JP2014027071A - Laminated coil component and manufacturing method thereof - Google Patents

Laminated coil component and manufacturing method thereof Download PDF

Info

Publication number
JP2014027071A
JP2014027071A JP2012165380A JP2012165380A JP2014027071A JP 2014027071 A JP2014027071 A JP 2014027071A JP 2012165380 A JP2012165380 A JP 2012165380A JP 2012165380 A JP2012165380 A JP 2012165380A JP 2014027071 A JP2014027071 A JP 2014027071A
Authority
JP
Japan
Prior art keywords
magnetic
conductor
coil component
laminated
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012165380A
Other languages
Japanese (ja)
Other versions
JP6065439B2 (en
Inventor
Taiki Owada
大樹 小和田
Atsushi Yamamoto
篤史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012165380A priority Critical patent/JP6065439B2/en
Publication of JP2014027071A publication Critical patent/JP2014027071A/en
Application granted granted Critical
Publication of JP6065439B2 publication Critical patent/JP6065439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated coil component that has a side-winding structure that improves an impedance characteristic in a high frequency band and internal stress is relaxed while the strength is maintained.SOLUTION: In a laminated coil component that includes a magnetic portion that is sintered ferrite including Fe, Ni, Zn, and Cu, a coil-like conductor part that is formed so as to be buried in the magnetic portion, and a pair of external electrodes that are provided on the surface of the magnetic portion so as to be opposite to the coil center axis are electrically connected to both sides of the conductor part, the conductor part is constituted of a conductor including silver, and a particle diameter ratio of an average crystal grain diameter of a conductor part neighboring region of the magnetic portion to an average crystal grain diameter of the central region of the magnetic portion is 0.8 or less.

Description

本発明は、積層コイル部品に関し、より詳細には、Fe、Ni、ZnおよびCuを含む焼結フェライトである磁性体部と、銀を含み、磁性体部に埋設されて成るコイル状の導体部と、磁性体部の表面にコイル中心軸方向に対向して設けられ、導体部の両端に電気的に接続された一対の外部電極を有する積層コイル部品に関する。また、本発明は、かかる積層コイル部品の製造方法にも関する。   The present invention relates to a laminated coil component, and more specifically, a magnetic body portion that is a sintered ferrite containing Fe, Ni, Zn, and Cu, and a coiled conductor portion that contains silver and is embedded in the magnetic body portion. And a laminated coil component having a pair of external electrodes provided on the surface of the magnetic body portion so as to face each other in the coil central axis direction and electrically connected to both ends of the conductor portion. The present invention also relates to a method for manufacturing such a laminated coil component.

近年、電子機器の高周波化が進んでいるが、周波数が高くなるにつれ浮遊容量の影響が増大する。積層コイル部品については、浮遊容量が大きいと高周波帯域でのインピーダンス値が低下してしまうという問題がある。よって、積層コイル部品に対して、浮遊容量を低減し、高周波帯域におけるインピーダンス特性を向上させることが求められている。   In recent years, the frequency of electronic equipment has been increased, but the influence of stray capacitance increases as the frequency increases. The laminated coil component has a problem that the impedance value in the high frequency band decreases when the stray capacitance is large. Therefore, it is required for laminated coil components to reduce stray capacitance and improve impedance characteristics in a high frequency band.

特許文献1は、磁性体内部のコイル導体部を、コイル中心軸が外部電極の主部面に交わる方向となるように配備した(いわゆる横巻き構造)積層型インピーダンス素子を開示している。このような構造とすることにより、コイル導体部と外部電極間の浮遊容量を低減できるので、高周波帯域でも高いインピーダンスが得られ、高周波帯域でのインピーダンス特性が改善されるとしている。   Patent Document 1 discloses a laminated impedance element in which a coil conductor portion inside a magnetic material is arranged so that a coil central axis is in a direction intersecting with a main surface of an external electrode (so-called lateral winding structure). With such a structure, stray capacitance between the coil conductor portion and the external electrode can be reduced, so that high impedance is obtained even in the high frequency band, and impedance characteristics in the high frequency band are improved.

また、磁性体セラミックと内部導体を同時焼成して得られる積層コイル部品は、磁性体セラミック層と内部導体層との間で熱膨張係数の違いから発生する内部応力が、磁性体セラミックの磁気特性を低下させ、積層コイル部品のインピーダンス値の低下やばらつきを引き起こすという問題がある。よって、積層コイル部品に対して、内部応力を低減し、インピーダンス特性を向上させることが求められている。   In addition, the laminated coil parts obtained by simultaneously firing the magnetic ceramic and the inner conductor are subject to the internal stress generated by the difference in thermal expansion coefficient between the magnetic ceramic layer and the inner conductor layer. There is a problem that the impedance value of the laminated coil component is lowered and the variation is caused. Therefore, it is required for laminated coil components to reduce internal stress and improve impedance characteristics.

特許文献2は、積層コイル部品のサイドギャップ部のポア面積率を6〜20%として、サイドギャップ部を経て酸性溶液を浸透させ、内部導体とその周囲の磁性体との界面に酸性溶液を到達させることにより、内部導体とその周囲の磁性体セラミックとの界面の結合を切断する積層コイル部品の製造方法が開示されている。このような製造方法によれば、内部導体と磁性体セラミックとの界面が解離した状態となるので、積層コイル部品の内部応力を緩和することができるとしている。   In Patent Document 2, the pore area ratio of the side gap portion of the laminated coil component is set to 6 to 20%, the acidic solution is permeated through the side gap portion, and the acidic solution reaches the interface between the internal conductor and the surrounding magnetic body. By doing so, a method of manufacturing a laminated coil component is disclosed in which the bond at the interface between the inner conductor and the surrounding magnetic ceramic is cut. According to such a manufacturing method, since the interface between the internal conductor and the magnetic ceramic is dissociated, the internal stress of the laminated coil component can be relaxed.

特開平11−265822号JP-A-11-265822 国際公開第2009/034824号International Publication No. 2009/034824

しかしながら、特許文献1に記載の積層コイル部品では、高周波帯域でのインピーダンス特性を改善することはできるが、磁性体層と内部導体層との間で熱膨張係数の違いから発生する内部応力がインピーダンス値の低下やばらつきを引き起こす問題がある。   However, the multilayer coil component described in Patent Document 1 can improve the impedance characteristics in the high frequency band, but the internal stress generated due to the difference in thermal expansion coefficient between the magnetic layer and the internal conductor layer causes the impedance. There is a problem that causes a decrease in value and variation.

一方、特許文献2に記載の積層コイル部品では、内部応力を緩和することができるが、コイル中心軸と外部電極の主部面が平行であるので(いわゆる縦巻き構造)、横巻き構造である特許文献1の積層コイル部品に比べて、浮遊容量が大きく、高周波帯域でのインピーダンス特性が十分ではないという問題がある。   On the other hand, the laminated coil component described in Patent Document 2 can relieve internal stress, but has a horizontal winding structure because the coil central axis and the main surface of the external electrode are parallel (so-called vertical winding structure). Compared with the multilayer coil component of Patent Document 1, there is a problem that stray capacitance is large and impedance characteristics in a high frequency band are not sufficient.

また、積層コイル部品において、高周波帯域でのインピーダンス特性の改善と内部応力の緩和を同時に達成するために、特許文献2の方法を、特許文献1の積層コイル部品に適用すると、磁性体部の焼結性が低くなり強度が低下するので、もともと縦巻き構造と比べて強度が低い横巻き構造である特許文献1の積層コイル部品では強度が不足するという問題が生じる。   Further, in the multilayer coil component, when the method of Patent Document 2 is applied to the multilayer coil component of Patent Document 1 in order to simultaneously achieve improvement of impedance characteristics in the high frequency band and relaxation of internal stress, Since the cohesiveness is lowered and the strength is lowered, there is a problem that the laminated coil component of Patent Document 1 having a transverse winding structure that originally has a lower strength than the longitudinal winding structure has insufficient strength.

