JP2014020752A - Downward flow liquid film type evaporator - Google Patents

Downward flow liquid film type evaporator Download PDF

Info

Publication number
JP2014020752A
JP2014020752A JP2012162727A JP2012162727A JP2014020752A JP 2014020752 A JP2014020752 A JP 2014020752A JP 2012162727 A JP2012162727 A JP 2012162727A JP 2012162727 A JP2012162727 A JP 2012162727A JP 2014020752 A JP2014020752 A JP 2014020752A
Authority
JP
Japan
Prior art keywords
refrigerant
tank
stage
stage refrigerant
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162727A
Other languages
Japanese (ja)
Inventor
Motohiko Fukuoka
基彦 福岡
Genei Kin
鉉永 金
Keita Hattori
敬太 服部
Kunitada Yo
国忠 楊
Junji Ogata
潤司 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012162727A priority Critical patent/JP2014020752A/en
Publication of JP2014020752A publication Critical patent/JP2014020752A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain a carry-over phenomenon of droplets of a liquid refrigerant flowing down from a one-stage refrigerant tub to a two-stage refrigerant tub, in a downward flow liquid film type evaporator for evaporating the liquid refrigerant by a heat transfer pipe group by flowing the liquid refrigerant out of refrigerants under two gas-liquid phase states supplied in a tank through a refrigerant inlet pipe to the heat transfer pipe group by a liquid refrigerant spraying device having a one-stage refrigerant tub and a two-stage refrigerant tub and provided between the heat transfer pipe group in the tank and a steam outlet pipe at an upper part of the tank in an upward and downward direction.SOLUTION: A downward flow liquid film type evaporator (1) is provided with a partition plate (40) projecting upward to reach a vicinity of a bottom wall (34a) of a one-stage refrigerant tub (34) from a two-stage refrigerant tub (35), projecting upward to contact the bottom wall (34a) of the one-stage refrigerant tub (34) from the two-stage refrigerant tub (35), or projecting downward from the bottom wall (34a) of the one-stage refrigerant tub (34) to the two-stage refrigerant tub (35).

Description

本発明は、流下液膜式蒸発器、特に、1段冷媒桶及び2段冷媒桶を有しておりタンク内の伝熱管群とタンク上部の蒸気出口管との上下方向間に設けられた液冷媒散布装置によって冷媒入口管を通じてタンク内に供給される気液二相状態の冷媒のうちの液冷媒を伝熱管群に流下させ、伝熱管群によって液冷媒を蒸発させる流下液膜式蒸発器に関する。   The present invention relates to a falling liquid film evaporator, and in particular, a liquid having a first-stage refrigerant tank and a second-stage refrigerant tank and provided between the heat transfer tube group in the tank and the vapor outlet tube in the upper part of the tank. The present invention relates to a falling liquid film evaporator in which liquid refrigerant out of gas-liquid two-phase refrigerant supplied into a tank through a refrigerant inlet pipe by a refrigerant spraying device flows down to a heat transfer pipe group and the liquid refrigerant is evaporated by the heat transfer pipe group. .

従来より、ターボ冷凍機等の冷凍装置において使用される冷媒の蒸発器として、特許文献1(特開平8−189726号公報)に示すような流下液膜式蒸発器がある。流下液膜式蒸発器は、タンク内の伝熱管群とタンク上部の蒸気出口管との上下方向間に設けられた液冷媒散布装置によって液冷媒を伝熱管群に流下させ、伝熱管群によって液冷媒を蒸発させる形式の熱交換器である。伝熱管群によって蒸発したガス冷媒は、タンクの上部に設けられた蒸気出口管を通じてタンク外に流出し、圧縮機に送られる。   2. Description of the Related Art Conventionally, as a refrigerant evaporator used in a refrigeration apparatus such as a turbo refrigerator, there is a falling liquid film evaporator as shown in Patent Document 1 (Japanese Patent Laid-Open No. 8-189726). The falling liquid film evaporator is used to cause liquid refrigerant to flow down to the heat transfer tube group by a liquid refrigerant spraying device provided between the heat transfer tube group in the tank and the steam outlet pipe in the upper part of the tank, and the liquid transfer by the heat transfer tube group. This type of heat exchanger evaporates the refrigerant. The gas refrigerant evaporated by the heat transfer tube group flows out of the tank through a vapor outlet tube provided at the upper part of the tank, and is sent to the compressor.

上記従来の流下液膜式蒸発器において、膨張弁等の減圧機構によって減圧された後の冷媒が気液二相状態のままでタンク内に供給される場合には、タンクに設けられた冷媒入口管を通じて、液冷媒散布装置に気液二相状態の冷媒が流入することになる。このため、伝熱管群によって蒸発したガス冷媒がタンクの上部に設けられた蒸気出口管に向かって流れるだけでなく、液冷媒散布装置に流入した気液二相状態の冷媒のうちのガス冷媒もタンクの上部に設けられた蒸気出口管に向かって流れることになる。このとき、タンク内のガス冷媒は、すべて蒸気出口管に向かって流れるため、蒸気出口管に近い部分におけるガス冷媒の流速が、蒸気出口管から遠い部分よりも高くなる傾向にある。   In the conventional falling liquid film evaporator, when the refrigerant after being decompressed by a decompression mechanism such as an expansion valve is supplied into the tank in a gas-liquid two-phase state, the refrigerant inlet provided in the tank Through the tube, the gas-liquid two-phase refrigerant flows into the liquid refrigerant spraying device. For this reason, not only the gas refrigerant evaporated by the heat transfer tube group flows toward the vapor outlet pipe provided in the upper part of the tank, but also the gas refrigerant of the gas-liquid two-phase refrigerant flowing into the liquid refrigerant spraying device. It flows toward the steam outlet pipe provided in the upper part of the tank. At this time, since all the gas refrigerant in the tank flows toward the vapor outlet pipe, the flow rate of the gas refrigerant in the portion near the vapor outlet pipe tends to be higher than the portion far from the vapor outlet pipe.

ここで、液冷媒散布装置として、冷媒入口管を通じて流入した気液二相状態の冷媒のうちの液冷媒を溜めた後に下方に流下させる1段冷媒桶と、1段冷媒桶から流下する液冷媒を溜めた後に下方の伝熱管群に流下させる2段冷媒桶とを有する構成を採用することが考えられる。   Here, as the liquid refrigerant spraying device, the first stage refrigerant tank that flows down after storing the liquid refrigerant out of the gas-liquid two-phase refrigerant that has flowed in through the refrigerant inlet pipe, and the liquid refrigerant that flows down from the first stage refrigerant tank It is conceivable to adopt a configuration having a two-stage refrigerant tank that flows down to the lower heat transfer tube group after accumulating.

しかし、この場合には、1段冷媒桶の直上の1段冷媒桶直上空間に存在するガス冷媒(冷媒入口管を通じて1段冷媒桶に流入した気液二相状態の冷媒のうちのガス冷媒)や伝熱管群から蒸気出口管に向かう蒸気主流路空間に存在するガス冷媒(伝熱管群によって蒸発したガス冷媒)が、1段冷媒桶と2段冷媒桶との上下方向間の2段冷媒桶直上空間に流れ込みやすくなる。そして、このガス冷媒は、高い流速で2段冷媒桶直上空間を通過しながら蒸気出口管に向かって流れることになる。このため、1段冷媒桶から2段冷媒桶に流下する液冷媒の液滴が、2段冷媒桶直上空間に流れ込んだ高い流速のガス冷媒によって運ばれて、蒸気出口管を通じてタンク外に流出するキャリーオーバー現象が発生しやすくなる。   However, in this case, a gas refrigerant (a gas refrigerant in a gas-liquid two-phase refrigerant that has flowed into the first stage refrigerant tank through the refrigerant inlet pipe) exists in the space immediately above the first stage refrigerant tank just above the first stage refrigerant tank. And the gas refrigerant (gas refrigerant evaporated by the heat transfer pipe group) existing in the steam main passage space from the heat transfer pipe group to the steam outlet pipe is a two-stage refrigerant pipe between the first-stage refrigerant bowl and the second-stage refrigerant bowl. It becomes easy to flow into the space directly above. The gas refrigerant flows toward the vapor outlet pipe while passing through the space directly above the second stage refrigerant at a high flow rate. For this reason, liquid refrigerant droplets flowing down from the first-stage refrigerant tank to the second-stage refrigerant tank are carried by the high-velocity gas refrigerant flowing into the space immediately above the second-stage refrigerant tank, and flow out of the tank through the vapor outlet pipe. Carryover phenomenon is likely to occur.

本発明の課題は、1段冷媒桶及び2段冷媒桶を有しておりタンク内の伝熱管群とタンク上部の蒸気出口管との上下方向間に設けられた液冷媒散布装置によって冷媒入口管を通じてタンク内に供給される気液二相状態の冷媒のうちの液冷媒を伝熱管群に流下させ、伝熱管群によって液冷媒を蒸発させる流下液膜式蒸発器において、1段冷媒桶から2段冷媒桶に流下する液冷媒の液滴のキャリーオーバー現象の発生を抑えることにある。   An object of the present invention is to provide a refrigerant inlet pipe by a liquid refrigerant spraying device provided between the heat transfer pipe group in the tank and the vapor outlet pipe in the upper part of the tank, having a first stage refrigerant bowl and a second stage refrigerant tank. In the falling liquid film evaporator in which the liquid refrigerant of the gas-liquid two-phase refrigerant supplied into the tank through the refrigerant flows down to the heat transfer tube group and evaporates the liquid refrigerant by the heat transfer tube group, the two-stage refrigerant tank 2 This is to suppress the occurrence of a carry-over phenomenon of liquid refrigerant droplets flowing down to the stage refrigerant tank.

