt is preferably 0.5 to 10 mm, and more preferably 0.8 to 7 mm. If it is less than 0.5 mm, even if it is a grooved carbon fiber felt, the effect of reducing the pressure loss is small, and the energy consumption loss of the pump becomes large, which is not preferable. If it exceeds 10 mm, the system becomes too large, and the degree of freedom in design decreases, which is not preferable. The thickness can be controlled by the amount (weight per unit) of the mixed cotton material and the number of punching.

畝を形成した本炭素繊維フェルト2の目付は、100〜1000g/m2が好ましく、200〜800g/m2がより好ましい。100g/m2未満の場合は、圧力損失低減効果が小さく、ポンプの消費エネルギーロスが大きくなる、反応に寄与する表面積が小さくなる為、好ましくない。1000g/m2を超える場合は、システムが大きくなりすぎ、設計の自由度が下がる為、好ましくない。目付は、混綿物質の仕込み量やウェブの積層数により制御できる。 Basis weight of the carbon fiber felt 2 formed with ridges, preferably 100 to 1000 g / m 2, 200 to 800 g / m 2 is more preferable. If it is less than 100 g / m 2, the effect of reducing pressure loss is small, the energy loss of the pump is large, and the surface area contributing to the reaction is small, which is not preferable. If it exceeds 1000 g / m 2 , the system becomes too large, and the degree of freedom in design decreases, which is not preferable. The basis weight can be controlled by the amount of blended cotton material and the number of laminated webs.

厚み方向の電気抵抗値は500mΩ/cm2以下が好ましく、400mΩ/cm2がより好ましい。500mΩ/cm2を超えると電極として使用した場合に、導電抵抗が高く、充放電のロスが大きくなる為、好ましくない。厚み方向の電気抵抗値は、パンチング数や炭素化温度により制御できる。 The electric resistance value in the thickness direction is preferably 500 mΩ / cm 2 or less, and more preferably 400 mΩ / cm 2 . If it exceeds 500 mΩ / cm 2 , when used as an electrode, the conductive resistance is high and the charge / discharge loss increases, which is not preferable. The electric resistance value in the thickness direction can be controlled by the punching number and the carbonization temperature.

溝の断面積は0.5〜100mm2が好ましく、1〜30mm2がより好ましい。0.5mm2未満の場合は、十分な流路が形成されておらず、圧力損失の低減効果が十分でなく、ポンプの消費エネルギーロスが大きい。100mm2を超える場合は、本製造方法で作製することが困難である。上記断面積となれば、その形状は特に指定されない。断面積は、溝幅、溝深さ、張力、フェルトの表裏熱収縮差、混綿物質の種類により制御できる。 Sectional area is preferably 0.5 to 100 mm 2 of the groove, 1 to 30 mm 2 is more preferable. If it is less than 0.5 mm 2 , a sufficient flow path is not formed, the effect of reducing pressure loss is not sufficient, and the energy consumption loss of the pump is large. If it exceeds 100 mm 2 , it is difficult to produce by this production method. If it becomes the said cross-sectional area, the shape in particular will not be designated. The cross-sectional area can be controlled by the groove width, groove depth, tension, felt front / back heat shrinkage difference, and type of blended material.

フェルト断面積に対する溝断面積の割合は、1〜75%であり、好ましくは1.5〜60%であり、より好ましくは5〜50%である。1%未満の場合は、十分な流路が形成されておらず、圧力損失の低減効果が十分でなく、ポンプの消費エネルギーロスが大きい。75%を超える場合は、電気抵抗値が大きくなる、必要な強度が確保できない等、不具合が生ずる。上記、割合となれば、その形状は特に指定されない。断面積は、溝幅、溝深さ、張力、ピッチ、フェルトの表裏熱収縮差、混綿物質の種類により制御できる。   The ratio of the groove cross-sectional area to the felt cross-sectional area is 1 to 75%, preferably 1.5 to 60%, and more preferably 5 to 50%. If it is less than 1%, a sufficient flow path is not formed, the pressure loss reduction effect is not sufficient, and the energy consumption loss of the pump is large. If it exceeds 75%, problems such as an increase in the electric resistance value and the inability to secure the required strength occur. If it becomes the said ratio, the shape will not be specified in particular. The cross-sectional area can be controlled by the groove width, groove depth, tension, pitch, felt front and back heat shrinkage difference, and the type of the mixed cotton material.

[炭素繊維織物の製造方法]
本発明の炭素繊維フェルトの製造方法は特に限定されるものではなく、何れの方法で製造しても良いが、以下の方法が好ましい。
[Method for producing carbon fiber fabric]
The method for producing the carbon fiber felt of the present invention is not particularly limited and may be produced by any method, but the following method is preferred.

(製造方法A)
この方法においては、先ず炭素繊維前駆体フェルトの片面又は両面に溝形成用の切込みが形成された炭素繊維前駆体フェルトを用意する。次いで、切込み幅が拡がる方向に張力を付与しながら不活性雰囲気下で炭素化する。これにより本発明の炭素繊維フェルトが得られる。
(Production method A)
In this method, first, a carbon fiber precursor felt in which notches for forming grooves are formed on one side or both sides of the carbon fiber precursor felt is prepared. Next, carbonization is performed in an inert atmosphere while applying tension in a direction in which the cut width increases. Thereby, the carbon fiber felt of the present invention is obtained.

炭素繊維フェルトの製造原料としては、ポリアクリロニトリル(PAN)系耐炎繊維、又は、ピッチ系繊維、レーヨン繊維、セルロース等の従来公知の何れの炭素繊維前駆体繊維が挙げられる。なお、各種製造原料の中でも、繊維の柔軟性や加工性の面から、PAN系耐炎繊維が好ましい。PAN系耐炎繊維とは、PAN系原料繊維を空気中で200〜400℃で酸化処理することによって得られる繊維である。   Examples of the raw material for producing the carbon fiber felt include polyacrylonitrile (PAN) flame resistant fibers, or any conventionally known carbon fiber precursor fibers such as pitch fibers, rayon fibers, and cellulose. Among various production raw materials, PAN-based flame resistant fibers are preferable from the viewpoints of fiber flexibility and processability. The PAN-based flame resistant fiber is a fiber obtained by oxidizing a PAN-based raw fiber at 200 to 400 ° C. in the air.

先ず、炭素繊維前駆体繊維又は耐炎繊維を公知の方法でフェルト化する。フェルト化の方法はカードによって開繊し、多層化し、多層化されたウェブをニードルパンチによりフェルト化する方法があるが、フェルトにする方法であればこの方法に限定されない。   First, the carbon fiber precursor fiber or the flame resistant fiber is felted by a known method. As a felting method, there is a method in which a card is opened and multilayered, and the multilayered web is felted by a needle punch. However, the felting method is not limited to this method.

また、フェルトの表裏において熱収縮の差を付ける為に、異なった種類、量の原料繊維等からなるウェブを多層積層してフェルト化したり、異なった種類、量の原料繊維等を混合してウェブを作製し、フェルト化しても良い。   Also, in order to make a difference in heat shrinkage between the front and back of the felt, webs made of different types and amounts of raw fibers are laminated in layers to make a felt, or different types and amounts of raw fibers are mixed to create a web. May be made and felted.

フェルト化後の切込み形成前のフェルトには、スリット刃などにより切込み(スリット)を入れる。   A slit (slit) is made by a slit blade or the like in the felt before forming the cut after felting.

