JP2014028867A - オリゴマー−プロテアーゼ阻害剤複合体 - Google Patents

オリゴマー−プロテアーゼ阻害剤複合体 Download PDF

Info

Publication number
JP2014028867A
JP2014028867A JP2013233740A JP2013233740A JP2014028867A JP 2014028867 A JP2014028867 A JP 2014028867A JP 2013233740 A JP2013233740 A JP 2013233740A JP 2013233740 A JP2013233740 A JP 2013233740A JP 2014028867 A JP2014028867 A JP 2014028867A
Authority
JP
Japan
Prior art keywords
small molecule
mmol
compound
oligomer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013233740A
Other languages
English (en)
Other versions
JP5687752B2 (ja
Inventor
Riggs-Sauthier Jennifer
リッグス−ソーシアー ジェニファー
Lin Chen
リン チェン
Tacey X Viegas
エックス. ビエガス テイシー
Xuyuan Gu
スーユアン グー
Franco J Duarte
ジェイ. デュアルテ フランコ
Wen Zhang
ウェン チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wells Fargo Bank NA
Original Assignee
Wells Fargo Bank NA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wells Fargo Bank NA filed Critical Wells Fargo Bank NA
Publication of JP2014028867A publication Critical patent/JP2014028867A/ja
Application granted granted Critical
Publication of JP5687752B2 publication Critical patent/JP5687752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/164Amides, e.g. hydroxamic acids of a carboxylic acid with an aminoalcohol, e.g. ceramides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Abstract

【課題】化学修飾を欠く小分子プロテアーゼ阻害剤と比較して利点を有する、化学的に修飾された小分子プロテアーゼ阻害剤を提供する。
【解決手段】本発明は、安定した結合を介して直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合したプロテアーゼ阻害剤の残基を含む化合物を提供する。1つ以上の実施形態において、前記プロテアーゼ阻害剤は、化学式I、II、III、IV、V、VIおよびVIIに包含される。本発明はまた、上記化合物と、任意選択で薬剤として許容される賦形剤とを含む組成物を提供する。本発明はさらに、水溶性非ペプチドオリゴマーを、小分子プロテアーゼ阻害剤に共有結合させるステップを含む方法を提供する。
【選択図】なし