なお、本明細書において、「横巻き構造」とは、積層コイル部品において、一対の外部電極がコイル導体部の中心軸方向に(代表的には中心軸に略垂直に)対向して設けられた構造をいい、「縦巻き構造」とは、一対の外部電極が、積層体の側面(代表的にはコイル中心軸に略平行)に対向して設けられた構造をいう。一般的に、横巻き構造の積層コイル部品は、外部電極が積層体の側面を覆い各層の剥離を抑制することができる縦巻き構造の積層コイル部品と比較して、強度が低い。   In the present specification, the term “horizontal winding structure” refers to a laminated coil component in which a pair of external electrodes are provided facing the central axis direction of the coil conductor portion (typically substantially perpendicular to the central axis). The “vertical winding structure” refers to a structure in which a pair of external electrodes are provided to face the side surface (typically substantially parallel to the coil central axis) of the laminate. In general, a laminated coil component having a horizontally wound structure has a lower strength than a laminated coil component having a vertically wound structure in which an external electrode covers the side surface of the laminated body and can prevent peeling of each layer.

本発明の目的は、強度の低下を招くことなく、高周波帯域でのインピーダンス特性が改善され、かつ、磁性体内に発生し得る内部応力が低減された積層コイル部品を提供することにある。また、本発明の更なる目的は、かかる積層コイル部品の製造方法を提供することにある。   An object of the present invention is to provide a laminated coil component in which impedance characteristics in a high frequency band are improved and internal stress that can be generated in a magnetic body is reduced without causing a decrease in strength. Moreover, the further objective of this invention is to provide the manufacturing method of this laminated coil component.

本発明者らは、上記問題を解消すべく鋭意検討した結果、磁性体部の中央領域の平均結晶粒径に対する、磁性体部の導体部近傍領域の平均結晶粒径の粒径比を0.8以下とすることにより、横巻き構造であっても強度低下を招くことなく、内部応力を緩和できることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have determined that the ratio of the average crystal grain size in the region near the conductor portion of the magnetic body portion to the average crystal grain size in the central region of the magnetic body portion is 0.00. It was found that the internal stress can be alleviated without lowering the strength even when the horizontal winding structure is set to 8 or less, and the present invention has been achieved.

本発明の1つの要旨によれば、Fe、Ni、ZnおよびCuを含む焼結フェライトである磁性体部と、銀を含み、磁性体部に埋設されて成るコイル状の導体部と、磁性体部の表面にコイル中心軸方向に対向して設けられ、導体部の両端に電気的に接続された一対の外部電極を有する積層コイル部品であって、
磁性体部の中央領域の平均結晶粒径に対する、磁性体部の導体部近傍領域の平均結晶粒径の粒径比が0.8以下であることを特徴とする、積層コイル部品が提供される。
According to one aspect of the present invention, a magnetic body portion that is a sintered ferrite containing Fe, Ni, Zn, and Cu, a coil-shaped conductor portion that includes silver and is embedded in the magnetic body portion, and a magnetic body A laminated coil component having a pair of external electrodes provided on the surface of the portion so as to face the coil central axis direction and electrically connected to both ends of the conductor portion,
Provided is a multilayer coil component, wherein the ratio of the average crystal grain size in the vicinity of the conductor portion of the magnetic body portion to the average crystal grain size in the central region of the magnetic body portion is 0.8 or less. .

本発明の別の要旨によれば、磁性体層が積層されて成る磁性体部と、磁性体層間に配置された複数の導体パターン層が磁性体層を貫通してコイル状に相互接続され、磁性体部に埋設されて成る導体部と、磁性体部の表面にコイル中心軸方向に対向して設けられ、導体部の両端に電気的に接続された一対の外部電極を有する積層コイル部品の製造方法であって、
Fe、NiO、ZnOおよびCuOを含み、かつCuO含有量が0.4〜4.0mol%であるフェライト材料のグリーンシートを、銀を含む導体ペースト層を介して積層し、導体ペースト層がフェライト材料のグリーンシートを貫通してコイル状に相互接続されている積層体を得ること、および
積層体を酸素濃度0.1体積%以下の雰囲気で熱処理することにより、フェライト材料のグリーンシートおよび銀を含む導体ペースト層を焼成して、それぞれ磁性体層および導体パターン層とし、これにより、それぞれ前記磁性体部および前記導体部を形成すること
を含む製造方法が提供される。
According to another aspect of the present invention, a magnetic part formed by laminating magnetic layers and a plurality of conductor pattern layers arranged between the magnetic layers are interconnected in a coil shape through the magnetic layer, A laminated coil component having a conductor part embedded in a magnetic part and a pair of external electrodes provided on the surface of the magnetic part facing the central axis of the coil and electrically connected to both ends of the conductor part A manufacturing method comprising:
A ferrite paste green sheet containing Fe 2 O 3 , NiO, ZnO and CuO and having a CuO content of 0.4 to 4.0 mol% is laminated via a conductor paste layer containing silver, and a conductor paste layer Through a ferrite material green sheet and obtaining a laminate interconnected in a coil shape, and by heat-treating the laminate in an atmosphere having an oxygen concentration of 0.1% by volume or less, the ferrite material green sheet and A conductive paste layer containing silver is fired to obtain a magnetic layer and a conductive pattern layer, respectively, thereby providing a manufacturing method including forming the magnetic portion and the conductor portion, respectively.

本発明によれば、磁性体部の中央領域の平均結晶粒径に対する、磁性体部の導体部近傍領域の平均結晶粒径の粒径比を0.8以下とすることにより、高周波帯域でのインピーダンス特性が改善され、直流重畳特性が改善され、内部応力が緩和され、かつ十分な強度を有する横巻き構造の積層コイル部品が提供される。また、本発明によれば、上記積層コイル部品の製造方法も提供される。   According to the present invention, the ratio of the average crystal grain size of the region near the conductor part of the magnetic part to the average crystal grain size of the central part of the magnetic part is 0.8 or less, so that Provided is a laminated coil component having a laterally wound structure with improved impedance characteristics, improved DC superposition characteristics, reduced internal stress, and sufficient strength. Moreover, according to this invention, the manufacturing method of the said multilayer coil component is also provided.

本発明の1つの実施形態における積層コイル部品の概略斜視図である。It is a schematic perspective view of the laminated coil component in one embodiment of this invention. 本発明の1つの実施形態における積層コイル部品(外部電極を除く)の概略分解斜視図である。1 is a schematic exploded perspective view of a laminated coil component (excluding external electrodes) in one embodiment of the present invention. 本発明の1つの実施形態における積層コイル部品の概略断面図である。It is a schematic sectional drawing of the laminated coil component in one embodiment of this invention. 本発明の1つの実施形態における積層コイル部品(外部電極を除く)の概略断面図であり、(a)は、磁性体部の中央領域および導体部近傍領域を例示的に示す図であり、(b)は、高Cu含有量領域および低Cu含有量領域を例示的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a laminated coil component (excluding external electrodes) in one embodiment of the present invention, (a) is a diagram exemplarily showing a central region of a magnetic body part and a conductor vicinity region; b) is a diagram exemplarily showing a high Cu content region and a low Cu content region. 磁性体部の中央領域および導体部近傍領域の平均結晶粒径の測定箇所を例示的に示す図である。It is a figure which shows the measurement location of the average crystal grain diameter of the center area | region of a magnetic body part, and a conductor part vicinity area | region exemplarily.

本発明の積層コイル部品およびその製造方法について、以下、図面を参照しながら詳細に説明する。但し、本実施形態の積層コイル部品の構成、形状、巻回数および配置等は、図示する例に限定されないことに留意されたい。   The multilayer coil component and the manufacturing method thereof according to the present invention will be described below in detail with reference to the drawings. However, it should be noted that the configuration, shape, number of turns, arrangement, and the like of the laminated coil component of the present embodiment are not limited to the illustrated example.

図1に示すように、本実施形態の積層コイル部品1aは、概略的には、積層体2と、該積層体2の両端面を覆うように設けられた外部電極7および8から成る。   As shown in FIG. 1, the laminated coil component 1 a according to the present embodiment schematically includes a laminated body 2 and external electrodes 7 and 8 provided so as to cover both end faces of the laminated body 2.