図9は、本発明の炭素繊維フェルトの製造方法に原料として用いるフェルトを示す。このフェルトは均一に形成されている。フェルト22には切込み24が形成されている。   FIG. 9 shows a felt used as a raw material in the method for producing a carbon fiber felt of the present invention. This felt is formed uniformly. A cut 24 is formed in the felt 22.

得られる切込み24が形成されていないプレーン層26と切込み24を形成しているスリット層とからなる炭素繊維前駆体フェルト22は、切込み幅が拡がる方向に張力S、Rを付与しながら不活性雰囲気下で炭素化される。この場合は、切込み方向に直角方向である。   The carbon fiber precursor felt 22 composed of the plain layer 26 in which the notch 24 is not formed and the slit layer in which the notch 24 is formed has an inert atmosphere while applying tensions S and R in the direction in which the notch width increases. Under carbonized. In this case, the direction is perpendicular to the cutting direction.

張力は、2〜100N/mが好ましく、3〜50N/mがより好ましい。2N/m未満の場合は、目標とする溝幅が得られない。100N/mを超える場合は、張力により変形(ウネリや折れ目)が発生し、得られる本発明の炭素繊維フェルトは電極として使用できない。   The tension is preferably 2 to 100 N / m, more preferably 3 to 50 N / m. If it is less than 2 N / m, the target groove width cannot be obtained. When it exceeds 100 N / m, deformation (undel or crease) occurs due to tension, and the obtained carbon fiber felt of the present invention cannot be used as an electrode.

(製造方法B)
図10は、本発明の炭素繊維フェルトの他の製造方法を示す説明図である。
(Production method B)
FIG. 10 is an explanatory view showing another method for producing the carbon fiber felt of the present invention.

この方法においては、先ず炭素化する際に熱収縮する低収縮層32を用意する。次いで、低収縮層32よりも炭素化する際の熱収縮率が高い高収縮層34を積層する。積層はパンチング等による。   In this method, first, a low shrinkage layer 32 that is thermally shrunk when carbonized is prepared. Next, a high shrinkage layer 34 having a higher thermal shrinkage rate when carbonized than the low shrinkage layer 32 is laminated. Lamination is by punching or the like.

その後、切込み24を形成する。この切込みを形成した部分はスリット層26となり、切込みを形成していない部分はプレーン層28になる。この切込みを形成したフェルトを炭素化すると、低収縮層32と高収縮層34との炭素化時の収縮率の違いに基いて、切込み24が広がり、溝を自然に形成する。   Thereafter, a cut 24 is formed. The portion where the cut is formed becomes the slit layer 26, and the portion where the cut is not formed becomes the plane layer 28. When the felt in which the cuts are formed is carbonized, the cuts 24 are spread based on the difference in shrinkage rate between the low shrinkage layer 32 and the high shrinkage layer 34 at the time of carbonization, and grooves are naturally formed.

また、本発明の2つの炭素繊維フェルトの製造方法(製造方法A及びB)を組み合わせてもよい。   Moreover, you may combine the manufacturing method (manufacturing method A and B) of the two carbon fiber felts of this invention.

この場合、高収縮層と低収縮層とからなる炭素繊維前駆体フェルトにおいて溝を形成する為の張力は、0.05〜100N/mが好ましく、1〜50N/mがより好ましい。張力が0.05N未満の場合においては、張力のみで溝を形成させるには十分でない。100N/mを超える場合には、焼成時に延伸によりウネリが生じ、外観不良となる為、好ましくない。   In this case, the tension for forming the groove in the carbon fiber precursor felt composed of the high shrinkage layer and the low shrinkage layer is preferably 0.05 to 100 N / m, and more preferably 1 to 50 N / m. When the tension is less than 0.05N, it is not sufficient to form the groove only with the tension. When it exceeds 100 N / m, undulation is generated by stretching during firing, resulting in poor appearance.

炭素繊維前駆体フェルトにおいて、低収縮層と高収縮層との熱収縮差は、400℃において、2%以上が好ましく、5〜50%がより好ましい。熱収縮差が2%未満の場合は、無張力下で炭素化した場合、溝形成が不十分である。   In the carbon fiber precursor felt, the thermal shrinkage difference between the low shrinkage layer and the high shrinkage layer is preferably 2% or more, more preferably 5 to 50% at 400 ° C. When the heat shrinkage difference is less than 2%, groove formation is insufficient when carbonized under no tension.

高収縮層の作製方法としては、主原料の耐炎繊維として低比重の耐炎繊維を用いる方法、主原料の耐炎繊維にそれより低比重の耐炎繊維を混綿する方法、又は、ポリビニルアルコール(PVA)、ポリエステル(PET)、ポリプロピレン(PP)、アクリル、セルロース等の有機繊維や天然繊維などの高収縮繊維(混綿物質)を主原料の耐炎繊維に混綿する方法などで、高収縮層を形成することができる。   As a method for producing the high shrinkage layer, a method using a flame resistant fiber having a low specific gravity as the flame resistant fiber of the main material, a method of blending a flame resistant fiber having a lower specific gravity into the flame resistant fiber of the main material, or polyvinyl alcohol (PVA), A high shrinkage layer can be formed by a method of blending high shrinkage fibers (blend material) such as organic fibers such as polyester (PET), polypropylene (PP), acrylic, and cellulose, and natural fibers into a flame resistant fiber as a main raw material. it can.

なかでも、繊維が柔らかく交絡処理が容易であることから、有機繊維や天然繊維を用いることが好ましく、特に炭素化時の残渣の少ないポリビニルアルコール(PVA)がより好ましい。耐炎繊維の比重は、製造時の処理温度や処理時間により制御できる。収縮量は、低比重の耐炎繊維量や高収縮繊維の含有量により制御できる。   Among these, organic fibers and natural fibers are preferably used because the fibers are soft and easy to be entangled, and polyvinyl alcohol (PVA) is particularly preferable because it has little residue during carbonization. The specific gravity of the flame resistant fiber can be controlled by the treatment temperature and treatment time during production. The amount of shrinkage can be controlled by the amount of low specific gravity flame resistant fiber and the content of high shrinkage fiber.

低収縮層は、主として比重が1.38を超える耐炎繊維を使用する方法により形成できる。熱収縮率の差が2%以上確保できれば、いかなる方法で作製しても良い。   The low shrinkage layer can be formed mainly by a method using flame resistant fibers having a specific gravity exceeding 1.38. Any method may be used as long as the difference in heat shrinkage rate can be 2% or more.

形成される溝のフェルト表面における形態は、直線状、格子状、ダイヤ状、波状があり、スリット刃の形状等で制御できる。   Forms on the felt surface of the groove to be formed include a straight line shape, a lattice shape, a diamond shape, and a wave shape, and can be controlled by the shape of the slit blade.

耐炎繊維の密度は特に限定されるものではないが、1.33〜1.45g/cm3であることが好ましい。耐炎繊維の密度が1.33g/cm3未満の場合は、炭素化時の収縮が大きく、工程が不安定になり易い傾向がある。耐炎繊維の密度が1.45g/cm3を超える場合は、繊維が脆く、フェルト加工等の交絡処理時に脱落が多く、加工性が低下する傾向にある。 The density of the flame resistant fiber is not particularly limited, but is preferably 1.33-1.45 g / cm 3 . When the density of the flame resistant fiber is less than 1.33 g / cm 3 , the shrinkage during carbonization is large and the process tends to become unstable. When the density of the flame resistant fiber exceeds 1.45 g / cm 3 , the fiber is fragile, and often falls during confounding treatment such as felt processing, so that the workability tends to be lowered.