Description

(関連出願の説明)
本出願は、合衆国法典35巻第119(e)の下で、2007年3月12日に出願された米国仮出願番号第60/906,330号の利益を主張するものであり、参照することにより本願明細書に組み込まれる。
本発明は、化学修飾を欠く小分子プロテアーゼ阻害剤と比較して、ある利点を有する、化学的に修飾された小分子プロテアーゼ阻害剤を提供する。本願明細書に記載されている化学的に修飾された小分子プロテアーゼ阻害剤は、(とりわけ)創薬、薬物療法、生理学、有機化学、および高分子化学の分野における適用に関連する、および/または適用を有する。
後天性免疫不全症候群(AIDS)の最初の症例が1981年に報告されて以来、ヒト免疫不全ウイルス(HIV)による感染は、世界的な規模に拡大し、約6500万人の感染と、2500万人の死亡とをもたらしている。非特許文献1を参照されたい。プロテアーゼ阻害剤は、HIVに感染した個人の治療に使用される重要な化合物類を成すが、これらの化合物はまた、別のウィルス(例えば、C型肝炎)に感染している個人を治療することもできる。
HIVに関して、プロテアーゼ阻害剤は、Gagのタンパク質切断に必要であるウィルスプロテアーゼ、および感染性ウィルス粒子の生成に必要なGag/Pol融合ポリペプチドを抑制するように作用する。したがって、このタンパク質切断を抑制することによって、プロテアーゼ阻害剤は、より大きいHIV融合ポリペプチド前駆体が、有効なウィルス複製に必要なタンパク質の成熟形態を形成する能力を減少させる。非特許文献2。
プロテアーゼ阻害剤ベースの治療は、症候性HIV疾患を示す患者、およびCD4細胞数が350/μLを下回っているが、200/μLのレベルになる前の非症候性患者における初期治療として認められている。非特許文献3。そのような場合、プロテアーゼ阻害剤ベースの療法は、2個のヌクレオシド(またはヌクレオチド)逆転写酵素阻害剤の組み合わせとともに、プロテアーゼ阻害剤(一般的に、リトナビルによって促進される)を含むことになる。同文献
プロテアーゼ阻害剤は、HIVを患う患者の治療に重要な役割を果たすが、それらの使用は、(とりわけ)極めて不十分な水溶解度、および多大な代謝に関連する課題によって妨げられている。これらの欠点に対処するために提案されている一手法は、アシルおよびカルバモイルグルコース含有プロドラッグ(非特許文献4)および相対的に大きいPEGベースのプロドラッグ(非特許文献5)等の、プロテアーゼ阻害剤のプロドラッグ形態を調製するステップを含む。プロドラッグ手法は、プロテアーゼ阻害剤に関連する不利点のうちのいくつかに潜在的に対処しているが、必然的に元々の分子の回帰をもたらし、しばしばその関連する欠点を伴う。例えば、プロドラッグ手法が、典型的にプロテアーゼ阻害剤について観察される大量の代謝に関連する問題を適切に解決するとは考え難い。
2006年8月11日、MMWR 55(31):841−844(米国疾病管理予防センター) McQuade et al.(1990)Science 247(4941):454−456 Hammer et al.(2006)JAMA 296(7):827−843 Rouquayrol et al.(2001)Carbohydr.Res.336:161−180 Gunaseelan et al.(2004)Bioconjugate Chem.15:1322−1333
本発明は、従来技術におけるこの、および別の必要性に対処しようとするものである。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含む。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式Iに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式IIに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式IIIに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式IVに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式Vに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式VIに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含み、該プロテアーゼ阻害剤は、化学式VIIに包含される。
1つ以上の実施形態において、化合物が提供され、該化合物は、以下の構造を有し、
式中、
は、小分子プロテアーゼ阻害剤の残基であり、
(a)は、1〜3の値を有する整数であり、
Xは、各発生において、安定した結合であり、
POLYは、各発生において、水溶性非ペプチドオリゴマーである。
本発明の1つ以上の実施形態において、組成物が提供され、該組成物は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含む化合物と、任意選択で、薬剤として許容される賦形剤と、を含む。
本発明の1つ以上の実施形態において、組成物が提供され、該組成物は、
(i)以下の構造を有する化合物であって、
式中、
は、小分子プロテアーゼ阻害剤の残基であり、
(a)は、1〜3の値を有する整数であり、
Xは、各発生において、安定した結合であり、
POLYは、各発生において、水溶性非ペプチドオリゴマーである、化合物と、
(ii)任意選択で、薬剤として許容される賦形剤と、を含む。
1つ以上の実施形態において、投薬形態が提供され、該投薬形態は、安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含む化合物を含む。
1つ以上の実施形態において、投薬形態が提供され、該投薬形態は、以下の構造を有する化合物を含み、
式中、
は、小分子プロテアーゼ阻害剤の残基であり、
(a)は、1〜3の値を有する整数であり、
Xは、各発生において、安定した結合であり、
POLYは、各発生において、水溶性非ペプチドオリゴマーである。
本発明の1つ以上の実施形態において、方法が提供され、該方法は、水溶性非ペプチドオリゴマーを、小分子プロテアーゼ阻害剤に共有結合させるステップを含む。
本発明の1つ以上の実施形態において、方法が提供され、該方法は、以下の構造を有する化合物を投与するステップを含み、
式中、
は、小分子プロテアーゼ阻害剤の残基であり、
(a)は、1〜3の値を有する整数であり、
Xは、各発生において、安定した結合であり、
POLYは、各発生において、水溶性非ペプチドオリゴマーであり、
(ii)任意選択で、薬剤として許容される賦形剤を含む。
本発明は例えば、以下の項目を提供する:
(項目1)
水溶性非ペプチドオリゴマーに共有結合した、小分子プロテアーゼ阻害剤の残基を含む化合物。
(項目2)
前記小分子プロテアーゼ阻害剤は、アザヘキサン誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目3)
前記小分子プロテアーゼ阻害剤は、アミノ酸誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目4)
前記小分子プロテアーゼ阻害剤は、非ペプチド誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目5)
前記小分子プロテアーゼ阻害剤は、ピラノン類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目6)
前記小分子プロテアーゼ阻害剤は、ペンタン−1−アミン誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目7)
前記小分子プロテアーゼ阻害剤は、ヘキサン−2−イルカルバミド酸エステル誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目8)
前記小分子プロテアーゼ阻害剤は、スルフォンアミド誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目9)
前記小分子プロテアーゼ阻害剤は、三置換フェニル誘導体類の小分子プロテアーゼ阻害剤に由来する、項目1に記載の化合物。
(項目10)
前記小分子プロテアーゼ阻害剤は、アンプレナビル、アタザナビル、ホスアンプレナビル、インジナビル、ロピナビル、サキナビル、ネルフィナビル、リトナビル、チプラナビル、およびダルナビルから成る群より選択される、項目1に記載の化合物。
(項目11)
前記小分子プロテアーゼ阻害剤は、DMP−323、DMP−450、BMS186613、SC−55389a、BILA1096BSから成る群より選択される、項目1に記載の化合物。
(項目12)
前記水溶性非ペプチドオリゴマーは、ポリ(アルキレンオキシド)である、項目1、2、3、4、5、6、7、8、9、10、および11のうちのいずれか1項に記載の化合物。
(項目13)
前記ポリ(アルキレンオキシド)は、ポリ(エチレンオキシド)である、項目12に記載の化合物。
(項目14)
前記水溶性非ペプチドオリゴマーは、1〜30個のモノマーから成る、項目1、2、3、4、5、6、7、8、9、10、および11のうちのいずれか1項に記載の化合物。
(項目15)
前記水溶性非ペプチドオリゴマーは、1〜10個のモノマーから成る、項目14に記載の化合物。
(項目16)
前記ポリ(アルキレンオキシド)は、アルコキシまたはヒドロキシの末端封止部分を含む、項目12に記載の化合物。
(項目17)
単一の水溶性非ペプチドオリゴマーが、前記小分子プロテアーゼ阻害剤の残基に共有結合される、項目1、2、3、4、5、6、7、8、9、10、および11のうちのいずれか1項に記載の化合物。
(項目18)
2つ以上の水溶性非ペプチドオリゴマーが、前記小分子プロテアーゼ阻害剤の残基に共有結合される、項目1、2、3、4、5、6、7、8、9、10、および11のうちのいずれか1項に記載の化合物。
(項目19)
前記小分子プロテアーゼ阻害剤の残基は、安定した結合を介して共有結合される、項目1、2、3、4、5、6、7、8、9、10、および11のうちのいずれか1項に記載の化合物。
(項目20)
前記小分子プロテアーゼ阻害剤の前記残基は、分解性結合を介して共有結合される、項目1、2、3、4、5、6、7、8、9、10、および11のうちのいずれか1項に記載の化合物。
(項目21)
前記小分子プロテアーゼ阻害剤の前記残基は、エーテル結合を介して水溶性非ペプチドオリゴマーに共有結合される、項目1に記載の化合物。
(項目22)
前記小分子プロテアーゼ阻害剤の前記残基は、アミド結合を介して水溶性非ペプチドオリゴマーに共有結合される、項目1に記載の化合物。
(項目23)
前記小分子プロテアーゼ阻害剤の前記残基は、カルバメート結合を介して水溶性非ペプチドオリゴマーに共有結合される、項目1に記載の化合物。
(項目24)
前記小分子プロテアーゼ阻害剤の前記残基は、アミン結合を介して水溶性非ペプチドオリゴマーに共有結合される、項目1に記載の化合物。
(項目25)
水溶性非ペプチドオリゴマーに共有結合した小分子プロテアーゼ阻害剤の残基を含む化合物と、任意選択で薬剤として許容される賦形剤と、を含む、組成物。
(項目26)
水溶性非ペプチドオリゴマーに共有結合した小分子プロテアーゼ阻害剤の残基の含む化合物を含む組成物であって、前記化合物が投薬形態で存在する、組成物。
(項目27)
水溶性非ペプチドオリゴマーを、小分子プロテアーゼ阻害剤に共有結合させるステップを含む、方法。
(項目28)
水溶性非ペプチドオリゴマーに共有結合した小分子プロテアーゼ阻害剤の残基を含む化合物を投与するステップを含む、方法。
本発明の、これら、および他の目的、態様、実施形態、および特徴は、以下の発明を実施するための形態とともに読み取ることでさらに明らかになるであろう。
本明細書で使用する場合、単数形「a」、「an」、および「the」は、文脈が別途明確に指示していない限り、複数の指示物を含む。
本発明の記載および請求において、以下に記載されている定義に従って、以下の用語を使用する。
「水溶性非ペプチドオリゴマー」は、室温の水において、少なくとも35重量%、好ましくは70重量%を超える、より好ましくは95重量%を超える可溶性を有するオリゴマーを示す。一般的に、「水溶性」オリゴマーの未濾過の水溶液調製物は、濾過した後の同じ溶液によって透過される光の量の、少なくとも75%、より好ましくは少なくとも95%を透過する。しかしながら、水溶性オリゴマーは、少なくとも95重量%水に溶ける、または完全に水に溶けることが最も好ましい。「非ペプチド」に関しては、オリゴマーが35重量%未満のアミノ酸残基を有する際に非ペプチドとなる。
「モノマー」、「モノマー副単位」、および「モノマー単位」という用語は、本願明細書で代替可能に使用され、ポリマーまたはオリゴマーの基本的な構造単位のうちの1つを指す。ホモオリゴマーの場合、単一の繰り返し構造単位がオリゴマーを形成する。コオリゴマーの場合、2つ以上の構造単位が(あるパターンで、またはランダムに)繰り返されて、オリゴマーを形成する。本発明に関連して使用される好適なオリゴマーは、ホモオリゴマーである。水溶性非ペプチドオリゴマーは、一般的に、モノマー鎖を形成するように連続的に結合した1つ以上のモノマーを含む。オリゴマーは、単一のモノマー型(すなわち、ホモオリゴマー)または2つまたは3つのモノマー型(すなわち、コオリゴマー)から形成することができる。
「オリゴマー」は、約2個〜約50個のモノマー、好ましくは約2個〜約30個のモノマーを有する分子である。オリゴマーの構成は、変化し得る。本発明に使用する特定のオリゴマーは、以下に詳述する、直線、分岐、または叉状等の、種々の形状を有するものを含む。
「PEG」または「ポリエチレングリコール」は、本願明細書で使用する場合、あらゆる水溶性ポリ(エチレンオキシド)を包含するように意図される。別途明記しない限り、「PEGオリゴマー」(オリゴエチレングリコールとも呼ばれる)は、実質的に全ての(およびより好ましくは、全ての)モノマー副単位がエチレンオキシド副単位であるものである。しかしながら、オリゴマーは、例えば複合化のための、はっきりとした末端封止または官能基を含み得る。一般的に、本発明に使用するPEGオリゴマーは、例えば合成変換中に末端酸素が置き換えられたかどうかに基づいて、「−(CHCHO)−」または「−(CHCHO)n−1CHCH−」の2つの構造のうちの1つを含む。PEGオリゴマーについて、「n」は、約2から50まで、好ましくは約2から30まで変化し、末端基およびPEG全体の構成は変化し得る。PEGが、例えば小分子薬物にリンクするための官能基Aをさらに備える時には、その官能基は、PEGオリゴマーに結合する際、(i)酸素−酸素結合(−O−O−過酸化物結合)、または(ii)窒素−酸素結合(N−O、O−N)の形成をもたらさない。
「末端封止基」は、概して、PEGオリゴマーの末端酸素に結合される非反応性炭素を含有する基である。例示的な末端封止基には、メチル、エチル、およびベンジル等のC1−5アルキル基、およびアリール、ヘテロアリール、シクロ、ヘテロシクロ等が挙げられる。本発明のために、好適な封止基は、メチルまたはエチルのような比較的低い分子量を有する。末端封止基はまた、検出可能な標識を含むこともできる。このような標識には、発光物質、化学発光物質、酵素標識化に使用される部分、比色標識(例えば、染料)、金属イオン、および放射性部分が挙げられるが、これらに限定されない。
「分岐」とは、オリゴマーの形状または全体的な構造に関して、分岐点から伸びる、はっきりと区別できる「腕」を表す2つ以上のポリマーを有するオリゴマーを指す。
「叉状」とは、オリゴマーの形状または全体的な構造に関して、(一般的に1つ以上の原子を通じて)分岐点から伸びる2つ以上のポリマーを有するオリゴマーを指す。
「分岐点」とは、オリゴマーが直線構造から1つ以上のさらなる腕に分岐する、または叉状になる1つ以上の原子を含む分岐点を指す。
「反応性」または「活性」という用語は、有機合成の慣習的な条件下で、容易に、または実用的な速度で反応する官能基を指す。これは、反応しないか、または反応するために強力な触媒または非実用的な条件を必要とする基(すなわち、「非反応性」または「不活性」基)とは対照的である。
「容易に反応しない」とは、反応混合物中の分子上に存在する官能基に関して、基が、反応混合物中の所望の反応を生成するのに有効である条件下で、大部分がそのままの状態であることを示す。
「保護基」は、ある反応条件下で、分子中の特定の化学反応性官能基の反応を妨げる、または阻止する部分である。保護基は、保護される化学反応基の型、および用いられる反応条件、ならびに分子中におけるさらなる反応基または保護基の存在によって異なる。保護され得る官能基には、一例として、カルボン酸基、アミノ基、ヒドロキシル基、チオール基、カルボニル基等が挙げられる。カルボン酸に対する代表的な保護基には、エステル(p−メトキシベンジルエステル等)、アミド、およびヒドラジド、アミノ基に対しては、カルバメート(tert−ブトキシカルボニル等)およびアミド、ヒドロキシル基に対しては、エーテルおよびエステル、チオール基に対しては、チオエーテルおよびチオエステル、カルボニル基に対しては、アセタールおよびケタール、等が挙げられる。このような保護基は当業者に知られており、例えば、T.W.Green and Wuts,Protecting Groups in Organic Synthesis,Third Edition,Wiley,New York,1999に記載されており、参照することにより本願明細書に組み込まれる。
「保護形態」にある官能基とは、保護基を担持する官能基を指す。本願明細書で使用する場合、「官能基」またはそのあらゆる同義語は、その保護形態を包含する。
「生理学的に開裂可能な」、「加水分解性」、または「分解性」結合は、通常の生理学的条件下で水と反応する(すなわち、加水分解される)、比較的不安定な結合である。通常の生理学的条件下で、水中で加水分解するように結合する傾向は、2つの中央の原子を接続する結合の一般的な型だけでなく、これらの中央の原子に結合される置換基に依存する。このような結合は、概して、当業者によって認識可能である。適切な加水分解的に不安定な、または弱い結合には、カルボン酸エステル、リン酸エステル、無水物、アセタール、ケタール、アシルオキシアルキルエーテル、イミン、オルトエステル、ペプチド、オリゴヌクレオチド、チオエステル、および炭酸塩が挙げられるが、こられに限定されない。
「酵素分解性結合」は、通常の生理学的な条件下で、1つ以上の酵素によって分解を受ける結合を意味する。
「安定した」結合とは、実質的に水中で安定している、すなわち長期間にわたっていかなる検知できる程度まで、通常の生理学的条件下で、加水分解を受けることがない、化学的部分または結合、典型的には共有結合を指す。加水分解的に安定した結合の例には、(例えば、脂肪族鎖における)炭素−炭素結合、エーテル、アミド、ウレタン、アミン等が挙げられるが、これらに限定されない。概して、安定した結合は、通常の生理学的条件下で、1日あたり約1〜2%未満の加水分解速度を呈するものである。代表的な化学結合の加水分解速度は、大部分の標準的な化学書に見出すことができる。
所与の組成物におけるオリゴマーのコンシステンシの記述に関して、「実質的に」または「基本的に」とは、ほぼ完全に、または完全にという意味であり、例えば、所与の分量のうちの95%以上、より好ましくは97%以上、さらに好ましくは98%以上、さらに好ましくは99%以上、さらに好ましくは99.9%以上、最も好ましくは99.99%以上を意味する。
「単分散」とは、組成物中における実質的に全てのオリゴマーが、明確な単一の分子量、およびクロマトグラフィーまたは質量分析によって定められる規定数のモノマーを有する、オリゴマー組成物を指す。単分散オリゴマー組成物は、ある意味においては純粋である。すなわち、いくつかの異なる数のモノマー(すなわち、3つ以上の異なるオリゴマーサイズを有するオリゴマー組成物)ではなく、実質的に単一で定義可能な数のモノマーを有する分子を含む。単分散オリゴマー組成物は、1.0005以下のMW/Mn値、より好ましくは、1.0000のMW/Mn値を有する。ひいては、単分散複合体から成る組成物は、組成物中の全ての複合体の実質的に全てのオリゴマーが、分布ではなく、単一で(整数として)定義可能な数のモノマーを有し、オリゴマーが小分子プロテアーゼ阻害剤の残基に結合されなかった場合に、1.0005のMW/Mn値、より好ましくは、1.0000のMW/Mn値を有することを意味する。しかしながら、単分散複合体から成る組成物は、溶媒、試薬、賦形剤等の1つ以上の非複合体物質を含むことができる。
「二峰性」とは、オリゴマー組成物に関連して、組成物中の実質的に全てのオリゴマーが、分布ではなく、2つのうち1つの定義可能で(整数として)異なる数のモノマーを有し、その分子量の分布が、数分率対分子量でプロットした時に、2つの別個の識別可能なピークとして現れる、オリゴマー組成物を指す。本願明細書に記載された二峰性オリゴマー組成物について、2つのピークが異なる場合があるが、各ピークは、概して、その平均に関して対称である。理想的には、二峰性分布内の各ピークの多分散性指数Mw/Mnは、1.01以下、より好ましくは1.001以下、さらに好ましくは1.0005以下、最も好ましくは1.0000のMW/Mn値である。ひいては、二峰性複合体から成る組成物は、組成物中の全ての複合体の実質的に全てのオリゴマーが、大きい分布ではなく、2つのうち1つの(整数として)定義可能な異なる数のモノマーを有し、オリゴマーが小分子プロテアーゼ阻害剤作用薬の残基に結合されなかった場合に、1.01以下、より好ましくは、1.001以下、さらに好ましくは1.0005以下のMW/Mn値、最も好ましくは1.0000のMW/Mn値を有することを意味する。しかしながら、二峰性複合体から成る組成物は、溶媒、試薬、賦形剤等の1つ以上の非複合体物質を含むことができる。
「小分子プロテアーゼ阻害剤」は、本願明細書において、典型的に約1000未満の分子量を有し、レトロウイルスプロテアーゼ阻害剤としてある程度の活性を有する、有機、無機、または有機金属化合物を指すように、広義で使用される。小分子プロテアーゼ阻害剤は、オリゴペプチド、および約1000未満の分子量を有する別の生体分子を包含する。
「生物学的膜」は、典型的に、特殊な細胞または組織から作られるあらゆる膜であり、少なくともいくつかの外来物または他の望ましくない材料に対する関門として機能する。本願明細書で使用する場合、「生物学的膜」は、生理学的な保護関門に関連する膜を含み、例えば、血液脳関門(BBB)、血液脳脊髄液関門、血液胎盤関門、血液乳関門、血液精巣関門、および膣粘膜、尿道粘膜、肛門粘膜、頬粘膜、舌下粘膜、直腸粘膜等を含む粘膜関門を含む。文脈が明らかに異なるように述べていない限り、「生物学的膜」という用語は、中間の胃腸管(例えば、胃および小腸)に関連する膜を含まない。
「生物学的膜の横断速度」は、本願明細書で使用する場合、生物学的膜(血液脳関門に関連する膜)を横断する化合物の能力の尺度を提供する。種々の方法を使用して、あらゆる所与の生物学的膜を横断する分子の移送を評価することができる。あらゆる所与の生物学的関門(例えば、血液脳脊髄液関門、血液胎盤関門、血液乳関門、腸関門等)に関連する生物学的膜の横断速度を評価する方法は、当技術分野において知られており、本願明細書および/または関連する文献に記載されており、および/または当業者によって決定することができる。
「減少した代謝速度」とは、本発明に関して、水溶性オリゴマー(すなわち、小分子薬物自体)に結合していない小分子薬物、または参照標準材料の代謝の速度と比較して、水溶性オリゴマー小分子薬物複合体の代謝速度の測定可能な減少を指す。「代謝の初回通過速度の減少」の特殊な場合においては、同じく、小分子薬物(または参照標準材料)および対応する複合体が経口投与されることを除いては、「代謝速度の減少」が必要である。経口投与薬物は、胃腸管から門脈循環へ吸収され、体循環に到達する前に、肝臓を通過しなければならない。肝臓は、薬物代謝または生体内変化の主たる部位であるので、相当量の薬物が、体循環に到達する前に代謝することができる。初回通過代謝の程度、したがって、そのいかなる減少も、多くの異なる手法で測定することができる。例えば、動物の血液試料は、代謝物レベルに対して、定められた間隔で、液体クロマトグラフィー/質量分析によって分析される血漿または血清で収集することができる。初回通過代謝および他の代謝性プロセスに関連する「代謝速度の減少」は当技術分野において知られており、本願明細書および/または関連する文献に記載されており、および/または当業者によって決定することができる。本発明の複合体は、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、および少なくとも約90%の値のうちの少なくとも1つを満たす、代謝速度の減少を提供できることが好ましい。「経口的に生物学的に利用可能な」化合物(小分子薬物またはその複合体等)は、好ましくは、経口投与される際、25%を超える、好ましくは70%を超える生物学的利用能を有するものであり、化合物の生物学的利用能は、非代謝形態で体循環に到達する投与薬物の画分である。
「アルキル」とは、典型的に長さが約1〜20個の原子の範囲である炭化水素鎖を指す。このような炭化水素鎖は、飽和されることが好ましいが、必ずしもそうである必要はなく、また、分岐鎖または直鎖であってもよいが、一般的に直鎖が好ましい。例示的なアルキル基には、メチル、エチル、プロピル、ブチル、ペンチル、1−メチルブチル、1−エチルプロピル、3−メチルペンチル等が挙げられる。本願明細書で使用する場合、「アルキル」は、3つ以上の炭素原子が言及される時には、シクロアルキルを含む。「アルケニル」基は、少なくとも1つの炭素−炭素の二重結合を有する2〜20個の炭素原子のアルキルである。
「置換アルキル」またはqおよびrがアルキル基に含まれる炭素原子の範囲を表す整数である「置換Cq−rアルキル」は、1つ、2つ、または3つのハロ(例えば、F、Cl、Br、I)、トリフルオロメチル、ヒドロキシ、C1−7アルキル(例えば、メチル、エチル、n−プロピル、イソプロピル、ブチル、t−ブチル等)、C1−7アルコキシ、C1−7アシルオキシ、C3−7複素環、アミノ、フェノキシ、ニトロ、カルボキシ、カルボキシ、アシル、シアノによって置換された、上述のアルキル基を意味する。置換アルキル基は、同じまたは異なる置換基で、1回、2回、または3回置換され得る。
「低級アルキル」は、1〜6個の炭素原子を含むアルキル基を指し、メチル、エチル、n−ブチル、i−ブチル、t−ブチルによって例示されるように、直鎖または分岐であってもよい。「低級アルケニル」とは、少なくとも1つの炭素−炭素二重結合を有する、2〜6個の炭素原子の低級アルキル基を指す。
「非干渉置換基」は、分子中に存在する時に、一般的に、分子内に含まれる別の官能基と非反応性である基である。
「アルコキシ」とは、−O−R基を指し、Rは、アルキルまたは置換アルキルであって、好ましくはC−C20アルキル(例えば、メトキシ、エトキシ、プロピルオキシ、ベンジル等)、好ましくはC−Cである。
「薬剤として許容される賦形剤」または「薬剤として許容される担体」とは、本発明の組成物内に含めることができる成分を指し、それは、その成分を欠く組成物と比較して、利点(例えば、患者への投与にさらに適する)を有し、また、患者に対して著しく有害な毒物学的影響を生じさせないものと認識される組成物を提供することを目的とする。
「アリール」という用語は、最高で14個の炭素原子を有する芳香族基を意味する。アリール基には、フェニル、ナフチル、ビフェニル、フェナントレニル、ナフタセニル等が挙げられる。「置換フェニル」および「置換アリール」はそれぞれ、ハロ(F、Cl、Br、I)ヒドロキシ、ヒドロキシ、シアノ、ニトロ、アルキル(例えば、C1−6アルキル)、アルコキシル(例えば、C1−6アルコキシ)、ベンジルオキシ、カルボキシ、アリール等より選択された、1つ、2つ、3つ、4つ、または5つ(例えば1〜2、1〜3、または1〜4個の置換基)によって置換された、フェニル基およびアリール基を意味する。
「芳香族含有部分」は、少なくともアリールおよび任意選択で1つ以上の原子を含む、一群の原子である。好適な芳香族含有部分は、本願明細書に記載されている。
簡潔にするため、化学的部分は、本書全体を通じて、主に一価の化学的部分(例えば、アルキル、アリール等)として定義され、それを指す。しかしながら、このような用語は、当業者には明らかである適切な構造的環境下で、対応する多価部分を伝えることにも使用される。例えば、「アルキル」部分は、概して、一価の基部(例えば、CH−CH−)を指すが、ある種の環境においては、二価リンク部分を「アルキル」とすることができ、その場合、当業者は、アルキルが、二価の基部(例えば、−CH−CH−)となり、「アルキレン」という用語と同等物であると理解するであろう。(同様に、二価部分が必要であり、「アリール」と述べられる環境においては、当業者は、「アリール」という用語が、対応する二価部分、アリーレンを指すと理解するであろう)。全ての原子は、結合形成のための正常数の原子価(すなわち、炭素の場合は4、窒素の場合は3、酸素の場合は2、および硫黄の場合は、硫黄の酸化状態に基づいて2、4、または6)を有するものと理解されたい。
「薬理学的有効量」、「生理学的有効量」、および「治療上有効量」は、血流中または標的組織内において、活性剤および/または複合体の閾値レベルを提供するのに必要な、組成物中に存在する、水溶性オリゴマー小分子薬物複合体の量を意味するように、本願明細書に代替可能に使用される。正確な量は、例えば、特定の活性剤、組成物の成分および物理特性、対象とする患者集団、患者上の問題等の数多くの要因に依存し、本願明細書に提供された情報および関連する文書中の利用可能な情報に基づいて、当業者によって容易に決定することができる。
「二官能性」オリゴマーは、典型的にその末端において、2つの官能基がその中に含まれるオリゴマーである。官能基が同じものである時には、該オリゴマーは、ホモ二官能性であると言われる。官能基が異なる時には、該オリゴマーは、ヘテロ二官能性であると言われる。
本願明細書に記述されている塩基性反応物質または酸性反応物質は、中性で荷電したもの、およびあらゆる対応するその塩形態を含む。
「患者」という用語は、一般的に、必ずしもそうではないが、水溶性オリゴマー小分子薬物複合体の形態で、本願明細書に記載されている複合体の投与によって予防または治療することができる状態にある、またはその傾向がある生きた組織を指し、人および動物の両者を含む。
「任意選択」または、「任意選択で」とは、その後に記述される状況が、必ずしも生じるわけではなく、その説明は、その状況が生じる場合、および生じない場合を含むことを意味する。
上述のように、本発明は、(とりわけ)安定した結合を介して、直接または1つ以上の原子を通じて水溶性非ペプチドオリゴマーに共有結合した、プロテアーゼ阻害剤の残基を含む化合物を目的とする。
本発明はまた、以下の構造を有する化合物も提供する。
式中、
は、小分子プロテアーゼ阻害剤の残基であり、
(a)は、1〜3の値を有する整数であり、
Xは、各発生において、安定した結合であり、
POLYは、各発生において、水溶性非ペプチドオリゴマーである。
本発明の化合物は、オリゴマーと、プロテアーゼ阻害剤との複合体である。
本発明の複合体の利点は、代謝も減少させながら、ある程度のプロテアーゼ活性を保持するそれらの能力であると考えられる。理論に縛られることは望まないが、本願明細書に記載されているオリゴマー含有複合体は、オリゴマーが、プロテアーゼ阻害剤を代謝することができる基質に対して、化合物の全体的な親和性を減少させる役目をするので、(複合されていない「元々の」プロテアーゼ阻害剤とは対照的に)容易には代謝されないと考えられる。
上述のように、本発明の化合物は、小分子プロテアーゼ阻害剤の残基を含む。小分子プロテアーゼ阻害剤は、レトロウイルスプロテアーゼの活性を減少させることができる、あらゆる小分子である。化合物が(化合物が、複合形態であるかどうかに関わらず)プロテアーゼ阻害剤であるかどうかを判定するための検定法を下述する。
小分子プロテアーゼ阻害剤として機能することが知られている化合物には、アザヘキサン誘導体、アミノ酸誘導体、非ペプチド誘導体、ピラノン化合物、ペンタン1−アミン誘導体、ヘキサン−2−イルカルバミド酸エステル誘導体、スルフォンアミド誘導体、および三置換フェニル誘導体の類から選択されるものが挙げられる。必ずしも上述の類のうちのいずれにも属していない、別の小分子プロテアーゼ阻害剤を使用することもできる。
小分子プロテアーゼ阻害剤であるアザヘキサン誘導体に関して、好適なアザヘキサン誘導体は、以下の化学式を有する化合物、及びその塩であり、
式中、
I1は、低級アルコキシカルボニルであり、
I2は、第2級または第3級低級アルキル、または低級アルキルチオ−低級アルキルであり、
I3は、未置換であるか、または1つ以上の低級アルコキシ基、またはC4−8シクロアルキルによって置換されたフェニルであり、
I4は、フェニルまたはシクロヘキシルであって、それぞれ、環炭素原子を経由して結合された不飽和ヘテロシクリルによって4つの場所で置換され、5〜8個の環原子を有し、窒素、酸素、硫黄、スルフィニル(−SO−)、およびスルホニル(−SO−)の群より選択される1〜4個のヘテロ原子を含み、未置換であるか、または低級アルキルまたはフェニル−低級アルキルによって置換され、
I5は、第2級または第3級低級アルキル、または低級アルキルチオ−低級アルキルであり、
I6は、低級アルコキシカルボニルである。
特に好適なアザヘキサン誘導体は、以下の化学式の化合物であり、
アタザナビルとしても知られている。アタザナビルおよび別のアザヘキサン誘導体、ならびにそれらの合成方法は、米国特許第5,849,911号に記載されている。
小分子プロテアーゼ阻害剤であるアミノ酸誘導体に関して、好適なアミノ酸誘導体は、以下の化学式を有し、また、薬剤として許容されるその酸添加塩である。
式中、
II1は、ベンジルオキシカルボニルまたは2−キノリルカルボニルである。
特に好適なアミノ酸誘導体は、式中、RII1が、2−キノリルカルボニルである化学式IIの化合物であり、サキナビルとしても知られる。このようなアミノ酸誘導体、およびそれらの合成方法は、米国特許第5,196,438号に記載されている。
小分子プロテアーゼ阻害剤である非ペプチド誘導体に関して、好適な非ペプチド誘導体は、以下の構造を有するか、または薬剤として許容されるその塩であり、
式中、
III1およびRIII2は、水素、および置換および非置換アルキルおよびアリールから独立して選択され、RIII1およびRIII2は、Gによって環を形成し得、
III3は、メルカプトおよび置換および非置換アルコキシル、アリールオキシル、チオエーテル、アミノ、アルキル、シクロアルキル、飽和および部分飽和ヘテロ環、およびアリールより選択され、
III4、RIII5、RIII6、RIII7、およびRIII8は、水素、ヒドロキシル、メルカプト、ニトロ、ハロ、−O−Jより選択され、Jは、置換または非置換加水分解性基、および置換および非置換アルコキシル、アリールオキシル、チオエーテル、アシル、スルフィニル、スルホニル、アミノ、アルキル、シクロアルキル、飽和および部分飽和ヘテロ環、およびアリールであり、さらに、RIII4、RIII5、RIII6、RIII7、およびRIII8のうちのいずれも、スピロ環の成員であり得、また、いかなるRIII4、RIII5、RIII6、RIII7、およびRIII8のうちの2つも、共に環の成員となり得、
YおよびGは、酸素、−NH、N−アルキル、硫黄、セレニウム、および2つの水素原子より独立して選択され、
Dは、炭素または窒素であり、
Eは、炭素または窒素であり、
III9は、水素、ハロ、ヒドロキシル、メルカプト、および置換および非置換アルコキシル、アリールオキシル、チオエーテル、アミノ、アルキル、アリールより選択され、RIII9は環の一部を形成し得、
Aは、任意選択でさらに置換される炭素環またはヘテロ環であり、
Bは、任意選択でさらに置換される炭素環またはヘテロ環である。
小分子プロテアーゼ阻害剤である特に好適な非ペプチド誘導体は、以下の化学式の化合物であり、
ネルフィナビルとしても知られている。ネルフィナビルおよび別の非ペプチド誘導体、ならびにそれらの合成方法は、米国特許第5,484,926号および国際特許第WO 95/09843号に記載されている。
小分子プロテアーゼ阻害剤であるピラノン化合物に関して、好適なピラノン化合物は、以下の構造を有するか、またはその薬剤として許容されるその塩であり、
式中、
IV4は、Hであり、RIV2は、C3−5アルキル、フェニル−(CH−、ヘテロシシル(heterocycyl)−SONH−(CH−、シクロプロピル−(CH−、F−フェニル−(CH−、ヘテロシシル−SONH−フェニル−、またはFC−(CH−であり、または、RIV1およびRIV2は一緒になって、二重結合であり、
IV3は、RIV4−(CHn′−CH(RIV5)−、HC−[O(CH−CH−、C3−5アルキル、フェニル−(CH−、ヘテロシシル−SONH−(CH−、(HOCHC−NH−C(O)−NH−(CH−、(HC)(HN)CH−(CH−C(O)−NH−(CH−、ピペラジン−1−イル−C(O)−NH−(CH−、HOS(CH−N(CH)−C(O)−(CH−C(O)−NH−(CH−、シクロプロピル−(CH−、F−フェニル−(CH−、ヘテロシシル−SONH−フェニル−、またはF3−(CHであり、n′は、0、1、または2であり、RIV4は、フェニル、ヘテロシシル、シクロプロピル、HC−[O(CH−、ヘテロシシル−SONH−Br−N−、またはHOS(CH−N(CH)−C(O)−(CH−C(O)−NHであり、RIV5は、−CH−CH、または−CH−シクロプロピルであり、
IV6は、シクロプロピル、CH−CH、またはt−ブチルであり、
IV7は、NRIV8SO−ヘテロシシル、NRIV8SO−フェニル、任意選択でRIV9によって置換される、または−CH−SO−フェニル、任意選択でRIV9によって置換される、または−CH−SO−ヘテロシシルであり、RIV8は、Hまたは−CHであり、RIV9は、−CN、−F、−OH、または−NOであり、ヘテロシシルは、窒素、酸素、および硫黄から成る群より選択される1〜3個のヘテロ原子を含む、5個、6個、または7個の員環の飽和または不飽和環であり、また、上述の複素環のうちのいずれかが、ベンゼン環または他のヘテロ環に縮合され、−CH、−CN、−OH、−C(O)OC、−CF、−NH、または−C(O)−NHによって任意選択で置換される、あらゆる二環状基を含む)を有する。
小分子プロテアーゼ阻害剤である特に好適なピラノン化合物は、以下の化学式の化合物であり、
チプラナビルとしても知られている。チプラナビルおよび別の非ペプチド誘導体、ならびにそれらの合成方法は、米国特許第6,147,095号、第6,231,887号、および第5,484,926号に記載されている。
小分子プロテアーゼ阻害剤であるペンタン−1−アミン誘導体に関して、好適なペンタン−1−アミン誘導体は、以下の構造を有し、また、薬剤として許容されるその塩であり、
式中、
V0は、−OH、または−NHであり、
は、それぞれの場合において、独立してO、S、またはNHであり、
V1およびRV2は、独立して、水素、または任意選択で置換C1−4アルキル、アリール、ヘテロ環、炭素環、−NH−SO1−3アルキル、−O−アリール、−S−アリール、−NH−アリール、−O−C(O)−アリール、−S−C(O)−アリール、および−NH−C(O)−アリールであり、または、RV1およびRV2は、共に結合して単環または二環系を形成し、
V3は、水素、C1−4アルキル、(置換または非置換)ベンジルであり、
およびJは、独立して、−OH、−NH、または任意に置換されたC1−6アルキル、アリール、ヘテロ環、および炭素環であり、
Bは、存在しないか、または−NH−CH(CH−C(O)−、−NH−CH(CH−C(S)−、−NH−CH(CH−C(NH)−、−NH−CH(CH)(CHCH)−C(O)−、−NH−CH(CH)(CHCH)−C(S)−、−NH−CH(CH)(CHCH)−C(NH)−、−NH−CH(フェニル)−C(O)−、−NH−CH(フェニル)−C(S)−、および−NH−CH(フェニル)−C(NH)−から成る群より選択される。
小分子プロテアーゼ阻害剤である特に好適なペンタン1−アミン誘導体は、以下の化学式の化合物であり、
インジナビルとしても知られている。インジナビルおよび別のペンタン−1−アミン誘導体、ならびにそれらの合成方法は、米国特許第5,413,999号および欧州特許出願第EP 541 168号に記載されている。
小分子プロテアーゼ阻害剤であるヘキサン−2−イルカルバミド酸エステル誘導体に関して、好適なヘキサン誘導体は、以下の構造を有し、また、薬剤として許容されるその塩、エステル、またはプロドラッグであり、
式中、
VI1は、一置換チアゾリル、一置換オキサゾリル、一置換イソオキサゾリルまたは一置換イソチアゾリルであり、置換基は、(i)低級アルキル、(ii)低級アルケニル、(iii)シクロアルキル、(iv)シクロアルキルアルキル、(v)シクロアルケニル、(vi)シクロアルケニルアルキル、(vii)複素環、ここで、複素環は、アジリジニル、アゼチジニル、ピロリジニル、ピペリジニル、ピペラジニル、モルホリニル、チオモルホリニル、チアゾリル、オキサゾリル、イソオキサゾリル、イソチアゾリル、ピリジニル、ピリミジニル、ピリダジニル、およびピラジニルより選択され、また、複素環は、非置換であるか、またはハロ、低級アルキル、ヒドロキシ、アルコキシ、チオアルコキシより選択される置換基によって置換されたものであり、(viii)複素環が上述のように定義される(複素環)アルキル、(ix)アルコキシアルキル、(x)チオアルコキシアルキル、(xi)アルキルアミノ、(xii)ジアルキルアミノ、(xiii)フェニル、ここで、フェニル環は、非置換であるか、またはハロ、低級アルキル、ヒドロキシ、アルコキシ、およびチオアルコキシによって置換されたものであり、(xiv)フェニル環が非置換であるか、または上記に定義されたように置換されたフェニルアルキル、(xv)ジアルキルアミノアルキル、(xvi)アルコキシ、および(xvii)チオアルコキシ、より選択されたものであり、
n′′は、1、2、または3であり、
VI2は、水素または低級アルキルであり、
VI3は、低級アルキルであり、
VI4およびR4aは、独立して、フェニル、チアゾリル、およびオキサゾリルより選択され、フェニル、チアゾリル、またはオキサゾリル環は、未置換であるか、または(i)ハロ、(ii)低級アルキル、(iii)ヒドロキシ、(iv)アルコキシ、および(v)チオアルコキシより選択される置換基によって置換されたものであり、
VI6は、水素または低級アルキルであり、
VI7は、チアゾリル、オキサゾリル、イソオキサゾリル、またはイソチアゾリルであり、チアゾリル、オキサゾリル、イソオキサゾリル、またはイソチアゾリル環は、非置換であるか、または低級アルキルによって置換されたものであり、
VI0は、水素であり、YVIは、−OHであり、または−OHおよびYVIは、水素であるが、ただし、ZVIがN(RVI8)であり、かつRVI7が未置換である時に、XVIが水素であり、YVIが−OHであるということを条件とし、また、RVI3がメチルであり、かつRVI7が非置換である時に、XVIが水素であり、YVIが−OHであるということを条件とし、
VIは、存在しないか、−O−、−S−、−CH−、または−N(RVI8)−であり、RVI8は、低級アルキル、シクロアルキル、−NHR8aであり、R8aは、水素、低級アルキル、またはアミン保護基である。
小分子プロテアーゼ阻害剤である特に好適なヘキサン−2−イルカルバミド酸エステル誘導体は、以下の化学式の化合物であり、
リトナビルとしても知られている。
小分子プロテアーゼ阻害剤である他の特に好適なヘキサン−2−イルカルバミド酸エステル誘導体は、以下の化学式の化合物であり、
ロピナビルとしても知られている。リトナビル、ロピナビル、および他のヘキサン−2−イルカルバミド酸エステル誘導体、ならびにそれらの合成方法は、米国特許第5,541,206号および国際特許第WO 94/14436号に記載されている。
小分子プロテアーゼ阻害剤であるスルフォンアミド誘導体に関して、好適なスルフォンアミド誘導体は、以下の構造を有し、また、薬剤として許容されるその塩、エステル、またはプロドラッグであり、
式中、
VIIは、H、Het、RVII1−Het、任意選択で、ヒドロキシ、C1−4アルコキシ、Het、−O−Het、−NRVII2−C(O)−N(RVII2)(RVII2)、および−C(O)−N(RVII2)(RVII2)から成る群より選択される1つ以上の基によって置換され得るRVII1−C1−6アルキル、および任意選択で、ヒドロキシ、C1−4アルコキシ、Het、−O−Het、−NRVII2−C(O)−N(RVII2)(RVII2)、および−C(O)−N(RVII2)(RVII2)から成る群より選択される1つ以上の基によって置換され得る−RVII1−C2−6アルケニルから成る群より選択され、
各RVII1は、−C(O)−、−SO−、−C(O)C(O)−、−OC(O)−、−SO−、−S(O)−C(O)−、および−NRVII2−C(O)−、ならびに−NRVII2−C(O)−C(O)−から成る群より選択され、
各Hetは、C3−7シクロアルキル、C5−7シクロアルケニル、C6−10アリール、および、N,N(RVII2)、O、S、およびS(O)n′′′より選択される1つ以上のヘテロ原子を含む、へテロ環を任意選択でベンゾ縮合し得る、5〜7員の飽和または不飽和へテロ環から成る群より選択され、該Hetのいかなる成員も、任意選択で、オキソ、−ORVII2、−RVII2、−N(RVII2)、−RVII2−OH、−CN、COVII2、−C(O)N(RVII2)(RVII2)、SO−N(RVII2)(RVII2)、−N(RVII2)−C(O)−RVII2、−C(O)−RVII2、−S(O)n′′′−RVII2、−OCF、−S(O)n′′′−Ar、メチレンジオキシ、−N(RVII2)−SO(RVII2)、ハロ、−CF、−NO、Ar、および−O−Arから成る群より選択される1つ以上の置換基によって置換され得、
各RVII2は、任意選択でArによって置換されたHおよびC1−3アルキルから成る群より独立して選択され、
VIIは、存在する時には、−N(RVII2)−C(RVII3)(RVII3)−C(O)−であり、
x′は、0または1であり、
各RVII3は、独立して、H、Het、C1−6アルキル、C2−6アルケニル、C3−6シクロアルキル、およびC5−6シクロアルケニルからなる群より選択され、該RVII3の成員も、Hを除いて、−ORVII2、−C(O)−NH−RVII2、−S(O)n′′′−N(RVII2)(RVII2)、Het、−CN、−SRVII2、−COVII2、NRVII2−C(O)RVII2から成る群より選択される1つ以上の置換基によって、任意選択で置換され得、
各n′′′は、独立して1または2であり、
DおよびD′は、Arと、C3−6シクロアルキル、ORVII2、RVII3、−O−Ar、およびArから成る群より選択される1つ以上の基によって任意選択で置換され得るC1−4アルキルと、ORVII2、RVII3、−O−Ar、およびArから成る群より選択される1つ以上の基によって任意選択で置換され得るC2−4アルケニルと、Arによって任意選択で置換または縮合され得るC3−6シクロアルキルと、Arによって任意選択で置換または縮合され得るC5−6シクロアルケニルと、から成る群より独立して選択され、
各Arは、フェニルと、O、N、S、S(O)n′′′、およびN(RVII2)より選択される1つ以上のヘテロ原子を含む、3〜6員の複素環および5〜6員の複素環と、から成る群より独立して選択され、該炭素環または複素環は、飽和または不飽和であり得、また、オキソ、−ORVII2、−RVII2、−N(RVII2)(RVII2)、−N(RVII2)−C(O)RVII2、−RVII2−OH、−CN、−COVII2、−C(O)−N(RVII2)(RVII2)、ハロ、および−CFから成る群より選択される1つ以上の基によって任意選択で置換され得、
Eは、Het、O−Het、Het−Het、−O−RVII3、−NRVII2VII3、RVII4およびHetから成る群より選択される1つ以上の基によって任意選択で置換され得るC1−6アルキル、RVII4およびHetから成る群より選択される1つ以上の基によって任意選択で置換され得るC2−6アルキル、RVII4およびHetから成る群より選択される1つ以上の基によって任意選択で置換され得るC3−6飽和炭素環、およびRVII4およびHetから成る群より選択される1つ以上の基によって任意選択で置換され得るC5−6不飽和炭素環から成る群より選択され、
各RVII4は、−ORVII2、−C(O)−NHRVII2、SO−NHRVII2、ハロ、NRVII2−C(O)−RVII3、および−CNから成る群より独立して選択される。
小分子プロテアーゼ阻害剤である特に好適なスルフォンアミド誘導体は、以下の化学式の化合物であり、
アンプレナビルとしても知られている。小分子プロテアーゼ阻害剤である、他の特に好適なスルフォンアミド誘導体は、以下の化学式の化合物であり、
アンプレナビル、U−140690、および別のスルフォンアミド誘導体、ならびにそれらの合成方法は、米国特許第5,732,490号および第5,585,397号、国際特許第WO93/23368号および第WO95/30670号に記載されている。
スルフォンアミド誘導体の特に好適なプロドラッグの形態は、ホスアンプレナビルとして知られる、以下の化学式のホスホノオキシベースのプロドラッグおよび、薬剤として許容されるその塩である。
ホスアンプレナビルおよび別のスルフォンアミド誘導体、ならびにそれらの合成方法は、米国特許第6,514,953号および第6,436,989号に記載されている。
小分子プロテアーゼ阻害剤である三置換フェニル誘導体に関して、好適な三置換フェニル誘導体は、以下の構造を有し、および、薬剤として許容されるその塩であり、
式中、
VIII1は、ベンジルであり、
VIII2は、ベンジルまたは低級アルキルであり、
VIII3は、低級アルキルであり、
VIII5は、
である。これらの、および他の小分子プロテアーゼ阻害剤、ならびにそれらの合成方法は、国際特許第WO97/21685号に記載されている。
上述のように、小分子プロテアーゼ阻害剤は、必ずしも上述の類のうちの1つに分類され得るというわけではない。しかしながら、それでも、そのような小分子プロテアーゼ阻害剤を、本願明細書に記載されている水溶性非ペプチドオリゴマーに複合することができる。非限定的なさらなる小分子プロテアーゼ阻害剤には、化合物
、および国際特許第WO93/07128号に記載されている、関連する化合物が挙げられる。
さらに他の小分子プロテアーゼ阻害剤には、
および欧州特許出願第EP 580 402号に記載されている他のものが挙げられる。
さらに他の小分子プロテアーゼ阻害剤には、
および国際特許第WO 95/06061号に記載されている他のものが挙げられる。
さらなる他の小分子プロテアーゼ阻害剤には、
および欧州特許第EP 560268号に記載されている別のものが挙げられる。
一部の実施形態において、小分子プロテアーゼ阻害剤は、アンプレナビル、アタザナビル、ホスアンプレナビル、インジナビル、ロピナビル、サキナビル、ネルフィナビル、リトナビル、チプラナビル、およびダルナビルから成る群より選択される群より選択されることが好ましい。
これらの(および別の)プロテアーゼ阻害剤のそれぞれは、(直接または1つ以上の原子を通じて)水溶性非ペプチドオリゴマーに共有結合させることができる。
本発明に有用な小分子薬物は、概して1000Da未満の分子量を有する。小分子薬物の例示的な分子量には、約950未満、約900未満、約850未満、約800未満、約750未満、約700未満、約650未満、約600未満、約550未満、約500未満、約450未満、約400未満、約350未満、および約300未満の分子量が挙げられる。
キラルの場合、本発明に使用される小分子薬物は、ラセミ混合物、または単一の光学活性エナンチオマー等の光学活性形態、あるいはエナンチオマーのあらゆる組み合わせまたは比率(すなわち、スケールミック混合物)であり得る。加えて、小分子薬物は、1つ以上の幾何異性体を有し得る。幾何異性体に関して、組成物は、単一の幾何異性体、または2つ以上の幾何異性体の混合物を含むことができる。本発明に使用する小分子薬物は、その慣習的な活性形態とすることができ、またはある程度の修飾を有し得る。例えば、小分子薬物は、オリゴマーの共有結合の前または後に、標的薬剤、タグ、またはそれに結合させた輸送体を有し得る。代替的に、小分子薬物は、リン脂質(例えば、ジステアロイルホスファチジルエタノールアミン、すなわち「DSPE」、またはジパルミトイルジホスファチジルエタノールアミン、すなわち「DPPE」等)、または小脂肪酸等の、それに結合させた親油性部分を有し得る。しかしながら、場合によっては、小分子薬物部分は、親油性部分への結合を含まないことが好ましい。
水溶性非ペプチドオリゴマーに結合させるための小分子プロテアーゼ阻害剤は、ヒドロキシル、アミド、カルボキシル、チオ、アミノ基等の、オリゴマーへの共有結合に好適な遊離反応基(すなわち、「ハンドル」)を有する。加えて、小分子プロテアーゼ阻害剤は、オリゴマーと薬物との間に安定した共有結合を形成するように、反応基の導入によって、好ましくはその既存の官能基のうちの1つを変換することによって修飾することができる。両手法とも、実験の項に示されている。
水溶性非ペプチドオリゴマーは、一般的に、モノマー鎖を形成するように連続的に結合する1つ以上のモノマーを含む。オリゴマーは、単一のモノマー型(すなわち、ホモオリゴマー)または2つまたは3つのモノマー型(すなわち、コオリゴマーである)から形成することができる。各オリゴマーは、好ましくは2個のモノマーのコオリゴマーであり、または、ホモオリゴマーであることがより好ましい。