図2および図3を参照して、積層体2は、磁性体層4および5から成る磁性体部4aと、各磁性体層間に配置された導体パターン層3から成るコイル状の導体部3aとから成る。各導体パターン層3は、磁性体層4に貫通して設けられたビアホール6を通ってコイル状に相互接続されている。導体部3aは、最外層の磁性体層5に貫通して設けられたビアホール6aを通って、外部電極7および8に接続されている。   Referring to FIGS. 2 and 3, laminated body 2 includes a magnetic body portion 4 a composed of magnetic body layers 4 and 5, and a coil-shaped conductor portion 3 a composed of a conductor pattern layer 3 disposed between the magnetic body layers. Consists of. Each conductor pattern layer 3 is interconnected in a coil shape through a via hole 6 provided penetrating the magnetic layer 4. The conductor portion 3a is connected to the external electrodes 7 and 8 through a via hole 6a provided through the outermost magnetic layer 5.

磁性体部4aは、Fe、Ni、ZnおよびCuを含む焼結フェライトから成る。導体部3aは、銀を含む導体から成るものであればよいが、銀を主成分として含む導体、すなわち実質的に銀から成る導体が好ましい。外部電極7および8は、特に限定されないが、通常、銀を主成分として含む導体から成り、必要に応じてニッケルおよび/またはスズなどがメッキされ得る。   The magnetic part 4a is made of sintered ferrite containing Fe, Ni, Zn and Cu. Although the conductor part 3a should just consist of a conductor containing silver, the conductor which contains silver as a main component, ie, the conductor which consists of silver substantially, is preferable. The external electrodes 7 and 8 are not particularly limited, but are usually made of a conductor containing silver as a main component, and can be plated with nickel and / or tin as necessary.

本発明の積層コイル部品は、外部電極をコイル中心軸方向に対向して設けた構造(すなわち横巻き構造)であるため、外部電極をコイル中心軸と略平行に設けた構造(すなわち縦巻き構造)と比較して、コイル導体部と外部電極間の浮遊容量が小さく、高周波帯域でも高いインピーダンスが得られ、高周波帯域でのインピーダンス特性が改善される。   Since the laminated coil component of the present invention has a structure in which external electrodes are provided facing the coil central axis direction (that is, a horizontal winding structure), a structure in which external electrodes are provided substantially parallel to the coil central axis (that is, a vertical winding structure). ), The stray capacitance between the coil conductor portion and the external electrode is small, high impedance is obtained even in the high frequency band, and impedance characteristics in the high frequency band are improved.

本発明の積層コイル部品は、磁性体部の導体部近傍領域の平均結晶粒径をD1、磁性体部の中央領域の平均結晶粒径をD2とした場合、粒径比D1/D2が0.8以下である。   In the laminated coil component of the present invention, when the average crystal grain size in the vicinity of the conductor portion of the magnetic body portion is D1, and the average crystal grain size in the central region of the magnetic body portion is D2, the grain size ratio D1 / D2 is 0.00. 8 or less.

ここに、本発明において、「磁性体部の中央領域」とは、磁性体部のうち、導体パターン層が形成するコイルの内側に位置し、コイルの中心軸上およびその近傍に位置する領域を意味し、具体的には、コイルの中心軸から10μm以内の領域(例えば、図4(a)に示す領域X)として規定される。「磁性体部の導体部近傍領域」とは、磁性体部のうち、磁性体部と導体部との界面に近接した領域を意味し、磁性体部と導体部との界面から磁性体の内部へ1μm以上離れ、10μm以内にある領域(例えば、図4(a)に示す領域Y)として規定される。なお、図4(a)においては、導体部近傍領域Yが導体パターン層間で離間した例を示しているが、本実施形態はこれに限定されず、導体パターン層間で重なり合っていてもよい。   Here, in the present invention, the “central region of the magnetic body portion” is a region of the magnetic body portion that is located inside the coil formed by the conductor pattern layer and is located on and near the central axis of the coil. Specifically, it is defined as a region within 10 μm from the central axis of the coil (for example, a region X shown in FIG. 4A). The “region near the conductor portion of the magnetic body portion” means a region of the magnetic body portion that is close to the interface between the magnetic body portion and the conductor portion, and the inside of the magnetic body from the interface between the magnetic body portion and the conductor portion. It is defined as a region (for example, region Y shown in FIG. 4A) that is separated by 1 μm or more and within 10 μm. FIG. 4A shows an example in which the conductor vicinity region Y is separated between the conductor pattern layers, but the present embodiment is not limited to this, and may overlap between the conductor pattern layers.

磁性体部の平均結晶粒径は、磁性体部の所定の領域、すなわち中央領域または導体部近傍領域、代表的には、内部導体から約5μm離れた箇所(図5の内部導体近傍領域であってt=5μmの箇所に相当する)または磁性体部の略中央部(図5の素子中央領域に相当する)のSEM写真を撮影し、このSEM写真から、JIS規格(R1670)に準拠し、円相当径に換算して平均結晶粒径を算出して求められる。本発明において、平均結晶粒径は、複数、例えば10個の試料で測定した測定値の平均値として求められる。   The average crystal grain size of the magnetic part is a predetermined area of the magnetic part, that is, a central region or a region near the conductor, typically a location about 5 μm away from the inner conductor (the region near the inner conductor in FIG. 5). T = 5 μm) or a substantially central part (corresponding to the element central region of FIG. 5) of the magnetic part, and from this SEM photograph, in accordance with JIS standard (R1670), It is obtained by calculating the average crystal grain size in terms of equivalent circle diameter. In the present invention, the average crystal grain size is obtained as an average value of measured values measured with a plurality of, for example, 10 samples.

粒径比D1/D2が0.8以下であるということは、磁性体部の導体部近傍領域の焼結性が低く、それ以外の領域、例えば磁性体部の中央領域では焼結性が高いことを意味する。このような積層コイル部品では、導体部近傍領域の焼結密度がより小さいことによって、導体部からの内部応力を緩和することができ、積層コイル部品を熱衝撃試験に付した場合の磁気特性(例えばインピーダンス)の変化を低減することができる。さらに、導体部近傍領域の焼結密度がより小さいことによって、当該領域の透磁率を小さくすることができ、積層コイル部品の直流重畳特性を向上させることができる。また、導体部近傍領域以外の領域では焼結密度が大きいので、所望の強度を得ることができる。   That the particle size ratio D1 / D2 is 0.8 or less means that the sinterability of the magnetic body portion in the vicinity of the conductor portion is low and the sinterability is high in other regions, for example, the central region of the magnetic body portion. Means that. In such a multilayer coil component, since the sintered density in the vicinity of the conductor portion is smaller, the internal stress from the conductor portion can be relaxed, and the magnetic characteristics when the multilayer coil component is subjected to a thermal shock test ( For example, a change in impedance can be reduced. Furthermore, since the sintered density in the vicinity of the conductor portion is smaller, the magnetic permeability in the region can be reduced, and the DC superposition characteristics of the laminated coil component can be improved. Further, since the sintered density is large in the region other than the region near the conductor part, a desired strength can be obtained.

また、本発明の積層コイル部品は、磁性体部の中央領域におけるCu含有量が、CuOに換算して、0.4〜4.0mol%、好ましくは0.4〜1.0mol%であり得る。かかるCu含有量とすることにより、積層コイル部品の強度を保持したまま、熱衝撃試験に付した場合の磁気特性の変化を一層低減することができる。   In the multilayer coil component of the present invention, the Cu content in the central region of the magnetic part can be 0.4 to 4.0 mol%, preferably 0.4 to 1.0 mol%, converted to CuO. . By setting it as such Cu content, the change of the magnetic characteristic at the time of attaching | subjecting to a thermal shock test can be further reduced, maintaining the intensity | strength of laminated coil components.

磁性体部のCu含有量(重量%)は、磁性体部の所定の領域を波長分散型X線分析法(WDX法)を用いてCu含有量を測定して求められる。測定面積は、使用する分析機器によって異なり得、例えば、測定ビーム径で数十nm〜1μmであるが、これに限定されない。測定箇所は、測定対象とする領域内において適宜設定でき、Cu含有量(重量%)は、該領域内のいくつかの箇所で測定した測定値の平均値として求められる。   The Cu content (% by weight) of the magnetic part is obtained by measuring the Cu content of a predetermined region of the magnetic part using a wavelength dispersive X-ray analysis method (WDX method). The measurement area may vary depending on the analytical instrument to be used. For example, the measurement beam diameter is several tens nm to 1 μm, but is not limited thereto. The measurement location can be set as appropriate within the region to be measured, and the Cu content (% by weight) is obtained as an average value of the measurement values measured at several locations within the region.