原料繊維の繊度は、原料繊維が炭素繊維前駆体繊維の場合、0.1〜5.0dtexであることが好ましく、0.5〜3.5dtexであることがより好ましく、1.0〜3.3dtexが特に好ましい。炭素繊維前駆体の繊度が0.1dtex未満の場合は、開繊性が悪く、均質な混合が難しい。炭素繊維前駆体の繊度が5.0dtexを超える場合は、強度の高いフェルトが得られない。また、繊維間の接点が低減し、炭素化後の電気抵抗値が高くなる。   When the raw fiber is a carbon fiber precursor fiber, the fineness of the raw fiber is preferably 0.1 to 5.0 dtex, more preferably 0.5 to 3.5 dtex, and 1.0 to 3. 3 dtex is particularly preferred. When the fineness of the carbon fiber precursor is less than 0.1 dtex, the spreadability is poor and uniform mixing is difficult. When the fineness of the carbon fiber precursor exceeds 5.0 dtex, a high strength felt cannot be obtained. Moreover, the contact between fibers decreases and the electrical resistance value after carbonization becomes high.

原料繊維の中でも特にPAN系耐炎繊維の場合、その繊度は0.5〜3.5dtexであることが好ましく、1.0〜3.3dtexがより好ましい。   Among the raw material fibers, in particular, in the case of a PAN-based flame resistant fiber, the fineness is preferably 0.5 to 3.5 dtex, and more preferably 1.0 to 3.3 dtex.

本発明の炭素繊維前駆体フェルトに用いる炭素繊維前駆体ステープルとしては、炭素繊維前駆体ステープルの繊維長が30〜75mm、繊度が0.5〜3.5dtex、クリンプ数4〜20ヶ/2.54cm、クリンプ率4〜20%に加工したものが好ましい。   As the carbon fiber precursor staple used for the carbon fiber precursor felt of the present invention, the fiber length of the carbon fiber precursor staple is 30 to 75 mm, the fineness is 0.5 to 3.5 dtex, and the number of crimps is 4 to 20/2. What processed 54 cm and the crimp rate of 4-20% is preferable.

フェルト加工等の交絡処理は、ニードルパンチ方法が好ましい。交絡処理回数が50回/cm2未満の場合は、交絡処理回数が少なく、強度が低くなる。また厚み方向の電気抵抗値が高くなる。交絡処理回数が1000回/cm2を超える場合は、交絡処理による繊維への損傷が大きく、脱落毛羽などが大量に発生する虞がある為、好ましくない。 The entanglement process such as felting is preferably a needle punch method. When the number of entanglement processes is less than 50 times / cm 2 , the number of entanglement processes is small and the strength is low. Moreover, the electrical resistance value in the thickness direction increases. When the number of entanglement treatments exceeds 1000 times / cm 2 , damage to the fiber due to the entanglement treatment is large, and a large amount of falling fluff may occur, which is not preferable.

以上のように炭素繊維前駆体フェルトを作製した後、これを炭素化処理することで、溝を有する炭素繊維フェルトが得られる。   After producing the carbon fiber precursor felt as described above, a carbon fiber felt having a groove is obtained by carbonizing this.

炭素化処理は、製造方法A、B共に、炭素繊維前駆体フェルトを不活性雰囲気下、最高温度を1300〜2300℃にして、0.5〜10分間焼成することにより行う。好ましくは、第1炭素化処理と第2炭素化処理との2段階で行う。その場合、第1炭素化処理は、交絡処理後の炭素繊維前駆体フェルトを、不活性雰囲気下300〜1000℃で焼成して分解ガスを処理する。第2炭素化処理は、第1炭素化処理された炭素繊維前駆体フェルトを、不活性雰囲気下、最高温度1300〜2300℃にして0.5〜10分間焼成して行うことが好ましい。この炭素化処理時の最高温度は、1400℃〜2300℃の範囲であることがより好ましい。   The carbonization treatment is performed in both production methods A and B by firing the carbon fiber precursor felt under an inert atmosphere at a maximum temperature of 1300 to 2300 ° C. for 0.5 to 10 minutes. Preferably, the first carbonization treatment and the second carbonization treatment are performed in two stages. In that case, a 1st carbonization process bakes the carbon fiber precursor felt after a confounding process at 300-1000 degreeC by inert atmosphere, and processes a decomposition gas. The second carbonization treatment is preferably performed by firing the carbon fiber precursor felt subjected to the first carbonization treatment at a maximum temperature of 1300 to 2300 ° C. in an inert atmosphere for 0.5 to 10 minutes. As for the maximum temperature at the time of this carbonization process, it is more preferable that it is the range of 1400 degreeC-2300 degreeC.

炭素化処理時の最高温度が1300℃未満の場合は、得られる炭素繊維フェルトの炭素含有率が93質量%以上にならない。かかる炭素繊維フェルトは、電気伝導性が低く、良好な燃料電池性能を提供できないため好ましくない。炭素化処理時の最高温度が2300℃を超える場合は、炭素繊維フェルトが剛直となって、強度が低下し、更には、炭素微粉末が発生する等の不具合が生ずる為、好ましくない。   When the maximum temperature at the time of carbonization is less than 1300 ° C., the carbon content of the obtained carbon fiber felt is not 93% by mass or more. Such carbon fiber felt is not preferred because it has low electrical conductivity and cannot provide good fuel cell performance. When the maximum temperature during the carbonization treatment exceeds 2300 ° C., the carbon fiber felt becomes stiff, the strength is lowered, and furthermore, problems such as the generation of fine carbon powder occur.

炭素繊維フェルトの炭素含有率は93質量%以上が好ましく、95質量%以上がより好ましい。炭素含有率が93質量%未満の場合は、電気抵抗が高く、抵抗熱が多量に発生して反応ロスとなる為、電池効率が低下する傾向がある。   The carbon content of the carbon fiber felt is preferably 93% by mass or more, and more preferably 95% by mass or more. When the carbon content is less than 93% by mass, the electric resistance is high, and a large amount of resistance heat is generated, resulting in a reaction loss, so that the battery efficiency tends to decrease.

炭素繊維フェルトに用いられる炭素繊維の単繊維直径は5〜20μmであることが好ましく、6〜15μmがより好ましい。炭素繊維の単繊維直径が5μm未満の場合は、単繊維直径が細すぎて、カード工程などの加工性が悪く、また繊維の強力が低いため、炭素繊維フェルトから炭素繊維が脱落しやすくなる虞がある。炭素繊維の単繊維直径が20μmを超える場合は、繊維間の接触点が減少することで電気抵抗値が上昇して、反応効率が低下しやすくなる。また、炭素化後の繊維が剛直であり、脆くなる為、炭素繊維微粉末が多量に発生しやすくなる虞がある。   It is preferable that the single fiber diameter of the carbon fiber used for carbon fiber felt is 5-20 micrometers, and 6-15 micrometers is more preferable. When the single fiber diameter of the carbon fiber is less than 5 μm, the single fiber diameter is too thin, the processability such as the carding process is poor, and the strength of the fiber is low, so that the carbon fiber may be easily dropped from the carbon fiber felt. There is. When the single fiber diameter of the carbon fiber exceeds 20 μm, the contact point between the fibers decreases, the electrical resistance value increases, and the reaction efficiency tends to decrease. Moreover, since the carbonized fiber is rigid and brittle, there is a possibility that a large amount of carbon fiber fine powder is likely to be generated.