第1の観点にかかる流下液膜式蒸発器は、複数の伝熱管を有する伝熱管群と、1段冷媒桶及び2段冷媒桶を有する液冷媒散布装置とを含んでおり、伝熱管内を流れる熱媒体と2段冷媒桶から流下する液冷媒との熱交換によって液冷媒を蒸発させる熱交換器である。伝熱管群は、上部に蒸気出口管が設けられたタンク内に配置されている。液冷媒散布装置は、タンク内の伝熱管群と蒸気出口管との上下方向間に配置されている。1段冷媒桶は、タンクに設けられた冷媒入口管を通じてタンク内に供給される気液二相状態の冷媒のうちの液冷媒を溜めた後に下方に流下させる部材である。2段冷媒桶は、1段冷媒桶から流下する液冷媒を溜めた後に下方の伝熱管群に流下させる部材である。そして、この流下液膜式蒸発器では、2段冷媒桶から1段冷媒桶の底壁近傍に達するまで上方に突出する、2段冷媒桶から1段冷媒桶の底壁に接触するまで上方に突出する、又は、1段冷媒桶の底壁から2段冷媒桶に向かって下方に突出する仕切板を設けている。   A falling liquid film evaporator according to a first aspect includes a heat transfer tube group having a plurality of heat transfer tubes and a liquid refrigerant spraying device having a first-stage refrigerant tank and a second-stage refrigerant tank. It is a heat exchanger that evaporates liquid refrigerant by heat exchange between the flowing heat medium and the liquid refrigerant flowing down from the two-stage refrigerant tank. The heat transfer tube group is arranged in a tank provided with a steam outlet tube at the top. The liquid refrigerant spraying device is arranged between the heat transfer tube group in the tank and the steam outlet tube in the vertical direction. The first-stage refrigerant tank is a member that stores liquid refrigerant out of the gas-liquid two-phase refrigerant supplied into the tank through a refrigerant inlet pipe provided in the tank and then flows downward. The second-stage refrigerant tank is a member that stores liquid refrigerant flowing down from the first-stage refrigerant tank and then flows down to the lower heat transfer tube group. And in this falling liquid film type evaporator, it protrudes upward until it reaches the vicinity of the bottom wall of the first-stage refrigerant tank from the second-stage refrigerant tank, and upwards until it contacts the bottom wall of the first-stage refrigerant tank. A partition plate that protrudes or protrudes downward from the bottom wall of the first-stage refrigerant tank toward the second-stage refrigerant tank is provided.

ここでは、仕切板によって、伝熱管群において蒸発することによって生成したガス冷媒が蒸気出口管に向かう蒸気主流路空間に1段冷媒桶の直上の1段冷媒桶直上空間が連通した状態を維持しつつ、1段冷媒桶と2段冷媒桶との上下方向間の2段冷媒桶直上空間に1段冷媒桶直上空間及び/又は蒸気主流路空間からガス冷媒が流れ込みにくくすることができる。このため、1段冷媒桶直上空間に存在するガス冷媒を蒸気主流路空間に流しつつ、2段冷媒桶直上空間に流れ込むガス冷媒の流量、ひいてはガス冷媒の流速を低下させることができる。   Here, the partition plate maintains the state in which the space immediately above the first stage refrigerant tank communicates with the main vapor passage space where the gas refrigerant generated by evaporation in the heat transfer tube group goes to the vapor outlet pipe. On the other hand, it is possible to make it difficult for the gas refrigerant to flow from the space directly above the first-stage refrigerant tank and / or the main steam passage space into the space directly above the second-stage refrigerant tank between the first-stage refrigerant tank and the second-stage refrigerant tank. Therefore, it is possible to reduce the flow rate of the gas refrigerant flowing into the space directly above the second stage refrigerant and thus the flow rate of the gas refrigerant while flowing the gas refrigerant existing in the space directly above the first stage refrigerant.

これにより、ここでは、1段冷媒桶から2段冷媒桶に流下する液冷媒の液滴のキャリーオーバー現象を発生しにくくすることができる。   Thereby, here, it is possible to make it difficult for the liquid refrigerant droplet carry-over phenomenon to flow down from the first-stage refrigerant tank to the second-stage refrigerant tank.

第2の観点にかかる流下液膜式蒸発器は、第1の観点にかかる流下液膜式蒸発器において、仕切板が、2段冷媒桶に溜まった液冷媒に浸るように配置されている。そして、仕切板のうち2段冷媒桶に溜まった液冷媒に浸る部分に、2段冷媒桶に溜まった液冷媒が通過可能な通液孔が形成されている、又は、仕切板の2段冷媒桶に溜まった液冷媒に浸る部分と2段冷媒桶との間に、2段冷媒桶に溜まった液冷媒が通過可能な通液隙間が確保されている。   The falling liquid film evaporator according to the second aspect is arranged such that the partition plate is immersed in the liquid refrigerant accumulated in the two-stage refrigerant tank in the falling liquid film evaporator according to the first aspect. In addition, a liquid passage hole through which the liquid refrigerant accumulated in the second-stage refrigerant tank can pass is formed in a part of the divider plate that is immersed in the liquid refrigerant accumulated in the second-stage refrigerant tank, or the second-stage refrigerant of the divider plate A liquid passage gap through which the liquid refrigerant accumulated in the second-stage refrigerant tank can pass is secured between the portion immersed in the liquid refrigerant accumulated in the bowl and the second-stage refrigerant tank.

ここでは、仕切板によって2段冷媒桶が分割されるが、通液孔や通液隙間によって分割された小さい2段冷媒桶間で液冷媒の行き来が可能になっている。このため、ここでは、仕切板によって2段冷媒桶が分割されるにもかかわらず、分割された小さい2段冷媒桶間の液冷媒の貯留量の偏りを抑えることができる。   Here, the two-stage refrigerant tank is divided by the partition plate, but the liquid refrigerant can be transferred between the small two-stage refrigerant tanks divided by the liquid passage hole and the liquid passage gap. For this reason, here, although the two-stage refrigerant tank is divided by the partition plate, it is possible to suppress the uneven storage amount of the liquid refrigerant between the divided two-stage refrigerant tanks.

第3の観点にかかる流下液膜式蒸発器は、第1又は第2の観点にかかる流下液膜式蒸発器において、仕切板が、2段冷媒桶の側壁の高さ位置よりも上側の高さ位置に達するまで上方に突出している。   A falling liquid film evaporator according to a third aspect is the falling liquid film evaporator according to the first or second aspect, wherein the partition plate is higher than the height position of the side wall of the two-stage refrigerant tank. It protrudes upwards until it reaches this position.

第4の観点にかかる流下液膜式蒸発器は、第1の観点にかかる流下液膜式蒸発器において、2段冷媒桶が複数に分割されており、2段冷媒桶の側壁が仕切板を構成している。   A falling liquid film evaporator according to a fourth aspect is the falling liquid film evaporator according to the first aspect, wherein the two-stage refrigerant tank is divided into a plurality of parts, and the side wall of the two-stage refrigerant tank has a partition plate. It is composed.

第5の観点にかかる流下液膜式蒸発器は、第1〜第4の観点のいずれかにかかる流下液膜式蒸発器において、2段冷媒桶が、2段冷媒桶を下方から見た際に、1段冷媒桶よりも外側まではみだしている。そして、仕切板は、1段冷媒桶の側壁形状に沿って1段冷媒桶よりも外側まで延出している。   A falling liquid film evaporator according to a fifth aspect is the falling liquid film evaporator according to any of the first to fourth aspects, when the two-stage refrigerant tank is viewed from below. Furthermore, it protrudes outside the first stage refrigerant tank. And the partition plate is extended to the outer side rather than the 1st-stage refrigerant | coolant cage | basket along the side wall shape of the 1st-stage refrigerant | coolant bowl.

2段冷媒桶が1段冷媒桶よりも外側まではみだした構造を採用する場合には、2段冷媒桶直上空間は、2段冷媒桶の上側でかつ1段冷媒桶の側壁よりも外側の1段冷媒桶側方空間を介して、1段冷媒桶直上空間及び蒸気主流路空間に連通することになる。このため、1段冷媒桶直上空間及び/又は蒸気主流路空間から2段冷媒桶直上空間に対してガス冷媒がさらに流れ込みにくくなるようにするためには、1段冷媒桶直上空間及び/又は蒸気主流路空間から1段冷媒桶側方空間へのガス冷媒の流れ込みを抑えることが好ましい。   In the case of adopting a structure in which the second-stage refrigerant tank extends beyond the first-stage refrigerant tank, the space immediately above the second-stage refrigerant tank is 1 above the second-stage refrigerant tank and outside the side wall of the first-stage refrigerant tank. It communicates with the space directly above the first-stage refrigerant tank and the steam main channel space via the side-stage refrigerant tank side space. For this reason, in order to make it difficult for gas refrigerant to flow from the space directly above the first-stage refrigerant tank and / or the steam main flow path space to the space immediately above the second-stage refrigerant tank, the space directly above the first-stage refrigerant tank and / or the steam. It is preferable to suppress the flow of the gas refrigerant from the main flow path space to the side space of the first stage refrigerant tub.