したがって、各オリゴマーは、エチレンオキシドまたは酸化プロピレン等のアルキレンオキシド、ビニルアルコール、1−プロペノールまたは2−プロペノールオレフィンアルコール等のオレフィンアルコール、ビニルピロリドン、好ましくはアルキルがメチルであるヒドロキシアルキルメタクリルアミドまたはメタクリル酸ヒドロキシアルキル、乳酸またはグリコール酸等のα−ヒドロキシ酸、ホスファゼン、オキサゾリン、アミノ酸、単糖類等の炭水化物、糖類、またはマンニトール、およびN−アクリロイルモルホリンから成る群より選択される、最高で3つの異なるモノマー型で構成される。好適なモノマー型には、アルキレンオキシド、オレフィンアルコール、ヒドロキシアルキルメタクリルアミドまたはメタクリレート、N−アクリロイルモルホリン、およびα−ヒドロキシ酸が挙げられる。各オリゴマーは、独立して、この群から選択される2つのモノマー型のコオリゴマーであることが好ましく、または、この群から選択される1つのモノマー型のホモオリゴマーであることがより好ましい。
コオリゴマーにおける2つのモノマー型は、同じモノマー型であり得、例えば、エチレンオキシドおよび酸化プロピレン等の2つのアルキレンオキシドであり得る。オリゴマーは、エチレンオキシドのホモオリゴマーであることが好ましい。通常、必ずではないが、小分子に共有結合されていないオリゴマーの末端(または複数の末端)は、それを不活性にするように封止される。代替的に、末端は、反応基を含み得る。末端が反応基である時、反応基は、最終的なオリゴマーの形成条件下で、またはオリゴマーの小分子薬物への共有結合中に不活性となるように、または必要に応じて保護されるように選択される。1つのよく使用される末端官能基は、特にオリゴエチレン酸化物に対して、ヒドロキシルまたは−OHである。
水溶性非ペプチドオリゴマー(例えば、複合体の化学式
中の「POLY」)は、多くの異なる形状のうちのいずれをも有することができる。例えば、水溶性非ペプチドオリゴマーは、直線、分岐、または叉状とすることができる。最も典型的には、水溶性非ペプチドオリゴマーは、直線、または、例えば1つの分岐点を有する分岐である。本願明細書における考察の多くが、例示的なオリゴマーとしてポリ(エチレンオキシド)に注目しているが、本願明細書に示される考察および構造は、上述した水溶性非ペプチドオリゴマーのうちのいずれをも包含するように、容易に拡張することができる。
リンカー部分を除く水溶性非ペプチドオリゴマーの分子量は、概して、比較的低い。水溶性高分子の分子量の例示的な値には、約1500ダルトン未満、約1450ダルトン未満、約1400ダルトン未満、約1350ダルトン未満、約1300ダルトン未満、約1250ダルトン未満、約1200ダルトン未満、約1150ダルトン未満、約1100ダルトン未満、約1050ダルトン未満、約1000ダルトン未満、約950ダルトン未満、約900ダルトン未満、約850ダルトン未満、約800ダルトン未満、約750ダルトン未満、約700ダルトン未満、約650ダルトン未満、約600ダルトン未満、約550ダルトン未満、約500ダルトン未満、約450ダルトン未満、約400ダルトン未満、約350ダルトン未満、約300ダルトン未満、約250ダルトン未満、約200ダルトン未満、約150ダルトン未満、および約100ダルトン未満が挙げられる。
水溶性非ペプチドオリゴマー(リンカー以外)の分子量の例示的な範囲には、約100〜約1400ダルトン、約100〜約1200ダルトン、約100〜約800ダルトン、約100〜約500ダルトン、約100〜約400ダルトン、約200〜約500ダルトン、約200〜約400ダルトン、約75〜1000ダルトン、および約75〜約750ダルトンが挙げられる。
水溶性非ペプチドオリゴマー中のモノマーの数は、約1〜約30の間、約1〜約25の間、約1〜約20の間、約1〜約15の間、約1〜約12の間、約1〜約10の間のうちの1つ以上の範囲内にある(提供される各範囲の端点を含む)ことが好ましい。場合によっては、オリゴマー(および対応する複合体)中の連続するモノマーの数は、1個、2個、3個、4個、5個、6個、7個、または8個のうちの1つである。追加的な実施形態において、オリゴマー(および対応する複合体)は、連続する9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、または20個のモノマーを含む。さらなる実施形態において、オリゴマー(および対応する複合体)は、連続する21個、22個、23個、24個、25個、26個、27個、28個、29個、または30個のモノマーを有する。したがって、例えば、水溶性非ペプチドポリマーが、CH−(OCHCH−を含む時には、「n」を、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、または30とすることができ、また、約1〜約25の間、約1〜約20の間、約1〜約15の間、約1〜約12の間、約1〜約10の間のうちの1つ以上の範囲内とすることができる整数である。
水溶性非ペプチドオリゴマーが1個、2個、3個、4個、5個、6個、7個、8個、9個、または10個のモノマーを有する時には、これらの値は、それぞれ、約75、119、163、207、251、295、339、383、427、および471ダルトンの分子量を有する、メトキシで末端封止されたオリゴ(エチレンオキシド)に対応する。オリゴマーが11個、12個、13個、14個、または15個のモノマーを有する時には、これらの値は、それぞれ、約515、559、603、647、および691ダルトンに対応する分子量を有する、メトキシで末端封止されたオリゴ(エチレンオキシド)に対応する。
水溶性非ペプチドオリゴマーが、(小分子プロテアーゼ阻害剤上へ有効にオリゴマーを「成長させる」ように、1つ以上のモノマーをステップ的に付加するのとは対照的に)小分子プロテアーゼ阻害剤に結合される時には、水溶性非ペプチドオリゴマーの活性形態を含む組成物が単分散であることが好ましい。しかしながら、それらの場合においては、二峰性の組成物を用いた場合に、該組成物は、上述した数のモノマーのうちのいずれか2つを中心とする二峰性分布を有することになる。理想的には、二峰性分布内の各ピークの多分散指数、Mw/Mnは、1.01以下であり、より好ましくは1.001以下であり、より好ましくは1.0005以下である。各ピークが、1.0000のMW/Mn値を有することが最も好ましい。例えば、二峰性オリゴマーは、1−2、1−3、1−4、1−5、1−6、1−7、1−8、1−9、1−10等、2−3、2−4、2−5、2−6、2−7、2−8、2−9、2−10等、3−4、3−5、3−6、3−7、3−8、3−9、3−10等、4−5、4−6、4−7、4−8、4−9、4−10等、5−6、5−7、5−8、5−9、5−10等、6−7、6−8、6−9、6−10等、7−8、7−9、7−10等、および8−9、8−10等の、モノマー副単位の例示的な組み合わせのうちのいずれをも有し得る。
場合によっては、水溶性非ペプチドオリゴマーの活性形態を含む組成物は、三峰性、あるいは四峰性でもあり、上述のようなモノマー単位の範囲を有する。オリゴマーの明確な混合物を有するオリゴマー組成物は(すなわち、二峰性、三峰性、四峰性等)は、所望のプロファイルのオリゴマー(モノマーの数だけが異なる2つのオリゴマーの混合物は、二峰性であり、モノマーの数だけが異なる3つのオリゴマーの混合物は、三峰性であり、モノマーの数だけが異なる4つのオリゴマーの混合物は、四峰性である)を得るように、精製された単分散オリゴマーを混合することによって得ることができ、または代替的に、所望の定義された分子量範囲にあるオリゴマーの混合物を得るように、「センターカット」を復元することによって、多分散オリゴマーのカラムクロマトグラフィーから得ることができる。
水溶性非ペプチドオリゴマーは、好ましくは単分子または単分散である組成物から得られることが好ましい。すなわち、組成物中のオリゴマーは、分子量の分布ではなく、同じ個別の分子量値を有する。いくつかの単分散オリゴマーは、Sigma−Aldrich社から入手できるもの等の市販の源から購入することができ、または、代替的に、Sigma−Aldrich社等の市販の出発材料から直接調製することができる。水溶性非ペプチドオリゴマーは、Chen Y.,Baker,G.L.J.Org.Chem.、6870−6873(1999)、国際特許第WO 02/098949号、および米国特許出願公報第2005/0136031号に記載されいているように調製することができる。
リンカーまたは結合(それによって、水溶性非ペプチドポリマーが小分子プロテアーゼ阻害剤に結合される)は、少なくとも共有結合を含み、しばしば、酸素、2つの原子、または多数の原子等の1つ以上の原子を含む。リンカーは、必ずではないが、典型的には、直線である。(
における)結合、「X」は、安定した連鎖であり、また、酵素的にも安定していることが好ましい。結合「X」は、約12個未満の原子鎖長、好ましくは約10個未満の原子鎖長、より好ましくは約8個未満の原子鎖長、さらに好ましくは約5個未満の原子鎖長を有するものであり、ここで、長さは、置換基を数に入れない、単一の鎖内の原子数を意味する。例えば、このRoligomer−NH−(C=O)−NH−R′drug等の尿素結合は、3つの原子(−H−(O)−H−)の鎖長を有すると見なされる。選択された実施形態において、結合は、さらなるスペーサ基を含まない。
場合によっては、リンカー「X」は、エーテル、アミド、ウレタン、アミン、チオエーテル、尿素、または炭素−炭素結合を含む。以下に論じられ、実施例に示される官能基が、典型的に、結合の形成に使用される。結合はまた、それほどは好ましくないが、スペーサ基を含む(または、隣接する、あるいは側面に位置する)場合がある。スペーサは、オリゴマーの位置が小分子薬物の残基に比較的近いことによって、複合体の生物活性が大幅に削減され、スペーサが、オリゴマーと、小分子薬物との間の距離を増加させる役目をすることができる場合に最も有用である。
より具体的には、選択された実施形態において、スペーサ部分Xは、「−」(すなわち、安定または分解性であり得る、小分子プロテアーゼ阻害剤と、水溶性非ペプチドオリゴマーの残基との間の共有結合)、−O−、−NH−、−S−、−C(O)−、C(O)−NH、NH−C(O)−NH、O−C(O)−NH、−C(S)−、−CH−、−CH−CH−、−CH−CH−CH−、−CH−CH−CH−CH−、−O−CH−、−CH−O−、−O−CH−CH−、−CH−O−CH−、−CH−CH−O−、−O−CH−CH−CH−、−CH−O−CH−CH−、−CH−CH−O−CH−、−CH−CH−CH−O−、−O−CH−CH−CH−CH−、−CH−O−CH−CH−CH−、−CH−CH−O−CH−CH−、−CH−CH−CH−O−CH−、−CH−CH−CH−CH−O−、−C(O)−NH−CH−、C(O)−NH−CH−CH−、−CH−C(O)−NH−CH−、−CH−CH−C(O)−NH−、−C(O)−NH−CH−CH−CH−、−CH−C(O)−NH−CH−CH−、−CH−CH−C(O)−NH−CH−、−CH−CH−CH−C(O)−NH−、−C(O)−NH−CH−CH−CH−CH−、−CH−C(O)−NH−CH−CH−CH−、−CH−CH−C(O)−NH−CH−CH−、−CH−CH−CH−C(O)−NH−CH−、−CH−CH−CH−C(O)−NH−CH−CH−、−CH−CH−CH−CH−C(O)−NH−、−NH−C(O)−CH−、−CH−NH−C(O)−CH−、−CH−CH−NH−C(O)−CH−、−NH−C(O)−CH−CH−、−CH−NH−C(O)−CH−CH、−CH−CH−NH−C(O)−CH−CH、−C(O)−NH−CH−、−C(O)−NH−CH−CH−、−O−C(O)−NH−CH−、−O−C(O)−NH−CH−CH−、−NH−CH−、−NH−CH−CH−、−CH−NH−CH−、−CH−CH−NH−CH−、−C(O)−CH−、−C(O)−CH−CH−、−CH−C(O)−CH−、−CH−CH−C(O)−CH−、−CH−CH−C(O)−CH−CH−、−CH−CH−C(O)−、−CH−CH−CH−C(O)−NH−CH−CH−NH−、−CH−CH−CH−C(O)−NH−CH−CH−NHC(O)−、−CH−CH−CH−C(O)−NH−CH−CH−NHC(O)−CH−、二価シクロアルキル基、Rが、H、またはアルキル、置換アルキル、アルケニル、置換アルケニル、アルキニル、置換アルキニル、アリール、および置換アリールからなる群より選択される有機基部であるN(R)、のうちのいずれか1つであり得る。
しかしながら、本発明の目的のために、一群の原子は、オリゴマーセグメントに直接隣接している時には、スペーサとみなされず、また、その一群の原子は、その群が単にオリゴマー鎖の拡張を表すように、オリゴマーのモノマーと同じとされる。
水溶性非ペプチドオリゴマーと小分子との間の結合「X」は、典型的に、オリゴマーの末端上の官能基(または、プロテアーゼ阻害剤上へオリゴマーを「成長させる」ことが望まれる時には、1つ以上のモノマー)と、プロテアーゼ阻害剤の対応する官能基との反応によって形成される。以下、例示的な反応を簡潔に説明する。例えば、オリゴマー上のアミノ基は、アミド結合を生成するように、小分子上のカルボン酸または活性カルボン酸誘導体と反応させる、またはその逆に反応させてもよい。代替的に、オリゴマー上のアミンと、薬物上の活性炭酸塩(例えば、スクシンイミジルまたは炭酸ベンゾトリアジル)、またはその逆の反応は、カルバメート結合を形成する。オリゴマー上のアミンと、薬物上のイソシアネート(R−N=C=O)、またはその逆の反応は、尿素結合(R−NH(C=O)−NH−R′)を形成する。さらに、オリゴマー上のアルコール(アルコキシド)基と、薬物内のハロゲン化アルキル、またはハロゲン化基、またはその逆の反応は、エーテル結合を形成する。さらに別の結合手法においては、アルデヒド機能を有する小分子は、還元的アミノ化によってオリゴマーアミノ基に結合し、オリゴマーと小分子との間の第2級アミン結合の形成をもたらす。
特に好適な水溶性非ペプチドオリゴマーは、アルデヒド官能基を担持するオリゴマーである。この点に関して、オリゴマーは、以下の構造を有す。CHO−(CH−CH−O)−(CH−C(O)H、式中、(n)は、1、2、3、4、5、6、7、8、9、および10のうちの1つであり、(p)は、1、2、3、4、5、6、および7のうちの1つである。好適な(n)の値は、3、5、および7を含み、好適な(p)の値は、2、3、および4である。加えて、−C(O)H部分に対する炭素原子αは、任意選択でアルキルによって置換することができる。
典型的に、官能基を担持していない水溶性非ペプチドオリゴマーの末端は、それを不活性にするように封止される。オリゴマーが、複合体の形成を目的とする以外に、末端にさらなる官能基を含む時には、その基は、結合「X」の形成条件下で不活性であるか、または結合「X」の形成中に保護されるように選択される。
上述のように、水溶性非ペプチドオリゴマーは、複合化の前に少なくとも1つの官能基を含む。官能基は、一般的に、小分子内に含有する、または小分子内へ導入される反応に基づいて、小分子への共有結合のための求電子または求核基を含む。オリゴマーまたは小分子内に存在し得る求核基の例には、ヒドロキシル、アミン、ヒドラジン(−NHNH)、ヒドラジド(−C(O)NHNH)、およびチオールが挙げられる。好適な求核剤には、アミン、ヒドラジン、ヒドラジド、およびチオール、特にアミンが挙げられる。オリゴマーへの共有結合のための大部分の小分子薬物は、遊離ヒドロキシル、アミノ、チオ、アルデヒド、ケトン、またはカルボキシル基を有する。
オリゴマーまたは小分子内に存在し得る求電子官能基の例には、カルボン酸、カルボン酸エステル、特にイミドエステル、オルトエステル、炭酸塩、イソシアネート、イソチオシアネート、アルデヒド、ケトン、チオン、アルケニル、アクリレート、メタクリレート、アクリルアミド、スルホン、マレイミド、ジスルフィド、ヨード、エポキシ、スルホネート、チオスルホネート、シラン、アルコキシシラン、およびハロゲノシランが挙げられる。これらの基のより具体的な例には、スクシンイミジルエステルまたは炭酸塩、イミダゾイルエステルまたは炭酸塩、ベンゾトリアゾールエステルまたは炭酸塩、ビニルスルホン、クロロエチルスルホン、ビニルピリジン、ピリジルジスルフィド、ヨードアセトアミド、グリオキサール、ジオン、メシラート、トシラート、およびトレシレート(2,2,2−トリフルオロエタンスルホネート)が挙げられる。
また、チオン、チオン水和物、チオケタール、2−チアゾリジンチオン等、ならびに上述の部分のうちのいずれかの水和物または保護誘導体(例えば、アルデヒド水和物、ヘミアセタール、アセタール、ケトン水和物、ヘミケタール、ケタール、チオケタール、チオアセタール)も挙げられる。
カルボン酸の「活性誘導体」とは、概して、非誘導体化カルボン酸よりも極めて容易に、求核剤と容易に反応するカルボン酸誘導体を指す。活性カルボン酸には、例えば、酸性ハロゲン化物(酸塩化物等)、無水物、炭酸塩、およびエステルが挙げられる。このようなエステルには、一般的な形態が−(CO)O−N[(CO)−]であるイミドエステル、例えば、N−ヒドロキシスクシンイミジル(NHS)エステルまたはN−ヒドロキシフタルイミジルエステルが挙げられる。また、イミダゾリルエステルおよびベンゾトリアゾールエステルも好ましい。共同所有の米国特許第5,672,662号に記載されている、活性プロピオン酸またはブタン酸エステルが特に好まれる。これらは、−(CH2−3C(=O)O−Qの形態の基を含み、Qは、N−スクシンイミド、N−スルホスクシンイミド、N−フタルイミド、N−グルタルイミド、N−テトラヒドロフタルイミド、N−ノルボルネン−2,3−ジカルボキシイミド、ベンゾトリアゾール、7−アザベンゾトリアゾール、およびイミダゾールから選択されることが好ましい。
他の好適な求電子基には、スクシンイミジル炭酸塩、マレイミド、ベンゾトリアゾール炭酸塩、グリシジルエーテル、イミダゾイル炭酸塩、p−ニトロフェニル炭酸塩、アクリレート、トレシレート、アルデヒド、およびオルトピリジルジスルフィドが挙げられる。
これらの求電子基は、例えばヒドロキシ、チオ、アミノ基等の求核剤との反応を受けて、種々の結合型を生成する。本発明には、加水分解的に安定した結合を形成し易い反応が好ましい。例えば、オルトエステル、スクシンイミジルエステル、イミダゾリルエステル、およびベンゾトリアゾールエステルを含むカルボン酸およびその活性誘導体は、上述した型の求核剤と反応して、それぞれエステル、チオエステル、およびアミドを形成し、そのうちのアミドが最も加水分解的に安定している。スクシンイミジル、イミダゾリル、およびベンゾトリアゾール炭酸塩を含む炭酸塩は、アミノ基と反応してカルバメートを形成する。イソシアネート(R−N=C=O)は、ヒドロキシルまたはアミノ基と反応して、それぞれ、カルバメート(RNH−C(O)−OR′)または尿素(RNH−C(O)−NHR′)結合を形成する。アルデヒド、ケトン、グリオキサール、ジオン、およびそれらの水和物またはアルコール付加物(すなわち、アルデヒド水和物、ヘミアセタール、アセタール、ケトン水和物、ヘミケタール、およびケタール)は、アミンと反応することが好ましく、その後に、結果として生じるイミンの還元を行い、必要に応じて、アミン結合(還元的アミノ化)を提供する。
求電子官能基のうちのいくつかは、例えばチオエーテル結合を形成するように、チオール等の求核基を添加することができる求電子二重結合を含む。これらの基には、マレイミド、ビニルスルホン、ビニルピリジン、アクリレート、メタクリレート、およびアクリルアミドが挙げられる。他の基は、求核剤によって置き換えることができる離脱基を含み、これらには、クロロエチルスルホン、ピリジルジスルフィド(開裂可能なS−S結合を含む)、ヨードアセトアミド、メシラート、トシラート、チオスルホネート、およびトレシレートが挙げられる。エポキシドは、求核剤による開環によって反応して、例えばエーテルまたはアミン結合を形成する。オリゴマーおよび小分子上に上述したような相補的な反応基を伴う反応を利用して、本発明の複合体を調製する。
場合によっては、プロテアーゼ阻害剤は、複合化に適した官能基を持たないことがある。この場合、所望の官能基を有するように、「元々の」プロテアーゼ阻害剤を修飾することが可能である。例えば、プロテアーゼ阻害剤がアミド基を有するが、アミン基が望まれる場合は、Hofmann転位、Curtius転位(アミドが1回アジドに変換される)、またはLossen転位(アミドが1度ヒドロキシアミドに変換され、その後に、トルエン−2−スルホニルクロリド/塩基による処理が続く)を経て、アミド基をアミン基に修飾することが可能である。
小分子プロテアーゼ阻害剤作用薬をオリゴマーに共有結合させるアミド基を有する複合体を提供するように、カルボキシル基を担持する小分子プロテアーゼ阻害剤が、アミノ末端オリゴマエチレングリコールに結合されるカルボキシル基を担持する、小分子プロテアーゼ阻害剤の複合体を調製することが可能である。これは、例えば、無水の有機溶剤中で、結合試薬(ジシクロヘキシルカルボジイミド、すなわち「DCC」等)の存在下で、カルボキシル基を担持する小分子プロテアーゼ阻害剤を、アミノ末端オリゴマエチレングリコールと結合させることによって行うことができる。
さらに、エーテル(−O−)結合の小分子複合体をもたらすように、ヒドロキシル基を担持する小分子プロテアーゼ阻害剤が、オリゴマエチレングリコールに結合されるヒドロキシル基を担持する、小分子プロテアーゼ阻害剤の複合体を調製することが可能である。これは、例えば、水素化ナトリウムを使用してヒドロキシル基を脱プロトン化し、その後に、ハロゲン化末端のオリゴマエチレングリコールと反応させることによって行うことができる。
他の実施例において、対応するヒドロキシル基を形成するように、最初にケトン基を減少させることによって、ケトン基を担持する小分子プロテアーゼ阻害剤の複合体を調製することが可能である。その後、その段階でヒドロキシル基を担持するようになった小分子プロテアーゼ阻害剤を、本願明細書に記載されているように結合することができる。
さらに他の事例においては、アミン基を担持する小分子プロテアーゼ阻害剤の複合体を調製することが可能である。一手法において、アミン基を担持する小分子プロテアーゼ阻害剤、およびアルデヒドを担持するオリゴマーを、好適な緩衝液中に溶解し、その後に、好適な還元剤(例えば、NaCNBH)を添加する。還元に続いて、結果として、アミン基含有小分子プロテアーゼ阻害剤のアミン基と、アルデヒドを担持するオリゴマーのカルボニル炭素との間にアミン結合が形成される。
アミン基を担持する小分子プロテアーゼ阻害剤の複合体を調製するための他の手法においては、カルボン酸を担持するオリゴマーと、アミン基を担持する小分子プロテアーゼ阻害剤とを、典型的には結合試薬(例えば、DCC)の存在下で、結合させる。その結果、アミン基含有小分子プロテアーゼ阻害剤のアミン基と、カルボン酸を担持するオリゴマーのカルボニルとの間にアミド結合が形成される。
化学式Iの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、式I−Ca、式I−Cb、および式I−Ccのそれぞれに関して、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、RI1、RI2、RI3、RI4、RI5、およびRI6のそれぞれは、化学式Iに関して定義される。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式IIの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、RII1は、ベンジルオキシカルボニルまたは2−キノリルカルボニルである。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式IIIの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、RIII1、RIII2、RIII3、RIII4、RIII5、RIII6、RIII7、RIII8、Y、G、D、E、RIII9、A、およびBのそれぞれは、化学式IIIに関して定義される。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式IVの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、RIV1、RIV2、RIV3、RIV6、およびRIV7は、化学式IVに関して定義される。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式Vの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、Z、RV1、RV2、RV3、J、J、およびBのそれぞれは、化学式Vに関して定義される。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式VIの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、RVI0は、Hであり、RVI1、n′′、RVI2、RVI3、RVI4、R4a、およびZVIのそれぞれは、化学式VIに関して定義される。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式VIIの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、
VII、BVII、x′、D、D′、およびEVIIのそれぞれは、化学式VIIに関して定義される。
小分子プロテアーゼ阻害剤の好適な複合体は、以下の構造を有するものを含み、
式中、それが現れるそれぞれの場合において、nは、2〜30の整数である。
化学式VIIIの小分子プロテアーゼ阻害剤の例示的な複合体は、以下の構造を有するものを含み、
式中、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、
VIII1、RVIII2、およびRVIII3のそれぞれは、化学式VIIIに関して定義される。
さらなる例示的な複合体は、以下の構造を有するものを含み(各構造に関して、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーである)
式中、それが現れるそれぞれの場合において、Xは、安定した結合であり、POLYは、水溶性非ペプチドオリゴマーであり、Valは、バリンの残基である。
日常的実験を使用する当業者は、最初に、異なる重量および官能基を有する一連のオリゴマーを調製し、次いで、患者に複合体を投与し、定期的な血液および/または尿の試料採取を行い、代謝の存在および量を試験することにより、必要なクリアランスプロファイルを得て、代謝の減少に対する最適な分子のサイズおよび結合を決定することができる。試験を行った複合体ごとに、一連の代謝プロファイルが得られると、好適な複合体を識別することができる。
小分子プロテアーゼ阻害剤、または小分子プロテアーゼ阻害剤と水溶性非ペプチドポリマーとの複合体が、抗HIV活性を有するかどうかを判定するために、そのような化合物を試験することが可能である。抗HIV活性は、実験の項に述べる試験を行うことができる。加えて、抗HIV活性は、例えば、Kempf et al.1991)Antimicrob.Agents Chemother.35(11):2209−2214に記載されている方法によって、ヒトT細胞内で試験を行うことができ、HIV−13Bストック(1mlあたり104.7の50%組織培養感染用量)を、100倍に希釈し、1mlあたり4×10個の細胞においてMT−4細胞によって、37℃で1時間培養することができる(感染多重度、細胞1個当たり0.001の50%の組織培養感染用量)。次いで、結果として生じる培養物を2回洗浄し、培地1mlあたり10個の細胞に再懸濁し、化合物の1%ジメチルスルホキシド溶液の容量に播種し、培地の半対数希釈を3回行う。ウィルス対照培養物は、いかなる化合物も媒体に添加しないことを除いて、同じ様態で処理することができる。細胞対照は、化合物またはウィルスの非存在下で培養される。次いで、光学濃度(optical density:OD)を、比色検定において、3−(4,5−ジメチルチアゾール−2−イル)2,5−臭化ジフェニルテトラゾリウム(MTT)を使用して、5日目に測定する。Pauwels et al.(1988)J.Virol Methods 20:309−321を参照されたい。ウィルスおよび対照のOD値は、6つの測定を通じて平均される。HIV細胞変性効果(cytopathic effect:CPE)の抑制率は、以下の式によって計算される。[(平均OD−ウィルス対照OD/(細胞対照OD−ウィルス対照OD)]×100。細胞毒性は、ウィルスの非存在下で、化合物の連続希釈法による2回の繰り返し培養によって、決定する。細胞毒性率は、以下の化学式によって決定される。(平均OD/細胞対照OD)×100。EC50は、細胞変性効果の50%抑制を提供する化合物の濃度を表す。CCIC50は、50%の細胞毒性効果を提供する化合物の濃度である。水溶性非ペプチドオリゴマーの複合化が、サキナビルの26位に位置するヒドロキシル基で生じる時には、いかなる抗HIV活性も測定されないことに留意されたい。表1、実施例3を参照されたい。理論に束縛されるものではないが、活性(「結合ヒドロキシル基」)には、このヒドロキシル基の可用性が必要である。結果として、一部の実施形態において、複合体は、結合ヒドロキシル基での水溶性非ペプチドオリゴマーの結合を欠くことが好ましい。あらゆる所与のプロテアーゼ阻害剤のための「結合ヒドロキシル基」は、例えば、実験的な試験によって、および/または対象となるプロテアーゼ阻害剤の構造と、サキナビルの構造とを比較し、プロテアーゼ阻害剤内のどちらのヒドロキシル基が、サキナビル内の26位で「結合ヒドロキシル基」に対応するのかを判定することによって、当業者が決定することができる。
本発明はまた、医薬品賦形剤と組み合わせた、本願明細書において提供される複合体を含む医薬品も含む。概して、複合体自体は、固体の形態(例えば、沈殿物)となり、固体または液体のいずれかの形態となり得る好適な医薬品賦形剤と組み合わせることができる。
例示的な賦形剤には、炭水化物、無機塩、抗菌剤、酸化防止剤、界面活性剤、緩衝液、酸、塩基およびそれらの組み合わせから成る群より選択されるものが挙げられるが、これらに限定されない。
糖、アルジトール等の誘導体化糖、アルドン酸、エステル化糖、および/または糖ポリマー等の炭水化物が、賦形剤として存在し得る。具体的な炭水化物賦形剤には、例えば、フルクトース、マルトース、ガラクトース、ブドウ糖、D−マンノース、ソルボース等の単糖類、乳糖、ショ糖、トレハロース、セロビオース等の二糖類、ラフィノース、メレチトース、マルトデキストリン、デキストラン、デンプン等の多糖類、およびマンニトール、キシリトール、マルチトール、ラクチトール、キシリトール、ソルビトール(グルシトール)、ピラノシルソルビトール、ミオイノシトール等のアルジトールが挙げられる。
賦形剤には、クエン酸、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硝酸カリウム、塩基性リン酸ナトリウム、二塩基性リン酸ナトリウム、およびそれらの組み合わせ等の、無機塩または緩衝液も挙げられる。
調製物は、微生物成長を妨げる、または阻止するための抗菌剤を含み得る。本発明に好適な抗菌剤の非限定的な例には、塩化ベンザルコニウム、塩化ベンゼトニウム、ベンジルアルコール、塩化セチルピリジニウム、クロロブタノール、フェノール、フェニルエチルアルコール、硝酸フェニル水銀、チメロサール、およびそれらの組み合わせが挙げられる。
酸化防止剤は、調製時に存在させることもできる。酸化防止剤は、酸化の防止に使用され、それによって、複合体または製剤の別の成分の劣化を防止する。本発明に使用する好適な酸化防止剤には、例えば、パルミチン酸アスコルビル、ブチル化ヒドロキシアニソール、ブチル化ヒドロキシトルエン、次亜リン酸、モノチオグリセロール、プロピルガレート、重亜硫酸ナトリウム、ホルムアルデヒドスルホキシル酸ナトリウム、メタ重亜硫酸ナトリウム、およびそれらの組み合わせが挙げられる。
界面活性剤が、賦形剤として存在し得る。例示的な界面活性剤には、「Tween20」および「Tween80」等のポリソルベート、およびF68およびF88(どちらも、BASF,Mount Olive,New Jerseyから入手することができる)等のプルロニック、ソルビタンエステル、レシチンおよび別のホスファチジルコリン等のリン脂質、ホスファチジルエタノールアミン(しかし、好ましくは、リポソーム形態ではない)、脂肪酸、および脂肪酸エステル等の脂質、コレステロール等のステロイド、およびEDTA、亜鉛、および他のこのような好適なカチオン等のキレート薬が挙げられる。
酸または塩基が、製剤中に賦形剤として存在し得る。使用できる酸の非限定的な例には、塩酸、酢酸、リン酸、クエン酸、リンゴ酸、乳酸、ギ酸、トリクロロ酢酸、硝酸、過塩素酸、リン酸、硫酸、フマル酸、およびそれらの組み合わせから成る群より選択されるものが挙げられる。好適な塩基の例には、水酸化ナトリウム、ナトリウム酢酸塩、水酸化アンモニウム、水酸化カリウム、酢酸アンモニウム、酢酸カリウム、リン酸ナトリウム、リン酸カリウム、クエン酸ナトリウム、ギ酸ナトリウム、硫酸ナトリウム、硫酸カリウム、フマル酸カリウム、およびそれらの組み合わせからなる基から選択される塩基が挙げられるが、これらに限定されない。
組成物中の複合体の量は、多数の要因に応じて変化するが、組成物が単位用量容器内に貯蔵される際に治療上有効用量であることが最適である。治療上有効用量は、どの量が臨床的に所望の終了点を実現するのかを決定するために、複合体の量を増加させて繰り返し投与することによって実験的に決定することができる。
組成物中のあらゆる個々の賦形剤の量は、賦形剤の活性および組成物の特定の必要性に応じて変化する。一般的に、あらゆる個々の賦形剤の最適な量は、日常的実験を通じて、すなわち、種々の量の賦形剤(少量から多量まで)を含有する組成物を準備し、安定性および別のパラメータを検査し、次いで、いかなる重大な悪影響も生じずに最適な性能が得られる範囲を決定することによって決定される。
しかしながら、概して、賦形剤は、約1〜約99重量%、好ましくは約5〜98重量%、より好ましくは約15〜95重量%の量、最も好ましくは30重量%未満の濃度の賦形剤として、組成物中に存在する。
他の賦形剤とともに、これらの上述の医薬品賦形剤は、「Remington:The Science&Practice of Pharmacy」,19th ed.,Williams & Williams(1995)、「Physician’s Desk Reference」,52nd ed.,Medical Economics,Montvale、NJ(1998)、およびKibbe,A.H.,Pharmaceutical Excipients,3rd Edition,American Pharmaceutical Association,Washington,D.C.,2000に記載されている。
医薬組成物は複数の形態を取ることができ、本発明は、この点に関しては制限されない。例示的な製剤は、錠剤、カプレット、カプセル、ゲルキャップ、トローチ、分散体、懸濁液、溶液、エリキシル、シロップ、菓子錠剤(lozenge)、経皮的パッチ、スプレー、坐剤、および粉末等の、経口投与に好適な形態であることが最も好ましい。
経口投与形態は、経口で有効な複合体に好適であり、錠剤、カプレット、カプセル、ゲルキャップ、懸濁液、溶液、エリキシル、およびシロップが挙げられ、また、任意選択でカプセル化された、複数の顆粒、ビーズ、粉末、またはペレットを含むこともできる。このような投薬形態は、医薬製剤の分野で知られている、および関連する文書に記載されている従来の方法を使用して調製される。
錠剤およびカプレットは、例えば、標準的な錠剤処理手順および装置を使用して製造することができる。本願明細書に記載される複合体を含む錠剤またはカプレットを調製する時には、直接圧縮および粒状化技術が好ましい。複合体に加えて、錠剤およびカプレットは、概して、結合剤、滑剤、崩壊剤、充填剤、安定剤、界面活性剤、着色剤等の、不活性の薬剤として許容される担体材料を含有する。結合剤は、粘着性を錠剤に与え、したがって、錠剤がそのままの状態を保つように使用される。好適な結合剤材料には、デンプン(トウモロコシデンプンおよびアルファ化デンプンを含む)、ゼラチン、糖(ショ糖、ブドウ糖、ブドウ糖、および乳糖を含む)、ポリエチレングリコール、ワックス、および天然および合成ガム、例えば、アカシアアルギン酸ナトリウム、ポリビニルピロリドン、セルロースポリマー(ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、微結晶性セルロース、エチルセルロース、ヒドロキシエチルセルロース等を含む)、およびVeegumが挙げられるが、これらに限定されない。滑剤は、錠剤製造を容易にし、粉末の流れを促進して、圧力が減じられた時の粒子の冠着(すなわち粒子破砕)を防止するのに使用される。有用な滑剤は、ステアリン酸マグネシウム、カルシウムステアリン酸塩、およびステアリン酸である。崩壊剤は、錠剤の崩壊を容易にするために使用され、概して、デンプン、クレイ、セルロース、アルギン、ガムまたは架橋ポリマーである。充填剤には、例えば、二酸化シリコン、二酸化チタン、アルミナ、タルク、カオリン、粉末セルロース、および微結晶性セルロース等の材料、ならびにマンニトール、尿素、ショ糖、乳糖、ブドウ糖、塩化ナトリウム、およびソルビトール等の可溶性材料が挙げられる。安定剤は、当技術分野において既知あるように、一例として、酸化的反応を含む薬物分解反応を抑制または妨害するのに使用される。
カプセルは、好適な経口投与形態でもあり、その場合、複合体含有組成物は、液体またはゲル(例えば、ゲルキャップの場合)、または固体(顆粒、ビーズ、粉末、またはペレット等の粒状物を含む)の形態にカプセル化することができる。好適なカプセルには、硬質および軟質カプセルが挙げられ、概して、ゼラチン、デンプン、またはセルロース材料で作製される。ツーピースの硬質ゼラチンカプセルは、ゼラチン帯等で封止されることが好ましい。
実質的に乾燥形態の非経口製剤(一般的に、粉末またはケーキの形態とすることができる、凍結乾燥物または沈殿物として)、および一般的に、液体であり、乾燥形態の非経口製剤を再構成するステップを必要とする、注射用に調製された製剤が挙げられる。注射の前に固体組成物を再構成するための好適な希釈剤の例には、注射用静菌水、5%ブドウ糖水、リン酸緩衝食塩水、リンガー溶液、生理食塩水、無菌水、脱イオン水、およびそれらの組み合わせが挙げられる。
ある場合では、非経口投与を対象とする組成物は、一般的にそれぞれ無菌である、非水性溶液、懸濁液、または乳濁液の形態を取ることができる。非水溶媒または媒体の例には、プロピレングリコール、ポリエチレングリコール、オリーブ油またはコーン油等の植物油、ゼラチン、およびオレイン酸エチル等の、注射可能な有機エステルが挙げられる。
本願明細書に記載されている非経口製剤はまた、保存剤、湿潤剤、乳化剤、および分散剤等の補助剤を含有することもできる。製剤は、滅菌剤、バクテリアを保持したフィルタによる濾過、照射、または熱の導入によって無菌化される。
複合体はまた、従来の経皮的パッチまたは別の経皮的送達系を使用して、皮膚を通じて投与することもでき、複合体は、皮膚に固定される薬物送達装置として機能する積層構造内に含有される。このような構造においては、複合体は、上部支持体層の下側にある層、すなわち「貯蔵器」内に収容される。積層構造は、単一の貯蔵器を収容することができ、または複数の貯蔵器を収容することができる。
複合体はまた、直腸投与用の坐剤に処方することもできる。坐剤に関して、複合体は、コカバター(カカオ脂)、ポリエチレングリコール、グリセリン処理したゼラチン、脂肪酸、およびそれらの組み合わせ等の(例えば、室温では固体であるが、体温で軟化、融解、または溶解する賦形剤)坐剤基剤材料と混合される。坐剤は、例えば、坐剤基剤材料を融解させて融解物を形成するステップと、複合体を(坐剤基剤材料の融解前または後に)導入するステップと、溶解物を金型に注入するステップと、融解物を冷却し(例えば、融解物含有金型を室温環境中に置く)、それによって坐剤を形成するステップと、金型から坐剤を取り出すステップと、を行うことによって調製することができる(必ずしも示された順序ではない)。
本発明はまた、本願明細書において提供される複合体を、複合体による治療に応答する状態にある患者に投与するための方法も提供する。本方法は、概して、経口的に、治療上有効量の複合体(医薬品の一部として提供されることが好ましい)を投与するステップを含む。また、肺、鼻腔、口腔、直腸、舌下、経皮、非経口等の、別の投与様式も意図される。本願明細書で使用する場合、「非経口」という用語は、皮下、静脈内、動脈内、腹膜内、心臓内、髄腔内、および筋肉内注射、ならびに注入注射を含む。
非経口投与が利用される事例においては、上述したものよりも幾分大きい、分子量が約500〜30Kダルトンの(例えば、分子量が、500、1000、2000、2500、3000、5000、7500、10000、15000、20000、25000、30000、またはそれ以上である)オリゴマーを用いることが必要となり得る。
本投与方法を使用して、特定の複合体の投与によって治す、または防止することができるあらゆる状態を治療し得る。当業者は、どの状態を特定の複合体が効果的に治療することができるのかを認識している。実際の用量は、対象の年齢、体重、および全般の状態、ならびに治療されている疾患の深刻さ、医療関係者の判断、および投与されている複合体に基づいて変化する。治療上有効量は、当業者に知られており、および/または関連する参考文書および文献に記載されており、および/または実験的に決定することができる。概して、治療上有効量は、0.001mg/日〜10000mg/日、0.01mg/日〜7500mg/日、0.10mg/日〜5000mg/日、1mg/日〜4000mg/日、および10mg/日〜2000mg/日のうちの1つ以上の範囲内の量である。
あらゆる所与の複合体(同じく、医薬品の一部として提供されることが好ましい)の単位投与量は、臨床医の判断、患者の要求等に応じて、種々の投薬スケジュールで投与することができる。特定の投薬スケジュールは、当業者に知られており、または日常的方法を使用して実験的に決定することができる。例示的な投薬スケジュールには、1日5回、1日4回、1日3回、1日2回、1日1回、週3回、週2回、週1回、月2回、月1回、およびあらゆるそれらの組み合わせが挙げられるが、これらに限定されない。臨床的な終了点が達成されると、組成物の投薬は停止される。
本発明の複合体を投与する1つの利点は、親薬物と比較して、初回通過代謝の減少が、達成され得ることである。このような結果は、腸を通過することによって大幅に代謝される、多数の経口投与薬物に好都合である。このようにして、複合体のクリアランスは、所望のクリアランス特性を提供するオリゴマー分子のサイズ、結合、および共有結合の位置を選択することによって調節することができる。当業者は、本願明細書の教示に基づいて、オリゴマーの理想的な分子の大きさを決定することができる。対応する非複合小薬物分子と比較した、複合体の初回通過代謝の好適な減少には、少なくとも約10%、少なくとも約20%、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%および少なくとも約90%、が挙げられる。
したがって、本発明は、活性剤の代謝を減少させるための方法を提供する。該方法は、単分散または二峰性複合体を提供するステップであって、各複合体は、安定した結合によって水溶性オリゴマーに共有結合された小分子薬物由来の部分を含み、該複合体は、水溶性オリゴマーに結合されていない小分子薬物の代謝速度と比較して、代謝速度の減少を呈する、ステップと、複合体を患者に投与するステップと、を含む。典型的に、投与は、経口投与、経皮投与、口腔投与、経粘膜投与、膣内投与、直腸投与、非経口投与、および肺投与から成る群より選択される1つの投与形式を介して行われる。
多くの種類の代謝(第1相代謝および第2相代謝の両者を含む)を減少させることができることは有用であるが、本複合体は、小分子薬物が、肝酵素(例えば、シトクロムP450アイソフォームのうちの1つ以上)によって、および/または1つ以上の腸酵素によって代謝されるときに特に有用である。
本願明細書に引用される全ての記事、本、特許、特許公報、および他の刊行物は、参照することによりその全体が組み込まれる。本明細書の教示と参照することにより組み込まれた教示との間に矛盾が生じた場合には、本明細書の教示の意味を優先する。
実験
本発明は、ある種の好適な特定の実施形態に関して記載されているが、上述の説明およびそれに続く実施例は、例示することを意図したものであり、本発明の範囲を制限するものではないと理解されたい。本発明の範囲内の他の態様、利点、および変更は、本発明に関係する当業者に明らかである。
別途明記しない限り、添付の実施例内に引用される全ての化学試薬は、市販のものである。PEG−mersの調製は、例えば、米国特許出願公報第2005/0136031号に記載されている。以下の実施例に用いられる全てのオリゴ(エチレングリコール)メチルエーテルは、逆相クロマトグラフィーによって測定して、単分散でクロマトグラフ的に純粋であった。
実施例1
PEG−サキナビル複合体の合成
26位でのサキナビル−ヒドロキシル基の複合化
A.26−m−PEG−3−O−サキナビルの合成(n=3)
NaH(鉱油中60%、72mg、1.8mmol)を、ジメチルホルムアミド(5ml)中のサキナビル遊離塩基の溶液(170mg、0.30mmol)に添加した。混合物を、N下で、室温で15分撹拌し、その後、ジメチルホルムアミド(1ml)中のBr−(CHCHO)−CH(273mg、1.2mmol)を添加した。次いで、結果として生じた溶液を、N下で、50℃で4時間、油浴にて加熱した。次いで、全ての溶媒を、回転蒸発器を使用して除去した。逆相分取HPLC分離によって、純粋な26−m−PEG−3−O−サキナビルを得た(76mg、0.093mmol、単離収率31%)。
26−m−PEG−7−O−サキナビルの合成(n=7)
NaH(鉱油中60%、108mg、2.7mmol)を、ジメチルホルムアミド(10ml)中のサキナビル遊離塩基の溶液(300mg、0.45mmol)に添加した。混合物を、N下で、室温で15分撹拌し、その後、ジメチルホルムアミド(1ml)中のBr−(CHCHO)−CH(724mg、1.8mmol)を添加した。次いで、結果として生じた溶液を、N下で、50℃で4時間、油浴にて加熱した。次いで、全ての溶媒を、回転蒸発器を使用して除去した。逆相分取HPLC分離によって、純粋な26−m−PEG−3−O−サキナビルを得た(100mg、0.10mmol、単離収率22%)。
実施例2
PEG−サキナビル複合体の合成
15位でのサキナビルアミド基の複合化
15−m−PEG−7−NHCO−サキナビルと、15−ジ−m−PEG−7−NCO−サキナビルとの合成(n=7)
26−MEM−O−サキナビルの合成。N下で、−30℃で、サキナビル遊離塩基(530mg、0.79mmol)の無水テトラヒドロフラン(30mL以下)溶液に、ブチルリチウム(1.58mmol、0.63mL、ヘキサン中2.5M)を注射器で添加した。−30℃で5分間撹拌した後、約1mLの無水テトラヒドロフラン中のMEMCl(118mg、0.95mmol)を添加した。反応溶液を、ゆっくりと室温に加温して、終夜(18時間)保持した。HPLCは、ほぼ全ての遊離サキナビルが無くなり、26−MEM−O−サキナビルが約90%の収率で形成されたことを示した。逆相分取HPLCによる分離の後、純粋な26−MEM−O−サキナビルを、無色固体として得た。
26−MEM−O−15−m−PEG−7−NHCO−サキナビルの合成。26−MEM−O−サキナビル(50mg、0.066mmol)のジメチルホルムアミド(8mL以下)溶液に、水素化ナトリウム(21mg、0.53mmol、鉱油中60%)を添加した。室温で15分間撹拌した後に、約1mLのジメチルホルムアミド中のBr−(CHCHO)−CH(159mg、0.40mmol)を添加した。反応混合物を、窒素下で、室温で2日間撹拌した。HPLCは、26−MEM−O−15−m−PEG−7−NHCO−サキナビルが約50%の収率で形成されたことを示した。次いで、0.1N塩酸酸性溶液(約3mL)を添加することによって反応を停止させて、過剰な水素化ナトリウムを破壊した。全ての溶媒を、50℃で回転蒸発器によって除去して、粘着性の固体を得た。生成物は、精製せずに、そのまま次の合成ステップで使用した。
15−m−PEG−7−NHCO−サキナビルの合成。26−MEM−O−15−m−PEG−7−NHCO−サキナビルの反応混合物を、約10mLの2N塩酸メタノール溶液中に溶解した。溶液を、室温で4日間撹拌した。HPLCは、全てのMEM保護基が除去され、15−m−PEG−7−NHCO−サキナビルが約50%の収率で形成されたことを示した。逆相分取HPLCによる分離の後、純粋な15−m−PEG−7−NHCO−サキナビルを得た(35mg、0.035mmol、単離収率53%)、LC−MS:計算値:993.2、実測値:993.5。
26−MEM−O−15−ジ−m−PEG−7−NCO−サキナビルの合成。26−MEM−O−サキナビル(30mg、0.040mmol)のジメチルホルムアミド(約5mL)溶液に、水素化ナトリウム(26mg、0.64mmol、鉱油中60%)を添加した。室温で15分間撹拌した後に、約1mLのジメチルホルムアミド中のBr−(CHCHO)−CH(96mg、0.24mmol)を添加した。反応混合物を、窒素下で、室温で2日間撹拌した。HPLCは、26−MEM−O−15−ジ−m−PEG−7−NCO−サキナビルが約23%の収率で形成されたことを示した。次いで、0.1N塩酸酸性溶液(約3mL)を添加することによって反応を停止させて、過剰な水素化ナトリウムを破壊した。全ての溶媒を、50℃で回転蒸発器によって除去して、粘着性の固体を得た。生成物は、精製せずに、そのまま次の合成ステップで使用した。
15−ジ−m−PEG−7−NCO−サキナビルの合成。26−MEM−O−ジ−15−m−PEG−7−NCO−サキナビルの反応混合物を、約10mLの2N塩酸メタノール溶液中に溶解した。溶液を、室温で終夜撹拌した。HPLCは、全てのMEM保護基が除去され、15−ジ−m−PEG−7−NCO−サキナビルが約37%の収率で形成されたことを示した。逆相分取HPLCによる分離の後、純粋な15−ジ−m−PEG−7−NCO−サキナビルを得た(11mg、0.0084mmol、単離収率21%)、LC−MS:計算値:1315.6、実測値:1315.6。
15−m−PEG−3−NHCO−サキナビルの合成(n=3)
26−MEM−O−15−m−PEG−3−NHCO−サキナビルの合成。26−MEM−O−サキナビル(88mg、0.12mmol)のジメチルホルムアミド(約20mL)溶液に、水素化ナトリウム(37mg、0.92mmol、鉱油中60%)を添加した。室温で15分間撹拌した後に、約1mLのジメチルホルムアミド中のBr−(CHCHO)−CH(158mg、0.70mmol)を添加した。反応混合物を、窒素下で、室温で終夜(約23時間)撹拌した。HPLCは、26−MEM−O−15−m−PEG−3−NHCO−サキナビルが約47%の収率で形成されたことを示した。次いで、0.1N塩酸酸性溶液(約3mL)を添加することによって反応を停止させて、過剰な水素化ナトリウムを破壊した。全ての溶媒を、50℃で回転蒸発器によって除去して、粘着性の固体を得た。生成物は、精製せずに、そのまま次の合成ステップで使用した。
15−m−PEG−3−NHCO−サキナビルの合成。粗製26−MEM−O−15−m−PEG−3−NHCO−サキナビル生成物を、約30mLの2N塩酸メタノール溶液中に溶解した。溶液を、室温で4時間撹拌した。HPLCは、全てのMEM保護基が除去され、15−m−PEG−3−NHCO−サキナビルが約41%の収率で形成されことを示した。逆相分取HPLCによる分離の後、純粋な15−m−PEG−3−NHCO−サキナビルを得た(20mg、0.024mmol、単離収率20%)、LC−MS:計算値:817.0、実測値:817.5。
15−m−PEG−5−NHCO−サキナビルの合成(n=5)
26−MEM−O−15−m−PEG−5−NHCO−サキナビルの合成。26−MEM−O−サキナビル(140mg、0.18mmol)のジメチルホルムアミド(約30mL)溶液に、水素化ナトリウム(59mg、1.48mmol、鉱油中60%)を添加した。室温で15分間撹拌した後に、約1mLのジメチルホルムアミド中のBr−(CHCHO)−CH(349mg、1.11mmol)を添加した。反応混合物を、窒素下で、室温で2日間撹拌した。HPLCは、26−MEM−O−15−m−PEG−5−NHCO−サキナビルが約52%の収率で形成されたことを示した。次いで、0.1N塩酸酸性溶液(約3mL)を添加することによって反応を停止させて、過剰な水素化ナトリウムを破壊した。全ての溶媒を、50℃で回転蒸発器によって除去して、粘着性の固体を得た。生成物は、精製せずに、そのまま次の合成ステップで使用した。
15−m−PEG−5−NHCO−サキナビルの合成。26−MEM−O−15−m−PEG−5−NHCO−サキナビルの反応混合物を、約15mLの2N塩酸メタノール溶液中に溶解した。溶液を、室温で4時間撹拌した。HPLCは、全てのMEM保護基が除去され、15−m−PEG−5−NHCO−サキナビルが約50%の収率で形成されたことを示した。逆相分取HPLCによる分離の後、純粋な15−m−PEG−5−NHCO−サキナビルを得た(32mg、0.035mmol、単離収率20%)、LC−MS:計算値:905.1、実測値:905.5。
実施例3
CEM−SS細胞における抗HIV−1の有効性の評価