レドックスフロー型電池における電解液として水溶液を用いる場合には、その濡れ性向上の為、炭素繊維フェルトを酸化処理した後、電極として用いても良い。酸化処理には、液相酸化方法と気相酸化方法があり、特に限定される物ではない。   When an aqueous solution is used as the electrolytic solution in the redox flow battery, the carbon fiber felt may be oxidized and then used as an electrode in order to improve its wettability. The oxidation treatment includes a liquid phase oxidation method and a gas phase oxidation method, and is not particularly limited.

液相酸化方法としては、過酸化水素水や次亜塩素酸ソーダでの高温酸化処理や、電解液を用いた電解層中における電解質(硫酸、苛性ソーダ、硫酸アンモニウム、食塩等)での電解酸化処理方法が用いられる。   Liquid phase oxidation methods include high-temperature oxidation with hydrogen peroxide and sodium hypochlorite, and electrolytic oxidation with electrolytes (sulfuric acid, caustic soda, ammonium sulfate, sodium chloride, etc.) in the electrolyte layer using the electrolyte. Is used.

気相酸化では、空気酸化(300〜800℃)、オゾン酸化(25〜400℃)や水蒸気や二酸化炭素による酸化(500〜950℃)方法等が用いられる。   In the gas phase oxidation, air oxidation (300 to 800 ° C.), ozone oxidation (25 to 400 ° C.), oxidation with water vapor or carbon dioxide (500 to 950 ° C.), or the like is used.

このようにして得られた本発明の炭素繊維フェルトは、例えば導電性と通液性などが必要とされる電極や、燃料電池用のガス拡散層や、コンポジットや、摺動材などの強化繊維としても、適用できる。中でも、レドックスフロー二次電池の電極、ナトリウム-硫黄二次電池の電極として好ましく用いることができる。   The carbon fiber felt of the present invention thus obtained includes reinforcing fibers such as electrodes that require conductivity and liquid permeability, gas diffusion layers for fuel cells, composites, and sliding materials. It can also be applied. Especially, it can use preferably as an electrode of a redox flow secondary battery and an electrode of a sodium-sulfur secondary battery.

本発明の炭素繊維フェルトからなる電極は、例えば、レドックスフロー二次電池の電極、ナトリウム-硫黄二次電池の電極、その他導電性と通液性、通水性などが必要とされる電極として、好適に使用できる。     The electrode made of the carbon fiber felt of the present invention is suitable, for example, as an electrode of a redox flow secondary battery, an electrode of a sodium-sulfur secondary battery, and other electrodes that require conductivity, liquid permeability, water permeability, etc. Can be used for

本発明の炭素繊維フェルトからなる電極を、上記レドックスフロー型電池用電極等の通液性などが必要とされる電極として用いる場合、電解槽内における電解液の流れ方向と溝の形成方向が一致するように配置することで通液圧力損失を軽減することが出来る。   When the electrode comprising the carbon fiber felt of the present invention is used as an electrode that requires liquid permeability, such as the above-mentioned redox flow battery electrode, the flow direction of the electrolyte in the electrolytic cell and the groove forming direction are the same. By arranging in such a way, it is possible to reduce the loss of liquid passing pressure.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、操作条件の評価、各物性の測定は次の方法によった。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, evaluation of operation conditions and measurement of each physical property were based on the following methods.

[溝深さ(t)]
溝形成面において、形成された溝の最深部を深さとした。
[Groove depth (t)]
On the groove forming surface, the deepest portion of the formed groove was defined as the depth.

[溝幅]
フェルト表面での溝の広さを幅とした。
[Groove width]
The width of the groove on the felt surface was taken as the width.

[溝ピッチ]
並行する隣り合った溝について、溝幅方向に沿って溝中心部間の距離を測定し、これを溝ピッチとした。
[Groove pitch]
About the adjacent groove | channel adjacent in parallel, the distance between groove | channel center parts was measured along the groove width direction, and this was made into groove pitch.

[溝断面積]
溝の長手方向に直交する裁断面で、10cm長さにフェルトのサンプルを切り出し、n=5の溝断面を、その断面形状に応じて三角形、台形、長方形近似し、n=5で個々の溝の断面積を算出した。それら断面積の平均値を求め、これを溝断面積とした。
[Groove cross section]
Cut a felt sample to a length of 10 cm with a cross section orthogonal to the longitudinal direction of the groove, and approximate the groove cross section of n = 5 to a triangle, trapezoid, or rectangle according to the cross sectional shape, and each groove with n = 5 The cross-sectional area of was calculated. The average value of the cross-sectional areas was determined and this was used as the groove cross-sectional area.

[嵩密度]
畝の部分、溝の部分を、それぞれフェルト厚み方向に沿ってサンプルを切り出して測定したn=20の厚みと目付から算出し、それぞれ嵩密度(畝部)、嵩密度(溝部)とした。
[The bulk density]
The wrinkle part and the groove part were calculated from the thickness and basis weight of n = 20, which were measured by cutting out samples along the felt thickness direction, respectively, and were taken as the bulk density (gutter part) and bulk density (groove part), respectively.

[溝断面積比]
溝の長手方向に直交する裁断面で、10cm長さにフェルトのサンプルを切り出し、n=5の溝断面を、その断面形状に応じて三角形、台形、長方形近似し、n=5で算出した個々の溝の断面積について総和を求め、この総和を、上記溝の長手方向に直交する裁断面の面積[10cm長さ×厚み(T)]で除したものを溝断面積比とした。
[Groove cross-sectional area ratio]
A felt sample was cut out to a length of 10 cm with a cut surface orthogonal to the longitudinal direction of the groove, and an n = 5 groove cross section was approximated to a triangle, trapezoid, or rectangle according to the cross sectional shape, and each calculated with n = 5 The total sum of the cross-sectional areas of the grooves was determined, and the total sum was divided by the area [10 cm length × thickness (T)] of the cut surface perpendicular to the longitudinal direction of the grooves.

[目付]
サンプルとして20cm角(0.2m角)のフェルトを3枚切り出し、これを105℃、1時間乾燥した後の重量を、サンプル面積(0.2m×0.2m=0.04m2)で除したものの3枚の平均値を目付とした。
[Body weight]
Three 20 cm square (0.2 m square) felts were cut out as samples, and the weight after drying this at 105 ° C. for 1 hour was divided by the sample area (0.2 m × 0.2 m = 0.04 m 2 ). The average value of three items was taken as the basis weight.

[熱収縮率]
縦20cm×横20cmの耐炎繊維フェルトを切り出し、窒素雰囲気下で400℃で30分間熱処理した時の、縦横の寸法変化量を元長さで除したものの平均値を熱収縮率(400℃)とした。
[Heat shrinkage]
When the heat-resistant fiber felt 20 cm long × 20 cm wide was cut out and heat-treated at 400 ° C. for 30 minutes in a nitrogen atmosphere, the average value obtained by dividing the vertical and horizontal dimensional change by the original length was the heat shrinkage rate (400 ° C.). did.

[フェルト厚み(T)]
シックネスゲージ(6.9kPa)を用い、溝が形成されていない部分で、且つ幅方向に5点測定した基材厚みの平均値をフェルト厚み(T)とした。
[Felt thickness (T)]
A thickness gauge (6.9 kPa) was used, and the average thickness of the base material measured at five points in the width direction in a portion where no groove was formed was defined as the felt thickness (T).