そこで、ここでは、上記のように、仕切板を1段冷媒桶の側壁形状に沿って1段冷媒桶よりも外側まで延出させるようにしている。   Therefore, here, as described above, the partition plate is extended to the outside of the first stage refrigerant tank along the side wall shape of the first stage refrigerant tank.

これにより、ここでは、2段冷媒桶直上空間に流れ込むガス冷媒の流量、ひいてはガス冷媒の流速をさらに低下させることができる。   Thereby, here, the flow rate of the gas refrigerant flowing into the space directly above the second stage refrigerant, and hence the flow rate of the gas refrigerant, can be further reduced.

以上の説明に述べたように、本発明によれば、以下の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

第1、第3及び第4の観点にかかる流下液膜式蒸発器では、1段冷媒桶から2段冷媒桶に流下する液冷媒の液滴のキャリーオーバー現象を発生しにくくすることができる。   In the falling liquid film evaporator according to the first, third and fourth aspects, it is possible to make it difficult for the liquid refrigerant droplet carry-over phenomenon to flow down from the first-stage refrigerant tank to the second-stage refrigerant tank.

第2の観点にかかる流下液膜式蒸発器では、仕切板によって2段冷媒桶が分割されるにもかかわらず、分割された小さい2段冷媒桶間の液冷媒の貯留量の偏りを抑えることができる。   In the falling liquid film type evaporator according to the second aspect, even though the two-stage refrigerant tank is divided by the partition plate, the deviation of the storage amount of the liquid refrigerant between the divided small two-stage refrigerant tanks is suppressed. Can do.

第5の観点にかかる流下液膜式蒸発器では、2段冷媒桶直上空間に流れ込むガス冷媒の流量、ひいてはガス冷媒の流速をさらに低下させることができる。   In the falling liquid film evaporator according to the fifth aspect, the flow rate of the gas refrigerant flowing into the space immediately above the two-stage refrigerant can be further reduced.

本発明の一実施形態にかかる流下液膜式蒸発器の外観図である。It is an external view of the falling liquid film type evaporator concerning one Embodiment of this invention. 流下液膜式蒸発器の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of a falling liquid film type evaporator. 流下液膜式蒸発器をタンクの長手方向に直交する水平方向から見た断面図である。It is sectional drawing which looked at the falling liquid film type evaporator from the horizontal direction orthogonal to the longitudinal direction of a tank. 図2及び図5のI−I断面図(1段冷媒桶、2段冷媒桶及び仕切板だけを図示)である。FIG. 6 is a cross-sectional view taken along the line II of FIG. 2 and FIG. 流下液膜式蒸発器をタンクの長手方向から見た断面図である。It is sectional drawing which looked at the falling liquid film type evaporator from the longitudinal direction of the tank. 図5の左上半分を拡大した図であって、蒸気出口管から遠い部分におけるガス冷媒や液冷媒の流れを示す図である。It is the figure which expanded the upper left half of FIG. 5, Comprising: It is a figure which shows the flow of the gas refrigerant in the part far from a vapor | steam exit pipe | tube, or a liquid refrigerant. 図5の左上半分を拡大した図であって、蒸気出口管に近い部分におけるガス冷媒や液冷媒の流れを示す図である。It is the figure which expanded the upper left half of FIG. 5, Comprising: It is a figure which shows the flow of the gas refrigerant in the part close | similar to a vapor | steam exit pipe | tube, or a liquid refrigerant. 図2の液冷媒散布装置付近を拡大した図であって、ガス冷媒や液冷媒の流れを示す図である。It is the figure which expanded the liquid refrigerant spraying device vicinity of FIG. 2, Comprising: It is a figure which shows the flow of a gas refrigerant or a liquid refrigerant. 液冷媒散布装置に仕切板を設けない場合における図6に対応する図である。It is a figure corresponding to Drawing 6 in the case where a partition plate is not provided in a liquid refrigerant distribution device. 液冷媒散布装置に仕切板を設けない場合における図7に対応する図である。It is a figure corresponding to Drawing 7 in the case where a partition plate is not provided in a liquid refrigerant distribution device. 液冷媒散布装置に仕切板を設けない場合における図8に対応する図である。It is a figure corresponding to Drawing 8 in the case where a partition plate is not provided in a liquid refrigerant distribution device. 複数の2段冷媒桶をタンクの長手方向に沿って配置した場合において、各2段冷媒桶に仕切板を設けた構成を示す図であって、図4に対応する図である。FIG. 5 is a view corresponding to FIG. 4, illustrating a configuration in which a partition plate is provided in each two-stage refrigerant tank when a plurality of two-stage refrigerant tanks are arranged along the longitudinal direction of the tank. 変形例1の流下液膜式蒸発器を示す図であって、図4に対応する図である。It is a figure which shows the falling liquid film type evaporator of the modification 1, Comprising: It is a figure corresponding to FIG. 変形例1の流下液膜式蒸発器を示す図であって、図7に対応する図である。It is a figure which shows the falling liquid film type evaporator of the modification 1, Comprising: It is a figure corresponding to FIG. 変形例1の流下液膜式蒸発器を示す図であって、図7に対応する図である。It is a figure which shows the falling liquid film type evaporator of the modification 1, Comprising: It is a figure corresponding to FIG. 変形例2の流下液膜式蒸発器を示す図であって、図7に対応する図である。It is a figure which shows the falling liquid film type evaporator of the modification 2, Comprising: It is a figure corresponding to FIG. 変形例3の流下液膜式蒸発器を示す図であって、図4に対応する図である。It is a figure which shows the falling film type | formula evaporator of the modification 3, Comprising: It is a figure corresponding to FIG.

以下、本発明にかかる流下液膜式蒸発器の実施形態及びその変形例について、図面に基づいて説明する。尚、本発明にかかる流下液膜式蒸発器の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a falling film evaporator according to the present invention and modifications thereof will be described with reference to the drawings. The specific configuration of the falling liquid film evaporator according to the present invention is not limited to the following embodiments and modifications thereof, and can be changed without departing from the scope of the invention.

<全体>
図1は、本発明の一実施形態にかかる流下液膜式蒸発器1の外観図である。流下液膜式蒸発器1は、ターボ冷凍機等の比較的大容量の冷凍装置の蒸発器として使用されるものである。具体的には、このような冷凍装置においては、流下液膜式蒸発器1とともに、圧縮機や放熱器、膨張機構等(図示せず)が設けられており、これらの機器によって蒸気圧縮式の冷媒回路が構成されている。そして、このような蒸気圧縮式の冷媒回路において、圧縮機から吐出されたガス冷媒は、放熱器において放熱する。この放熱器において放熱した冷媒は、膨張機構において減圧されることによって気液二相状態の冷媒になる。この気液二相状態の冷媒は、流下液膜式蒸発器1内に流入し、水やブライン等の熱媒体との熱交換によって蒸発してガス冷媒となって、流下液膜式蒸発器1から流出する。この流下液膜式蒸発器1から流出したガス冷媒は、再び、圧縮機に吸入される。一方、水やブライン等の熱媒体との熱交換によって蒸発しきれなかった液冷媒は、液冷媒戻し管等(図示せず)を通じて流下液膜式蒸発器1内に流入する気液二相状態の冷媒と合流し、再び、流下液膜式蒸発器1内に流入する。
<Overall>
FIG. 1 is an external view of a falling liquid film evaporator 1 according to an embodiment of the present invention. The falling liquid film evaporator 1 is used as an evaporator of a relatively large-capacity refrigeration apparatus such as a turbo refrigerator. Specifically, in such a refrigeration system, a falling liquid film evaporator 1 is provided with a compressor, a radiator, an expansion mechanism, and the like (not shown). A refrigerant circuit is configured. In such a vapor compression refrigerant circuit, the gas refrigerant discharged from the compressor radiates heat in the radiator. The refrigerant that has radiated heat in the radiator becomes a gas-liquid two-phase refrigerant by being decompressed in the expansion mechanism. The refrigerant in the gas-liquid two-phase state flows into the falling liquid film evaporator 1, evaporates by heat exchange with a heat medium such as water or brine, and becomes a gas refrigerant, and the falling liquid film evaporator 1 Spill from. The gas refrigerant flowing out of the falling liquid film evaporator 1 is again sucked into the compressor. On the other hand, the liquid refrigerant that could not be evaporated by heat exchange with a heat medium such as water or brine flows into the falling liquid film evaporator 1 through a liquid refrigerant return pipe or the like (not shown). The refrigerant flows into the falling liquid film evaporator 1 again.

そして、ここでは、流下液膜式蒸発器1として、横置きのシェルアンドチューブ型熱交換器が採用されている。流下液膜式蒸発器1は、図1〜図5に示すように、主として、タンク10と、伝熱管群20と、液冷媒散布装置30とを有している。ここで、図2は、流下液膜式蒸発器1の内部構造を示す斜視図である。図3は、流下液膜式蒸発器1をタンク10の長手方向に直交する水平方向から見た断面図である。図4は、図2及び図5のI−I断面図(後述の1段冷媒桶34、2段冷媒桶35及び仕切板40だけを図示)である。図5は、流下液膜式蒸発器1をタンク10の長手方向から見た断面図である。尚、以下の説明において使用している「上」、「下」、「左」、「右」、「水平」等の方向を示す文言は、図1に示す流下液膜式蒸発器1の使用時の設置状態における方向を意味する。   Here, a horizontal shell and tube heat exchanger is employed as the falling liquid film evaporator 1. As shown in FIGS. 1 to 5, the falling liquid film evaporator 1 mainly includes a tank 10, a heat transfer tube group 20, and a liquid refrigerant spraying device 30. Here, FIG. 2 is a perspective view showing the internal structure of the falling liquid film evaporator 1. FIG. 3 is a cross-sectional view of the falling liquid film evaporator 1 viewed from a horizontal direction orthogonal to the longitudinal direction of the tank 10. 4 is a cross-sectional view taken along the line II of FIG. 2 and FIG. 5 (only a first-stage refrigerant cage 34, a second-stage refrigerant cage 35 and a partition plate 40 described later are shown). FIG. 5 is a cross-sectional view of the falling liquid film evaporator 1 as seen from the longitudinal direction of the tank 10. It should be noted that the terms used in the following description, such as “up”, “down”, “left”, “right”, “horizontal”, etc., refer to the use of the falling film evaporator 1 shown in FIG. It means the direction in the installation state at the time.