化合物を、DMSO中1.0μMの高試験濃度で試験した。CEM−SS細胞を、抗ウィルス検定に使用する前にT−75フラスコ中を通過させた。検定前日に、細胞が感染時に対数的成長期にあることを確実にするために、それらを1:2に分けた。全細胞および生存度の定量化を、血球計およびトリパンブルー排除法を使用して行った。検定に使用された細胞は、細胞生存度が95%を上回るものであった。細胞を、組織培養基中5×10細胞/mLで再懸濁し、容量50μLの薬物含有マイクロタイタープレートに添加した。
使用したウィルスは、リンパ好性ウィルス株HIV−1RFであった。このウィルスを、NIH AIDS Research and Reference Reagent Programから入手し、ストックウイルスプールを生成するために、CEM−SS細胞中で成長させた。検定ごとに、予めタイターに添加したウィルスの一定分量を、冷凍庫から取り出し、生物学的に安全なキャビネット内で室温までゆっくりと解凍させた。ウィルスは、容量50μLの各ウェルに添加したウィルスの量が、感染後6日で約90%の細胞殺傷を生じると決定された量であるように、再懸濁して、組織培養基中に希釈した。CEM−SS細胞における終了点の滴定によるTCID50の計算は、これらの検定における感染多重度が、約0.01であったことを示した。
各プレートは、細胞対照ウェル(細胞のみ)、ウィルス対照ウェル(細胞およびウィルス)、化合物の細胞毒性ウェル(細胞および化合物のみ)、化合物比色対照ウェル(化合物のみ)、および実験ウェル(化合物、細胞、およびウイルス)を含む。試料は、抗ウィルス効果の三重測定および細胞毒性の二重測定によって評価した。IC50値を決定し、また、検出可能な場合は、細胞障害活性を測定するために、半対数希釈での6つの濃度を使用した。
検定の終了時に、検定プレートを可溶性テトラゾリウムベースの染料MTS(CellTiter試薬、Promega社)で着色して、細胞生存度を判定し、化合物の細胞毒性を定量化した。MTSは、代謝的に活性な細胞のミトコンドリア酵素によって代謝されて、可溶性ホルマザン生成物を産生し、細胞生存度および化合物の細胞毒性の迅速な定量分析を可能にする。MTSは、使用前に調製が必要ではない、安定した溶液である。検定の終了時に、20μLのMTS試薬をウェルごとに添加した。ウェルは、37℃で4〜6時間、培養した。粘着性プレートシールを蓋の代わりに使用し、シールプレートは、複数回逆さまにして可溶性ホルマザン生成物を混合し、プレートは、Molecular Devices Vmaxプレートリーダーにより490/650nmで、分光光度的に読み取った。
コンピュータプログラム(Southern Research Institute,Frederick,MD)を使用して、IC50(ウィルス複製の50%抑制)、TC50(細胞生存度の50%減少)、および抗ウィルス指数(抗ウイルス性指数=TC50/IC50)を含む、種々の値を決定した。値を下記表1に示す。
実施例4
PEG−アタザナビルの合成