[厚み方向の電気抵抗値]
50mm角のサンプルを切り出し、そのサンプルを2枚の50mm角(厚み10mm)の金メッキした電極で、全面接触するように挟み、サンプルの厚み方向に10kPaの荷重をかけたときの、厚み方向の電気抵抗値を測定し、電極面積で除して単位面積あたりの電気抵抗値を求めた。
[Electrical resistance value in the thickness direction]
A 50 mm square sample was cut out, and the sample was sandwiched between two 50 mm square (10 mm thick) gold-plated electrodes so that they were in full contact with each other, and a 10 kPa load was applied in the thickness direction of the sample. The resistance value was measured and divided by the electrode area to obtain the electric resistance value per unit area.

[通液圧力損失]
通液方向に30cm、幅方向(流路幅)に50cm、電極基材の厚みの60%であるスペーサーで形成されたセルスタックを用意した。作製された電極基材を通液方向20cm、幅方向50cmに切って設置し、50リットル/時のイオン交換水を流通させ、セルスタックの出入口の通液圧力損失を測定した。ブランクとして電極基材を設置しない系で同様に測定し、測定値とブランク測定値との差を電極基材の通液圧力損失とした。
[Liquid pressure loss]
A cell stack formed of a spacer that is 30 cm in the liquid passing direction, 50 cm in the width direction (flow channel width), and 60% of the thickness of the electrode substrate was prepared. The produced electrode base material was cut into a liquid passing direction of 20 cm and a width direction of 50 cm, and 50 liters / hour of ion exchange water was circulated to measure the liquid passing pressure loss at the inlet / outlet of the cell stack. It measured similarly by the system which does not install an electrode base material as a blank, and made the difference between a measured value and a blank measured value the liquid passing pressure loss of an electrode base material.

本評価において、通液圧力損失は、11kPa(80mmHg)以下が好ましく、8.65kPa(65mmHg)以下がより好ましく、5.5kPa(50mmHg)以下が更に好ましい。通液圧力損失が11kPa(80mmHg)を超えると、電解液を循環させる為のポンプ容量が大きくなり、ポンプに使用される電力の為に、電力ロスが大きくなる。   In this evaluation, the flow pressure loss is preferably 11 kPa (80 mmHg) or less, more preferably 8.65 kPa (65 mmHg) or less, and even more preferably 5.5 kPa (50 mmHg) or less. When the flow pressure loss exceeds 11 kPa (80 mmHg), the pump capacity for circulating the electrolyte increases, and the power loss increases due to the power used for the pump.

[実施例1]
高収縮層として、ポリビニルアルコール(PVA)ステープル20質量%を、炭素繊維前駆体ステープルとしてPAN系耐炎繊維ステープル(繊維長51mm、クリンプ率10%、クリンプ数4ヶ/cm)に混合し、目付90g/m2のPVA混綿PAN系耐炎繊維ウェッブを作製した。これを4枚積層させ、スリット層用のウェッブ積層体を得た。
[Example 1]
As a high shrinkage layer, 20% by mass of polyvinyl alcohol (PVA) staple is mixed with a PAN-based flame resistant fiber staple (fiber length 51 mm, crimp rate 10%, number of crimps 4 / cm) as a carbon fiber precursor staple, and the basis weight is 90 g. / M 2 PVA blended cotton PAN flame resistant fiber web was prepared. Four of these were laminated to obtain a web laminate for the slit layer.

低収縮層として、目付100g/m2のPAN系耐炎繊維ウェッブを作製した。これを3枚積層させ、プレーン層用のウェッブ積層体を得た。 As a low shrinkage layer, a PAN-based flame resistant fiber web having a basis weight of 100 g / m 2 was prepared. Three of these were laminated to obtain a web laminated body for a plain layer.

スリット層用のウェッブ積層体と、プレーン層用のウェッブ積層体とを積層し、400回/cm2でニードルパンチを行い、表裏の収縮差を有する炭素繊維前駆体フェルトを作製した。 A web laminate for the slit layer and a web laminate for the plain layer were laminated and needle punched at 400 times / cm 2 to produce a carbon fiber precursor felt having a shrinkage difference between the front and back sides.

この炭素繊維前駆体フェルトの高収縮層側において、幅方向に5mmピッチ、3mm深さとなるようにスリット処理を実施した。その後、700℃で、スリットによる切込面に直交する方向に10N/mの張力を付与しながら、10分間で前炭素化処理した後、1800℃、3分間で炭素化し、高収縮層側の表面に溝が形成された炭素繊維フェルトを得た。その炭素繊維フェルトを、空気雰囲気中で500℃、30分間の酸化処理を行い、電気抵抗値、通液圧力損失を評価した。   On the high shrinkage layer side of this carbon fiber precursor felt, slitting was performed so that the width was 5 mm pitch and 3 mm depth. Thereafter, pre-carbonization treatment was performed for 10 minutes at 700 ° C. while applying a tension of 10 N / m in a direction orthogonal to the slit cutting surface, and then carbonization was performed at 1800 ° C. for 3 minutes. A carbon fiber felt having grooves formed on the surface was obtained. The carbon fiber felt was subjected to an oxidation treatment at 500 ° C. for 30 minutes in an air atmosphere, and the electrical resistance value and the liquid passing pressure loss were evaluated.

[実施例2〜4]
PVAを、表1に記載の混綿物質に変更した以外は、実施例1と同様の方法で電極を作製した。
[Examples 2 to 4]
An electrode was produced in the same manner as in Example 1 except that PVA was changed to the mixed cotton material shown in Table 1.

[実施例5]
混綿物質を使用せずに耐炎繊維フェルト単味で、表裏の収縮差を有さない炭素繊維前駆体フェルトを作製し、焼成時の張力を20N/mとした以外は、実施例1と同様の方法で電極を作製した。
[Example 5]
The same as in Example 1 except that a carbon fiber precursor felt that does not have a shrinkage difference between the front and back sides is prepared without using a mixed cotton substance, and the tension during firing is 20 N / m. The electrode was produced by the method.

[実施例6]
焼成時の張力を0N/mとした以外は、実施例1と同様の方法で電極を作製した。
[Example 6]
An electrode was produced in the same manner as in Example 1 except that the tension during firing was set to 0 N / m.

[実施例7]
高収縮層において、目付90g/m2のPVA混綿PAN系耐炎繊維ウェッブ6枚積層させた上に、目付50g/m2のPAN系耐炎繊維ウェッブ3枚積層させた以外は、実施例1と同様の方法で電極を作製した。
[Example 7]
In the high shrinkage layer, the same as Example 1 except that 6 PVA blended cotton PAN flame resistant fiber webs having a basis weight of 90 g / m 2 were laminated and then 3 PAN flame resistant fiber webs having a basis weight of 50 g / m 2 were laminated. The electrode was produced by the method.

[実施例8]
高収縮層において、収縮の大きい低比重OPFのみを用いること以外は、実施例1と同様の方法で電極を作製した。
[Example 8]
An electrode was produced in the same manner as in Example 1 except that only the low specific gravity OPF having large shrinkage was used in the high shrinkage layer.

[比較例1]
表裏の収縮差を有さない炭素繊維前駆体単体フェルトとし、溝幅1mm、溝深さ3mm、溝ピッチ6mmとなるように作製したプレス板にて、200℃、50kg/cm2でヒートプレスを行い、溝付き炭素繊維前駆体フェルトを得た。それ以外は、実施例1と同様の方法で電極を作製した。
[Comparative Example 1]
Heat press at 200 ° C. and 50 kg / cm 2 on a press plate produced with a carbon fiber precursor simple felt that does not have a shrinkage difference between the front and back surfaces and a groove width of 1 mm, a groove depth of 3 mm, and a groove pitch of 6 mm. The grooved carbon fiber precursor felt was obtained. Otherwise, electrodes were produced in the same manner as in Example 1.