図1により示される本実施形態の積層コイル部品1aは、以下のようにして製造される。   The laminated coil component 1a of this embodiment shown by FIG. 1 is manufactured as follows.

まず、Fe、NiO、ZnOおよびCuOを含み、かつCuO含有量が0.4〜4.0mol%であるフェライト材料のグリーンシートを準備する。 First, a green sheet of a ferrite material containing Fe 2 O 3 , NiO, ZnO, and CuO and having a CuO content of 0.4 to 4.0 mol% is prepared.

フェライト材料は、Fe、NiO、ZnOおよびCuOを主成分として含み、必要に応じて添加成分を更に含んでいてよい。通常、フェライト材料は、素原料として、これら成分の粉末を所望の割合で混合および仮焼して調製され得るが、これに限定されるものではない。 The ferrite material contains Fe 2 O 3 , NiO, ZnO, and CuO as main components, and may further contain additional components as necessary. Usually, a ferrite material can be prepared by mixing and calcining powders of these components in a desired ratio as a raw material, but is not limited thereto.

本実施形態において、フェライト材料におけるCuO含有量は、0.4〜4.0mol%(主成分合計基準)とする。CuO含有量を0.4〜4.0mol%として、後述する熱処理により積層体を焼成することによって、直流重畳特性を向上させ、熱衝撃試験に付した場合の磁気特性の変化を小さくすることができる。   In the present embodiment, the CuO content in the ferrite material is 0.4 to 4.0 mol% (main component total reference). It is possible to improve the direct current superposition characteristics and reduce the change in magnetic characteristics when subjected to a thermal shock test by firing the laminate by a heat treatment described later with a CuO content of 0.4 to 4.0 mol%. it can.

フェライト材料におけるFe含有量は、44〜49.8mol%(主成分合計基準)とすることが好ましい。Fe含有量を44mol%以上とすることによって、磁性体部の中央領域において高い透磁率を得ることができ、大きなインダクタンスを取得できる。また、Fe含有量を49.8mol%以下とすることによって、高い焼結性を得ることができる。 The content of Fe 2 O 3 in the ferrite material is preferably 44 to 49.8 mol% (main component total reference). By setting the Fe 2 O 3 content to 44 mol% or more, a high magnetic permeability can be obtained in the central region of the magnetic part, and a large inductance can be obtained. Further, by less 49.8Mol% of Fe 2 O 3 content, it is possible to obtain a high sintering resistance.

フェライト材料におけるZnO含有量は、6〜33mol%(主成分合計基準)とすることが好ましい。ZnO含有量を6mol%以上とすることによって、高い透磁率を得ることができ、大きなインダクタンスを取得できる。また、ZnO含有量を33mol%以下とすることによって、キュリー点の低下を回避でき、積層コイル部品の動作温度の低下を回避できる。   The ZnO content in the ferrite material is preferably 6 to 33 mol% (main component total reference). By setting the ZnO content to 6 mol% or more, a high magnetic permeability can be obtained and a large inductance can be obtained. Moreover, by making ZnO content 33 mol% or less, the fall of a Curie point can be avoided and the fall of the operating temperature of laminated coil components can be avoided.

フェライト材料におけるNiO含有量は、特に限定されず、上述した他の主成分であるCuO、Fe、ZnOの残部とし得る。 The NiO content in the ferrite material is not particularly limited, and may be the balance of CuO, Fe 2 O 3 , and ZnO that are the other main components described above.

フェライト材料における添加成分としては、例えばBi、SnO、Co、Mnなどが挙げられるが、これに限定されない。Bi含有量(添加量)は、主成分(Fe、ZnO、NiO、CuO)の合計100重量部に対して、0.1〜1重量部とすることが好ましい。Bi含有量を0.1〜1重量部とすることによって、低温焼成がより促進されると共に、異常粒成長を回避することができる。Bi含有量が高すぎると、異常粒成長が起こり易く、異常粒成長部位にて比抵抗が低下し、外部電極形成時のめっき処理の際に、異常粒成長部位にめっきが付着するので好ましくない。 Examples of the additive component in the ferrite material include, but are not limited to, Bi 2 O 3 , SnO 2 , Co 3 O 4 , Mn 2 O 3 and the like. The content of Bi 2 O 3 (additive amount), the main component (Fe 2 O 3, ZnO, NiO, CuO) per 100 parts by weight of the total, it is preferable that 0.1 to 1 parts by weight. By setting the Bi 2 O 3 content to 0.1 to 1 part by weight, low-temperature firing is further promoted and abnormal grain growth can be avoided. If the Bi 2 O 3 content is too high, abnormal grain growth tends to occur, the specific resistance decreases at the abnormal grain growth site, and plating adheres to the abnormal grain growth site during the plating process during external electrode formation. Therefore, it is not preferable.

上記のようにして調製したフェライト材料を用いてグリーンシートを準備する。例えば、フェライト材料を、バインダ樹脂および有機溶剤を含む有機ビヒクルと混合/混練し、シート状に成形することによりグリーンシートを得てよいが、これに限定されるものではない。   A green sheet is prepared using the ferrite material prepared as described above. For example, a green sheet may be obtained by mixing / kneading a ferrite material with an organic vehicle containing a binder resin and an organic solvent, and forming the sheet into a sheet shape, but is not limited thereto.

別途、銀を含む導体ペーストを準備する。市販で入手可能な、銀を粉末の形態で含む一般的な銀ペーストを使用できるが、これに限定されない。   Separately, a conductor paste containing silver is prepared. A commercially available silver paste containing silver in powder form can be used, but is not limited thereto.

そして、上記フェライト材料のグリーンシート(磁性体層4および5に対応する)を、銀を含む導体ペースト層(導体パターン層3に対応する)を介して積層し、導体ペースト層がフェライト材料のグリーンシートに貫通して設けられたビアホール(ビアホール6に対応する)を通ってコイル状に相互接続されている積層体(積層体2に対応するが、未焼成積層体である)を得る。   Then, the ferrite material green sheet (corresponding to the magnetic layers 4 and 5) is laminated via a conductor paste layer containing silver (corresponding to the conductor pattern layer 3), and the conductor paste layer is a ferrite material green. A laminated body (corresponding to the laminated body 2 but an unfired laminated body) interconnected in a coil shape through a via hole (corresponding to the via hole 6) provided through the sheet is obtained.

積層体の形成方法は、特に限定されず、シート積層法および印刷積層法などを利用して積層体を形成してよい。シート積層法による場合、フェライト材料のグリーンシートに、適宜ビアホールを設けて、導体ペーストを所定のパターンで(ビアホールが設けられている場合には、ビアホールに充填しつつ)印刷して導体ペースト層を形成し、導体ペースト層が適宜形成されたグリーンシートを積層および圧着し、所定の寸法に切断して、積層体を得ることができる。印刷積層法による場合、フェライト材料からなる磁性体ペーストを印刷して磁性体層を形成する工程、導体ペーストを所定のパターンで印刷して導体層を形成する工程を順次繰り返すことで積層体を作製する。磁性体層を形成する時は所定の箇所にビアホールを設け、上下の導体層が導通するようにし、最後に磁性体ペーストを印刷して磁性体層(磁性体層5に対応する)を形成し、これを所定の寸法に切断して、積層体を得ることができる。この積層体は、複数個をマトリクス状に一度に作製した後に、ダイシング等により個々に切断して(素子分離して)個片化したものであってよいが、予め個々に作製したものであってもよい。   The formation method of a laminated body is not specifically limited, You may form a laminated body using a sheet | seat lamination method, a printing lamination method, etc. In the case of the sheet lamination method, via holes are appropriately provided in the ferrite material green sheet, and the conductor paste layer is printed by printing the conductor paste in a predetermined pattern (filling the via holes when via holes are provided). The green sheet with the conductor paste layer formed thereon is laminated and pressure-bonded, and cut into a predetermined size to obtain a laminate. In the case of the printing lamination method, a laminated body is produced by sequentially repeating a process of forming a magnetic layer by printing a magnetic paste made of a ferrite material and a step of printing a conductive paste in a predetermined pattern to form a conductive layer. To do. When the magnetic layer is formed, via holes are provided at predetermined locations so that the upper and lower conductor layers are conductive, and finally a magnetic paste is printed to form a magnetic layer (corresponding to the magnetic layer 5). The laminate can be obtained by cutting it into predetermined dimensions. The laminated body may be a plurality of laminated bodies produced in a matrix at a time, and then cut into individual pieces by dicing or the like (element separation), but is individually produced in advance. May be.