PEG−アタザナビルを調製した。概略的に、本実施例に適用される手法を以下に示す(概略図中の太字の複合番号は、本実施例4だけの文章に提供される複合番号に対応する)。
試薬合成の概略
mPEG−SC−炭酸塩
100mLのフラスコに、mPEG−OH(2.0g、12.1mmol)および無水ジクロロメタン(25mL)を入れた。透明な溶液を、0℃まで冷却し、次いで、トリエチルアミン(1.86mL、13.4mmol、1.1当量)をゆっくりと添加した。溶液を、0℃で15分間撹拌し、次いで、ジクロロメタン(20mL)中のDSC(3.1g、12.1mmol)の懸濁液を入れた第2のフラスコに加えた。反応混合物は、室温に平衡させた。約18時間後に、淡黄色の反応混合物を、ジクロロメタン(60mL)で希釈し、分液漏斗に移して、脱イオン水(100mL)で分離した。水層を、ジクロロメタン(4×80mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として2.79g(75%)のmPEG−SC−炭酸塩を得た。H NMR(CDCl)δ4.40(m、2H)、3.80(m、2H)、3.70、(bs、6H)、3.60(m、2H)、3.35(s、3H)、2.80(s、4H);LC/MS=306(M+1)。
mPEG−SC−炭酸塩
100mLのフラスコに、mPEG−OH(2.0g、7.92mmol)および無水ジクロロメタン(15mL)を入れた。透明な溶液を、0℃まで冷却し、次いで、トリエチルアミン(1.32mL、9.51mmol、1.2当量)をゆっくりと添加した。溶液を、0℃で15分間撹拌し、次いで、ジクロロメタン(15mL)中のDSC(2.02g、7.92mmol)の懸濁液を入れた第2のフラスコに加えた。反応混合物は、室温に平衡させた。約18時間後、淡黄色の反応混合物を、ジクロロメタン(40mL)で希釈し、分液漏斗に移して、脱イオン水(80mL)で分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄し。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として2.59g(83%)のmPEG−SC−炭酸塩を得た。H NMR(CDCl)δ4.45(m、2H)、3.75(m、2H)、3.68(bs、16H)、3.55(m、2H)、3.34(s、3H)、2.80(s、4H);LC/MS=394(M+1)。
mPEG−SC−炭酸塩
100mLのフラスコに、mPEG−OH(2.0g、6.74mmol)および無水ジクロロメタン(12mL)を入れた。透明な溶液を、0℃まで冷却し、次いで、トリエチルアミン(1.12mL、8.10mmol、1.2当量)をゆっくりと添加した。溶液を、0℃で15分間撹拌し、次いで、ジクロロメタン(15mL)中のDSC(1.73g、6.74mmol)の懸濁液を入れた第2のフラスコに加えた。反応混合物は、室温に平衡させた。約18時間後、淡黄色の反応混合物を、ジクロロメタン(50mL)で希釈し、分液漏斗に移して、脱イオン水(80mL)で分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として1.92g(65%)のmPEG−SC−炭酸塩を得た。H NMR(CDCl)δ4.48(m、2H)、3.78(m、2H)、3.68(bs、20H)、3.58(m、2H)、3.38(s、3H)、2.84(s、4H);LC/MS=438(M+1)。
mPEG−SC−炭酸塩
100mLのフラスコに、mPEG−OH(2.0g、5.87mmol)および無水ジクロロメタン(15mL)を入れた。透明な溶液を、0℃まで冷却し、次いで、トリエチルアミン(1.22mL、8.81mmol、1.5当量)をゆっくりと添加した。溶液を、0℃で15分間撹拌し、次いで、ジクロロメタン(15mL)中のDSC(2.25g、8.81mmol)の懸濁液を入れた第2のフラスコに加えた。反応混合物は、室温に平衡させた。約18時間後、淡黄色の反応混合物を、ジクロロメタン(50mL)で希釈し、分液漏斗に移して、脱イオン水(80mL)で分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として2.82g(90%)のmPEG−SC−炭酸塩を得た。H NMR(CDCl)δ4.45(m、2H)、3.78(m、2H)、3.65(bs、24H)、3.58(m、2H)、3.39(s、3H)、2.85(s、4H);LC/MS=482(M+1)。
mPEG−L−tert−ロイシン
125mLのフラスコに、L−tert−ロイシン(0.43g、3.27mmol)および脱イオン水(12mL)を入れた。溶液を、透明になるまで30分間撹拌し、その後、固体重炭酸ナトリウム(1.27g、15.0mmol、4.6当量)を添加した。濁った溶液を、窒素下で、室温で撹拌した。第2のフラスコに、mPEG−SC−炭酸塩(1.24g、4.09mmol、1.25当量)を脱イオン水(12mL)に入れて、この溶液を一度に塩基性のL−tert−ロイシン溶液に添加した。濁った淡黄色の反応混合物を、窒素下で、室温で撹拌した。約20時間後、透明な混合物を、0℃まで冷却し、2NのHClによってpH1(20mL)まで慎重に酸性化した。酸性混合物を、分液漏斗に移し、ジクロロメタン(50mL)および追加の水(50mL)によって分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機層を、水および飽和塩化ナトリウムで洗浄し、硫酸ナトリウム上で乾燥させた。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として0.83g(79%)のmPEG−L−tert−ロイシンを得た。H NMR(CDCl)δ5.45(d、1H)、4.26〜4.35(m、2H)、4.14(m、1H)、3.70(bs、17H)、3.65(m、2H)、3.38(s、3H)、1.02(s、9H);LC/MS=410(M+1)。
mPEG−L−tert−ロイシン
250mLのフラスコに、L−tert−ロイシン(0.68g、5.21mmol)および脱イオン水(20mL)を入れた。溶液を、透明になるまで30分間撹拌し、その後、固体重炭酸ナトリウム(1.96g、23.3mmol、4.5当量)を添加した。濁った溶液を、窒素下で、室温で撹拌した。第2のフラスコに、mPEG−SC−炭酸塩(3)を脱イオン水(20mL)に入れて、この溶液を即座に塩基性のL−tert−ロイシン溶液に添加した。濁った淡黄色の反応混合物を、窒素下で、室温で撹拌した。約18時間後、透明な混合物を、0℃に冷却し、2NのHClによってpH1(18mL)まで慎重に酸性化した。酸性混合物を、分液漏斗に移し、ジクロロメタン(50mL)および追加の水(50mL)によって分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機層を、水および飽和塩化ナトリウムで洗浄し、硫酸ナトリウム上で乾燥させた。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として2.04g(96%)のmPEG−L−tert−ロイシンを得た。H NMR(CDCl)δ5.45(d、1H)、4.26〜4.35(m、2H)、4.14(m、1H)、3.70(bs、17H)、3.65(m、2H)、3.38(s、3H)、1.02(s、9H);LC/MS=410(M+1)。
mPEG−L−tert−ロイシン
250mLのフラスコに、L−tert−ロイシン(0.45g、3.47mmol)および脱イオン水(15mL)を入れた。溶液を、透明になるまで30分間撹拌し、その後、固体重炭酸ナトリウム(1.31g、15.6mmol、4.5当量)を添加した。濁った溶液を、窒素下で、室温で撹拌した。第2のフラスコに、mPEG−SC−炭酸塩(1.9g、4.34mmol、1.25当量)を脱イオン水(15mL)に入れて、この溶液を一度に塩基性のL−tert−ロイシン溶液に添加した。濁った淡黄色の反応混合物を、窒素下で、室温で撹拌した。約18時間後、透明な混合物を、0℃に冷却し、2NのHClによってpH1(10mL)まで慎重に酸性化した。酸性混合物を、分液漏斗に移し、ジクロロメタン(50mL)および追加の水(50mL)によって分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機層を、水および飽和塩化ナトリウムで洗浄し、硫酸ナトリウム上で乾燥させた。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として1.39g(90%)のmPEG−L−tert−ロイシンを得た。H NMR(CDCl)δ5.47(d、1H)、4.10〜4.30(m、2H)、4.14(m、1H)、3.70(bs,20H)、3.65(m、2H)、3.38(s、3H)、1.02(s、9H);LC/MS=454(M+1)。
mPEG−L−tert−ロイシン
250mLのフラスコに、L−tert−ロイシン(0.31g、2.32mmol)および脱イオン水(15mL)を入れた。溶液を、透明になるまで30分間撹拌し、その後、固体重炭酸ナトリウム(0.89g、10.6mmol、4.5当量)を添加した。濁った溶液を、窒素下で、室温で撹拌した。第2のフラスコに、mPEG−SC−炭酸塩(1.4g、2.91mmol、1.25当量)を脱イオン水(15mL)に入れて、この溶液を一度に塩基性のL−tert−ロイシン溶液に添加した。濁った淡黄色の反応混合物を、窒素下で、室温で撹拌した。約18時間後、透明な混合物を、0℃に冷却し、2NのHClによってpH1(8mL)まで慎重に酸性化した。酸性混合物を、分液漏斗に移し、ジクロロメタン(50mL)および追加の水(50mL)によって分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機層を、水および飽和塩化ナトリウムで洗浄し、硫酸ナトリウム上で乾燥させた。乾燥した有機層を、濾過し、減圧下で濃縮し、高真空下で終夜乾燥させて、淡黄色油として1.0g(85%)のmPEG−L−tert−ロイシンを得た。H NMR(CDCl)δ5.46(d、1H)、4.10〜4.25(m、2H)、4.14(m、1H)、3.70(bs,24 H)、3.65(m、2H)、3.38(s、3H)、1.02(s、9H);LC/MS=498(M+1)。
PEG−アタザナビルを合成するための概略
方法
空気または水分の感度が高い反応物質および溶媒との全ての反応は、窒素雰囲気下で行った。概して、試薬および溶媒(PEGベースの試薬を除く)は、購入時にさらなる精製を行わずに使用した。薄層クロマトグラフィー分析は、シリカF254ガラスプレート(Biotage)上で行った。成分は、254nmの紫外線によって、または、リンモリブデン酸を噴霧して可視化した。フラッシュクロマトグラフィーは、Biotage SP4システム上で行った。H NMRスペクトル:Bruker 300MHz。信号の化学シフトは、100万分の1(ppm)で表され、使用した重水素化溶媒を基準とする。MSスペクトル:Rapid Resolution Zorbax C18カラム、4.6×50mm、1.8μm。HPLC法は、以下のパラメータを有した。カラム、Betasil C18、5μm(100×2.1mm)、流量、0.5mL/分、勾配、0〜23分、100%のアセトニトリル/0.1%TFAに対する、水/0.1%TFA中の20%アセトニトリル/0.1%TFA、検出、230nm。tは、保持時間を指す。略語は以下の通りである。TPTU:O−(1,2−ジヒドロ−2−オキソ−1−ピリジル)−N,N,N′,N′−テトラメチルウロニウムテトラフルオロホウ酸塩、DIPEA:N,N′−ジイソプロピルエチルアミン。
4−ピリジン−2−イル−ベンズアルデヒド(3)
265mLの4:3のトルエン/95%エタノール中の4−ホルミル−フェニルホウ酸(5.0g、33.0mmol)および2−ブロモピリジン(5.53g、35.0mmol、1.05の同等)の混合物を、窒素で30分間脱ガスし、次いで、窒素雰囲気下で加熱し、透明な溶液を得た。50mLの4:4のトルエンおよび95%エタノールの混合物中のPd(PPh)4(0.77g)のスラリを添加し、その後、50mLの3M水性NaCOを添加した。結果として生じた混合物を、77℃で緩やかに還流させた。16時間後、反応混合物を室温まで冷却し、濾過によって固体を除去した。濾液を、分液漏斗に移して、層を分離させた。水層を、トルエン(3×50mL)によって抽出した。合わせた有機物を、水で洗浄し、次いで飽和塩化ナトリウムで洗浄し、硫酸ナトリウム上で乾燥させた。溶液を濾過し、濾液を減圧下で濃縮して、黄色油を得た。Biotageクロマトグラフィー(40+Mカートリッジ;勾配、0〜5%のメタノール/ジクロロメタン)による精製で、淡黄色固体として4.13g(68%)の(3)を得た。TLC R(ヘキサン/酢酸エチル、2:1)=0.25;H NMR(CDCl)δ10.1(s、HCO)、8.77(d、1H)、8.20(d、2H)、8.00(d、2H)、7.81(m、2H)、7.31(q、1H);MS(M)=184;HPLC t 1.2分。
N−1−(tert−ブチルオキシカルボニル)−N−2−[4−(ピリジン−2イル)ベンジリデン]−ヒドラゾン(4)
100mLのフラスコに、(3)(0.50g、2.73mmol)、tert−ブチルカルバゼート(0.36g、2.73mmol)、2−プロパノール(3.0mL)、およびトルエン(3.0mL)を加えた。混合物を、不活性雰囲気下で2時間、加熱還流(85℃)し、室温まで徐々に冷却し、窒素下で終夜撹拌した。16時間後、反応混合物を濾過し、濾過ケーキをトルエンおよびヘキサン(1:3;100mL)の低温混合物で洗浄した。ケーキを、真空下で乾燥させて、灰色がかった固体として0.73g(90%)の(4)を得た。TLC R(ヘキサン/酢酸エチル、1:2)=0.38;H NMR(CDCl)δ8.70(d、1H)、8.02(m、3H)、7.87(s、1H)、7.81(s、1H)、7.76(m、3H)、7.25(m、1H)、1.55(s、9H);MS(M)=298;HPLC t 2.1分。
N′−(4−ピリジン−2−イル−ベンジル)−ヒドラジンカルボン酸tert−ブチルエステル(5)
100mLのフラスコに、THF(3.0mL)中の(4)(0.45g、1.50mmol)を入れた。この溶液に、99%ナトリウムシアノボロハイドライド(0.12g、1.80mmol、1.2当量)を添加し、その後、THF(3.0mL)中のp−TsOH(0.35g、1.80mmol、1.2当量)の溶液を添加した。1.5時間後、さらにTHF(3.0mL)中のp−TsOH(0.35g、1.80mmol、1.2当量)を添加した。室温で16時間後、THFを減圧下で除去した。白色残渣を、酢酸エチル(35mL)および水(35mL)との間で分離した。水層を、酢酸エチル(3×35mL)によって抽出した。合わせた有機物を、水で洗浄し、次いで飽和塩化ナトリウムで洗浄し、その後硫酸ナトリウム上で乾燥させた。濾過後、減圧下で濃縮し、高真空下で6時間乾燥させ、白色固体として0.41g(91%)の(5)を得た。TLC R(ヘキサン/酢酸エチル、1:2)=0.30;H NMR(DMSO−d)δ8.64(d、1H)、8.26(sb、HN)、8.02(d、2H)、7.93(d、1H)、7.85(dd、1H)、7.42(d、2H)、7.32(dd、1H)、4.80(m、HN)、3.92(d、2H)、1.38(s、9H);MS(M)=300;HPLC t 7.0分。
N′−(3−tert−ブトキシカルボニルアミノ−2−ヒドロキシ−4−フェニル−ブチル)−N′−(4−ピリジン−2−イル−ベンジル)−ヒドラジンカルボン酸tert−ブチルエステル(7)
100mLのフラスコに、(5)(1.0g、3.34mmol)、(6)(2S、3S)−1,2−エポキシ−3−(Boc−アミノ)−4−フェニルブタン(2.78g、10.5mmol、3.16当量)、および2−プロパノール(15mL)を入れた。反応物を、加熱還流した。約61時間の還流の後、熱を除去し、混合物を室温まで冷却した。冷却した混合物に、水/氷(50mL)を添加した。水性混合物に、ジクロロメタン(50mL)を添加し、次いで分液漏斗に移した。水層を、ジクロロメタン(3×50mL)によって抽出した。合わせた有機物を、水で洗浄し、次いで飽和塩化ナトリウムで洗浄し、その後硫酸ナトリウム上で乾燥させた。乾燥させた有機溶液を濾過し、濾液を減圧下で濃縮し、次いで高真空下で終夜乾燥させた。黄色泡沫を、Biotageクロマトグラフィー(40+Mのカートリッジ;25CV超で0〜5%のメタノール/ジクロロメタン)によって精製して、白色固体として1.24g(66%)の(7)を得た。TLC R(ヘキサン/酢酸エチル、1:2)=0.45;H NMR(CDOD)δ8.60(d、1H)、7.88(m 4H)、7.50(d、2H)、7.36(m、1H)、7.25(m、4H)、7.18(m、1H)、3.93(m、2H)、3.70(m、2H)、3.0〜2.6(m、4H)、1.33(s、9H)、1.30(s、9H);MS(M)=563;HPLC t 9.6分。
3−アミノ−4−フェニル−1−[N−(4−ピリジン−2−イル−ベンジル)−ヒドラジノ]−ブタン−2−オール三塩酸塩(8)
Boc−アザ−isostere(7)(1.2g、2.1mmol)を、1,4−ジオキサン(16mL)に入れて、窒素下で、室温で撹拌した。5分後、4NのHCl(12mL)を、注射器を介して添加した。即時の沈殿物の形成があり、混合物を、窒素下で、室温で撹拌した。約18時間後、減圧下でジオキサンを除去した。黄色残渣を、トルエン(3×25mL)との共沸混合物にして、次いで高真空下で乾燥させた。高真空下で6時間後、0.92g(91%)の(8)を、黄色固体として得た。H NMR(CDOD)δ8.87(d、1H)、8.69(m、1H)、8.42(d、1H)、8.06(m、3H)、7.80(d、2H)、7.28(m、6H)、4.25(m、3H)、3.13(m、2H)、2.88(d、2H);MS(M)=472。
ジ−mPEG −アタザナビルの合成
ジ−mPEG−アタザナビルの合成
100mLのフラスコに、無水ジクロロメタン(3mL)中のmPEG−tert−ロイシン(0.34g、1.05mmol、3.0当量)を入れて、0°に冷却した。次に、TPTU(0.31g、1.05mmol、3.0当量)、およびヒューニッヒ(Hunigs)塩基(0.36mL、2.11mmol、6.0当量)を添加した。濁った溶液を15分間0℃で撹拌し、次いで、固体ジアミノバックボーン三塩酸塩(8)(0.16g、0.35mmol)を添加し、その後ジクロロメタン(3mL)ですすいだ。氷浴を除去し、反応混合物を室温に平衡させた。約20時間後、反応混合物をジクロロメタン(20mL)で希釈した。混合物を、分液漏斗に移し、脱イオン水(50mL)で分離した。水層を、ジクロロメタン(4×30mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。有機層を硫酸ナトリウム上で乾燥させた。乾燥剤を濾過で除去し、濾液を減圧下で濃縮して、黄色油を得た。Biotageを使用して精製を行い(40+Mカートリッジ;勾配溶出:0〜5%のメタノール/ジクロロメタン)、透明な油として0.14g(45%)のジ−mPEG−アタザナビルを得た。TLC R(5%メタノール/ジクロロメタン)=0.22;H NMR(CDCl)δ8.71(d、1H)、7.98(d、2H)、7.81(m、2H)、7.45(d、2H)、7.10〜7.30(m、10H)、6.22(d、1H)、5.35(d、1H)、4.25(m、4H)、4.01(m、4H)、3.50〜3.80(m、24H)、3.38(s、3H)、2.70〜3.0(m、4H)、0.85(d、18H);MS(M)=969;HPLC t 7.85分。(純度96%)。
ジ−mPEG−アタザナビル
100mLのフラスコに、無水ジクロロメタン(10mL)中のmPEG−tert−ロイシン(2.0g、4.88mmol、4.6当量)を入れて、0℃に冷却した。次いで、TPTU(1.45g、4.88mmol、4.6当量)、およびヒューニッヒ(Hunigs)塩基(1.85mL、10.6mmol、10.0当量)を添加した。濁った溶液を15分間0℃で撹拌し、次いで、固体のジアミノバックボーン三塩酸塩(8)(0.50g、1.06mmol)を添加し、その後ジクロロメタン(10mL)ですすいだ。氷浴を除去し、反応混合物を室温に平衡させた。約20時間後、反応混合物をジクロロメタン(40mL)で希釈した。混合物を、分液漏斗に移し、脱イオン水(60mL)で分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。有機層を硫酸ナトリウム上で乾燥させた。乾燥剤を濾過で除去し、濾液を減圧下で濃縮して、黄色油を得た。Biotageを使用して精製を行い(40+Mカートリッジ;勾配溶出:0〜5%のメタノール/ジクロロメタン)、淡黄色油として0.70g(58%)のジ−mPEG−アタザナビルを得た。TLC R(5%メタノール/ジクロロメタン)=0.23;H NMR(CDCl)δ8.60(d、1H)、7.88(d、2H)、7.65(m、2H)、7.38(d、2H)、7.10〜7.25(m、8H)、6.18(d、1H)、5.30(m、2H)、4.15(m、4H)、3.92(m、3H)、3.45〜3.65(m、40H)、3.30(s、3H)、2.65〜2.90(m、4H)、0.80(d、18H);MS(M)=1146;HPLC t 7.72分。(純度98%)。
ジ−mPEG−アタザナビル
100mLのフラスコに、無水ジクロロメタン(3mL)中のmPEG−tert−ロイシン(0.81g、1.78mmol、3.0当量)を入れて、0℃に冷却した。次いで、EDC(0.34g、1.78mmol、3.0当量)、およびHOBT(0.24mL、1.78mmol、3.0当量)を添加した。濁った溶液を15分間0℃で撹拌し、次いで、固体のジアミノバックボーン三塩酸塩(8)(0.28g、0.59mmol)を添加し、その後ジクロロメタン(5mL)ですすいだ。氷浴を除去し、反応混合物を室温に平衡させた。約28時間後、反応混合物をジクロロメタン(35mL)で希釈した。混合物を、分液漏斗に移し、脱イオン水(60mL)で分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。有機層を硫酸ナトリウム上で乾燥させた。乾燥剤を濾過で除去し、濾液を減圧下で濃縮して、黄色油を得た。Biotageを使用して精製を行い(40+Mカートリッジ;勾配溶出:0〜5%のメタノール/ジクロロメタン)、透明な油として0.27g(40%)のジ−mPEG−アタザナビルを得た。TLC R(5%メタノール/ジクロロメタン)=0.17;H NMR(CDCl)δ8.75(d、1H)、78.02(d、2H)、7.85(m、2H)、7.50(d、2H)、7.10〜7.25(m、6H)、6.22(d、1H)、5.40(m、2H)、4.20(m、4H)、4.15(m、3H)、3.52〜3.70(m、48H)、3.38(s、3H)2.75〜2.92(m、4H)、0.85(d、18H);MS(M)=1234;HPLC t 7.70分。(純度96%)。
ジ−mPEG−アタザナビル:100mLのフラスコに、無水ジクロロメタン(10mL)中のmPEG−tert−ロイシン(2.13g、4.29mmol、4.6当量)を入れて、0℃に冷却した。次いで、TPTU(1.28g、4.29mmol、4.6当量)、およびヒューニッヒ(Hunigs)塩基(1.14mL、6.53mmol、7.0当量)を添加した。濁った溶液を15分間0℃で撹拌し、次いで、固体のジアミノバックボーン三塩酸塩(0.44g、0.93mmol)を添加し、その後ジクロロメタン(10mL)ですすいだ。氷浴を除去し、反応混合物を室温に平衡させた。約22時間後、反応混合物をジクロロメタン(40mL)で希釈した。混合物を、分液漏斗に移し、脱イオン水(50mL)で分離した。水層を、ジクロロメタン(4×50mL)によって抽出した。合わせた有機物を、水、飽和重炭酸ナトリウム、および飽和塩化ナトリウムで洗浄した。有機層を硫酸ナトリウム上で乾燥させた。乾燥剤を濾過で除去し、濾液を減圧下で濃縮して、黄色油を得た。Biotageを使用して精製を行い(40+Mカートリッジ、勾配溶出:0〜5%のメタノール/ジクロロメタン)、淡黄色油として0.47g(38%)のジ−mPEG−アタザナビルを得た。H NMR(CDCl)δ8.60(d、1H)、7.90(d、2H)、7.70(m、2H)、7.35(d、2H)、7.10〜7.25(m、8H)、6.12(d、1H)、5.30(m、2H)、4.10(m、4H)、3.92(m、3H)、3.50−3.70(m、56H)、3.28(s、3H)、2.62〜2.90(m、4H)、0.78(d、18H);MS(M)=1321;HPLC t 7.69分。(純度96%)。
実施例5
PEG−ダルナビルの合成−「手法A」