[比較例2]
表裏の収縮差を有さない炭素繊維前駆体単体フェルトとし、炭素化時に張力を付与しない以外は、実施例1と同様の方法で電極を作製した。
[Comparative Example 2]
An electrode was produced in the same manner as in Example 1 except that the carbon fiber precursor simple felt without front and back shrinkage was used and no tension was applied during carbonization.

表1、2に示すように、実施例1〜8は、電気抵抗値、通液圧力損失が共に低く、良好な結果を示す炭素繊維フェルトが得られた。   As shown in Tables 1 and 2, Examples 1 to 8 had low electric resistance values and low fluid pressure loss, and carbon fiber felts showing good results were obtained.

比較例1は、プレスにより溝を形成させた結果、畝部分の嵩密度が小さく、セルに組んだ際に畝が潰れ、通液圧力損失が高い結果となった。   In Comparative Example 1, as a result of forming the grooves by pressing, the bulk density of the heel portion was small, the heel was crushed when assembled in the cell, and the liquid passing pressure loss was high.

比較例2は、十分な溝が形成されず、通液圧力損失が高い結果となった。   In Comparative Example 2, sufficient grooves were not formed, and the liquid passing pressure loss was high.

Figure 2014029035
Figure 2014029035

Figure 2014029035
Figure 2014029035

[実施例9]
高収縮層のPVAの混率を5%とした以外は、実施例1と同様の方法で電極を作製した。
[Example 9]
An electrode was produced in the same manner as in Example 1 except that the mixing ratio of PVA in the high shrinkage layer was 5%.

[実施例10]
炭素化時の張力を2N/mとした以外は、実施例1と同様の方法で電極を作製した。
[Example 10]
An electrode was produced in the same manner as in Example 1 except that the tension during carbonization was 2 N / m.

[実施例11]
高収縮層のPVAの混率を50%とした以外は、実施例1と同様の方法で電極を作製した。
[Example 11]
An electrode was produced in the same manner as in Example 1 except that the mixing ratio of PVA in the highly shrinkable layer was 50%.

[実施例12]
炭素化時の張力を50N/mとした以外は、実施例1と同様の方法で電極を作製した。
[Example 12]
An electrode was produced in the same manner as in Example 1 except that the tension during carbonization was 50 N / m.

[実施例13〜16]
表3、4のスリットの深さ、ピッチとした以外は、実施例1と同様の方法で電極を作製した。
[Examples 13 to 16]
An electrode was produced in the same manner as in Example 1 except that the slit depth and pitch in Tables 3 and 4 were used.

表3、4に示すように、実施例9〜16は、電気抵抗値、通液圧力損失が共に低く、良好な結果を示す炭素繊維フェルトが得られた。   As shown in Tables 3 and 4, in Examples 9 to 16, both the electric resistance value and the liquid passing pressure loss were low, and carbon fiber felts showing good results were obtained.

[実施例17〜18]
表4のスリット形状、ピッチとした以外は、実施例1と同様の方法で電極を作製した。
[Examples 17 to 18]
An electrode was produced in the same manner as in Example 1 except that the slit shape and pitch in Table 4 were used.

Figure 2014029035
Figure 2014029035

Figure 2014029035
Figure 2014029035

[実施例19]
表5のスリット形状、ピッチとした以外は、実施例1と同様の方法で電極を作製した。
[Example 19]
An electrode was produced in the same manner as in Example 1 except that the slit shape and pitch in Table 5 were used.

[実施例20]
高収縮層において、目付80g/m2のPVA混綿PAN系耐炎繊維ウェッブに、目付60g/m2のPAN系耐炎繊維ウェッブを積層させた以外は、実施例1と同様の方法で電極を作製した。
[Example 20]
An electrode was prepared in the same manner as in Example 1 except that a PAN-based flame resistant fiber web having a basis weight of 60 g / m 2 was laminated on a PVA blended cotton PAN flame resistant fiber web having a basis weight of 80 g / m 2 . .

[実施例21]
高収縮層において、目付85g/m2のPVA混綿PAN系耐炎繊維ウェッブ10枚に、目付70g/m2のPAN系耐炎繊維ウェッブを10枚積層させた以外は、実施例1と同様の方法で電極を作製した。
[Example 21]
In the high shrinkage layer, the same method as in Example 1 except that 10 PAN-based flame resistant fiber webs having a basis weight of 70 g / m 2 were laminated on 10 PVA blended cotton PAN flame resistant fiber webs having a basis weight of 85 g / m 2. An electrode was produced.

表3に示すように実施例17〜21は、電気抵抗値、通液圧力損失が共に低く、良好な結果を示す炭素繊維フェルトが得られた。   As shown in Table 3, in Examples 17 to 21, carbon fiber felts exhibiting good results were obtained with both low electrical resistance values and low fluid pressure loss.

[比較例3]
高収縮層において、PVAの混率2%とし、炭素化時の張力を2N/mとした以外は、実施例1と同様の方法で電極を作製した。その結果、十分な溝幅を形成できず、通液圧力損失は高い結果となった。
[Comparative Example 3]
An electrode was produced in the same manner as in Example 1 except that the high shrinkage layer was mixed with PVA at 2% and the tension during carbonization was 2 N / m. As a result, a sufficient groove width could not be formed, and the liquid passing pressure loss was high.

[比較例4]
高収縮層の耐炎繊維の比重を1.33とし、炭素化時の張力を110N/mとした以外は、実施例1と同様の方法で電極を作製した。溝幅が大きく、接触抵抗が低く、電気抵抗値が高い結果となった。また、炭素化後の変形が大きく、通液圧力損失の評価は不可能であった。
[Comparative Example 4]
An electrode was produced in the same manner as in Example 1, except that the specific gravity of the flame resistant fiber of the high shrinkage layer was 1.33 and the tension during carbonization was 110 N / m. The groove width was large, the contact resistance was low, and the electrical resistance value was high. In addition, deformation after carbonization was large, and evaluation of liquid passing pressure loss was impossible.

[比較例5]
スリットの深さを5.2mm(厚みに対し95%)とした以外は、実施例1と同様の方法で電極を作製した。その結果、炭素化時に破断し、評価できなかった。
[Comparative Example 5]
An electrode was produced in the same manner as in Example 1 except that the slit depth was 5.2 mm (95% of the thickness). As a result, it broke during carbonization and could not be evaluated.

[比較例6]
スリットの深さを0.5mm(厚みに対し9%)とした以外は、実施例1と同様の方法で電極を作製した。その結果、溝が十分に確保できず、目標の通液圧力損失を得られなかった。
[Comparative Example 6]
An electrode was produced in the same manner as in Example 1 except that the slit depth was 0.5 mm (9% with respect to the thickness). As a result, the grooves could not be secured sufficiently, and the target liquid passing pressure loss could not be obtained.

[比較例7]
ピッチ間隔を大きくした以外は、実施例1と同様の方法で電極を作製した。その結果、フェルト断面に対する溝断面(溝断面積比)が小さく、目標の通液圧力損失が得られなかった。
[Comparative Example 7]
An electrode was produced in the same manner as in Example 1 except that the pitch interval was increased. As a result, the groove cross section (groove cross-sectional area ratio) with respect to the felt cross section was small, and the target liquid passing pressure loss could not be obtained.