<タンク>
タンク10は、主として、シェル11と、ヘッド12a、12bとを有している。シェル11は、ここでは、長手方向の両端部が開口した横置き円筒形状の部材である。ヘッド12a、12bは、シェル11の長手方向の両端部の開口を閉じる椀形状の部材である。ここで、図1〜図3において、シェル12a、12bのうちシェル11の左側に配置されたものをヘッド12aとし、シェル11の右側に配置されたものをヘッド12bとする。
<Tank>
The tank 10 mainly has a shell 11 and heads 12a and 12b. Here, the shell 11 is a horizontally-placed cylindrical member that is open at both ends in the longitudinal direction. The heads 12 a and 12 b are hook-shaped members that close the openings at both ends in the longitudinal direction of the shell 11. Here, in FIGS. 1 to 3, the shell 12a, 12b arranged on the left side of the shell 11 is referred to as a head 12a, and the shell 12a, 12b arranged on the right side of the shell 11 is referred to as a head 12b.

また、ヘッド12aとシェル11との間には、管板13aが挟まれるように配置されている。ヘッド12bとシェル11との間にも、管板13bが挟まれるように配置されている。管板13a、13bは、略円板形状の部材であり、伝熱管群20を構成する複数の伝熱管21の長手方向の両端部を挿入した状態で固定するための管孔(図示せず)が形成されている。これにより、タンク10内の空間は、ヘッド12aと管板13aとによって囲まれるヘッド空間SH1と、シェル11と管板13a、13bとによって囲まれるシェル空間SSと、ヘッド12aと管板13aとによって囲まれるヘッド空間SH2とに水平方向に分割されている。   Moreover, it arrange | positions so that the tube sheet 13a may be pinched | interposed between the head 12a and the shell 11. FIG. Between the head 12b and the shell 11, it arrange | positions so that the tube sheet 13b may be pinched | interposed. The tube plates 13a and 13b are substantially disk-shaped members, and tube holes (not shown) for fixing in a state where both ends in the longitudinal direction of the plurality of heat transfer tubes 21 constituting the heat transfer tube group 20 are inserted. Is formed. Thereby, the space in the tank 10 is defined by the head space SH1 surrounded by the head 12a and the tube plate 13a, the shell space SS surrounded by the shell 11 and the tube plates 13a and 13b, and the head 12a and the tube plate 13a. It is divided in a horizontal direction into an enclosed head space SH2.

また、ヘッド12aには、熱媒体入口管14と、熱媒体出口管15とが設けられている。熱媒体入口管14は、熱媒体をタンク10のヘッド空間SH1内に流入させるための管部材であり、ここでは、ヘッド12aの下部に設けられている。熱媒体出口管15は、熱媒体をタンク10のヘッド12a外に流出させるための管部材であり、ここでは、ヘッド12aの上部に設けられている。また、ヘッド空間SH1は、ヘッド空間区画板16によって、熱媒体入口管14に連通する下部ヘッド空間SHiと、熱媒体出口管15に連通する上部ヘッド空間SHoとに上下方向に分割されている。これにより、熱媒体入口管14を通じてヘッド12aの下部ヘッド空間SHi内に流入した熱媒体は、下部ヘッド空間SHiに連通する複数の伝熱管21(ここでは、伝熱管群20の下部を構成する複数の伝熱管21)に流入して、ヘッド空間SH2に送られる。このヘッド空間SH2に送られた熱媒体は、ヘッド空間SH2内を上方に折り返すように流れた後に、上部ヘッド空間SHiに連通する複数の伝熱管(ここでは、伝熱管群20の上部を構成する複数の伝熱管21)に流入して、上部ヘッド空間SHoに送られる。この上部ヘッド空間SHoに送られた熱媒体は、熱媒体出口管15を通じて上部ヘッド空間SHo外に流出する(すなわち、流下液膜式蒸発器1から流出する)。   The head 12 a is provided with a heat medium inlet pipe 14 and a heat medium outlet pipe 15. The heat medium inlet pipe 14 is a pipe member for allowing the heat medium to flow into the head space SH1 of the tank 10, and is provided below the head 12a in this case. The heat medium outlet pipe 15 is a pipe member for allowing the heat medium to flow out of the head 12a of the tank 10, and is provided in the upper part of the head 12a in this case. The head space SH1 is divided by the head space partition plate 16 into a lower head space SHi that communicates with the heat medium inlet pipe 14 and an upper head space SHo that communicates with the heat medium outlet pipe 15 in the vertical direction. Thus, the heat medium flowing into the lower head space SHi of the head 12a through the heat medium inlet pipe 14 is a plurality of heat transfer tubes 21 (here, a plurality of lower heat transfer tube groups 20 constituting the lower portion of the heat transfer tube group 20). In the heat transfer tube 21) and sent to the head space SH2. The heat medium sent to the head space SH2 flows so as to be folded upward in the head space SH2, and then constitutes a plurality of heat transfer tubes (here, the upper portion of the heat transfer tube group 20) communicating with the upper head space SHi. It flows into the plurality of heat transfer tubes 21) and is sent to the upper head space SHo. The heat medium sent to the upper head space SHo flows out of the upper head space SHo through the heat medium outlet pipe 15 (that is, flows out from the falling liquid film evaporator 1).

また、シェル11には、冷媒入口管17と、蒸気出口管18と、液出口管19とが設けられている。冷媒入口管17は、気液二相状態の冷媒をタンク10のシェル空間SS内に流入させるための管部材であり、ここでは、シェル11の上部、かつ、シェル11の長手方向の左寄りの部分に設けられている。蒸気出口管18は、伝熱管群20において蒸発することによって生成したガス冷媒をタンク10のシェル空間SS外に流出させるための管部材であり、ここでは、シェル11の上部、かつ、シェル11の長手方向の略中央部分に設けられている。液出口管19は、伝熱管群20において蒸発しきれなかった液冷媒をタンク10のシェル空間SS外に流出させるための管部材であり、ここでは、シェル11の下部、かつ、シェル11の長手方向の略中央部分に設けられている。これにより、冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒のうちの液冷媒は、液冷媒散布装置30によって、伝熱管群20の上方から散布される。伝熱管群20に散布された液冷媒は、伝熱管群20を構成する伝熱管21内を流れる熱媒体との熱交換によって蒸発してガス冷媒となる。伝熱管群20において蒸発することによって生成したガス冷媒は、蒸気出口管18に向かって上方に流れて、蒸気出口管18を通じてタンク10のシェル空間SS外に流出する。このタンク10のシェル空間SS外に流出したガス冷媒は、再び、圧縮機に吸入される。一方、伝熱管群20において蒸発しきれなかった液冷媒は、タンク10のシェル空間SSの下部に設けられた液出口管19を通じてタンク10のシェル空間SS外に流出する。このタンク10のシェル空間SS外に流出した液冷媒は、液冷媒戻し管等を通じてタンク10のシェル空間SS内に流入する気液二相状態の冷媒と合流し、再び、冷媒入口管17を通じてタンク10のシェル空間SS内に流入する。   The shell 11 is provided with a refrigerant inlet pipe 17, a steam outlet pipe 18, and a liquid outlet pipe 19. The refrigerant inlet pipe 17 is a pipe member for allowing the gas-liquid two-phase refrigerant to flow into the shell space SS of the tank 10. Here, the upper part of the shell 11 and the left part of the shell 11 in the longitudinal direction. Is provided. The steam outlet pipe 18 is a pipe member for allowing the gas refrigerant generated by evaporation in the heat transfer pipe group 20 to flow out of the shell space SS of the tank 10. Here, the upper part of the shell 11 and the shell 11 It is provided at a substantially central portion in the longitudinal direction. The liquid outlet pipe 19 is a pipe member for allowing the liquid refrigerant that has not been evaporated in the heat transfer pipe group 20 to flow out of the shell space SS of the tank 10. Here, the lower part of the shell 11 and the longitudinal length of the shell 11 are used. It is provided at a substantially central portion in the direction. Thereby, the liquid refrigerant of the refrigerant in the gas-liquid two-phase state supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 is sprayed from above the heat transfer tube group 20 by the liquid refrigerant spraying device 30. . The liquid refrigerant sprayed on the heat transfer tube group 20 evaporates by heat exchange with the heat medium flowing in the heat transfer tube 21 constituting the heat transfer tube group 20, and becomes a gas refrigerant. The gas refrigerant generated by evaporating in the heat transfer tube group 20 flows upward toward the vapor outlet pipe 18 and flows out of the shell space SS of the tank 10 through the vapor outlet pipe 18. The gas refrigerant that has flowed out of the shell space SS of the tank 10 is again sucked into the compressor. On the other hand, the liquid refrigerant that could not be evaporated in the heat transfer tube group 20 flows out of the shell space SS of the tank 10 through the liquid outlet pipe 19 provided in the lower part of the shell space SS of the tank 10. The liquid refrigerant that has flowed out of the shell space SS of the tank 10 merges with the refrigerant in a gas-liquid two-phase state that flows into the shell space SS of the tank 10 through a liquid refrigerant return pipe or the like, and again through the refrigerant inlet pipe 17. It flows into 10 shell spaces SS.