次に、上記で得られた積層体を、酸素濃度0.1体積%以下の雰囲気で熱処理することにより、フェライト材料のグリーンシートおよび銀を含む導体ペースト層を焼成して、それぞれ磁性体層4および5ならびに導体パターン層3とする。これにより得られた積層体2において、磁性体層4および5は磁性体部4aを形成し、導体パターン層3は導体部3aを形成する。   Next, the laminated body obtained above is heat-treated in an atmosphere having an oxygen concentration of 0.1% by volume or less to sinter a ferrite paste green sheet and a conductor paste layer containing silver, and each of the magnetic layers 4 And 5 and conductor pattern layer 3. In the laminate 2 obtained in this way, the magnetic layers 4 and 5 form the magnetic portion 4a, and the conductor pattern layer 3 forms the conductor portion 3a.

酸素濃度0.1体積%以下の雰囲気で熱処理することにより、フェライト材料を空気中で熱処理する場合よりも低温で焼結でき、例えば、焼成温度を900〜930℃とし得る。本発明はいかなる理論によっても拘束されないが、低酸素濃度雰囲気で焼成した場合、結晶構造中に酸素欠陥が形成され、結晶中に存在するFe、Ni、Cu、Znの相互拡散が促進され、低温焼結性を高めることができるものと考えられる。   By heat-treating in an atmosphere having an oxygen concentration of 0.1% by volume or less, the ferrite material can be sintered at a lower temperature than when heat-treated in air. For example, the firing temperature can be 900 to 930 ° C. The present invention is not bound by any theory, but when fired in a low oxygen concentration atmosphere, oxygen defects are formed in the crystal structure, and interdiffusion of Fe, Ni, Cu, Zn present in the crystal is promoted, and the low temperature It is considered that the sinterability can be improved.

加えて、CuOの含有量が4mol%以下であるNi−Zn−Cu系フェライト材料を使用することにより、酸素濃度0.1体積%以下の雰囲気で焼成しても、磁性体部4aにおいて高い比抵抗を確保することができる。本発明はいかなる理論によっても拘束されないが、低酸素濃度雰囲気で焼成した場合、熱処理雰囲気の還元作用によりCuOがCuOに還元されて磁性体部4aの比抵抗が低下する(インピーダンスが低下する)と考えられ、CuOの含有量を小さくすることによりCuOの還元によるCuOの生成を抑制でき、これにより比抵抗の低下が抑制されるものと考えられる。但し、焼成雰囲気の酸素濃度は0.1体積%以下であればよいが、磁性体部4aの比抵抗を確保するには0.001体積%以上であることが好ましい。本発明はいかなる理論によっても拘束されないが、酸素濃度があまり低すぎると、酸素欠陥が必要以上に生成されて磁性体部4aの比抵抗が低下するおそれがあり、酸素をある程度存在させることにより、酸素欠陥の生成が過剰となるのを回避でき、これにより高い比抵抗を確保できるものと考えられる。 In addition, by using a Ni—Zn—Cu based ferrite material having a CuO content of 4 mol% or less, a high ratio in the magnetic body portion 4a can be obtained even when fired in an atmosphere having an oxygen concentration of 0.1 volume% or less. Resistance can be secured. The present invention is not limited by any theory, but when fired in a low oxygen concentration atmosphere, CuO is reduced to Cu 2 O by the reducing action of the heat treatment atmosphere, and the specific resistance of the magnetic part 4a is reduced (impedance is reduced). It is considered that the formation of Cu 2 O due to the reduction of CuO can be suppressed by reducing the content of CuO, thereby suppressing the decrease in specific resistance. However, the oxygen concentration in the firing atmosphere may be 0.1% by volume or less, but is preferably 0.001% by volume or more in order to ensure the specific resistance of the magnetic part 4a. Although the present invention is not limited by any theory, if the oxygen concentration is too low, oxygen defects may be generated more than necessary, and the specific resistance of the magnetic body portion 4a may be reduced. It is considered that the generation of oxygen defects can be avoided and thereby a high specific resistance can be secured.

なお、磁性体部の焼結前後において、焼結前のフェライト材料、例えば、CuO、Feは焼成によりその一部がそれぞれCuO、Feに変化することが起り得る。しかし、かかる焼結フェライト材料におけるCuO換算含有量、Fe換算含有量は、それぞれ、焼結前のフェライト材料におけるCuO含有量、Fe含有量と実質的に相違ないと考えて差し支えない。 In addition, before and after sintering of the magnetic body portion, ferrite materials before sintering, such as CuO and Fe 2 O 3, may be partially changed to Cu 2 O and Fe 3 O 4 by firing. However, the CuO equivalent content and the Fe 2 O 3 equivalent content in the sintered ferrite material are considered to be substantially different from the CuO content and the Fe 2 O 3 content in the ferrite material before sintering, respectively. There is no problem.

次に、上記で得られた積層体2の両端面を覆うように、積層体内部の導体部3aのコイル中心軸方向に対向して、外部電極7および8を形成する。外部電極7および8の形成は、例えば、銀の粉末をガラスなどと一緒にペースト状にしたものを所定の領域に塗布し、得られた構造体を、例えば約750℃で熱処理して銀を焼き付けることによって実施し得る。外部電極7および8は、それぞれ、磁性体層5に設けられたビアホール6aを介して、導体部3aの両末端に接続されている。   Next, external electrodes 7 and 8 are formed facing the coil central axis direction of the conductor portion 3a inside the multilayer body so as to cover both end faces of the multilayer body 2 obtained above. The external electrodes 7 and 8 are formed by, for example, applying a paste of silver powder together with glass or the like to a predetermined region, and heat-treating the obtained structure at, for example, about 750 ° C. It can be carried out by baking. The external electrodes 7 and 8 are respectively connected to both ends of the conductor portion 3a through via holes 6a provided in the magnetic layer 5.

以上のようにして、本実施形態の積層コイル部品1aが製造される。   As described above, the laminated coil component 1a of the present embodiment is manufactured.

磁性体部4aの導体部近傍領域Yにおける平均結晶粒径は、磁性体部4aの中央領域Xにおける平均結晶粒径に対して、0.8以下となる。本発明はいかなる理論によっても拘束されないが、CuO含有量が0.4〜4mol%であるフェライト材料と、銀を含む導体ペーストとを、酸素濃度0.1体積%以下の雰囲気で同時焼成すると、この焼成過程において、導体ペーストに由来する導体部が、フェライト材料からCuを吸収し、このため、導体部近傍領域YにおけるCu含有量が低下するものと考えられる。すなわち、図4(b)に例示的に示すように、磁性体部4aにおいて、導体部3aの周囲に低Cu含有量領域Y’(導体部近傍領域Yを含む)が形成され、これにより、その他のバルク領域(積層体2の外表面に隣接した領域を除く)は、相対的にCu含有量が高くなって、高Cu含有量領域X’となる。磁性体部4aの中央領域XにおけるCu含有量は、高Cu含有量領域X’におけるCu含有量を代表するものとして理解され得、磁性体部4aの導体部近傍領域YにおけるCu含有量は、低Cu含有量領域Y’におけるCu含有量を代表するものとして理解され得る。なお、図4(b)に示すように、低Cu含有量領域Y’は、導体パターン層間に隙間なく形成されることが好ましいが、本発明はこれに限定されない。   The average crystal grain size in the conductor vicinity region Y of the magnetic body portion 4a is 0.8 or less with respect to the average crystal grain size in the central region X of the magnetic body portion 4a. Although the present invention is not bound by any theory, when a ferrite material having a CuO content of 0.4 to 4 mol% and a conductor paste containing silver are co-fired in an atmosphere having an oxygen concentration of 0.1 vol% or less, In this firing process, it is considered that the conductor portion derived from the conductor paste absorbs Cu from the ferrite material, and thus the Cu content in the conductor portion vicinity region Y is reduced. That is, as exemplarily shown in FIG. 4B, in the magnetic body portion 4a, the low Cu content region Y ′ (including the conductor portion vicinity region Y) is formed around the conductor portion 3a. Other bulk regions (excluding regions adjacent to the outer surface of the laminate 2) have a relatively high Cu content and become a high Cu content region X ′. The Cu content in the central region X of the magnetic body portion 4a can be understood as representing the Cu content in the high Cu content region X ′, and the Cu content in the conductor vicinity region Y of the magnetic body portion 4a is It can be understood as representative of the Cu content in the low Cu content region Y ′. As shown in FIG. 4B, the low Cu content region Y ′ is preferably formed without gaps between the conductor pattern layers, but the present invention is not limited to this.