[比較例8]
高収縮層において、目付90g/m2のPVA混綿PAN系耐炎繊維ウェッブに、目付45g/m2のPAN系耐炎繊維ウェッブを積層させた以外は、実施例1と同様の方法で電極を作製した。その結果、厚みが小さく、目標の通液圧力損失が得られなかった。
[Comparative Example 8]
In the high shrinkage layer, an electrode was produced in the same manner as in Example 1 except that a PAN-based flame resistant fiber web having a basis weight of 45 g / m 2 was laminated on a PVA mixed cotton PAN flame resistant fiber web having a basis weight of 90 g / m 2 . . As a result, the thickness was small and the target liquid passing pressure loss could not be obtained.

[比較例9]
炭素化温度を1200℃とした以外は、実施例1と同様の方法で電極を作製した。その結果、電気抵抗が高い結果となった。
[Comparative Example 9]
An electrode was produced in the same manner as in Example 1 except that the carbonization temperature was 1200 ° C. As a result, the electrical resistance was high.

Figure 2014029035
Figure 2014029035

Figure 2014029035
Figure 2014029035

2 炭素繊維フェルト
4 畝部
6 溝部
8 溝部の底壁
10 電池セル部材
t 炭素繊維フェルトの厚み
T 溝の深さ
22 炭素繊維前駆体フェルト
24 切込み
26 フェルトにおける切込みを形成していない部分(プレーン層)
28 フェルトにおける切込みを形成している部分(スリット層)
S、R 張力の方向を示す矢印
32 低収縮層
34 高収縮層
X、Y 電解液の流れ方向を示す矢印
42 レドックスフロー型電池
44 セル部
46、48 電解液タンク部
50、52 集電板
54 隔膜
56、58 送液ポンプ
60、62 電極
2 Carbon fiber felt 4 Gutter part 6 Groove part 8 Groove bottom wall 10 Battery cell member t Carbon fiber felt thickness T Groove depth 22 Carbon fiber precursor felt 24 Notch 26 The part where the notch in the felt is not formed (plain layer) )
28 The part that forms the cut in the felt (slit layer)
S, R Arrows indicating tension direction 32 Low shrinkage layer 34 High shrinkage layer X, Y Arrows showing electrolyte flow direction 42 Redox flow battery 44 Cell part 46, 48 Electrolyte tank part 50, 52 Current collector plate 54 Diaphragm 56, 58 Liquid feed pump 60, 62 Electrode

Claims (7)

少なくとも片面に帯状に外方に突出する複数の畝部分と、前記複数の畝部分の間に形成される溝部分とからなる凹凸形状を有する炭素繊維フェルトであって、畝部分のフェルトの嵩密度が、溝部分の底壁を構成するフェルトの嵩密度よりも高いことを特徴とする炭素繊維フェルト。   A carbon fiber felt having a concavo-convex shape composed of a plurality of ridge portions protruding outward in a strip shape on at least one surface and a groove portion formed between the plurality of ridge portions, wherein the bulk density of the heel portion felt Is higher than the bulk density of the felt which comprises the bottom wall of a groove part, The carbon fiber felt characterized by the above-mentioned. 溝が、フェルト表面において、直線状、格子状、ダイヤ状、又は、波状に形成されている請求項1に記載の炭素繊維フェルト。   The carbon fiber felt according to claim 1, wherein the grooves are formed in a linear shape, a lattice shape, a diamond shape, or a wave shape on the felt surface. 溝幅が0.5〜10mm、溝深さが炭素繊維フェルトの厚みに対して10〜90%、溝ピッチが0.5〜100mmで形成されている請求項1又は2に記載の炭素繊維フェルト。   The carbon fiber felt according to claim 1 or 2, wherein the groove width is 0.5 to 10 mm, the groove depth is 10 to 90% of the thickness of the carbon fiber felt, and the groove pitch is 0.5 to 100 mm. . 厚みが0.5〜10mm、目付が100〜1000g/m2、厚み方向の電気抵抗値が500mΩ/cm2以下である請求項1乃至3の何れかに記載の炭素繊維フェルト。 Thickness 0.5 to 10 mm, carbon fiber felt according to any one of claims 1 to 3 basis weight 100 to 1000 g / m 2, the electrical resistance value in the thickness direction is 500mΩ / cm 2 or less. 請求項1乃至4の何れかに記載の炭素繊維フェルトからなる電極。   An electrode comprising the carbon fiber felt according to any one of claims 1 to 4. 炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する炭素繊維フェルトの製造方法であって、片面又は両面に切込みを入れた前駆体フェルトを、切込み方向と直交する方向に張力を付与しながら炭素化することを特徴とする炭素繊維フェルトの製造方法。   A method for producing a carbon fiber felt in which a carbon fiber precursor felt is carbonized under an inert atmosphere, wherein carbon is applied to the precursor felt cut on one or both sides while applying tension in a direction perpendicular to the cutting direction. A process for producing a carbon fiber felt, characterized in that 炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する炭素繊維フェルトの製造方法であって、前駆体フェルトが表裏面で熱収縮率が異なる構造のフェルトであり、且つその高収縮側のフェルトに切込みを入れたフェルトを炭素化することを特徴とする炭素繊維フェルトの製造方法。   A method for producing a carbon fiber felt in which a carbon fiber precursor felt is carbonized under an inert atmosphere, the precursor felt having a structure with different heat shrinkage rates on the front and back surfaces, and the felt on the high shrinkage side. A method for producing a carbon fiber felt, characterized by carbonizing a cut-in felt.
JP2012169176A 2012-07-31 2012-07-31 Carbon fiber felt, method for producing the same, and electrode Active JP6018450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169176A JP6018450B2 (en) 2012-07-31 2012-07-31 Carbon fiber felt, method for producing the same, and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169176A JP6018450B2 (en) 2012-07-31 2012-07-31 Carbon fiber felt, method for producing the same, and electrode

Publications (2)

Publication Number Publication Date
JP2014029035A true JP2014029035A (en) 2014-02-13
JP6018450B2 JP6018450B2 (en) 2016-11-02

Family

ID=50201763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169176A Active JP6018450B2 (en) 2012-07-31 2012-07-31 Carbon fiber felt, method for producing the same, and electrode

Country Status (1)

Country Link
JP (1) JP6018450B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199364A1 (en) * 2014-06-24 2015-12-30 코오롱인더스트리(주) Filament web type precursor fabric for activated carbon fiber fabric and method for preparing same
JP2016000885A (en) * 2014-05-23 2016-01-07 東レ株式会社 Carbon fiber non-woven fabric, gas diffusion electrode for solid high molecular weight form fuel cell and solid high molecular weight form fuel cell
KR20160084819A (en) 2015-01-06 2016-07-14 주식회사 엘지화학 Electrode structure of secondary battery
WO2016159348A1 (en) * 2015-04-01 2016-10-06 昭和電工株式会社 Electrode material, electrode of redox flow battery, and redox flow battery
KR20170003216A (en) 2015-06-30 2017-01-09 주식회사 엘지화학 Electrode of secondary battery and secondary battery comprising the same
JP2017027830A (en) * 2015-07-24 2017-02-02 住友電気工業株式会社 Electrode for Redox Flow Battery, Redox Flow Battery, and Method for Evaluating Characteristics of Electrode
WO2017119110A1 (en) * 2016-01-07 2017-07-13 住友電気工業株式会社 Redox flow battery, redox flow battery electrode, and electrode characteristic evaluation method
CN108155389A (en) * 2017-11-29 2018-06-12 辽宁科技大学 It is a kind of from the flow channel type flow battery preparation method of graphite felt electrode material
JP2018517269A (en) * 2015-04-09 2018-06-28 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Method for treating a carbon electrode
CN110998946A (en) * 2017-08-04 2020-04-10 西门子股份公司 Redox flow battery and method of operating a redox flow battery
WO2020136721A1 (en) * 2018-12-25 2020-07-02 住友電気工業株式会社 Battery cell, cell stack, and redox flow battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287923A (en) * 1995-04-13 1996-11-01 Toyobo Co Ltd Electrode material for flowing liquid electrolytic cell
JPH11273691A (en) * 1998-03-25 1999-10-08 Toyobo Co Ltd Grooved electrode material and manufacture thereof
JP2003017076A (en) * 2001-06-27 2003-01-17 Toho Tenax Co Ltd Carbon fiber structure
JP2009280437A (en) * 2008-05-21 2009-12-03 Mitsubishi Rayon Co Ltd Method for producing porous carbon sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287923A (en) * 1995-04-13 1996-11-01 Toyobo Co Ltd Electrode material for flowing liquid electrolytic cell
JPH11273691A (en) * 1998-03-25 1999-10-08 Toyobo Co Ltd Grooved electrode material and manufacture thereof
JP2003017076A (en) * 2001-06-27 2003-01-17 Toho Tenax Co Ltd Carbon fiber structure
JP2009280437A (en) * 2008-05-21 2009-12-03 Mitsubishi Rayon Co Ltd Method for producing porous carbon sheet