PEG−ダルナビルを、第1の手法を使用して調製した。概略的に、本実施例に適用される手法を以下に示す(概略図中の太字の複合番号は、本実施例5だけの文章に提供される複合番号に対応する)。
L−グロノ−1,4−ラクトン(2)の合成
170mlの水中のL−アスコルビン酸(23.1g、0.13mol)の溶液を、Parr水素化装置中の10%のPd/C(2.2g)を使用して、24時間、50℃および50psiの水素圧力で水素化した。触媒を濾過によって除去し、水を真空中で除去して、23.2g(0.13mol、99%)の白色の結晶性固体(0.13mol、99%)を得た。メタノール−酢酸エチルからの再結晶で、22.0gの所望の生成物を得た。H NMR(DMSO):δ5.80(d、1H)、5.30(d、1H)、4.95(d、1H)、4.65(t、1H)、4.45(m、1H)、4.23〜4.15(m、2H)、3.75(m、1H)、3.48(m、2H)。
5,6−イソプロピリデン−L−グロノ−1,4−ラクトン(3)の合成
ジメチルホルムアミド(100ml)中のL−グロノ−1,4−ラクトン(11.08g、62.0mmol)の溶液を10℃に冷却し、p−トルエンスルホン酸(0.09g、0.50mmol)を撹拌しながら少量ずつ添加した。得られた溶液に、イソプロペニルメチルエーテル(5.83g、80.5mmol)を、10℃で滴下した。冷却浴を除去し、溶液を、室温で24時間さらに撹拌した。次いで、溶液を、炭酸ナトリウム十水和物(11g)で処理し、懸濁液を2時間激しく撹拌した。固体を濾過によって取り出し、回転蒸発器を使用して母液(濾液)を濃縮した。黄色の残渣を、トルエン(25ml)から再結晶化させた。生成物を、吸引によって単離し、ヘキサン/エタノール(9:1、50ml)で洗浄し、乾燥させた。無色の結晶(3)の収率:11.22g(82.7%)。H NMR(DMSO):δ5.87(d、1H)、5.42(br.、1H)、4.43(t、1H)、4.41〜4.21(m、3H)、4.06(m、1H)、3.75(m、1H)、1.35(s、3H)、1.30(s、3H)。
E−R−3−(2,2−ジメチル−[1,3]ジオキソラン−4−イル)−アクリル酸エチルエステル(5)の合成
KIO(10.60g、0.046mol、2.3当量)およびKHCO(4.60g、0.046mol、2.3当量)の、水中の十分に撹拌したスラリ(24g)に、水(2.70g)中のL−5,6−O−イソプロピリデン−グロノ−1,4−ラクトン(4.37g、0.020mol)およびTHF(22.90g)の溶液を、32〜34℃で3時間にわたって滴下した。反応混合物を、32℃で4.5時間撹拌した。反応混合物を、5℃に冷却し、この温度で14時間保持した。固体を濾過によって取り出し、ケーキを再びスラリ状にすることによって、THF(3.0mL)および他の分量のTHF(4.0mL)で洗浄した。濾液に、トリエチルホスホノ酢酸(TEPA、3.90g、0.017モル)を、撹拌しながら、13〜17℃で25分にわたって滴下した。その後、KCO(16.80g)を、17〜25℃で30分にわたって少量ずつ添加した。反応混合物を、さらに20℃で17時間撹拌した。水相およびTHF位相を分離し、水相は、100mLのトルエンで2回を抽出した。合わせたTHF相およびトルエン相を真空濃縮し、2.80gの淡黄色の液体を得た。H NMRは、E−R−3−(2,2−ジメチル−[1,3]ジオキソラン−4−イル)−アクリル酸エチルエステル(5、78%)の存在を示した。したがって、(5)の粗製収率は、(3)に基づいて70%であった。上述の残渣のうち、0.50gを、溶離剤として3/7(v/v)酢酸エチル/n−ヘプタンを使用して、シリカゲル上で、フラッシュクロマトグラフィーによって精製した。これは、純度96%の0.37gの(5)を生じた。H NMR(300MHz、CDCl)6.79(1H、dd、J=16.0、5.3Hz)、6.01(1H、dd、J=16.0、0.9Hz)、4.58(1H、q、J=6.0Hz)、4.16〜4.06(3H、m)、3.58(1H、t、J=7.6Hz)、1.35(3H、s)、1.31(3H、s)、1.20(3H、t、J=7.0Hz)。13C NMR(75MHz、CDCl)166.0(C)、144.7(CH)、122.4(CH)、110.2(C)、75.0(CH)、68.8(CH)、60.6(CH)、26.5(CH)、25.8(CH)、14.2(CH)。LC−MS:C1017(M+H)、計算値:201.1、実測値:201.1。
(3aS,4S,6aR)−4−メトキシ−テトラヒドロ−フロ[3,4−b]フラン−2(3H)−オン(α−7)
1.75gのクロマトグラフィーを行っていない(5)(78重量%純粋、1.37g、6.80mmol)に、5.0mLのメタノール中のニトロメタン(458mg、7.50mmol)を添加し、溶液を10℃に冷却した。その後、DBU(1.03g、6.80mmol)を、10〜21℃で35分にわたって滴下した。20℃で18時間撹拌した後、結果として生じた暗赤色溶液を0℃に冷却し、NaOMe(15mLのメタノール中0.50Mの溶液、7.50mmol)を、0℃で30分にわたって滴下した。0℃で30分撹拌した後、反応混合物を、メタノール(2.43g)中のHSO(2.43g、96%、23.80mmol)の溶液中に、激しく撹拌しながら3時間にわたって滴下して、0〜5℃で反応停止した。0〜2℃で2時間撹拌した後、反応混合物を、水(6.80mL)中のKHCO(3.53g)の撹拌したスラリ中に、1時間にわたって滴下して、0〜6℃で反応停止した。HSO(96%)によって、pHを0℃で4.1に調整した。20℃まで加熱した後、濾過によって塩を除去し、酢酸エチル(3×3.75mL)で洗浄した。洗浄液は、後で抽出に使用した。濾過の母液を真空濃縮して、メタノールを除去した。結果として生じた残渣に、水(0.80g)を添加し、HSO(96%)によって、pHを4.1に調整した。結果として生じた水性溶液を、酢酸エチル(7.0mL、4×5.0mL)によって抽出した。合わせた有機相を、35〜40℃で真空濃縮した。揮発物を、イソプロパノール(3×1.40g)で共蒸発させて、(α−7)および(β−7)の粗混合物から成る残渣(1.46g)を得、それを70℃でイソプロパノール(2.02g)中に溶解した。不溶性物質を除去し、濾液を冷却して、(α−7)を自発結晶化させた。結晶を、濾過によって単離し、イソプロパノール(2×1.0mL、0℃)で洗浄し、一定重量が達成されるまで40℃で真空乾燥させ、灰色がかった白色の結晶性生成物[390mg、(5)に基づいて37%の収率]として(α−7)を得た。純度は、99%超であった。第1の(α−7)結晶化の母液および洗浄液を真空濃縮し、メタノール(1.20mL)を添加し、結果として生じた混合物を真空濃縮した。メタノール(1.20mL)をもう一度添加し、混合物を再び真空濃縮した。残渣に、メタノール(0.45g)およびメタンスルホン酸(MeSOH、0.027g、0.28mmol)を添加し、溶液を加熱還流した。1時間の還流(60〜65℃)の後、溶液を、33℃に冷却し、トリエチルアミン(0.029g、MeSOHに基づいて1.05当量)で中性化し、真空濃縮した。結果として生じた残渣にイソプロパノール(1.20mL)を添加し、混合物を真空濃縮して、0.88gの粗生成物を得た。残渣を、47℃でイソプロパノール(0.37g)中に溶解した。結果として生じた溶液を、2.5時間にわたって2℃まで冷却した。結晶性生成物を、濾過によって単離し、イソプロパノール(3×0.20mL、0℃)で洗浄し、一定重量が達成されるまで40℃で真空乾燥させ、オフホワイトの結晶生成物(0.098g)として第2の収穫物(α−7)を得た。純度は、99%超であった。したがって、(5)に基づいた(αー7)の第1および第2の収穫物の総収率は、46%であった。
(α−7)および(β−7)の化合物のGC検定を、アジレント(Agilent)6890 GC(EPC)および25mmのCP−Sil 5 CBカラム(品番CP7680(Varian)または同等物)を用いて、5.1kPaのカラムヘッド圧力を用いた5μmの膜厚、40mL/分の分流、および250℃の噴射温度で行った。使用した傾斜は、初期温度50℃(5分)、速度10℃/分、最終温度250℃(15分)であった。検出は、250℃でFID検出器によって行った。保持時間は、クロロベンゼン(内部標準)が17.0分、(α−7)が24.9分、(β−7)が25.5分であった。(β−7)の保持時間は、純粋な(α−7)(上述のように調製したもの)を、周囲温度で16時間にわたって、0.2当量のMeSOHを使用して、メタノール中の(α−7)および(β−7)が約3:1の混合物にエピマー化させることによって決定した。(β−7)の定量化に関しては、(β−7)の応答係数が(α−7)のものと同一であると仮定した。H NMR(300MHz、CDCl)5.15(1H、dd、J=7.4、3.8Hz)、4.88(1H、s)、4.10(1H、d、J=11.1Hz)、3.96(1H、dd、J=10.9、3.8Hz)、3.33(3H、s)、3.10〜2.99(1H、m)、2.84(1H、dd、J=18.2、11.0Hz)、2.51(1H、dd、J=18.3、3.7Hz)。13C NMR(75MHz、CDCl)175.9(C)、110.0(CH)、83.0(CH)、70.6(CH)、54.5(CH)、45.1(CH)、31.7(CH)。LC−MS:C11(M+H)、計算値:159.06、実測値:159.06。純度は99%超(GCによって判定)。
(3R,3aS,6aR)−ヘキサヒドロ−フロ[2,3−b]フラン−3−オール(8)
THF(8.0g)中の(α−7)(1.42g、9.0mmol)の溶液に、LiBH(2.16g、1.1当量)の10%溶液を30分にわたって滴下し、反応混合物を、50℃で2.5時間撹拌した。得られた懸濁液を、−10℃に冷却し、32%水性HCl溶液(1.36g、0.012mol、LiBHに基づいて1.3当量)を、温度を−5℃未満に保持しながら、4時間にわたって滴下した。−10℃でさらに2時間撹拌した後、トリエチルアミン(1.325g、0.013mol、HClに基づいて1.1当量)を、温度を0℃未満に保持しながら、1時間にわたって滴下した。反応混合物を加温し、残渣重量が約5.0gになるように大気圧で濃縮し、残渣を酢酸エチル(18.0g)に入れ、残渣重量が約5.0gになるようにもう一度大気圧で濃縮した。残渣を酢酸エチル(18.0g)に入れて、15分間還流で撹拌し、0℃まで冷却した。濾過によって塩を除去し、低温(0℃)の酢酸エチル(2×1.5g)で洗浄した。合わせた濾液を、0.94gの(8)[7.23mmol、(α−7)に基づいて80%、H NMRに基づいて純度87重量%]を含有する無色油になるように、40℃未満で真空濃縮した。油を、溶離剤(R=0.56)として酢酸エチルを使用して、シリカゲル上でフラッシュクロマトグラフィーによって精製した。これは、(α−7)に基づいて76%の収率に対応する、純度99%超の0.89g(6.85mmol)の(8)を生じた。H NMR(300MHz、DMSO−d)5.52(1H、d、J=4.8Hz)、5.14(1H、d、J=4.5Hz)、4.27〜4.17(1H、m)、3.84〜3.74(2H、m)、3.72〜3.62(1H、m)、3.33(1H、dd、J=22.6、14.1Hz)、2.77〜2.66(1H、m)、2.24〜2.14(1H、m)、1.75〜1.59(1H、m)。13C NMR(75MHz、DMSO−d)108.8(CH)、72.1(CH)、69.4(CH)、68.8(CH)、45.8(CH)2、4.6(CH)。H NMR(300MHz、CDCl)5.62(1H、d、J=4.9Hz)、4.36(1H、q、J=7.2Hz)、3.94〜3.77(3H、m)、3.52(1H、dd、J=8.9、7.1Hz)、3.20(1H、s)、2.84〜2.73(1H、m)、2.30〜2.20(1H、m)、1.87〜1.72(1H、m)。13C NMR(75MHz、CDCl)109.3(CH)、72.7(CH)、70.4(CH)、69.7(CH)、46.3(CH)、24.7(CH)。GM−CS:C11(M+H)、計算値:131.0、実測値:131.0。純度は99%超(GCによって判定)。8の鏡像体過剰率の判定は、60mm、内径0.25mm、膜厚0.25μmを有するHP 5890 GCおよびカラムのSupelco 24305 ベータデクス(Betadex)を用いて、30psiのカラムヘッド圧、カラム流量1.4mL/分、分流37.5mL/分および噴射温度250℃で、実施した。使用した傾斜は、初期温度80℃(1分)、速度4℃/分、最終温度180℃(5分)であった。検出は、250℃の温度でFID検出器によって行った。保持時間は、(8)27.1分、(3S,3aR,6aS)−ヘキサヒドロ−フロ[2,3−b]フラン−3−オール[(8)の鏡像体]27.3分であった。鏡像体過剰率の判定に必要とされるラセミ(8)は、出発材料としてラセミ(α−7)を使用したことを除いて、光学活性(8)に対して上述したものと同じ手順に従って調製した。
化合物(9)の合成
20mLのCHCN中の化合物(8)(500mg、3.85mmol)およびN,N−ジスクシンイミジル(1.47g、5.75mmol)の溶液に、トリエチルアミン(1.10mL、10.40mmol)を添加した。結果として生じた溶液を、室温で7時間撹拌した。反応混合物を、減圧下で濃縮した。結果として生じた残渣を、20mLの飽和KHCOで処理し、その後、酢酸エチル(150mL×3)によって抽出した。有機相を、水(150mL×3)で洗浄して、NaSO上で乾燥させた。溶媒を除去し、真空下で乾燥させた後、化合物(9)(827mg、収率79%)を得た。H NMR(300MHz、CDCl)2.00(m、1H)。2.15(m、1H)、2.87(br.、4H)、3.14(m、1H)、3.96(m、2H)、4.03(m、1H)、4.12(m、1H)、5.28(m、1H)、5.76(d、1H)。
化合物(11)の合成
2−プロパノール(40mL)中の化合物(10)(962mg、3.65mmol)の撹拌溶液に、室温で、イソブチルアミン(1.60g、21.92mmol)を添加した。結果として生じた溶液を、75℃で6時間反応させた。この期間の後、反応混合物を減圧下で濃縮した。結果として生じた残渣を、5mlの2−プロパノール中に溶解し、減圧下で再び濃縮した。所望の生成物を、白色固体として得た(1.17g、収率:95%);H NMR(300MHz、CDCl)δ0.91(d、3H)、0.93(d、3H)、1.37(s、9H)、1.72(m、1H)、2.42(d、2H)、2.70(d、2H)、2.86(m、1H)、3.01(dd、1H)、3.48(m、1H)、3.84(br.、1H)、4.74(d、1H)、7.20〜7.33(m、5H);LC−MS(m/z)、計算値:336.25、実測値:337.25[M+H]
化合物(12)の合成
CHCl(30mL)および飽和含水重炭酸ナトリウム(20mL)の混合物中の、上述のように調製したアミンの撹拌溶液(1.16g、3.48mmol)に、23℃で、4−ニトロベンゼンスルホニルクロリド(1.16g、5.21mmol)を添加した。結果として生じた混合物を、室温で16時間撹拌した。次いで、混合物を、CHClによって抽出し、無水NaSO上で乾燥させた。溶媒を減圧下で除去し、その後、シリカゲル(溶離剤として、CHCl中の3%EtOAc)上でカラムクロマトグラフィーを行い、白色の非晶質固体として化合物(12)(1.29g、72%)を得た。H NMR(300MHz、CDCl)0.86(d、3H)、0.87(d、3H)、1.36(s、9H)、1.84〜1.92(m、1H)、2.86〜2.95(m、2H)、2.98(d、2H)、3.19(d、2H)、3.75〜3.82(m、2H)、4.64(d、1H)、7.22〜7.32(m、5H)、7.95(d、2H)、8.32(d、2H)LC−MS(m/z)、計算値:521.22、実測値:544.3[M+Na]
化合物(13)の合成
EtOAc(20mL)中の化合物(12)(1.28g、2.40mmol)の溶液に、Pd/C(100mg)を添加した。混合物を、室温で10時間、H(15psi)下で撹拌した。反応混合物をセライト上で濾過し、濾過ケーキをEtOAcで洗浄した。溶媒を減圧下で除去し、その後、シリカゲル(溶離剤として、CHCl中の7%EtOAc)上でカラムクロマトグラフィーを行い、白色固体として対応する芳香族アミン(1.16g、98%)を得た。H NMR(300MHz、CDCl)0.86(d、3H)、0.89(d、3H)、1.34(s、9H)、1.86(m、1H)、2.77(dd、1H)、2.89〜3.15(m、5H)、3.85(br.、2H)、4.05(br.、1H)、4.17(s、2H)、4.65(br.、1H)、6.71(d、2H)、7.19〜7.30(m、5H)、7.58(d、2H);LC−MS(m/z)、計算値:491.3、実測値:[M+H]、514.23[M+Na]
化合物(16)の合成(16a、16b、および16cのための一般的な手順)
CHOH(10mL)中の化合物(13)(98mg、0.20mmol)およびmPEG−CHO(n=3、5、または7、別々に実行)(0.30mmol)の溶液を、共沸状態下で、85℃で90分撹拌した(4.0mlのCHOHを除去)。この期間の後、反応混合物を室温に冷却し、水素化ホウ素ナトリウム(20当量)を少量ずつ添加した。混合物を50℃で2時間撹拌し、次いで、反応物を重炭酸ナトリウムによって反応停止した。150mlのDCMを添加した。溶液を、HO(3×150ml)で洗浄した。有機相を、硫酸ナトリウム上で乾燥させ、その後、減圧下で濃縮した。残渣を、シリカゲル(溶離剤として、CHCl中の2%EtOAc)上でカラムクロマトグラフィーを行って精製して、無色油として、それぞれ化合物(16a)、(16b)、または(16c)(収率70〜80%)を得た。化合物(16a)(n=3):H NMR(300MHz、CDCl)0.86(d、3H)、0.89(d、3H)、1.33(s、9H)、1.82(m、1H)、2.77(dd、1H)、2.89〜2.92(m、2H)、2.99〜3.11(m、3H)、3.75〜3.80(m、2H)、3.32(m、2H)、3.38(s、3H)、3.57(m、2H)、3.60〜3.90(m、11H)、4.04(br.、1H)、4.62(d、1H)、4.85(t、1H)、6.60(d、2H)、7.19〜7.30(m、5H)、7.54(d、2H);LC−MS(m/z)、計算値:637.3、実測値:638.3[M+H]。化合物(16b)(n=5):H NMR(300MHz、CDCl)0.86(d、3H)、0.89(d、3H)、1.34(s、9H)、1.80〜1.86(m、1H)、2.77(dd、1H)2.89〜2.92(m、3H)、2.99〜3.11(m、2H)、3.32(m、2H)、3.36(s、3H)、3.54(m、2H)、3.58〜3.90(m、19H)、4.65(d、1H)、4.98(t、1H)、6.59(d、2H)、7.19〜7.30(m、5H)、7.54(d、2H)。化合物(16c)(n=7):H NMR(300MHz、CDCl)0.86(d、3H)、0.89(d、3H)、1.34(s、9H)、1.80〜1.86(m、1H)、2.77(dd、1H)、2.89〜3.11(m、5H)、3.32(m、2H)、3.36(s、3H)、3.54(m、2H)、3.58〜3.90(m、27H)、4.65(d、1H)、4.98(t、1H)、6.59(d、2H)、7.19〜7.30(m、5H)、7.54(d、2H)。
化合物(17)の合成(17a、17b、および17cのための一般的な手順)
CHCl(4mL)中の30%トリフルオロ酢酸混合物中の、化合物(17a)、(17b)、または(17c)(それぞれ別個に実行)(0.151mmol)の溶液を、60分間撹拌した。この期間の後、反応混合物を減圧下で濃縮し、結果として生じた残渣をCHCl(5.0mL)中に再溶解した。この溶液に、化合物9(45mg、0.17mmol)およびトリエチルアミン(0.155mL、1.51mmol)を添加した。結果として生じた混合物を2時間撹拌した。次いで、反応混合物を減圧下で濃縮し、残渣を、シリカゲル(溶離剤として、CHCl中の2%MeOH)上でカラムクロマトグラフィーを行って精製し、油として、それぞれ化合物(17a)、(17b)、および(17c)(収率:80〜89%)を得た。化合物(17a)(n=3):H NMR(300MHz、CDCl)0.87(d、3H)、0.93(d、3H)、1.42〜1.46(m、1H)、1.57〜1.65(m、1H)、1.79〜1.85(m、1H)、2.75〜2.81(m、2H)、2.87〜2.98(m、3H)、3.05〜3.16(m、2H)、3.34(m、2H)、3.38(s、3H)、3.58(m、2H)、3.64〜3.74(m、10H)、3.82〜4.00(m、5H)、4.97〜5.01(m、2H)、5.63(d、1H)、6.67(d、2H)、7.18〜7.28(m、5H)、7.53(d、2H);LC−MS(m/z)、計算値:693.3、実測値:694.3[M+H]。化合物(17b)(n=5):H NMR(300MHz、CDCl)0.87(d、3H)、0.93(d、3H)、1.46(m、1H)、1.60(m、1H)、1.82(m、1H)、2.75〜2.81(m、2H)、2.87〜2.98(m、3H)、3.05〜3.16(m、2H)、3.32(m、2H)、3.36(s、3H)、3.54(m、2H)、3.64〜3.74(m、18H)、3.82〜3.92(m、5H)、4.97〜5.01(m、2H)、5.63(d、1H)、6.67(d、2H)、7.18〜7.28(m、5H)、7.54(d、2H);LC−MS(m/z)、計算値:781.4、実測値:782.5[M+H]。化合物(17c)(n=7):H NMR(300MHz、CDCl)0.87(d、3H)、0.92(d、3H)、1.46(m、1H)、1.60(m、1H)、1.82(m、1H)、2.75〜2.81(m、2H)、2.87〜2.98(m、3H)、3.05〜3.16(m、2H)、3.30(m、2H)、3.36(s、3H)、3.54(m、2H)、3.64〜3.74(m、26H)、3.82〜3.92(m、5H)、4.97〜5.05(m、3H)、5.63(d、1H)、6.62(d、2H)、7.18〜7.28(m、5H)、7.53(d、2H);LC−MS(m/z)、計算値:869.4、実測値:870.3[M+H]
実施例6
PEG−ダルナビルの合成−「手法B」

PEG−ダルナビルを、第2の手法を使用して調製した。概略的に、本実施例に適用される手法を以下に示す(概略図中の太字の複合番号は、本実施例6だけの文章に提供される複合番号に対応する)。
化合物(18)の合成
2−プロパノール(10mL)中の化合物(10)(264mg、1.0mmol)[実施例12における化合物(10)の合成手順に従って調製]の撹拌溶液に、23℃で、mPEG−NH(489mg、3.0mmol)を添加した。結果として生じた混合物を、75℃で6時間撹拌した。この期間の後、反応混合物を減圧下で濃縮した。残渣を、シリカゲル(Biotage、CHOH/DCM、4〜15%のCHOH、20CV)上でカラムクロマトグラフィーを行って精製した。390mgの対応するアミン(18)を、粘着性の油として得た(収率91.5%)。H NMR(300MHz、CDCl)1.35(s、9H)、1.85〜1.89(m、1H)、2.70(m,1H)、2.86(m、4H)、3.00(dd、1H)、3.35(s、3H)、3.54〜3.75(m、10H)、3.85(m、1H)、4.70(d、1H)、7.10〜7.40(m、5H);LC−MS(m/z)、計算値:426.3、実測値:427.2[M+H]
化合物(19)の合成
CHCl(15mL)および飽和水性重炭酸ナトリウム(10mL)の混合物中の、上述のように調製したアミン(18)(390mg、0.92mmol)の撹拌溶液に、23℃で、4−ニトロベンゼンスルホニルクロリド(304mg、1.38mmol)を添加した。結果として生じた混合物を、室温で16時間撹拌した。次いで、混合物を、CHClによって抽出し、無水NaSO上で乾燥させた。溶媒を減圧下で除去し、その後、シリカゲル(Biotage、DCM/CHOH、CHOH:1〜6%、20CV)上でカラムクロマトグラフィーを行い、粘着性の油として所望の生成物(19)(455mg、81%)を得た。H NMR(300MHz、CDCl)1.37(s、9H)、2.85(m、1H)、3.10(m、2H)、3.30(m、1H)、3.41(m、2H)、3.38(s(3H))、3.50〜3.85(m、11H)、3.90(m、1H)、4.45(d、1H)、4.95(d、1H)、7.22〜7.32(m、5H)、7.95(d、2H)、8.32(d、2H)。LC−MS(m/z)、計算値:611.3、実測値:612.3[M+H]
化合物(20)の合成
EtOAc(10mL)中の化合物(19)(455mg、0.74mmol)の溶液に、Pd/C(40mg、10%)を添加した。混合物を、室温で4.0時間、H雰囲気(30psi)下で撹拌した。反応混合物をセライト上で濾過し、濾過ケーキをEtOAcで洗浄した。溶媒を減圧下で除去し、白色固体として対応する芳香族アミン(420mg、98%)を得た。H NMR(300MHz、CDCl)1.36(s、9H)、2.90〜3.10(m、3H)、3.10〜3.30(m、3H)、3.37(s、3H)、3.56(m、2H)、3.63〜3.90(m、11H)、4.54(br.、1H)、4.88(d、1H)、6.65(d、2H)、7.19〜7.30(m、5H)、7.53(d、2H);LC−MS(m/z)、計算値:581.3、実測値:582.3[M+H]
化合物(21)の合成
CHCl(4mL)中の30%トリフルオロ酢酸中の化合物(20)(116mg、0.2mmol)の溶液を、室温で1.0時間撹拌した。この期間の後、反応混合物を減圧下で濃縮し、残渣をCHCl(5.0mL)中に再溶解した。この溶液に、(3R,3aS,6aR)−3ヒドロキシヘキサヒドロフロ[2,3−b]フラニルスクシンイミジル炭酸塩[化合物(9)](54mg、0.2mmol)およびトリエチルアミン(0.5mL)を添加した。結果として生じた混合物を2時間撹拌した。その時点で、溶液を、減圧下で濃縮した。結果として生じた残渣を、カラムクロマトグラフィー(Biotage、DCM/CHOH、CHOH:2〜6%、20CV)によって精製して、油として化合物(21)(102mg、80%)を得た。H NMR(300MHz、CDCl)1.40〜1.60(m、1H)、1.60〜1.80(m、1H)、1.90(br.、1H)、2.75(m、1H)、2.90(m、1H)、3.00〜3.15(m、2H)、3.15〜3.30(m、3H)、3.37(s、3H)、3.50〜3.85(m、12H)、3.85〜3.98(m、4H)、4.23(br.、2H)、4.50(br.、1H)、5.02(m、1H)、5.40(d、1H)、5.64(d、1H)、6.67(d、2H、J)8.6Hz、7.18〜7.28(m、5H)、7.51(d、2H);LC−MS(m/z)、計算値:637.2、実測値:638.2[M+H]
実施例7
PEG−ダルナビルの合成−「手法C」