<伝熱管群>
伝熱管群20は、タンク10の長手方向に沿って延びる複数の伝熱管21を有している。伝熱管群20は、タンク10の長手方向から見た際に、タンク10のシェル空間SS内の水平方向の略中央で、かつ、上下方向の下寄りの部分に配置されている。複数の伝熱管21は、タンク10の長手方向から見た際に、多段多列に配置されており、ここでは、11列×9段の千鳥配列になるように配置されている。伝熱管21の長手方向の両端部は、管板13a、13bまで延びており、管板13a、13bの管孔(図示せず)に挿入された状態で固定されている。そして、伝熱管群20の上下方向の上寄りの部分を構成する伝熱管21の長手方向の両端部は、ヘッド空間SH2の下部及び下部ヘッド空間SHiに連通しており、伝熱管群20の上下方向の下寄りの部分を構成する伝熱管21の長手方向の両端部は、ヘッド空間SH2の上部及び上部ヘッド空間SHoに連通している。
<Heat transfer tube group>
The heat transfer tube group 20 has a plurality of heat transfer tubes 21 extending along the longitudinal direction of the tank 10. When viewed from the longitudinal direction of the tank 10, the heat transfer tube group 20 is disposed at a substantially horizontal center in the shell space SS of the tank 10 and at a lower portion in the vertical direction. The plurality of heat transfer tubes 21 are arranged in multiple stages and multiple rows when viewed from the longitudinal direction of the tank 10, and are arranged in a staggered arrangement of 11 rows × 9 stages here. Both ends of the heat transfer tube 21 in the longitudinal direction extend to the tube plates 13a and 13b, and are fixed in a state of being inserted into tube holes (not shown) of the tube plates 13a and 13b. Then, both end portions in the longitudinal direction of the heat transfer tubes 21 constituting the upper portion in the vertical direction of the heat transfer tube group 20 communicate with the lower portion of the head space SH2 and the lower head space SHi. Both ends in the longitudinal direction of the heat transfer tube 21 constituting the lower portion of the direction communicate with the upper portion of the head space SH2 and the upper head space SHo.

尚、伝熱管群20を構成する伝熱管21の本数や配列は、本実施形態における本数や配列に限定されるものではなく、種々の本数や配列が採用可能である。また、シェルの長手方向の一端部だけに管板及びヘッドを設けたタンクを採用する場合には、U字管状の伝熱管を採用してもよい。   The number and arrangement of the heat transfer tubes 21 constituting the heat transfer tube group 20 are not limited to the number and arrangement in the present embodiment, and various numbers and arrangements can be adopted. Further, when a tank having a tube plate and a head provided only at one end in the longitudinal direction of the shell is employed, a U-shaped heat transfer tube may be employed.

<液冷媒散布装置>
−基本構成−
液冷媒散布装置30は、タンク10のシェル空間SS内の伝熱管群20と蒸気出口管18との上下方向間に配置されている。液冷媒散布装置30は、主として、ヘッダ管31と、冷媒桶33と、上部カバー36とを有している。
<Liquid refrigerant spraying device>
-Basic configuration-
The liquid refrigerant distribution device 30 is disposed between the heat transfer tube group 20 and the steam outlet tube 18 in the shell space SS of the tank 10 in the vertical direction. The liquid refrigerant distribution device 30 mainly includes a header pipe 31, a refrigerant bowl 33, and an upper cover 36.

ヘッダ管31は、冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒を冷媒桶33(ここでは、1段冷媒桶34)に導くための管部材である。ヘッダ管31は、タンク10の長手方向に沿って延びる管部材である。ヘッダ管31の一端部(ここでは、左側の端部)は、冷媒入口管17に接続されている。ヘッダ管31は、ここでは、タンク10の長手方向から見た断面が略矩形形状を有している。ヘッダ管31の上壁31a及び側壁31bの上部には、冷媒入口管17が接続されている端部(ここでは、左側の端部)及びヘッダ31の長手方向の両端壁を除いて、ヘッダ管31を流れる気液二相状態の冷媒を1段冷媒桶33に流出させるための多数のヘッダ管冷媒孔31cが形成されている。   The header pipe 31 is a pipe member for guiding the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 to the refrigerant bowl 33 (here, the first-stage refrigerant bowl 34). . The header pipe 31 is a pipe member that extends along the longitudinal direction of the tank 10. One end portion (here, the left end portion) of the header pipe 31 is connected to the refrigerant inlet pipe 17. Here, the header tube 31 has a substantially rectangular cross section when viewed from the longitudinal direction of the tank 10. The header pipe except for the end portion (here, the left end portion) to which the refrigerant inlet pipe 17 is connected and the both end walls in the longitudinal direction of the header 31 are provided above the upper wall 31a and the side wall 31b of the header pipe 31. A number of header pipe refrigerant holes 31 c for allowing the gas-liquid two-phase refrigerant flowing through 31 to flow out to the first-stage refrigerant tank 33 are formed.

また、ヘッダ管31には、冷媒入口管17が接続されている端部(ここでは、ヘッダ管31の左側の端部)を除いて、ヘッダ管31の外周側に隙間を空けた状態でヘッダ管31の上壁31a及び側壁31bの上部の外周側に覆う気液分離部材32が設けられている。気液分離部材32は、タンク10の長手方向から見た断面が下向きの略U字形状を有している。そして、気液分離部材32には、多数のヘッダ管通気孔32aが形成されている。ヘッダ管通気孔32aは、ヘッダ管31内を流れる冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒のうちのガス冷媒の通過を許容し、かつ、ヘッダ管31内を流れる冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒のうちの液冷媒の通過を抑制するための孔である。   In addition, the header pipe 31 is provided with a gap on the outer peripheral side of the header pipe 31 except for an end to which the refrigerant inlet pipe 17 is connected (here, the left end of the header pipe 31). A gas-liquid separation member 32 that covers the outer peripheral side of the upper part of the upper wall 31a and the side wall 31b of the pipe 31 is provided. The gas-liquid separation member 32 has a substantially U shape with a cross section viewed downward from the longitudinal direction of the tank 10. The gas-liquid separation member 32 is formed with a number of header pipe vent holes 32a. The header pipe vent 32a allows passage of gas refrigerant out of the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 flowing in the header pipe 31, and the header. This is a hole for suppressing the passage of liquid refrigerant out of the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 flowing in the pipe 31.

冷媒桶33は、タンク10のシェル11に設けられた冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒のうちの液冷媒を溜めた後に下方の伝熱管群20に流下させるための桶状部材である。冷媒桶33は、主として、1段冷媒桶34と2段冷媒桶35とを有している。   The refrigerant tank 33 stores the liquid refrigerant of the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 provided in the shell 11 of the tank 10 and then lowers the heat transfer pipe. It is a bowl-shaped member for allowing the group 20 to flow down. The refrigerant tank 33 mainly has a first-stage refrigerant tank 34 and a second-stage refrigerant tank 35.

1段冷媒桶34は、タンク10のシェル11に設けられた冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒のうちの液冷媒を溜めた後に下方に流下させる桶状部材である。1段冷媒桶34は、タンク10の長手方向に沿って延びている。1段冷媒桶34は、ここでは、タンク10の長手方向から見た断面が上向きの略U字形状を有している。1段冷媒桶34の底壁34a上には、ヘッダ管31が配置されている。これにより、冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒は、ヘッダ管31のヘッダ管冷媒孔31c及び気液分離部材32のヘッダ管通気孔32aを通じて、1段冷媒桶34内に導かれる。このとき、ヘッダ管31から1段冷媒桶34内に導かれる気液二相状態の冷媒は、気液分離部材32によって気液分離される。すなわち、気液二相状態の冷媒のうちの液冷媒の大部分は、気液分離部材32のヘッダ管通気孔32aを通過せずに、1段冷媒桶34に導かれて、1段冷媒桶34に溜まる。1段冷媒桶34に溜まった液冷媒は、1段冷媒桶34の底壁34aに形成された複数の液冷媒流下孔34cを通じて、下方の2段冷媒桶35に流下する。一方、気液二相状態の冷媒のうちのガス冷媒は、気液分離部材32のヘッダ管通気孔32aを通過して、1段冷媒桶34の直上の1段冷媒桶直上空間SSd1(ここでは、上部カバー36と1段冷媒桶34との上下方向間の空間)に導かれる。1段冷媒桶直上空間SSd1に導かれたガス冷媒は、蒸気出口管18に向かって上方に流れて、伝熱管群20において蒸発することによって生成したガス冷媒とともに、蒸気出口管18を通じてタンク10のシェル空間SS外に流出する。   The first-stage refrigerant tank 34 stores liquid refrigerant out of the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 provided in the shell 11 of the tank 10 and then moves downward. It is a bowl-shaped member to flow down. The first stage refrigerant tank 34 extends along the longitudinal direction of the tank 10. Here, the first-stage refrigerant tank 34 has a substantially U-shaped cross section as viewed from the longitudinal direction of the tank 10. A header pipe 31 is disposed on the bottom wall 34 a of the first-stage refrigerant bowl 34. Thus, the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the refrigerant inlet pipe 17 passes through the header pipe refrigerant hole 31 c of the header pipe 31 and the header pipe vent hole 32 a of the gas-liquid separation member 32. It is guided into the first stage refrigerant tank 34. At this time, the gas-liquid two-phase refrigerant guided from the header pipe 31 into the first-stage refrigerant tank 34 is gas-liquid separated by the gas-liquid separation member 32. That is, most of the liquid refrigerant in the gas-liquid two-phase state is not led through the header pipe vent 32a of the gas-liquid separation member 32, but is guided to the first-stage refrigerant tank 34, and the first-stage refrigerant tank It collects in 34. The liquid refrigerant accumulated in the first-stage refrigerant tank 34 flows down to the lower two-stage refrigerant tank 35 through a plurality of liquid refrigerant flow holes 34c formed in the bottom wall 34a of the first-stage refrigerant tank 34. On the other hand, the gas refrigerant out of the gas-liquid two-phase refrigerant passes through the header pipe vent 32a of the gas-liquid separation member 32 and passes directly above the first-stage refrigerant tank 34 to the space SSd1 (here, the first-stage refrigerant tank 34). , The space between the upper cover 36 and the first-stage refrigerant tank 34 in the vertical direction). The gas refrigerant guided to the space SSd1 directly above the first-stage refrigerant flow flows upward toward the vapor outlet pipe 18 and together with the gas refrigerant generated by evaporation in the heat transfer pipe group 20, the vapor refrigerant in the tank 10 through the vapor outlet pipe 18. It flows out of the shell space SS.