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000885A (en) * 2014-05-23 2016-01-07 東レ株式会社 Carbon fiber non-woven fabric, gas diffusion electrode for solid high molecular weight form fuel cell and solid high molecular weight form fuel cell
KR20160000112A (en) * 2014-06-24 2016-01-04 코오롱인더스트리 주식회사 Filament web typed precursor fabric for activated carbon fiber fabric and method of manufacturing the same
US10596545B2 (en) * 2014-06-24 2020-03-24 Kolon Industries, Inc. Filament web type precursor fabric for activated carbon fiber fabric and method for preparing same
KR101975886B1 (en) 2014-06-24 2019-05-07 코오롱인더스트리 주식회사 Filament web typed precursor fabric for activated carbon fiber fabric and method of manufacturing the same
US20170136443A1 (en) * 2014-06-24 2017-05-18 Kolon Industries, Inc. Filament web type precursor fabric for activated carbon fiber fabric and method for preparing same
WO2015199364A1 (en) * 2014-06-24 2015-12-30 코오롱인더스트리(주) Filament web type precursor fabric for activated carbon fiber fabric and method for preparing same
KR20160084819A (en) 2015-01-06 2016-07-14 주식회사 엘지화학 Electrode structure of secondary battery
JPWO2016159348A1 (en) * 2015-04-01 2018-02-15 昭和電工株式会社 Electrode material, redox flow battery electrode, redox flow battery
WO2016159348A1 (en) * 2015-04-01 2016-10-06 昭和電工株式会社 Electrode material, electrode of redox flow battery, and redox flow battery
US10680248B2 (en) 2015-04-01 2020-06-09 Showa Denko K.K. Electrode material, electrode of redox flow battery, and redox flow battery
JP2018517269A (en) * 2015-04-09 2018-06-28 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Method for treating a carbon electrode
US10505199B2 (en) 2015-04-09 2019-12-10 United Technologies Corporation Method of treating carbon electrode
KR20170003216A (en) 2015-06-30 2017-01-09 주식회사 엘지화학 Electrode of secondary battery and secondary battery comprising the same
KR101953172B1 (en) * 2015-06-30 2019-02-28 주식회사 엘지화학 Electrode of secondary battery and secondary battery comprising the same
WO2017018132A1 (en) * 2015-07-24 2017-02-02 住友電気工業株式会社 Redox flow battery electrode, redox flox battery, and method for evaluating electrode properties
JP2017027830A (en) * 2015-07-24 2017-02-02 住友電気工業株式会社 Electrode for Redox Flow Battery, Redox Flow Battery, and Method for Evaluating Characteristics of Electrode
JPWO2017119110A1 (en) * 2016-01-07 2018-11-01 住友電気工業株式会社 Redox flow battery, electrode for redox flow battery, and method for evaluating characteristics of electrode
CN108432022A (en) * 2016-01-07 2018-08-21 住友电气工业株式会社 Redox flow batteries, the electrode of redox flow batteries and electrode characteristic appraisal procedure
WO2017119110A1 (en) * 2016-01-07 2017-07-13 住友電気工業株式会社 Redox flow battery, redox flow battery electrode, and electrode characteristic evaluation method
TWI699927B (en) * 2016-01-07 2020-07-21 住友電氣工業股份有限公司 Redox flow battery, electrode for redox flow battery and electrode characteristic evaluation method
CN110998946A (en) * 2017-08-04 2020-04-10 西门子股份公司 Redox flow battery and method of operating a redox flow battery
JP2020523731A (en) * 2017-08-04 2020-08-06 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Redox flow battery and method for operating redox flow battery
CN108155389A (en) * 2017-11-29 2018-06-12 辽宁科技大学 It is a kind of from the flow channel type flow battery preparation method of graphite felt electrode material
CN108155389B (en) * 2017-11-29 2020-05-12 辽宁科技大学 Preparation method of graphite felt electrode material for self-flow-channel flow battery
WO2020136721A1 (en) * 2018-12-25 2020-07-02 住友電気工業株式会社 Battery cell, cell stack, and redox flow battery

Also Published As

Publication number Publication date
JP6018450B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6018450B2 (en) Carbon fiber felt, method for producing the same, and electrode
JP3560181B2 (en) Electrode material for liquid flow type electrolytic cell
EP1050915B1 (en) Material for electrode
JP6577697B2 (en) Carbon fiber felt, method for producing the same, and liquid flow electrolytic cell
AU2017377216B2 (en) Electrode, redox flow battery, and method for producing electrode
KR102081006B1 (en) Method for producing carbon felt electrode for redox flow battery
EP3231916B1 (en) Nonwoven carbon fiber fabric, process for producing nonwoven carbon fiber fabric, and polymer electrolyte membrane fuel cell
KR101209098B1 (en) Precursor felt for electroconductive material for electrode and method for producing electroconductive material for electrode
JP2013144857A (en) Carbon fiber felt, method for producing the same, and electrode
EP3550649B1 (en) Electrode and redox flow battery
JP4599832B2 (en) Grooved electrode material and electrode for liquid flow type electrolytic cell
JP2003064566A (en) Felt material having uneven surface
JP2019175833A (en) Redox flow battery electrode and redox flow battery
JPH01239767A (en) Electrode substrate and manufacture thereof
JP2003017076A (en) Carbon fiber structure
JPH11273691A (en) Grooved electrode material and manufacture thereof
JP6151947B2 (en) Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery
JP2021125385A (en) Electrode for redox flow battery and redox flow cell
JP3844103B2 (en) Grooved electrode material for liquid flow type electrolytic cell and method for producing the same
JP2003308851A (en) Electrode material and its manufacturing method
JP2012201996A (en) Carbon fiber spun yarn woven fabric, method for producing carbon fiber spun yarn woven fabric, and gas diffusion electrode for fuel cell
JP2020161388A (en) Flow battery electrode
JP2013108188A (en) Carbon fiber sheet with multiple layer structure, method of producing the same, and electrode comprising the same
JP2014175286A (en) Fuel battery and manufacturing method thereof
JP2013079462A (en) Carbon fiber fabric with ridge, method of producing thereof and electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R150 Certificate of patent or registration of utility model

Ref document number: 6018450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350