PEG−ダルナビルを、第3の手法を使用して調製した。概略的に、本実施例に適用される手法を以下に示す(概略図中の太字の複合番号は、本実施例7だけの文章に提供される複合番号に対応する)。
化合物(23)の合成
Boc−Tyr−OMe[化合物(22)、10.33g、0.035mol]およびアセトン(45mL)中の炭酸カリウム(7.20g、0.052mol)の撹拌溶液に、BnBr(6.00g、0.035mol)を添加した。結果として生じた混合物を、60℃で16時間撹拌した。この期間の後、固体を濾過によって除去し、反応混合物を減圧下で濃縮した。結果として生じた残渣を、カラムクロマトグラフィー(Biotage:DCM/CHOH、CHOH、0〜6%、15CV)によって精製した。生成物(23)を、白色固体として得た(13.0g、96%)。H NMR(300MHz、CDCl)1.44(s、9H)、3.05(m、2H)、3.72(s、3H)、4.55(m、1H)、5.00(m、1H)、5.05(s、2H)、6.90(d、2H)、7.10(d、2H)、7.20〜7.38(m、5H);LC−MS(m/z)、計算値:385.2、実測値:408.2[M+Na]
化合物(25)の合成
化合物(23)(12.74g、0.033mol)および無水THF(150ml)中のクロロヨードメタン(23.35g、0.132mol)を、−78℃に冷却し、LDA(83ml、0.165mol)を滴下した。添加の終了後、溶液を、−75℃でさらに15分間撹拌した。酢酸性溶液(20mlのTHFおよび20mlのHOAc)を、温度を−70℃に保持しながら滴下した。200mlのトルエンを添加した後、撹拌を15分間継続し、次いで、100mlの1%HClを添加した。有機相を、0.5MのNaHCO(10ml)で洗浄して分離した。溶液に、100mlのエタノールを添加し、−78℃に冷却した。NaBH(6.3g、0.17mol)を添加した。混合物を−78℃で1時間撹拌し、次いで、反応物を100mlの飽和KHSOの添加によって反応停止した。有機相を、水で洗浄し、NaSO上で乾燥させた。溶媒を除去した後に、結果として生じた固体を、ヘキサンで洗浄し、酢酸エチルから再結晶化した。化合物(25a)[3.5g、化合物(23)に基づいて30%]を、黄色固体として得た。H NMR(300MHz、CDCl)1.39(s、9H)、2.91(m、2H)、3.17(br.、1H)、3.57(m、1H)、3.67(m、1H)、3.84(m、2H)、4.57(m、1H)、5.05(s、2H)、6.92(d、2H)、7.13(d、2H)7.20〜7.38(m、5H);LC−MS(m/z)、計算値:405.2、実測値:428.2[M+Na]
化合物(26)の合成
化合物(25a)(2.18g、5.38mmol)を、メタノール(5.92mmol、59.2ml)中の水酸化カリウムの0.1N溶液中に懸濁した。結果として生じた混合物を、50℃で1.5時間撹拌した。溶媒を減圧下で除去し、固体を100mlのDCM中に溶解し、その後、水(100mL×3)で洗浄した。溶液を乾燥させ、溶媒を減圧下で除去した。所望の生成物を、黄色固体(1.74g、88%)として得た。H NMR(300MHz、CDCl)1.40(s、9H)、2.77(m、3H)、2.92(m、2H)、3.65(br.、1H)、4.44(br.1H)、5.05(s、2H)、6.92(d、2H)、7.15(d、2H)、7.26〜7.38(m、5H)LC−MS(m/z)、計算値:369.2、実測値:370.2[M+H]、392.2[M+Na]
化合物(27)および(28)の合成
2−プロパノール(60mL)中の化合物(26)(1.74g、4.80mmol)の撹拌溶液に、23℃で、イソブチルアミン(2.20g、30mmol)を添加した。結果として生じた混合物を、75℃で6時間反応させた。この期間の後、反応混合物を減圧下で濃縮した。残渣を、5mlの2−プロパノール中に溶解し、減圧下で再び濃縮した。化合物(27)を黄色固体として得て(1.97g)、さらなる精製を行わずに次の反応において使用した。
CHCl(40mL)および飽和水性重炭酸ナトリウム(30mL)の混合物中の化合物(27)(1.97g、4.45mmol)の撹拌溶液に、23℃で、4−ニトロベンゼンスルホニルクロリド(1.48g、6.67mmol)を添加した。結果として生じた混合物を、室温で16時間撹拌した。次いで、混合物をCHCl(150mL×2)によって抽出した。有機相を、水(150mL×3)で洗浄し、無水NaSO上で乾燥させた。溶媒を減圧下で除去し、その後、カラムクロマトグラフィー(Biotage:DCM/CHOH、CHOH、1〜6%、15CV、6〜8%、5CV)を行い、白色の非晶質固体として化合物(28)(2.14g、77%)を得た。H NMR(500MHz、CDCl)0.87(d、3H)、0.89(d、3H)、1.37(s、9H)、1.87(m、1H)、2.86(m、2H)、2.99(d、2H)、3.19(d、2H)、3.72(m、1H)、3.79(m、2H)、4.61(d、1H)、5.05(s、2H)、6.90(d、2H)、7.14(d、2H)、7.35(m、1H)、7.44(m、4H)、7.95(d、2H)、8.34(d、2H);LC−MS(m/z)、計算値:627.26、実測値:650.3[M+Na]
化合物(29)の合成
THF(20mL)中の化合物(28)(2.14g、3.41mmol)の溶液に、Pd/C(428mg)を添加した。混合物を、室温で48.0時間、H雰囲気(45psi)下で撹拌した。反応混合物をセライト上で濾過し、濾過ケーキをTHFで洗浄した。溶媒を減圧下で除去し、白色固体として対応する芳香族アミン(1.48g、86%)を得た。H NMR(500MHz、CDCl)0.86(d、3H)、0.90(d、3H)、1.36(s、9H)、1.85(m、1H)、2.77(m、1H)、2.84(m、1H)、2.90(m、2H)、2.92(d、1H)、3.07(m、1H)、3.71(m、1H)、3.77(m、1H)、4.16(br.、2H)、4.72(d、1H)、6.66(d、2H)、6.75(d、2H)、7.09(d、2H)、7.52(d、2H)。
化合物(30a)、(30b)、および(30c)の合成のための一般的な手順
アセトン(10mL)中の化合物(29)(152mg、0.30mmol)およびmPEG−Br(n=3、5、および7、3つ別々に実行)(0.45mmol)の溶液を、70℃で20時間撹拌した。この期間の後、反応混合物を室温に冷却し、150mLのDCMを添加した。溶液を水(150mL×2)で洗浄した。有機相を、硫酸ナトリウム上で乾燥させ、次いで、減圧下で濃縮した。結果として生じた残渣を、カラムクロマトグラフィー(Biotage:DCM/CHOH、CHOH:3〜6%、15CV、6〜8%、5CV)によって精製して、無色油としてそれぞれ化合物(30a)、(30b)、および(30c)(収率70〜80%)を得た。化合物(30a)(n=3):H NMR(500MHz、CDCl)0.83(d、3H)、0.89(d、3H)、1.36(s、9H)、1.82(m、1H)、2.62(m、1H)、2.69(m、1H)、2.86(m、1H)、2.92(m、3H)、3.36(s、3H)、3.53(m、2H)、3.62(m、2H)、3.68(m、2H)、3.74(m、4H)、3.85(m、3H)、4.08(m、2H)、4.40(br.2H)、4.77(d、1H)、6.62(d、2H)、6.82(d、2H)、7.14(d、2H)、7.38(d、2H);LC−MS(m/z)、計算値:653.3、実測値:654.4[M+H]。化合物(30b)(n=5):H NMR(500MHz、CDCl)0.83(d、3H)、0.89(d、3H)、1.37(s、9H)、1.81(m、1H)、2.60(m、2H)、2.85(m、1H)、2.92(m、3H)、3.35(s、3H)、3.52(m、2H)、3.61〜3.65(m、11H)、3.70(m、2H)、3.75(m、5H)、3.85(m、2H)、4.07(m、2H)、4.49(br.、2H)、4.73(d、1H)、6.62(d、2H)、6.82(d、2H)、7.15(d、2H)、7.34(d、2H);LC−MS(m/z)、計算値:741.4、実測値:742.5[M+H]、764.4[M+Na]。化合物(30c)(n=7):H NMR(500MHz、CDCl)0.82(d、3H)、0.89(d、3H)、1.36(s、9H)、1.80(m、1H)、2.85(m、1H)、2.92(m、3H)、3.35(s、3H)、3.52(m、2H)、3.61〜3.65(m、19H)、3.70(m、2H)、3.75(m、5H)、3.85(m、2H)、4.07(m、2H)、4.49(s、2H)、4.73(d、1H)、6.61(d、2H)、6.82(d、2H)、7.14(d、2H)、7.35(d、2H);LC−MS(m/z)、計算値:829.4、実測値:830.5[M+H]
化合物(31a)、(31b)、および(31c)の合成のための一般的な手順
CHCl(4.0mL)中の30%トリフルオロ酢酸の混合物中の化合物(30a)、(30b)、および(30c)(0.20mmol、3つ別々に実行)を、室温で40分間撹拌した。この期間の後、反応混合物を減圧下で濃縮し、残渣をCHCl(5.0mL)中に再溶解した。この溶液に、(3R,3aS,6aR)−3ヒドロキシヘキサヒドロフロ[2,3−b]フラニルスクシンイミジル炭酸塩(54mg、0.20mmol)およびトリエチルアミン(0.155mL、1.51mmol)を添加した。結果として生じた混合物を。1時間撹拌した。次いで、反応混合物を減圧下で濃縮し、残渣を、カラムクロマトグラフィー(Biotage、DCM/CHOH、CHOH:0〜4%、20CV、4〜6%、10CV)によって精製して、それぞれ無色油状物として化合物(31a)、(31b)、および(31c)(収率:75〜80%)を得た。化合物(31a)(n=3):H NMR(500MHz、CDCl)0.83(d、3H)、0.88(d、3H)、1.58(m、1H)、1.64(m、1H)、1.77(m、1H)、2.65(m、1H)、2.72(m、2H)、2.90(m、2H)、2.98(m、2H)、3.35(s、3H)、3.52(m、2H)、3.60(m、2H)、3.64(m、3H)、3.69(m、4H)、3.81(m、5H)、3.92(m、1H)、4.03(m、2H)、4.46(s、2H)、5.00(m、1H)、5.16(d、1H)、5.62(d、1H)、6.60(d、2H)、6.78(d、2H)7、.08(d、2H)、7.38(d、2H);LC−MS(m/z)、計算値:709.3、実測値:710.3[M+H]。化合物(31b)(n=5):H NMR(500MHz、CDCl)0.86(d、3H)、0.92(d、3H)、1.71〜1.85(m、3H)、2.65(m、2H)、2.78(m、1H)、2.97(m、4H)、3.36(s、3H)、3.54(m、2H)、3.64(m、10H)、3.68(m、3H)、3.75(m、4H)、3.69(m、4H)、3.85(m、4H)、3.90(m、1H)、4.00(m、1H)、4.10(m、2H)、4.50(br.2H)、5.06(m、1H)、5.12(d、1H)、5.66(d、1H)、6.64(d、2H)、6.82(d、2H)、7.13(d、2H)、7.37(d、2H);LC−MS(m/z)、計算値:797.4、実測値:798.4[M+H]。化合物(31c)(n=7):H NMR(500MHz、CDCl)0.86(d、3H)、0.92(d、3H)、1.71〜1.85(m、3H)、2.62(m、2H)、2.78(m、1H)、2.97(m、4H)、3.37(s、3H)、3.54(m、2H)、3.64(m、19H)、3.68(m、3H)、3.73(m、4H)、3.85(m、4H)、3.90(m、1H)、4.00(m、1H)、4.08(m、2H)、4.52(br.2H)、5.06(m、1H)、5.12(d、1H)、5.66(d、1H)、6.64(d、2H)、6.82(d、2H)、7.13(d、2H)、7.37(d、2H);LC−MS(m/z)、計算値:885.4、実測値:886.5[M+H]
実施例8
PEG−チプラナビルの合成

PEG−チプラナビルを調製した。概略的に、本実施例に適用される手法を以下に示す(概略図中、Xaは、オキサゾリジノンを表し、太字の複合番号は、本実施例8だけの文章に提供される複合番号に対応する)。
この合成の実行においては、以下の材料を使用した。水素化カルシウム(CaH)、エチレングリコール、トリメチルオルト酢酸塩、水酸化ナトリウム、塩化チタン(IV)、N,N−ジイソプロピルエチルアミン(DIPEA)、過塩素酸60%(HCLO)、フェネチルマグネシウムクロリド(THF中1.0M)、ブチルアルデヒド、クロロクロム酸ピリジニウム(PCC)、チタン(IV)イソプロポキシド、カリウムtert−ブトキシド(KOBut)、パラジウム/炭素(10重量%)、塩化オキサリル[(COCl)]、ジメチルスルホキシド(DMSO)、無水メタノール、水素化ホウ素ナトリウム(NaBH)、およびピリジンは、Sigma−Aldrich(St Louis,MO)から購入した。mPEG−OH(n=3、5、7)は、TCI Americaから購入した。5−トリフルオロメチル−2−ピリジンスルホニルクロリドは、Toronto Research Chemicals,Inc.(North York,ON,Canada)から購入した。DCMは、CaHから蒸留した。テトラヒドロフラン(THF)および別の有機溶剤は、購入時の状態で使用した。2−(E)−ペンテン酸、チオニルクロリド、(R)−(−)−4−フェニル−2−オキサゾリジノン、n−ブチルリチウム(1M、ヘキサン)、3−ビス(トリメチルシリル)アミノ]フェニルマグネシウムクロリド(1.0M、THF)、臭化銅(I)−硫化ジメチル、臭化ベンジル、および塩化アンモニウムは、Sigma−Aldrich(St Louis,MO)から購入した。水酸化アンモニウム、硫酸ナトリウム、酢酸エチル、およびヘキサンは、Fisher Scientific(Fair Lawn,NJ)から購入した。硫酸マグネシウム、重炭酸ナトリウム、および炭酸ナトリウムは、EM Science(Gibbstown、NJ)から購入した。DCMは、CaHから蒸留した。THF(無水)およびアセトニトリルも、Sigma−Aldrichから購入し、購入時の状態で使用した。
酸塩化物の調製(2A)
還流凝縮器を備えた100mLフラスコに、N下で、2−(E)−ペンテン酸(15.4mL、152mmol)を添加した。反応後、フラスコを水浴中に置き、次いで、チオニルクロリド(10.5mL、144mmol)をゆっくりと添加し、反応物をさらに10分間水浴中で保持してから、反応物を除去して室温に加温した。反応物を、室温で終夜保持し、次いで、30分間油浴中で110℃に(外部)加熱し、この温度でさらに30分間保持した。40℃以下に冷却してから、溶液を、減圧蒸留を開始した。減圧蒸留により、45〜55℃(外部)/8mmHgの下で、無色の液体として、所望の生成物2(13.8g、収率81%)を得た。H NMR(300MHz、CDCl)1.13(t、3H、J=7.5Hz)、2.29〜2.39(m、2H)、6.07(dt、1H、J=1.5、15.3Hz)、7.28(dt、1H、J=6.3、15.3Hz)。
オキサゾリジノンアミド結合の形成(4A)
オキサゾリジノン(3A)(6.90g、42.3mmol)を、Nで保護した500mLフラスコに添加し、無水THF(265mL)で満たした。THF溶液を、ドライアイス浴中で−78℃に冷却した。次いで、n−BuLi(ヘキサン中1.6M、27.8mL、44.4mmol)を、ゆっくりと(約12分)添加した。反応物をこの温度で30分間保持してから、2−(E)−ペンテン酸クロリド(2A)(5.51g、46.5mmol)を7分にわたってゆっくりと添加した。酸塩化物の添加が完了した後、ドライアイス浴を即座に除去し、反応溶液を40分以上室温に加温した。次いで、反応物を、NHCl(400mL)の飽和溶液によって反応停止した。少量の純粋な脱イオン水を添加して、NHClの沈殿物を溶解した。有機THF相を分離し、水相をEtOAc(100mL×2)によって抽出した。有機相を合わせ、MgSO上で乾燥させ、約25mLに濃縮した。撹拌しながら、ヘキサン(200mL)を添加し、数分で粗生成物が沈殿した。濾過後、溶液を、約10mLに濃縮し、ヘキサン(約180mL)で2回目の沈殿を生じさせた。母液を濃縮し、結果として生じた残渣を、Biotage(20CVでEtOAc/Hex6〜50%)上で精製した。3つ分の無色生成物(4A)を合わせた(9.95g、収率96%)。R=0.45(Hex:EtOAc=3:1)、RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN)7.40分、LC−MS(ESI、MH)246.1。H NMR(300MHz、CDCl)1.08(t、3H、J=7.5Hz)、2.28(p、2H、J=6.3Hz)、4.28(dd、1H、J=3.9、9.0Hz)、4.70(t、1H、J=8.7Hz)、5.49(dd、1H、J=3.9、8.7Hz)、7.09〜7.18(m、1H)、7.23〜7.42(m、6H)。
不斉マイケル付加反応
で保護した500mLフラスコ中に、臭化銅(I)−硫化ジメチル(7.44g、36.2mmol)を添加し、その後、無水THF(75mL)を添加した。溶液をドライアイス/アセトニトリルで−45℃に冷却してから、3−[ビス(トリメチルシリル)アミノ]−フェニルマグネシウムクロリド(1.0M、36.2mL、36.2mmol)を、30分にわたって滴下した。反応物を、20分間−40℃〜0℃の間の温度に保持した。THF(19.3mL)中の上述の出発材料(4A)(7.1g、29.0mmol)の溶液を、20分にわたって滴下した。次いで、反応物を、10分にわたって0℃に加温し、その後15分にわたってさらに室温に加温した。反応混合物を、室温で15分間、水性NHCl(70mL)の添加によって反応停止した。次いで、水相を、NHOH(5mL)の添加によってpH=8に調整した。次いで、溶液を、エーテル溶液(250mL)に注ぎ、水相を分離した。エーテル相を、水相がpH紙に対してもはや青色を示さなくなるまで、NaHCO(80mL×2)で洗浄した。次いで、エーテル相を、NaSO上で乾燥させ、真空濃縮した。結果として生じた残渣を、逆相カラム(40M×3、それぞれ約8gの粗製品)上に装填し、20CVで20〜70%のACNを介して精製した。画分を収集し、アセトニトリルを蒸発させた。次いで、水相をDCM(50mL×3)によって抽出した。有機溶液を合わせ、NaSO上で乾燥させ、濃縮して生成物(6A)(8.73g、収率89%)を得た。R=0.11(Hex:EtOAc=3:1)、RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN)5.67分、LC−MS(ESI、MH)339.2。H NMR(500MHz、CDCl)0.76(t、3H、J=7.2Hz)、1.50〜1.68(m、2H)、2.90〜3.00(m、1H)、3.06(dd、1H、J=7.2、15.6Hz)、3.48(dd、1H、J=7.5、15.6Hz)、4.17(dd、1H、J=4.2、9.3Hz)、4.64(t、1H、J=9.0Hz)、5.38(dd、1H、J=3.9、8.7Hz)、6.51〜6.61(m、3H)、6.99〜7.07(m、3H)、7.22〜7.28(m、3H)。
アミンのベンジル保護
上述の生成物(6A)(13.5g、40mmol)を、500mLのフラスコ中で、DCM(146mL)およびHO(106mL)に溶解した。固体炭酸ナトリウム(25g、240mmol)および臭化ベンジル(19.0mL、160mmol)を添加した。溶液を終夜加熱(52℃、外部)還流してから(20時間)、TLCによって確認した。反応物をNaHCO(300mL)で希釈し、DCMを溶液から分離した。次いで、水相をDCM(60mL×2)によって抽出し、有機相を合わせた。溶液を、NaSO上で乾燥させ、濃縮した。残渣を、18CVで6〜22%のEtOAc/Hexを介して、Biotage(40M×2、それぞれ14gの粗製品)上に装填した。生成物の画分を収集し、蒸発させて無色の軟質固体生成物(2)(17.5g、84%)を生成した。R=0.42(Hex:EtOAc=3:1)、RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN、100% 8〜12分)9.80分、LC−MS(ESI、MH)519.2。H NMR(300MHz、CDCl)0.65(t、3H、J=7.2Hz)、1.40〜1.55(m、2H)、2.84〜2.94(m、1H)、3.02(dd、1H、J=7.2、15.6Hz)、3.42(dd、1H、J=7.5、15.6Hz)、4.15(dd、1H、J=3.9、8.7Hz)、4.53〜4.67(m、5H)、5.35(dd、1H、J=3.9、8.7Hz)、6.50〜6.61(m、3H)、6.98〜7.07(m、3H)、7.18〜7.29(m、13H)。
グリコールオルトエステル、化合物(3)の合成
新しいCaHから蒸留した出発材料(26.3g、219mmol)を、エチレングリコール(11mL、197mmol)と、室温で混合した。HSO(3〜4滴、0.25%)を添加し、この温度で撹拌した。固体NaOH入りの乾燥瓶および水銀圧力計を備えた水噴霧真空システムを、蒸留反応システムに設置した。真空を95mmHg未満(少なくとも55mmHg)に調整し、温度を段階的に上昇させた(10分あたり10℃)。先駆物(約2g)を収集した後、68〜71℃/58〜60mmHgの下で、無色の生成物(16.2g、収率70%)を収集した。H NMR(300MHz、CDCl)1.55(3H、s)、3.28(3H、s)、3.97〜4.12(4H、m)。
化合物(4)を調製するためのTiCl4活性CC複合化
予め真空乾燥させた出発材料(2)(6.45g、12.4mmol)を、Nの保護下で、DCM(50mL)中に溶解した。次いで、それをドライアイス/アセトン浴中で、−78℃に冷却した。TiCl(2.45mL、22.3mmol)を滴下し、この温度での反応物を5分間保持してから、DIEPA(4.11mL、23.6mmol)を添加した。浴を即時に除去し、反応物を塩氷浴中で0℃に加温した。エノラート形成をこの温度で30分間保持してから、78℃に再冷却した。グリコールオルトエステル(3)(3.66mL、31mmol)をゆっくりと添加した。添加後、反応物を、0℃に加温し、この温度で2.5時間保持した。反応物を、半飽和NHClおよび水によって反応停止した。溶液を、水で希釈し、DCM(50mL×3)によって抽出した。合わせた有機相を、NaHCOによって洗浄し、NaSO上で乾燥させた。TLCは、反応物は清浄であるが、約10%の出発材料が残っていることを示した。Biotageによる精製(40M×5回)で、汚染されていない無色の生成物(5.47g、収率73%)を得た。R=0.51(Hex:EtOAc=3:1)、LC−MS(ESI、MH)605.3。H NMR(300MHz、CDCl)0.55(3H、t、J=7.2Hz)、(0.86(3H、s)、1.40〜1.51(2H、m)、2.89(1H、dt、J=3.6、11.1Hz)、3.03(1H、q、J=6.9Hz)3.44〜3.50(1H、m)、3.54(1H、q、J=6.9Hz)、3.62〜3.72(1H、m)、4.26(1H、dd、J=3.6、9.0Hz)、4.55〜4.67(5H、m)、4.80(1H、d、J=10.8Hz)5、.46(1H、dd、J=3.3、8.4Hz)、6.59〜6.63(3H、m)、7.08(1H、t、J=7.5Hz)、7.19〜7.37(15H、m)。
化合物(5)を形成するためのアセタールの酸加水分解
アセタール生成物(4)(5.47g、9.06mmol)を、無水THF(18mL)中に溶解した。脱イオン水(3.6mL)およびHClO(3.6mL)を添加した。反応は、40℃(外部)の温度で2.5時間、油浴中で開始した。室温に冷却後、溶液を、NaHCOによってpH=8〜9にゆっくりと中性化した。混合物溶液を、水(100mL)で希釈し、DCM(80mL×3)によって抽出した。有機相を、NaSO上で乾燥させ、真空濃縮した。残渣を、勾配溶出(16CVで4〜13%のEtOAc/Hex)で、Biotageカラム(25M)上に装填した。高真空乾燥後、無色固体(5.18g、収率100%超)を収集した。R=0.43(Hex:EtOAc=3:1)、RP−HPLC(Betasil C18、0.5mL/分、10分で60〜100%のACN)6.40分、LC−MS(ESI、MH)561.3。H NMR(300MHz、CDCl)0.61(3H、t、J=7.2Hz)、1.63(3H、s)、1.07(1H、dt、J=3.3、10.8Hz)、4.22(1H、dd、J=3.9、8.7Hz)、4.61(4H、s)、4.67(1H、t、J=9.0Hz)、4.98(1H、d、J=10.5Hz)、5.42(1H、dd、J=3.6、8.7Hz)、6.54〜6.64(3H、m)、7.09(1H、t、J=8.1Hz)、7.21〜7.39(15H、m)。
化合物(6)の合成
フェニルエチル塩化マグネシウム(THF中1M、120mmol)を、THF(180mL)とともに、カニューレにより500mLフラスコに移した。次いで、上述の混合物溶液を、氷水浴を使用して0℃に冷却してから、ブチルアルデヒド(10.2mL、114mmol)を滴下した。この温度で1時間後、TLCは、清浄な反応を示した。次いで、反応物を、NHCl(150mL)によって反応停止し、THFを分離した。THF溶液を飽和塩水で洗浄してから、NaSO上で乾燥させて真空濃縮した。20g以上の第2級アルコール生成物(収率100%超)を、さらなる精製を行わずに得た。
第2級アルコール生成物(4.56g、25.6mmol)を、室温で、DCM(128mL)と混合した。PCC(6.62g、30.7mmol)を添加した。反応物を室温で2時間保持した。TLCが、約15%出発材料が残っていることを示したので、PCC(1.11g、5.1mmol)をさらに添加し、反応は2時間で完了した。溶液混合物をセライトおよびシリカゲルの層を通じて濾過した。次いで、濾過溶液を蒸発させ、残渣をBiotageカラム(40S)上で精製した。無色の化合物(6)(2.79g、収率62%)を収集した。NMR陽子スペクトルは、1%未満の不純物を有する生成物を示した。H NMR(300MHz、CDCl)0.89(3H、t、J=7.2Hz)、1.56〜1.63(2H、m)、2.37(2H、t、J=7.2Hz)、2.72(2H、t、J=7.2Hz)、2.90(2H、t、J=7.5Hz)、7.17〜7.21(3H、m)、7.26〜7.28(2H、m)。
化合物(7)を形成するためのTi活性CC複合化、アルドール反応
で保護した100mLのフラスコ中に、新しく蒸留したDCM(22mL)を添加した。Ti(OPr)(373μL、1.27mmol)およびTiCl(377μL、3.44mmol)を、その順で添加した。反応溶液を、アセトン−ドライアイス浴中で−78℃に冷却し、DCM(6mL)溶液中の化合物(5)(1.93g、3.44mmol)をゆっくりと添加した。溶液は赤みがかっていて、この温度で5分間保持してから、DIPEA(899μL、5.16mmol)を添加した。アセトン−ドライアイス浴を除去し、氷水浴を使用する前に、0℃に加温した。エノラート形成を0℃で1時間保持してから、それを、アセトン−ドライアイス浴中で−78℃に再冷却した。化合物(6)(1.21mL、6.88mmol)をゆっくりと添加した。次いで、溶液を、0℃に加温し、氷水浴を介してこの温度で1時間保持した。飽和NHCl溶液(30mL)によって反応停止し、希釈した混合物をDCM(40mL×3)によって抽出した。次いで、合わせた有機相を、NaSO上で乾燥させ、真空濃縮した。残渣を、勾配(16CVで8〜18%のEtOAc/Hex)で、Biotageカラム(40S)上に装填した。黄色がかった生成物(1.90g、収率75%)を収集した。R=0.42(Hex:EtOAc=3:1)、RP−HPLC(Betasil C18、0.5mL/分、10分で60〜100%のACN)9.13分、LC−MS(ESI、MH)737.5。
化合物(8)を合成するための塩基性加水分解およびラクトン化
アルドール生成物(7)の混合物(1.68g、2.28mmol)を、N雰囲気下で、THF(50mL)中に溶解した。試料を溶解した後、溶液を、氷水浴中で5分間冷却させてから、KOBu(1M、2.74mL)を添加した。反応物を、この温度で20分間保持した。それをNHCl(50mL)によって反応停止し、有機相をEtOAc(150mL)で希釈した。次いで、水相を分離し(pH7未満を確保)、エーテル相を飽和塩水(50mL)で洗浄した。次いで、それをNaSO上で乾燥させ、真空濃縮した。次いで、乾燥残渣を、Biotageカラム(25M)上に装填し、4回精製した(16CVで6〜22%のEtOAc/Hex)。黄色がかったベンジルアミン化合物(8)(712.1mg、収率54.5%)を、高真空乾燥後、固化した。R=0.41(Hex:EtOAc=3:1)、RP−HPLC(Betasil C18、0.5mL/分、10分で60〜100%のACN)5.23分、LC−MS(ESI、MH)574.4。
(R)−3−((R)−1−(3−アミノフェニル)プロピル)−5,6−ジハイドロ−4−ヒドロキシ−6−フェネチル−6−プロピルピラン−2−オン(9)を合成するためのPd/C水素化処理。
ベンジルアミン化合物(8)(265.8mg、0.464mmol)を、EtOAc(6.5mL)およびMeOH(6.5mL)の混合物溶液中に溶解した。溶液のバイアルは、触媒を添加する少なくとも15分前に、交換するためのN発泡を行った。撹拌を止めて、Pd/C触媒(43mg、8重量%×2)をゆっくりと(または少しずつ)添加した。システムは、真空化および水素ガス(50psi未満)の再充填を3回行った(真空の間は撹拌を停止)。次いで、水素化分解を、50psiの下で、終夜(16時間)室温に保持して、完了させた。圧力を解放した後、まず、反応混合物を、HPLCによって完全性を確かめてから、濾過を行なった。触媒の残渣および濾紙を、メタノールによって慎重に洗浄した。次いで、溶液を、蒸発させ、真空乾燥させて、油状の化合物(9)(182mg、収率100%)を得た。これ以上の精製は不要である。RP−HPLC(Betasil C18、0.5mL/分、8分で10〜100%のACN)4.58分、LC−MS(ESI、MH)394.2。
mPEGn−OHのスワーン酸化を介した化合物(10)の調製
で保護した250mLのフラスコ中に、DCM(105mL)および塩化オキサリル(2M、7.5mL、15mmol)を添加した。溶液をドライアイス−アセトン浴中で5分間、−78℃に冷却してから、DMSO(1.42mL、20.0mmol)を添加した。それを、この温度で20分間激しく撹拌してから、mPEG−OH(3.40g、10.0mmol)およびDCM(10mL)の混合物を添加した。反応物を、この温度でさらに20分間保持してから、TEA(5.5mL、39.6mmol)を添加した。反応物を、ドライアイス浴中に3分間保持し、浴を除去して、25分にわたって周囲温度に徐々に加温した。それを飽和NaHCO(70mL)によって反応停止し、DCM溶液を希釈した(120mL)。有機相を分離し、水相をDCM(20mL×2)によって抽出した。有機相を分離し、水相をDCM(20mL×2)によって抽出した。それをNaSO上で乾燥させ、次いで濃縮し、幾らかの固体を含むわずかに黄色の液体(2.78g、収率82%)をN中に確保した。NMRは、64%の変換混合物を示した。Biotage FCC(16CVでDCM中に3〜10%のMeOH)により、還元的アミノ化のための純粋な生成物を生じた。R=0.32(DCM:MeOH=10:1)、H NMR(300MHz、CDCl)3.39(s、3H)、3.54〜3.57(m、2H)、3.66(s、20H)、3.72〜3.75(m、2H)、4.17(s、2H)、9.74(s、1H)。
mPEG−CHOを、類似した手法で合成した。粗製生成物は、収率99%の86%アルデヒドを示した。Biotage FCC(16CVでDCM中に3〜10%のMeOH)によって、収率56%の75%アルデヒド生成物、および収率25%の15%アルデヒド混合物を生じた。R=0.34(DCM:MeOH=10:1)、H NMR(300MHz、CDCl)3.38(s、3H)、3.38〜3.57(m、2H)、3.67(s、11H)、3.70〜3.75(m、3H)、4.17(s、2H)、9.74(s、1H)。
化合物(11)を合成するための還元的アミノ化
化合物(9)(69.6mg、0.177mmol)を、メタノール(3.4mL)中に溶解した。撹拌しながら、mPEG−CHO(235mg、純度75%、0.708mmol)を滴下した。反応を18分間行い、その後、周囲温度で水浴へ移した。NaBH(54mg、1.42mmol)を、いくつかの分量に分けて添加した。3分後に、HPLCを使用して反応を確認し、77%の変換を達成したことを示した。反応物を、NaHCO(10mL)によって反応停止し、水およびEtOAcで希釈した。次いで、有機相を分離して、NaSO上で乾燥させた。HPLCは、反応物が、13%の出発材料が残る、81%の変換であることを示した。溶液を、NaHCO水溶液で希釈し、DCM(30mL×3)によって抽出した。合わせた有機溶液を蒸発させて、粗製試料(178mg)を得た。それをACN(6mL)および水(2mL)中に溶解し、AKTA(5CV×2で40〜57%、12.10分)上で精製した。収集した生成物のアセトニトリル溶液を蒸発させて、NaClで飽和した。それをDCM(30mL×3)によって抽出し、合わせた溶液を、NaSO上で乾燥させ、濾過し、真空濃縮した。わずかに黄色がかった生成物(75.9mg、収率69%)を、99%以上の純度で得た。RP−HPLC(Betasil C18、0.5mL/分、10分で30〜100%のACN)5.53分、LC−MS(ESI、MH)628.2。
mPEG−CHOをmPEG−CHOに置き換えたことを除いて、この合成手順に従った。過剰なアルデヒド(1.6当量)によって、生成物混合物は、完了後、72%の変換を示した。AKTAによる精製(3CVで40〜50%のACN、13.2分)で、収率42%で純度99%超の生成物を得た。RP−HPLC(Betasil C18、0.5mL/分、10分で30〜100%のACN)5.65分、LC−MS(ESI、MH)540.3。
mPEG−CHOをmPEG−CHOに置き換えたことを除いて、この合成手順に従った。過剰なアルデヒド(4.5当量)によって、生成物混合物は、完了後、78%の変換を示した。AKTAによる精製(5CVで40〜57%)で、収率73%の純粋な生成物(99%超)を得た。RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN)5.06分、LC−MS(ESI、MH)716.4。
化合物(13a)の合成
上述のAKTA精製生成物(11a)(96.8mg、0.180mmol)を、DCM(1.6mL)中に溶解した。溶解後に、溶液を、氷水浴中で冷却し、トリフルオロピリジンスルホクロリド(48.6mg、0.198mmol)を添加した。次いで、ピリジン(44μL、0.54mmol)を添加し、反応物を、終夜の反応中加温した。HPLCは、出発材料の保持時間が完了したこと示し、反応物をNHCl(10mL)によって反応停止した。それをDCMで希釈し、分離した有機相を食塩水で洗浄した。次いで、有機相を、NaSO上で乾燥させて濃縮した。粗生成物(159.4mg)を、Biotage(16CVのHexで10〜50%のEtOAc)上で精製し、総収率62%で、わずかに黄色がかった生成物(13a)(73.1mg)、およびより純粋でない生成物(35.7mg)を得た。R=0.22(Hex:EtOAc 1:1)、RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN)4.20分、LC−MS(ESI、MH)749.3。
化合物(13a)の合成に類似した手順に従って、化合物(11b)(154.9mg)は、所望の生成物(13b)(36.0mg、純度93%)、および収率約52%の生成物(71.2mg)の混合物を生成した。Biotageシリカゲルカラム(16CVでDCM中1〜7%のMeOH)上で精製した。R=0.54(EtOAc)、RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN)4.36分、LC−MS(ESI、MH)837.4。
化合物(13a)の合成に類似した手順に従って、化合物(11c)(167.7mg)は、収率約50%で、所望の生成物(13c)(39.9mg、純度95%)、および生成物(82.3mg)の混合物を生成した。Biotageシリカゲルカラム(16CVでDCM中2〜7%のMeOH)上で精製した。R=0.25(EtOAc)、RP−HPLC(Betasil C18、0.5mL/分、8分で60〜100%のACN)3.78分、LC−MS(ESI、MH)925.5。
実施例9
複合体の評価