CuOは、焼結助剤として作用するので、低Cu含有量領域Y’では、Cu含有量が相対的に低いため焼結性が低下し、粒子成長が抑制されて、焼結密度が低くなる。一方、高Cu含有量領域X’では、Cu含有量が相対的に高いため焼結性が高く、粒子成長が十分促進されて、焼結密度が高くなる。   Since CuO acts as a sintering aid, in the low Cu content region Y ′, since the Cu content is relatively low, the sinterability is lowered, particle growth is suppressed, and the sintering density is lowered. . On the other hand, in the high Cu content region X ′, since the Cu content is relatively high, the sinterability is high, the particle growth is sufficiently promoted, and the sintering density is increased.

かかる積層コイル部品1aは、焼結フェライト材料からなる磁性体部4aと、銀を含む導体から成る導体部3aとで熱膨張係数(特に線膨張係数)が異なるものの、磁性体部4aのうち、低Cu含有量領域Y’は焼結密度が低いので、熱処理(焼成)後の冷却過程などにより磁性体部4a内に発生し得る内部応力(または応力歪み)を緩和または低減することができる。よって、積層コイル部品1aを熱衝撃試験に付した場合、または積層コイル部品1aの用途(基板実装する際のリフロー処理や、ユーザーによる実使用)において、急激な温度変化に曝されたり、外部応力が負荷されたりした場合に、導体部近傍領域Y(焼結密度の低い領域)において内部応力の変動を小さくすることができ、よって、インダクタンスやインピーダンス等の磁気特性の変化を低減することができる。また、磁性体部4aのうち、高Cu含有量領域X’は焼結密度が高いので、積層コイル部品1aは、十分な強度を保持することができる。この結果、本実施形態の積層コイル部品1aにおいては、強度を保持したまま内部応力の緩和を達成することができる。   Such a laminated coil component 1a is different from the magnetic part 4a in that the magnetic part 4a made of sintered ferrite material and the conductor part 3a made of silver-containing conductor have different thermal expansion coefficients (particularly linear expansion coefficient). Since the low Cu content region Y ′ has a low sintered density, internal stress (or stress strain) that can be generated in the magnetic body portion 4a due to a cooling process after heat treatment (firing) or the like can be reduced or reduced. Therefore, when the laminated coil component 1a is subjected to a thermal shock test, or is used for the laminated coil component 1a (reflow processing when mounted on a board or actual use by a user), it is exposed to a sudden temperature change or external stress. Or the like, it is possible to reduce the fluctuation of internal stress in the conductor vicinity region Y (region where the sintered density is low), and therefore, it is possible to reduce changes in magnetic characteristics such as inductance and impedance. . Moreover, since the high Cu content area | region X 'among the magnetic body parts 4a has a high sintered density, the laminated coil component 1a can maintain sufficient intensity | strength. As a result, in the laminated coil component 1a of the present embodiment, it is possible to achieve relaxation of internal stress while maintaining strength.

以上、本発明の1つの実施形態について説明したが、本実施形態は種々の改変が可能である。   Although one embodiment of the present invention has been described above, the present embodiment can be variously modified.

Fe、ZnO、NiO、CuO粉末を組成が表1の試料No.1〜12に示す割合となるように秤量した。なお、試料No.3〜9が本発明の実施例であり、試料No.1〜2および10〜12(表中、記号「*」を付して示す)は比較例である。 Fe 2 O 3, ZnO, NiO , sample composition of CuO powder of Table 1 No. It measured so that it might become a ratio shown to 1-12. Sample No. 3 to 9 are examples of the present invention. 1-2 and 10-12 (indicated by the symbol “*” in the table) are comparative examples.

Figure 2014027071
Figure 2014027071

次いで、試料No.1〜12の各秤量物を、純水およびPSZ(Partial Stabilized Zirconia;部分安定化ジルコニア)ボールと共に、ボールミルに入れ、48時間混合粉砕した。粉砕処理物を蒸発乾燥させた後、750℃の温度で2時間仮焼した。これにより得られた仮焼物を、エタノールおよびPSZボールと共に、再びボールミルに入れ、24時間粉砕し、更にポリビニルブチラール系バインダ(有機バインダ)を加えて十分に混合し、フェライト材料を含むスラリー(セラミックスラリー)を得た。次に、ドクターブレード法により、上記で得たフェライト材料のスラリーから、厚さ25μmのグリーンシートを作製し、50mm角の大きさに打ち抜いて、磁性体シートを作製した。   Next, sample No. Each weighed 1-12 was placed in a ball mill with pure water and PSZ (Partial Stabilized Zirconia) balls and mixed and ground for 48 hours. The pulverized product was evaporated to dryness and calcined at a temperature of 750 ° C. for 2 hours. The calcined material thus obtained is put into a ball mill again together with ethanol and PSZ balls, pulverized for 24 hours, further added with a polyvinyl butyral binder (organic binder) and mixed thoroughly, and a slurry containing a ferrite material (ceramic slurry) ) Next, by the doctor blade method, a green sheet having a thickness of 25 μm was produced from the ferrite material slurry obtained above, and punched into a size of 50 mm square to produce a magnetic sheet.

次いで、レーザ加工機を使用して、上記で作製した磁性体シートの所定の位置にビアホールを形成した後、別途調製した、銀粉末、ワニスおよび有機溶剤を含む導体ペーストを、磁性体シートの表面にスクリーン印刷し、かつビアホールに充填して、所定形状のコイルパターンおよびビアホールを有する導体ペースト層を形成した。   Next, using a laser processing machine, after forming a via hole at a predetermined position of the magnetic material sheet prepared above, separately prepared conductor paste containing silver powder, varnish and organic solvent was applied to the surface of the magnetic material sheet. A conductor paste layer having a coil pattern and a via hole having a predetermined shape was formed by screen printing and filling the via hole.

次いで、図2に示されるように、所定のコイルパターンが形成された磁性体シートを適切に積層した後、これらを、導体ペースト層が形成されていない磁性体シートで挟持し、60℃の温度で100MPaの圧力で圧着し、圧着ブロックを作製した。そして、この圧着ブロックを所定のサイズに切断して積層成形体を作製した。   Next, as shown in FIG. 2, after appropriately laminating magnetic sheets on which a predetermined coil pattern is formed, these are sandwiched between magnetic sheets on which no conductor paste layer is formed, and a temperature of 60 ° C. And pressure-bonded at a pressure of 100 MPa to prepare a pressure-bonding block. And this press-bonded block was cut into a predetermined size to produce a laminated molded body.

上記で得られた積層体を、大気中で400℃に加熱して十分に脱脂した。次いで、N−Oの混合ガスにより酸素分圧が0.1体積%に制御された焼成炉に積層体を投入し、900〜930℃の温度域で、1〜5時間保持することにより熱処理(焼成)し、これにより磁性体部にコイル導体部が埋設された部品素体(積層体)を作製した。 The laminate obtained above was sufficiently degreased by heating to 400 ° C. in the atmosphere. Next, the laminate is put into a firing furnace in which the oxygen partial pressure is controlled to be 0.1% by volume with a mixed gas of N 2 —O 2 , and held at a temperature range of 900 to 930 ° C. for 1 to 5 hours. By heat treatment (firing), a component body (laminated body) in which the coil conductor portion was embedded in the magnetic body portion was manufactured.