2段冷媒桶35は、1段冷媒桶34から流下する液冷媒を溜めた後に下方の伝熱管群20に流下させる桶状部材である。2段冷媒桶35は、タンク10の長手方向に沿って延びている。2段冷媒桶35は、ここでは、タンク10の長手方向から見た断面が上向きの略U字形状を有している。2段冷媒桶35は、2段冷媒桶35を下方から見た際(2段冷媒桶35をタンク10の長手方向に沿って見た際も同様)に、1段冷媒桶34よりも外側まではみだしている。すなわち、2段冷媒桶35をタンク10の長手方向に沿って見た際に、2段冷媒桶35の側壁35bは、1段冷媒桶34の側壁34bよりも外側に配置されている。これにより、1段冷媒桶34から流下する液冷媒は、2段冷媒桶35に導かれて、2段冷媒桶35に溜まる。2段冷媒桶35に溜まった液冷媒は、2段冷媒桶35の底壁35aに形成された複数の液冷媒流下孔35cを通じて、下方の伝熱管群20に流下する。ここで、1段冷媒桶34と2段冷媒桶35との上下方向間の空間を2段冷媒桶直上空間SSd2とする。   The second-stage refrigerant bowl 35 is a bowl-shaped member that stores the liquid refrigerant flowing down from the first-stage refrigerant bowl 34 and then flows down to the heat transfer tube group 20 below. The two-stage refrigerant tank 35 extends along the longitudinal direction of the tank 10. Here, the two-stage refrigerant tank 35 has a substantially U-shaped cross section as viewed from the longitudinal direction of the tank 10. The second-stage refrigerant tank 35 extends to the outside of the first-stage refrigerant tank 34 when the second-stage refrigerant tank 35 is viewed from below (the same applies when the second-stage refrigerant tank 35 is viewed along the longitudinal direction of the tank 10). It is sticking out. That is, when the second-stage refrigerant bowl 35 is viewed along the longitudinal direction of the tank 10, the side wall 35 b of the second-stage refrigerant bowl 35 is disposed outside the side wall 34 b of the first-stage refrigerant bowl 34. Thereby, the liquid refrigerant flowing down from the first-stage refrigerant tank 34 is guided to the second-stage refrigerant tank 35 and accumulated in the second-stage refrigerant tank 35. The liquid refrigerant accumulated in the second-stage refrigerant tank 35 flows down to the lower heat transfer tube group 20 through a plurality of liquid refrigerant flow holes 35c formed in the bottom wall 35a of the second-stage refrigerant tank 35. Here, the space between the first-stage refrigerant tank 34 and the second-stage refrigerant tank 35 in the vertical direction is defined as a space SSd2 immediately above the second-stage refrigerant tank.

上部カバー36は、冷媒桶33(ここでは、1段冷媒桶34)の上方に隙間を空けて配置されており、冷媒桶33(ここでは、1段冷媒桶34)の上方を覆う屋根状部材である。上部カバー36は、冷媒入口管17がヘッダ管31に接続されている端部(ここでは、ヘッダ管31の左側の端部)を除いて、タンク10の長手方向に沿って延びている。上部カバー36は、ここでは、タンク10の長手方向から見た断面が下向きの略U字形状を有している。ここでは、上部カバー36は、タンク10の長手方向から見た断面が水平板状の上壁36aと、上壁36aの端部から斜め下方に延びる側壁36bとを有している。また、上部カバー36をタンク10の長手方向に沿って見た際に、上部カバー36には、ヘッダ管31及び気液分離部材32よりも外側で、かつ、1段冷媒桶34の側壁34bよりも内側の位置に、下方に向かって突出する突出壁36cが設けられている。突出壁36cは、タンク10の長手方向に沿って延びている。そして、上部カバー36は、上部カバー36を上方から見た際(上部カバー36をタンク10の長手方向に沿って見た場合も同様)に、1段冷媒桶34を覆うとともに1段冷媒桶34よりも外側まではみ出している。すなわち、上部カバー36をタンク10の長手方向に沿って見た際に、上部カバー36の側壁36bの端部は、1段冷媒桶34の側壁34bよりも外側に配置されている。また、上部カバー36をタンク10の長手方向に沿って見た際に、上部カバー36の側壁36bの端部は、2段冷媒桶35の側壁35bの概ね直上位置に位置している。そして、タンク10のシェル空間SS内には、上部カバー36と冷媒桶33(ここでは、2段冷媒桶35)との上下方向間の空間である散布装置空間SSdが形成されている。散布装置空間SSdは、上記の1段冷媒桶直上空間SSd1と、上記の2段冷媒桶直上空間SSd2と、1段冷媒桶側方空間SSd3とを有している。ここで、1段冷媒桶側方空間SSd3は、液冷媒散布装置30をタンク10の長手方向に沿って見た際に、2段冷媒桶35の上側でかつ1段冷媒桶34の側壁34bよりも外側の空間である。また、タンク10のシェル空間SSのうち散布装置空間SSdを除く空間は、伝熱管群20において蒸発することによって生成したガス冷媒が蒸気出口管18に向かう蒸気主流路空間SSvになっている。蒸気主流路空間SSvは、液冷媒散布装置30をタンク10の長手方向に沿って見た際に、上部カバー36の側壁36bの端部と2段冷媒桶35の側壁35bの上端の上下方向間の隙間を通じて、散布装置空間SSdの1段冷媒桶側方空間SSd3と連通している。   The upper cover 36 is disposed above the refrigerant bowl 33 (here, the first-stage refrigerant bowl 34) with a gap therebetween, and covers the upper side of the refrigerant bowl 33 (here, the first-stage refrigerant bowl 34). It is. The upper cover 36 extends along the longitudinal direction of the tank 10 except for the end where the refrigerant inlet pipe 17 is connected to the header pipe 31 (here, the left end of the header pipe 31). Here, the upper cover 36 has a substantially U shape with a cross section viewed downward from the longitudinal direction of the tank 10. Here, the upper cover 36 has an upper wall 36a having a horizontal plate-like cross section viewed from the longitudinal direction of the tank 10, and a side wall 36b extending obliquely downward from an end of the upper wall 36a. Further, when the upper cover 36 is viewed along the longitudinal direction of the tank 10, the upper cover 36 is outside the header pipe 31 and the gas-liquid separation member 32 and from the side wall 34 b of the first-stage refrigerant tank 34. A protruding wall 36c protruding downward is also provided at the inner position. The protruding wall 36 c extends along the longitudinal direction of the tank 10. The upper cover 36 covers the first-stage refrigerant tank 34 and the first-stage refrigerant tank 34 when the upper cover 36 is viewed from above (the same applies when the upper cover 36 is viewed along the longitudinal direction of the tank 10). It extends beyond the outside. That is, when the upper cover 36 is viewed along the longitudinal direction of the tank 10, the end portion of the side wall 36 b of the upper cover 36 is disposed outside the side wall 34 b of the first-stage refrigerant tank 34. Further, when the upper cover 36 is viewed along the longitudinal direction of the tank 10, the end portion of the side wall 36 b of the upper cover 36 is positioned almost directly above the side wall 35 b of the second-stage refrigerant tank 35. In the shell space SS of the tank 10, a spraying device space SSd that is a space between the upper cover 36 and the refrigerant bowl 33 (here, the two-stage refrigerant bowl 35) in the vertical direction is formed. The spraying device space SSd includes the space SSd1 directly above the first-stage refrigerant tank, the space SSd2 directly above the second-stage refrigerant tank, and the first-stage refrigerant tank side space SSd3. Here, the first-stage refrigerant tank side space SSd3 is located above the second-stage refrigerant tank 35 and from the side wall 34b of the first-stage refrigerant tank 34 when the liquid refrigerant distribution device 30 is viewed along the longitudinal direction of the tank 10. Is also the outer space. The space excluding the spraying device space SSd in the shell space SS of the tank 10 is a steam main flow path space SSv in which the gas refrigerant generated by evaporation in the heat transfer tube group 20 is directed to the steam outlet pipe 18. When the liquid refrigerant spray device 30 is viewed along the longitudinal direction of the tank 10, the vapor main flow path space SSv is between the end of the side wall 36 b of the upper cover 36 and the upper end of the side wall 35 b of the second-stage refrigerant tank 35. Is communicated with the first stage refrigerant side space SSd3 of the spraying device space SSd.