細胞および無細胞検定(および、例えば実施例3に記載のもの)、アタザナビル複合体(実施例4を参照されたい)、チプラナビル複合体(実施例8を参照されたい)、およびダルナビル複合体(実施例5〜7を参照されたい)における活性および有効性を評価するために標準手順に従う。結果を以下の表2〜8に示す。

Claims (9)

  1. エーテル結合、アミド結合、カルバメート結合およびアミン結合からなる群より選択される安定した結合を介して1〜30個のモノマーのポリ(エチレンオキシド)に共有結合した小分子プロテアーゼ阻害剤の残基を含む化合物であって、該小分子プロテアーゼ阻害剤は、以下の構造:
    を有し、式中、R II1 は、2−キノリルカルボニルである、化合物。
  2. 前記小分子プロテアーゼ阻害剤がサキナビルである、請求項1に記載の化合物。
  3. 前記ポリ(エチレンオキシド)が1〜10個のモノマーから成る、請求項1および2のいずれか1項に記載の化合物。
  4. 前記ポリ(エチレンオキシド)が、アルコキシまたはヒドロキシの末端封止部分を含む、請求項1、2および3のいずれか1項に記載の化合物。
  5. 単一のポリ(エチレンオキシド)が、前記小分子プロテアーゼ阻害剤の残基に共有結合される、請求項1、2および3のいずれか1項に記載の化合物。
  6. 2つ以上のポリ(エチレンオキシド)が、前記小分子プロテアーゼ阻害剤の残基に共有結合される、請求項1、2および3のいずれか1項に記載の化合物。
  7. 以下の構造:
    を有する請求項1に記載の化合物であって、式中、Xがスペーサ部分であり、POLYがポリ(エチレンオキシド)である、化合物。
  8. 以下の構造:
    を有する請求項1に記載の化合物であって、式中、Xがスペーサ部分であり、POLYがポリ(エチレンオキシド)である、化合物。
  9. 請求項1に記載の化合物と、任意選択で薬剤として許容される賦形剤と、を含む、医薬組成物。
JP2013233740A 2007-03-12 2013-11-12 オリゴマー−プロテアーゼ阻害剤複合体 Active JP5687752B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90633007P 2007-03-12 2007-03-12
US60/906,330 2007-03-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009553629A Division JP5448854B2 (ja) 2007-03-12 2008-03-12 オリゴマー−プロテアーゼ阻害剤複合体

Publications (2)

Publication Number Publication Date
JP2014028867A true JP2014028867A (ja) 2014-02-13
JP5687752B2 JP5687752B2 (ja) 2015-03-18

Family

ID=39577632

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009553629A Active JP5448854B2 (ja) 2007-03-12 2008-03-12 オリゴマー−プロテアーゼ阻害剤複合体
JP2013233740A Active JP5687752B2 (ja) 2007-03-12 2013-11-12 オリゴマー−プロテアーゼ阻害剤複合体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009553629A Active JP5448854B2 (ja) 2007-03-12 2008-03-12 オリゴマー−プロテアーゼ阻害剤複合体

Country Status (10)

Country Link
US (2) US8598364B2 (ja)
EP (2) EP2131865B1 (ja)
JP (2) JP5448854B2 (ja)
KR (1) KR101518079B1 (ja)
CN (2) CN102816111B (ja)
AU (1) AU2008226823B2 (ja)
CA (1) CA2679482C (ja)
IL (1) IL200846A (ja)
MX (1) MX2009009850A (ja)
WO (1) WO2008112289A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528710B2 (ja) 2006-02-28 2014-06-25 オリガシス コーポレイション アクリロイルオキシエチルホスホリルコリン含有ポリマー抱合体及びその製法
US8389759B2 (en) * 2007-03-12 2013-03-05 Nektar Therapeutics Oligomer-anticholinergic agent conjugates
EP2131865B1 (en) 2007-03-12 2014-12-17 Nektar Therapeutics Oligomer-protease inhibitor conjugates
WO2009045539A2 (en) * 2007-10-05 2009-04-09 Nektar Therapeutics Al, Corporation Oligomer-corticosteroid conjugates
WO2009114151A1 (en) * 2008-03-12 2009-09-17 Nektar Therapeutics Oligomer-amino acid and olgomer-atazanavir conjugates
US20110195940A1 (en) * 2008-09-17 2011-08-11 Nektar Therapeutics Protease Inhibitors Having Enhanced Features
JP2012502906A (ja) * 2008-09-17 2012-02-02 ネクター セラピューティックス オリゴマー−プロテアーゼ阻害剤コンジュゲート
WO2010132663A1 (en) * 2009-05-13 2010-11-18 Concert Pharmaceticals, Inc. Pegylated azapeptide derivatives as hiv protease inhibitors
EP2440249A2 (en) * 2009-06-12 2012-04-18 Nektar Therapeutics Covalent conjugates comprising a protease inhibitor, a water-soluble, non-peptidic oligomer and a lipophilic moiety
US8765432B2 (en) 2009-12-18 2014-07-01 Oligasis, Llc Targeted drug phosphorylcholine polymer conjugates
JP6302835B2 (ja) * 2011-06-21 2018-03-28 ビーブイダブリュ ホールディング エージー ボスウェル酸を含む医療デバイス
CN104230877B (zh) * 2013-06-08 2016-01-27 重庆圣华曦药业股份有限公司 L-(s)-甘油醛缩丙酮的制备方法及其在达芦那韦侧链合成中的应用
US10702608B2 (en) 2013-09-08 2020-07-07 Kodiak Sciences Inc. Factor VIII zwitterionic polymer conjugates
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
CN104163787A (zh) * 2014-08-08 2014-11-26 山东威智医药工业有限公司 阿扎那韦及其硫酸盐的制备方法
JP6849590B2 (ja) 2014-10-17 2021-03-24 コディアック サイエンシーズ インコーポレイテッドKodiak Sciences Inc. ブチリルコリンエステラーゼ両性イオン性ポリマーコンジュゲート
SG11201805420SA (en) 2015-12-30 2018-07-30 Kodiak Sciences Inc Antibodies and conjugates thereof
US10968318B2 (en) 2017-12-30 2021-04-06 Saint-Gobain Performance Plastics Corporation Heterochain polymer composition
CN109627251B (zh) * 2018-12-29 2021-06-15 常州吉恩药业有限公司 一种高纯度地瑞那韦中间体的工业化生产方法
EP4041312A4 (en) 2019-10-10 2023-12-20 Kodiak Sciences Inc. METHOD FOR TREATING AN EYE DISORDER
CN115557964A (zh) * 2022-10-18 2023-01-03 启东东岳药业有限公司 一种药物化合物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773994A1 (fr) * 1998-01-23 1999-07-30 Univ Nice Sophia Antipolis Prodrogues issues d'anti-proteases inhibitrices du virus de l'immunodeficience humaine (vih) pour l'amelioration de leur biodisponibilite, de leur tropisme vers et/ou de leur delivrance dans le systeme nerveux central
US20050136031A1 (en) * 2003-12-16 2005-06-23 Bentley Michael D. Chemically modified small molecules
JP2005350478A (ja) * 1997-12-24 2005-12-22 Vertex Pharmaceut Inc アスパルチルプロテアーゼ阻害剤のプロドラッグ
JP2007500278A (ja) * 2003-05-23 2007-01-11 ネクター セラピューティクス アラバマ,コーポレイション 特定の原子配置を有するポリマー誘導体

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539122A (en) 1989-05-23 1996-07-23 Abbott Laboratories Retroviral protease inhibiting compounds
GB8927913D0 (en) 1989-12-11 1990-02-14 Hoffmann La Roche Amino acid derivatives
US5149794A (en) * 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
EP0607334B1 (en) 1991-10-11 1997-07-30 The Du Pont Merck Pharmaceutical Company Cyclic ureas and analogues useful as retroviral protease inhibitiors
DE69224703T2 (de) 1991-11-08 1998-10-15 Merck & Co Inc HIV-Protease-Inhibitoren verwendbar in der AIDS-Behandlung
US5413999A (en) 1991-11-08 1995-05-09 Merck & Co., Inc. HIV protease inhibitors useful for the treatment of AIDS
DK0560268T3 (da) 1992-03-13 1995-06-12 Bio Mega Boehringer Ingelheim Substituerede pipecolinsyrederivater som HIV-proteasehæmmere
EP0641333B1 (en) 1992-05-20 1996-08-14 G.D. Searle & Co. Method for making intermediates useful in synthesis of retroviral protease inhibitors
US5559256A (en) 1992-07-20 1996-09-24 E. R. Squibb & Sons, Inc. Aminediol protease inhibitors
IS2334B (is) 1992-09-08 2008-02-15 Vertex Pharmaceuticals Inc., (A Massachusetts Corporation) Aspartyl próteasi hemjari af nýjum flokki súlfonamíða
US5484926A (en) 1993-10-07 1996-01-16 Agouron Pharmaceuticals, Inc. HIV protease inhibitors
DK1302468T3 (da) 1992-12-29 2009-03-02 Abbott Lab Fremgangsmåder og mellemprodukter til fremstilling af forbindelser, der inhiberer retroviral protease
AU7518694A (en) 1993-08-20 1995-03-21 G.D. Searle & Co. Retroviral protease inhibitors and combinations thereof
IL129871A (en) 1994-05-06 2003-11-23 Pharmacia & Upjohn Inc Process for preparing 4-phenyl-substituted octanoyl-oxazolidin-2-one intermediates that are useful for preparing pyran-2-ones useful for treating retroviral infections
US5732490A (en) 1994-10-27 1998-03-31 Hydary; Mainul H. Perpetual calendar
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5914332A (en) 1995-12-13 1999-06-22 Abbott Laboratories Retroviral protease inhibiting compounds
US5849911A (en) 1996-04-22 1998-12-15 Novartis Finance Corporation Antivirally active heterocyclic azahexane derivatives
US6232333B1 (en) 1996-11-21 2001-05-15 Abbott Laboratories Pharmaceutical composition
DE69808463T2 (de) 1997-07-29 2003-06-26 Upjohn Co Selbstemulgierende formulierung enthaltend saure lipophile verbindungen
GB9815567D0 (en) 1998-07-18 1998-09-16 Glaxo Group Ltd Antiviral compound
AU762349B2 (en) 1998-11-04 2003-06-26 Pharmacia & Upjohn Company Method for improving the pharmacokinetics of tipranavir
US6765019B1 (en) 1999-05-06 2004-07-20 University Of Kentucky Research Foundation Permeable, water soluble, non-irritating prodrugs of chemotherapeutic agents with oxaalkanoic acids
US7169889B1 (en) * 1999-06-19 2007-01-30 Biocon Limited Insulin prodrugs hydrolyzable in vivo to yield peglylated insulin
US6835802B2 (en) 2001-06-04 2004-12-28 Nobex Corporation Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
US7193065B2 (en) * 2001-07-13 2007-03-20 Roche Diagnostics Operations, Inc. Protease inhibitor conjugates and antibodies useful in immunoassay
WO2005124563A2 (en) 2004-06-12 2005-12-29 Ceptor Corporation Compounds and kits for treating muscle disorders and methods of use thereof
US6992177B1 (en) 2004-12-10 2006-01-31 Roche Diagnostics Operations, Inc. Saquinavir derivatives useful in immunoassay
WO2006089156A2 (en) 2005-02-16 2006-08-24 Rutgers, The State University Drug-polymer conjugates coupled to a peptidic carrier
WO2006088248A1 (ja) 2005-02-18 2006-08-24 Nof Corporation ポリオキシアルキレン誘導体
EP2131865B1 (en) 2007-03-12 2014-12-17 Nektar Therapeutics Oligomer-protease inhibitor conjugates
JP2012502906A (ja) * 2008-09-17 2012-02-02 ネクター セラピューティックス オリゴマー−プロテアーゼ阻害剤コンジュゲート
EP2440249A2 (en) * 2009-06-12 2012-04-18 Nektar Therapeutics Covalent conjugates comprising a protease inhibitor, a water-soluble, non-peptidic oligomer and a lipophilic moiety

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350478A (ja) * 1997-12-24 2005-12-22 Vertex Pharmaceut Inc アスパルチルプロテアーゼ阻害剤のプロドラッグ
FR2773994A1 (fr) * 1998-01-23 1999-07-30 Univ Nice Sophia Antipolis Prodrogues issues d'anti-proteases inhibitrices du virus de l'immunodeficience humaine (vih) pour l'amelioration de leur biodisponibilite, de leur tropisme vers et/ou de leur delivrance dans le systeme nerveux central
JP2007500278A (ja) * 2003-05-23 2007-01-11 ネクター セラピューティクス アラバマ,コーポレイション 特定の原子配置を有するポリマー誘導体
US20050136031A1 (en) * 2003-12-16 2005-06-23 Bentley Michael D. Chemically modified small molecules

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN7014002955; Bioconjugate Chem. 15(6), 2004, pp.1322〜1333 *
JPN7014002956; Pharmaceutical Research 19(11), 2002, pp.1704〜1712 *
JPN7014002957; AIDS Research and Therapy 3:12, 2006, pp.1〜15 *

Also Published As

Publication number Publication date
AU2008226823A1 (en) 2008-09-18
CN102816111A (zh) 2012-12-12
US9107956B2 (en) 2015-08-18
CA2679482A1 (en) 2008-09-18
JP2010522142A (ja) 2010-07-01
AU2008226823B2 (en) 2014-03-13
CN101631568B (zh) 2012-08-22
US20140045770A1 (en) 2014-02-13
JP5448854B2 (ja) 2014-03-19
EP2131865A2 (en) 2009-12-16
MX2009009850A (es) 2009-09-24
IL200846A0 (en) 2010-05-17
US20110269677A1 (en) 2011-11-03
US8598364B2 (en) 2013-12-03
KR101518079B1 (ko) 2015-05-06
KR20090118965A (ko) 2009-11-18
JP5687752B2 (ja) 2015-03-18
WO2008112289A2 (en) 2008-09-18
CN101631568A (zh) 2010-01-20
CN102816111B (zh) 2014-08-06
WO2008112289A3 (en) 2008-12-24
CA2679482C (en) 2015-04-21
EP2131865B1 (en) 2014-12-17
IL200846A (en) 2014-04-30
EP2522367B1 (en) 2016-01-20
EP2522367A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5687752B2 (ja) オリゴマー−プロテアーゼ阻害剤複合体
JP5383514B2 (ja) オリゴマー−抗ヒスタミン複合体
WO2012083153A1 (en) Oligomer-containing apremilast moiety compounds
JP5693967B2 (ja) オリゴマー−ジアリールピペラジンコンジュゲート
US9421204B2 (en) Oligomer modified diaromatic substituted compounds
JP5792175B2 (ja) オリゴマー−カルシミメティクスコンジュゲートおよび関連化合物
JP5877553B2 (ja) オリゴマー−抗コリン剤複合体
JP6265998B2 (ja) オリゴマー含有ベンズアミド系化合物
JP2012530069A (ja) プロテアーゼ阻害剤、水溶性非ペプチドオリゴマーおよび親油性部分を含む共有結合体
AU2014200906B2 (en) Oligomer-protease inhibitor conjugates
US20190151339A1 (en) Oligomer-foscarnet conjugates
RIGGS-SAUTHIER et al. Patent 2679482 Summary

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent or registration of utility model

Ref document number: 5687752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250