次いで、銀粉末、ガラスフリット、ワニスおよび有機溶剤を含有した外部電極用導電ペーストを用意し、この外部電極用導電ペーストを、上記部品素体のコイルの軸方向に対向した両端に塗布して乾燥させた後、750℃で焼き付けて、外部電極を形成して、図1に示されるような試料(積層コイル部品)を得た。   Next, an external electrode conductive paste containing silver powder, glass frit, varnish and organic solvent is prepared, and this external electrode conductive paste is applied to both ends of the component element body facing the axial direction of the coil and dried. Then, baking was performed at 750 ° C. to form external electrodes, and a sample (laminated coil component) as shown in FIG. 1 was obtained.

以上により、積層コイル部品を、試料No.1〜12について作製した。なお、積層コイル部品の外径寸法は、長さL:1.0mm、幅W:0.5mm、厚みT:0.5mmとし、導体部(コイル)のターン数は1MHzで約6μHになるように調整した。   As described above, the laminated coil component is designated as Sample No. It produced about 1-12. The outer diameter dimensions of the laminated coil component are as follows: length L: 1.0 mm, width W: 0.5 mm, thickness T: 0.5 mm, and the number of turns of the conductor (coil) is about 6 μH at 1 MHz. Adjusted.

(評価)
試料No.1〜12について得られた試料(積層コイル部品)を、平均結晶粒径、たわみ試験および熱衝撃試験により評価した。
(Evaluation)
Sample No. The samples (laminated coil parts) obtained for 1 to 12 were evaluated by average crystal grain size, deflection test and thermal shock test.

・平均結晶粒径
試料No.1〜12につき各10個の試料を用いて、樹脂固めを行い、試料の厚み方向に研磨し、厚み方向の約1/2の時点における研磨断面を得て、観察用の断面とした。これをケミカルエッチングし、図5に示すように内部導体から約5μm離れた箇所(図5の内部導体近傍領域であってt=5μmの箇所)、および試料の略中央部(図5の素子中央領域)のSEM写真を撮影し、このSEM写真から、JIS規格(R1670)に準拠し、旭化成エンジニアリング製画像解析ソフトA像くん(商標登録)を用いて、円相当径に換算して平均結晶粒径を算出し、10個の試料での平均値を求め、平均結晶粒径とした。結果と粒径比を表1に併せて示す。
Average grain size Sample No. Resin hardening was performed using 10 samples each for 1 to 12, and the sample was polished in the thickness direction of the sample, and a polished cross section at about half the thickness direction was obtained to obtain a cross section for observation. This is chemically etched, as shown in FIG. 5, a location approximately 5 μm away from the inner conductor (a region near the inner conductor in FIG. 5 where t = 5 μm), and a substantially central portion of the sample (center of the element in FIG. 5). Area)), and from this SEM photograph, in accordance with JIS standard (R1670), using image analysis software A image-kun (trademark registration) manufactured by Asahi Kasei Engineering, the average crystal grain The diameter was calculated, and the average value of 10 samples was obtained as the average crystal grain size. The results and the particle size ratio are also shown in Table 1.

・たわみ強度試験
試料No.1〜12につき各50個の試料を用いて、大きさが100mm×40mm、厚さ0.8mmのたわみ強度試験用基板(ガラスエポキシ基板)の中央部に試料をはんだ付けし、試料がはんだ付けされた面とは別の面から毎秒0.5mmの速さで2mmのたわみを加えて、試料が破断しないか評価した。50個中破壊した試料がゼロ個のものを表1において○とした。また、1個でも破壊した試料を×とした。結果を表1に併せて示す。
-Deflection strength test Sample No. Using 50 samples for each of 1 to 12, the sample is soldered to the central portion of a substrate for flexural strength test (glass epoxy substrate) having a size of 100 mm × 40 mm and a thickness of 0.8 mm. A deflection of 2 mm was applied at a speed of 0.5 mm per second from a surface different from the formed surface to evaluate whether the sample was broken. In Table 1, the samples with zero broken samples were marked with ◯ in Table 1. Moreover, the sample which destroyed even one piece was set as x. The results are also shown in Table 1.

・ヒートサイクル試験(熱衝撃試験)
試料No.1〜12につき各50個の試料を、−55℃〜+125℃の範囲での所定のヒートサイクルに供し、2000サイクル繰り返した。試験前後で、試料のインピーダンスZを、アジレント・テクノロジー社製のインピーダンスアナライザ(型番E4991A)を用いて測定し(測定周波数=100MHz)、ヒートサイクル試験前後でのインピーダンスZ変化率を求め、50個の試料での平均値を算出した。結果を表1に併せて示す。
・ Heat cycle test (thermal shock test)
Sample No. Each of the 50 samples per 1 to 12 was subjected to a predetermined heat cycle in the range of −55 ° C. to + 125 ° C., and 2000 cycles were repeated. Before and after the test, the impedance Z of the sample was measured using an impedance analyzer (model number E4991A) manufactured by Agilent Technologies (measurement frequency = 100 MHz), and the change rate of impedance Z before and after the heat cycle test was obtained. The average value in the sample was calculated. The results are also shown in Table 1.

表1から理解されるように、フェライト材料のCuO含有量が0.4〜4.0mol%である試料No.3〜9の試料では、磁性体部の中央領域と導体部近傍領域とで平均結晶粒径に差が認められた。また、試料No.1〜9の試料では、試料No.10〜12の試料に比べて、ヒートサイクル試験におけるインピーダンス変化が低減されることが確認された。さらに、たわみ強度試験において、試料No.3〜12の試料では破壊が見られなかったが、試料No.1および2の試料では破壊が見られた。以上の結果から、フェライト材料のCuO含有量が0.4〜4.0mol%であり、磁性体部の中央領域の平均結晶粒径に対する導体部近傍領域の平均結晶粒径の粒径比が0.8以下である試料No.3〜9の試料において優れた効果が得られることが確認された。   As can be seen from Table 1, the sample Nos. In which the CuO content of the ferrite material is 0.4 to 4.0 mol%. In the samples 3 to 9, a difference in the average crystal grain size was recognized between the central region of the magnetic body portion and the conductor vicinity region. Sample No. In the samples 1 to 9, sample No. It was confirmed that the impedance change in the heat cycle test was reduced as compared with 10 to 12 samples. Further, in the deflection strength test, the sample No. No breakage was observed in the samples 3 to 12, but sample no. The samples 1 and 2 were broken. From the above results, the CuO content of the ferrite material is 0.4 to 4.0 mol%, and the grain size ratio of the average crystal grain size in the conductor vicinity region to the average crystal grain size in the central region of the magnetic part is 0. Sample No. 8 or less. It was confirmed that an excellent effect was obtained in samples 3 to 9.

本発明によって得られる積層コイル部品は、例えば高周波回路のインピーダンス素子などとして、幅広く様々な用途に使用され得る。   The laminated coil component obtained by the present invention can be used in a wide variety of applications, for example, as an impedance element of a high-frequency circuit.