このように、ここでは、液冷媒散布装置30の基本構成として、1段冷媒桶34及び2段冷媒桶35を有するものが採用されている。そして、このような液冷媒散布装置30と、複数の伝熱管21を有する伝熱管群20とによって、伝熱管21内を流れる熱媒体と2段冷媒桶35から流下する液冷媒との熱交換によって液冷媒を蒸発させる流下液膜式蒸発器1が構成されている。   Thus, here, as the basic configuration of the liquid refrigerant spraying device 30, the one having the first stage refrigerant bowl 34 and the second stage refrigerant bowl 35 is adopted. Then, by such a liquid refrigerant spraying device 30 and the heat transfer tube group 20 having the plurality of heat transfer tubes 21, heat exchange between the heat medium flowing in the heat transfer tubes 21 and the liquid refrigerant flowing down from the two-stage refrigerant tank 35 is performed. A falling liquid film evaporator 1 that evaporates liquid refrigerant is configured.

しかも、ここでは、2段冷媒桶35から1段冷媒桶34の底壁34a近傍に達するまで上方に突出する、2段冷媒桶35から1段冷媒桶34の底壁34aに接触するまで上方に突出する、又は、1段冷媒桶34の底壁34aから2段冷媒桶35に向かって下方に突出する仕切板40を液冷媒散布装置30に設けるようにしている。そして、以下に詳述するように、この仕切板40によって、1段冷媒桶34から2段冷媒桶35に流下する液冷媒の液滴のキャリーオーバー現象の発生を抑えるようにしている。   In addition, here, the second-stage refrigerant tank 35 protrudes upward until it reaches the vicinity of the bottom wall 34a of the first-stage refrigerant tank 34. The second-stage refrigerant tank 35 extends upward until it contacts the bottom wall 34a of the first-stage refrigerant tank 34. A partition plate 40 that protrudes or protrudes downward from the bottom wall 34 a of the first-stage refrigerant bowl 34 toward the second-stage refrigerant bowl 35 is provided in the liquid refrigerant spraying device 30. As will be described in detail below, this partition plate 40 suppresses the occurrence of a carryover phenomenon of liquid refrigerant droplets flowing down from the first-stage refrigerant bowl 34 to the second-stage refrigerant bowl 35.

−1段冷媒桶から2段冷媒桶に流下する液滴のキャリーオーバー現象を抑制する構成−
まず、上記のような1段冷媒桶34及び2段冷媒桶35を有する液冷媒散布装置30において、図9〜図11に示すように、仕切板40を設けない場合を想定する。
-A structure that suppresses the carry-over phenomenon of liquid droplets flowing down from the second-stage refrigerant tank-
First, it is assumed that the partition plate 40 is not provided in the liquid refrigerant spray device 30 having the first-stage refrigerant bowl 34 and the second-stage refrigerant bowl 35 as described above, as shown in FIGS.

この場合には、伝熱管群20によって蒸発したガス冷媒(図10及び図11のガス冷媒の流れを示す矢印A参照)がタンク10のシェル11の上部に設けられた蒸気出口管18に向かって流れるだけでなく、液冷媒散布装置30に流入した気液二相状態の冷媒のうちのガス冷媒(図10及び図11のガス冷媒を示す矢印B参照)も蒸気出口管18に向かって流れることになる。このとき、シェル11内のガス冷媒は、すべて蒸気出口管18に向かって流れるため、蒸気出口管18に近い部分(ここでは、シェル11の長手方向の中央部分)におけるガス冷媒の流速が、蒸気出口管18から遠い部分(ここでは、シェル11の長手方向の両端部)よりも高くなる傾向にある。   In this case, the gas refrigerant evaporated by the heat transfer tube group 20 (see arrow A indicating the flow of the gas refrigerant in FIGS. 10 and 11) is directed toward the vapor outlet pipe 18 provided at the upper portion of the shell 11 of the tank 10. In addition to flowing, gas refrigerant (see arrow B indicating the gas refrigerant in FIGS. 10 and 11) of the gas-liquid two-phase refrigerant flowing into the liquid refrigerant spraying device 30 also flows toward the vapor outlet pipe 18. become. At this time, since all the gas refrigerant in the shell 11 flows toward the vapor outlet pipe 18, the flow rate of the gas refrigerant in the portion close to the vapor outlet pipe 18 (here, the central portion in the longitudinal direction of the shell 11) It tends to be higher than the portion far from the outlet pipe 18 (here, both ends in the longitudinal direction of the shell 11).

そして、1段冷媒桶直上空間SSd1に存在するガス冷媒(冷媒入口管17を通じて1段冷媒桶34に流入した気液二相状態の冷媒のうちのガス冷媒)や蒸気主流路空間SSvに存在するガス冷媒(伝熱管群20によって蒸発したガス冷媒)が、2段冷媒桶直上空間SSd2に流れ込みやすくなる。特に、蒸気出口管18から遠い部分(ここでは、シェル11の長手方向の両端部)においては、1段冷媒桶直上空間SSd1に存在するガス冷媒(図9及び図11のガス冷媒の流れを示す矢印C参照)や蒸気主流路空間SSvに存在するガス冷媒(図9及び図11のガス冷媒の流れを示す矢印D参照)が2段冷媒桶直上空間SSd2に流れ込みやすい。そして、このガス冷媒は、高い流速で2段冷媒桶直上空間SSd2を通過しながら蒸気出口管18に向かって流れることになる。このため、1段冷媒桶34から2段冷媒桶35に流下する液冷媒の液滴(図9及び図10の液冷媒の液滴を示す黒丸E参照)が、2段冷媒桶直上空間SSd2に流れ込んだ高い流速のガス冷媒(図10及び図11のガス冷媒の流れを示す矢印F参照)によって運ばれて、蒸気出口管18を通じてタンク10のシェル11外に流出するキャリーオーバー現象が発生しやすくなる。   And it exists in the gas refrigerant (gas refrigerant in the gas-liquid two-phase state refrigerant that has flowed into the first-stage refrigerant tank 34 through the refrigerant inlet pipe 17) or the vapor main flow path space SSv that exists in the space SSd1 directly above the first-stage refrigerant tank. Gas refrigerant (gas refrigerant evaporated by the heat transfer tube group 20) easily flows into the space SSd2 directly above the second-stage refrigerant bowl. In particular, in a portion far from the steam outlet pipe 18 (here, both ends in the longitudinal direction of the shell 11), the gas refrigerant existing in the space SSd1 directly above the first-stage refrigerant tank (the flow of the gas refrigerant in FIGS. 9 and 11 is shown). The gas refrigerant (see arrow D indicating the flow of the gas refrigerant in FIGS. 9 and 11) existing in the vapor main flow path space SSv and the vapor main flow path space SSv easily flows into the space SSd2 immediately above the second stage refrigerant stack. The gas refrigerant flows toward the vapor outlet pipe 18 while passing through the space SSd2 directly above the second-stage refrigerant tank at a high flow rate. For this reason, the liquid refrigerant droplets flowing down from the first-stage refrigerant tank 34 to the second-stage refrigerant tank 35 (see the black circle E indicating the liquid refrigerant droplets in FIGS. 9 and 10) are placed in the space SSd2 directly above the second-stage refrigerant tank. A carry-over phenomenon that is carried by the flowing high-speed gas refrigerant (see arrow F indicating the flow of the gas refrigerant in FIGS. 10 and 11) and flows out of the shell 11 of the tank 10 through the vapor outlet pipe 18 easily occurs. Become.