1a 積層コイル部品
2 積層体
3 導体パターン層
3a 導体部
4、5 磁性体層
4a 磁性体部
6、6a ビアホール
7、8 外部電極
X 中央領域
Y 導体部近傍領域
X’ 高Cu含有量領域
Y’ 低Cu含有量領域
DESCRIPTION OF SYMBOLS 1a Multilayer coil component 2 Laminated body 3 Conductor pattern layer 3a Conductor part 4, 5 Magnetic body layer 4a Magnetic body part 6, 6a Via hole 7, 8 External electrode X Central area | region Y Conductor part vicinity area | region X 'High Cu content area | region Y' Low Cu content region

Claims (3)

Fe、Ni、ZnおよびCuを含む焼結フェライトである磁性体部と、銀を含み、磁性体部に埋設されて成るコイル状の導体部と、磁性体部の表面にコイル中心軸方向に対向して設けられ、導体部の両端に電気的に接続された一対の外部電極とを有する積層コイル部品であって、
磁性体部の中央領域の平均結晶粒径に対する、磁性体部の導体部近傍領域の平均結晶粒径の粒径比が0.8以下であることを特徴とする、積層コイル部品。
Magnetic body part, which is sintered ferrite containing Fe, Ni, Zn and Cu, coiled conductor part containing silver and embedded in the magnetic body part, and facing the surface of the magnetic body part in the coil central axis direction A laminated coil component having a pair of external electrodes electrically connected to both ends of the conductor portion,
A laminated coil component, wherein a grain size ratio of an average crystal grain size in a region near a conductor portion of a magnetic part to a mean crystal grain size in a central area of the magnetic part is 0.8 or less.
磁性体部の中央領域におけるCu含有量が、CuOに換算して、0.4〜4.0mol%である、請求項1に記載の積層コイル部品。   The multilayer coil component according to claim 1, wherein the Cu content in the central region of the magnetic part is 0.4 to 4.0 mol% in terms of CuO. 磁性体層が積層されて成る磁性体部と、磁性体層間に配置された複数の導体パターン層が磁性体層を貫通してコイル状に相互接続され、磁性体部に埋設されて成る導体部と、磁性体部の表面にコイル中心軸方向に対向して設けられ、導体部の両端に電気的に接続された一対の外部電極とを有する積層コイル部品の製造方法であって、
Fe、NiO、ZnOおよびCuOを含み、かつCuO含有量が0.4〜4.0mol%であるフェライト材料のグリーンシートを、銀を含む導体ペースト層を介して積層し、導体ペースト層がフェライト材料のグリーンシートを貫通してコイル状に相互接続されている積層体を得ること、および
積層体を酸素濃度0.1体積%以下の雰囲気で熱処理することにより、フェライト材料のグリーンシートおよび銀を含む導体ペースト層を焼成して、それぞれ磁性体層および導体パターン層とし、これにより、それぞれ前記磁性体部および前記導体部を形成すること
を含む製造方法。
A magnetic part formed by laminating magnetic layers, and a conductor part formed by embedding a plurality of conductor pattern layers arranged between the magnetic layers through the magnetic layer in a coil shape and embedded in the magnetic part And a method of manufacturing a laminated coil component having a pair of external electrodes provided on the surface of the magnetic body portion so as to be opposed to each other in the coil central axis direction and electrically connected to both ends of the conductor portion,
A ferrite paste green sheet containing Fe 2 O 3 , NiO, ZnO and CuO and having a CuO content of 0.4 to 4.0 mol% is laminated via a conductor paste layer containing silver, and a conductor paste layer Through a ferrite material green sheet and obtaining a laminate interconnected in a coil shape, and by heat-treating the laminate in an atmosphere having an oxygen concentration of 0.1% by volume or less, the ferrite material green sheet and A manufacturing method comprising firing a conductive paste layer containing silver to form a magnetic layer and a conductive pattern layer, respectively, thereby forming the magnetic portion and the conductive portion, respectively.
JP2012165380A 2012-07-26 2012-07-26 Multilayer coil component and manufacturing method thereof Active JP6065439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165380A JP6065439B2 (en) 2012-07-26 2012-07-26 Multilayer coil component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165380A JP6065439B2 (en) 2012-07-26 2012-07-26 Multilayer coil component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014027071A true JP2014027071A (en) 2014-02-06
JP6065439B2 JP6065439B2 (en) 2017-01-25

Family

ID=50200469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165380A Active JP6065439B2 (en) 2012-07-26 2012-07-26 Multilayer coil component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6065439B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864931B1 (en) * 2015-04-27 2018-07-04 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and method for manufacturing the same
CN111128517A (en) * 2018-10-30 2020-05-08 Tdk株式会社 Laminated coil component
CN111430121A (en) * 2018-12-28 2020-07-17 株式会社村田制作所 Coil component
WO2021106477A1 (en) * 2019-11-26 2021-06-03 株式会社村田製作所 Laminated coil component
CN112951537A (en) * 2019-12-11 2021-06-11 Tdk株式会社 Magnetic sheet, coil module provided with magnetic sheet, and non-contact power supply device
DE102023126649A1 (en) 2022-10-05 2024-04-11 Tdk Corporation ELECTRONIC COMPONENT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102463333B1 (en) 2017-10-24 2022-11-04 삼성전기주식회사 Coil Electronic Component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091349A1 (en) * 2006-02-09 2007-08-16 Murata Manufacturing Co., Ltd. Laminated ferrite part and process for producing the same
JP2011049492A (en) * 2009-08-28 2011-03-10 Tdk Corp Multilayer electronic component
WO2011093489A1 (en) * 2010-02-01 2011-08-04 株式会社村田製作所 Process for producing electronic component
JP2011236068A (en) * 2010-05-07 2011-11-24 Murata Mfg Co Ltd Ferrite porcelain and ceramic electronic part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091349A1 (en) * 2006-02-09 2007-08-16 Murata Manufacturing Co., Ltd. Laminated ferrite part and process for producing the same
JP2011049492A (en) * 2009-08-28 2011-03-10 Tdk Corp Multilayer electronic component
WO2011093489A1 (en) * 2010-02-01 2011-08-04 株式会社村田製作所 Process for producing electronic component
JP2011236068A (en) * 2010-05-07 2011-11-24 Murata Mfg Co Ltd Ferrite porcelain and ceramic electronic part

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864931B1 (en) * 2015-04-27 2018-07-04 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and method for manufacturing the same
US10256029B2 (en) 2015-04-27 2019-04-09 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing the same
CN111128517A (en) * 2018-10-30 2020-05-08 Tdk株式会社 Laminated coil component
CN111430121A (en) * 2018-12-28 2020-07-17 株式会社村田制作所 Coil component
WO2021106477A1 (en) * 2019-11-26 2021-06-03 株式会社村田製作所 Laminated coil component
JPWO2021106477A1 (en) * 2019-11-26 2021-06-03
CN114730655A (en) * 2019-11-26 2022-07-08 株式会社村田制作所 Laminated coil component
JP7327506B2 (en) 2019-11-26 2023-08-16 株式会社村田製作所 Laminated coil parts
CN112951537A (en) * 2019-12-11 2021-06-11 Tdk株式会社 Magnetic sheet, coil module provided with magnetic sheet, and non-contact power supply device
CN112951537B (en) * 2019-12-11 2023-08-15 Tdk株式会社 Magnetic sheet, and coil module and non-contact power supply device provided with magnetic sheet
DE102023126649A1 (en) 2022-10-05 2024-04-11 Tdk Corporation ELECTRONIC COMPONENT

Also Published As

Publication number Publication date
JP6065439B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6065439B2 (en) Multilayer coil component and manufacturing method thereof
US9490060B2 (en) Laminated coil component
KR101421453B1 (en) Laminated component
US8237528B2 (en) Electronic component
KR101282025B1 (en) Laminated inductor, method for manufacturing the laminated inductor, and laminated choke coil
US9299487B2 (en) Laminated coil component and method for manufacturing same
JP5761609B2 (en) Ceramic electronic component and method for manufacturing ceramic electronic component
JP2009283824A (en) Electronic component and manufacturing method thereof
US9748034B2 (en) Laminated coil component
JP2014175349A (en) Laminated inductor
JPWO2012173147A1 (en) Multilayer coil component and method for manufacturing the multilayer coil component
JP2014082280A (en) Laminated coil component
WO2009130935A1 (en) Electronic part
KR101538877B1 (en) Metal powder and electronic component
WO2013031641A1 (en) Antenna coil and manufacturing method thereof
WO2016072427A1 (en) Laminated coil component
JP2014060289A (en) Laminated coil component
JP6011302B2 (en) Multilayer coil parts
WO2014050867A1 (en) Laminated coil component and method for producing same
JP2013042040A (en) Manufacturing method of common mode choke coil and common mode choke coil
JPWO2016072428A1 (en) Multilayer coil parts
JPWO2007091349A1 (en) Multilayer ferrite component and method for manufacturing multilayer ferrite component
JP2019156664A (en) Composite magnetic material and electronic component using the same
JP2014067889A (en) Multilayer coil and method of manufacturing the same
JP6260211B2 (en) Multilayer coil component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150