これに対して、ここでは、1段冷媒桶34及び2段冷媒桶35を有する液冷媒散布装置30において、図2〜図8に示すように、仕切板40を設けるようにしている。具体的には、2段冷媒桶35に溜まった液冷媒に浸るように配置されており、2段冷媒桶35をタンク10の長手方向に沿って複数に分割する板状部材からなる仕切板40を液冷媒散布装置30に設けるようにしている。ここでは、11枚の仕切板40が設けられているため、2段冷媒桶35は、12個の小さい2段冷媒桶に分割されている。ここで、仕切板40は、2段冷媒桶35に設けられる場合には、2段冷媒桶35(ここでは、底壁35a)から1段冷媒桶34の底壁34a近傍に達するまで上方に突出する、又は、2段冷媒桶35(ここでは、底壁35a)から1段冷媒桶34の底壁34aに接触するまで上方に突出するように設けられている。尚、ここでは、仕切板40は、2段冷媒桶35の側壁35bの高さ位置よりも上側の高さ位置に達するまで上方に突出している。また、仕切板40は、1段冷媒桶35に設けられていてもよい。この場合には、仕切板40は、1段冷媒桶34の底壁34aから2段冷媒桶35に向かって下方に突出するように設けられる。そして、仕切板40は、液冷媒散布装置30をタンク10の長手方向に沿って見た際に、2段冷媒桶35の左側の側壁35bと右側の側壁35bとを繋ぐように設けられている。ここでは、仕切板40は、液冷媒散布装置30をタンク10の長手方向に直交する方向に沿って、2段冷媒桶35の側壁35b間を延びている。このため、液冷媒散布装置30をタンク10の長手方向に沿って見た際に、1段冷媒桶直上空間SSd1と1段冷媒桶側方空間SSd3とが連通した状態が維持され、1段冷媒桶側方空間SSd3と蒸気主流路空間SSvとが連通した状態が維持される。しかも、2段冷媒桶直上空間SSd2が長手方向に複数(ここでは、12個)の小さい空間に分割されるとともに、これらの小さい空間同士のガス冷媒の行き来を抑制することが可能な状態が得られる。   On the other hand, here, as shown in FIGS. 2 to 8, the partition plate 40 is provided in the liquid refrigerant spray device 30 having the first-stage refrigerant bowl 34 and the second-stage refrigerant bowl 35. Specifically, the partition plate 40 is arranged so as to be immersed in the liquid refrigerant accumulated in the second-stage refrigerant bowl 35 and is composed of a plate-like member that divides the second-stage refrigerant bowl 35 into a plurality along the longitudinal direction of the tank 10. Is provided in the liquid refrigerant spray device 30. Here, since 11 partition plates 40 are provided, the two-stage refrigerant bowl 35 is divided into 12 small two-stage refrigerant bowls. Here, when the partition plate 40 is provided in the second-stage refrigerant bowl 35, it projects upward from the second-stage refrigerant bowl 35 (here, the bottom wall 35a) until it reaches the vicinity of the bottom wall 34a of the first-stage refrigerant bowl 34. Or, it is provided so as to protrude upward from the second stage refrigerant bowl 35 (here, the bottom wall 35a) until it contacts the bottom wall 34a of the first stage refrigerant bowl 34. Here, the partition plate 40 protrudes upward until it reaches a height position above the height position of the side wall 35b of the two-stage refrigerant bowl 35. Further, the partition plate 40 may be provided in the first stage refrigerant bowl 35. In this case, the partition plate 40 is provided so as to protrude downward from the bottom wall 34 a of the first stage refrigerant bowl 34 toward the second stage refrigerant bowl 35. The partition plate 40 is provided so as to connect the left side wall 35b and the right side wall 35b of the two-stage refrigerant bowl 35 when the liquid refrigerant spray device 30 is viewed along the longitudinal direction of the tank 10. . Here, the partition plate 40 extends between the side walls 35 b of the two-stage refrigerant tank 35 along the direction perpendicular to the longitudinal direction of the tank 10 in the liquid refrigerant spray device 30. For this reason, when the liquid refrigerant spraying device 30 is viewed along the longitudinal direction of the tank 10, the state where the first-stage refrigerant tank direct upper space SSd1 and the first-stage refrigerant tank side space SSd3 communicate with each other is maintained. The state where the saddle side space SSd3 and the steam main flow path space SSv communicate with each other is maintained. In addition, the space SSd2 directly above the second-stage refrigerant tank is divided into a plurality of (here, 12) small spaces in the longitudinal direction, and a state in which the flow of the gas refrigerant between these small spaces can be suppressed is obtained. It is done.

そして、仕切板40によって、蒸気主流路空間SSvと1段冷媒桶直上空間SSd1とが連通した状態を維持しつつ、2段冷媒桶直上空間SSd2に1段冷媒桶直上空間SSd1や蒸気主流路空間SSvからガス冷媒が流れ込みにくくすることができる。このため、1段冷媒桶直上空間SSd1に存在するガス冷媒を蒸気主流路空間SSvに流しつつ、2段冷媒桶直上空間SSd2に流れ込むガス冷媒の流量、ひいてはガス冷媒の流速を低下させることができる。これにより、ここでは、1段冷媒桶34から2段冷媒桶35に流下する液冷媒の液滴のキャリーオーバー現象を発生しにくくすることができる。   Then, the partition plate 40 maintains the state in which the steam main flow path space SSv and the first stage refrigerant soot space SSd1 are in communication with each other, the first stage refrigerant soot space SSd1 and the steam main flow path space to the second stage refrigerant soot space SSd2. It is possible to make it difficult for the gas refrigerant to flow from SSv. For this reason, the flow rate of the gas refrigerant flowing into the space SSd2 directly above the second-stage refrigerant tank SS2 can be reduced while the gas refrigerant existing in the space SSd1 immediately above the first-stage refrigerant tank is flowing into the steam main flow path space SSv. . As a result, the carryover phenomenon of the liquid refrigerant droplets flowing down from the first-stage refrigerant tank 34 to the second-stage refrigerant tank 35 can be made difficult to occur.

すなわち、蒸気出口管18から遠い部分(ここでは、シェル11の長手方向の両端部)においては、1段冷媒桶直上空間SSd1に存在するガス冷媒(図6及び図8のガス冷媒の流れを示す矢印C参照)や蒸気主流路空間SSvに存在するガス冷媒(図6及び図8のガス冷媒の流れを示す矢印D参照)が、仕切板40を設けない場合(図9及び図11のガス冷媒の流れを示す矢印C、D参照)とは異なり、蒸気主流路空間SSvに向かうガス冷媒の流れが維持されつつ、2段冷媒桶直上空間SSd2に流れ込みにくくなる。そうすると、仕切板40を設けない場合(図10及び図11のガス冷媒の流れを示す矢印F参照)とは異なり、ガス冷媒が高い流速で2段冷媒桶直上空間SSd2を通過しながら蒸気出口管18に向かって流れにくくなる。このため、仕切板40を設けない場合(図9〜図11参照)とは異なり、1段冷媒桶34から2段冷媒桶35に流下する液冷媒の液滴(図6及び図7の液冷媒の液滴を示す黒丸E参照)が運ばれにくくなり、蒸気出口管18を通じてタンク10のシェル11外に流出するキャリーオーバー現象を発生しにくくすることができる。しかも、仕切板40は、1段冷媒桶直上空間SSd1に存在するガス冷媒を蒸気主流路空間SSvに流すことを妨げないように設けられているため、タンク10のシェル11に設けられた冷媒入口管17を通じてタンク10のシェル空間SS内に供給される気液二相状態の冷媒のうちのガス冷媒を、蒸気出口管18を通じてスムーズにタンク10のシェル11外に流出させることができる。   That is, in the portion far from the steam outlet pipe 18 (here, both ends in the longitudinal direction of the shell 11), the gas refrigerant existing in the space SSd1 directly above the first-stage refrigerant tank (the flow of the gas refrigerant in FIGS. 6 and 8 is shown). When the partition plate 40 is not provided in the gas refrigerant (see arrow D indicating the flow of the gas refrigerant in FIGS. 6 and 8) existing in the vapor main flow path space SSv (see arrow C) (see FIG. 9 and FIG. 11). Unlike the arrows C and D indicating the flow of the gas, the flow of the gas refrigerant toward the steam main flow path space SSv is maintained, and it is difficult for the gas refrigerant to flow into the space SSd2 directly above the second-stage refrigerant stream. Then, unlike the case where the partition plate 40 is not provided (see the arrow F indicating the flow of the gas refrigerant in FIGS. 10 and 11), the vapor outlet pipe while the gas refrigerant passes through the space SSd2 directly above the two-stage refrigerant tank at a high flow rate. It becomes difficult to flow toward 18. For this reason, unlike the case where the partition plate 40 is not provided (see FIGS. 9 to 11), the liquid refrigerant droplets flowing from the first-stage refrigerant bowl 34 to the second-stage refrigerant bowl 35 (the liquid refrigerant shown in FIGS. 6 and 7). (See the black circle E showing the liquid droplets), and the carry-over phenomenon that flows out of the shell 11 of the tank 10 through the vapor outlet pipe 18 can be made difficult to occur. Moreover, since the partition plate 40 is provided so as not to prevent the gas refrigerant existing in the space SSd1 directly above the first-stage refrigerant tank from flowing into the vapor main flow path space SSv, the refrigerant inlet provided in the shell 11 of the tank 10 The gas refrigerant in the gas-liquid two-phase refrigerant supplied into the shell space SS of the tank 10 through the pipe 17 can smoothly flow out of the shell 11 of the tank 10 through the vapor outlet pipe 18.

また、図2〜図8の構成では、単一の2段冷媒桶35に複数の仕切板40を設けるようにしているが、図12に示すように、複数(ここでは、3個)の2段冷媒桶35をタンク10の長手方向に沿って配置した構成において、各2段冷媒桶35に仕切板40を設けるようにしてもよい。   2 to 8, a plurality of partition plates 40 are provided in a single two-stage refrigerant tank 35. However, as shown in FIG. In the configuration in which the staged refrigerant bowl 35 is arranged along the longitudinal direction of the tank 10, the partition plate 40 may be provided in each of the two-stage refrigerant bowls 35.

−仕切板の変形例1−
上記の実施形態(図2〜図8、図12参照)の構成では、仕切板40によって、2段冷媒桶35が複数に分割されるため、分割された小さい2段冷媒桶間で液冷媒の貯留量の偏りが発生するおそれがある。
-Modification 1 of partition plate-
In the configuration of the above embodiment (see FIGS. 2 to 8 and 12), the partition plate 40 divides the two-stage refrigerant bowl 35 into a plurality of parts. There is a risk of uneven storage.

そこで、ここでは、図13に示すように、仕切板40のうち2段冷媒桶35に溜まった液冷媒に浸る部分に、2段冷媒桶35に溜まった液冷媒が通過可能な通液孔40aを形成するようにしている。ここで、通液孔40aは、仕切板40を貫通する孔である。   Therefore, here, as shown in FIG. 13, a liquid passage hole 40 a through which the liquid refrigerant accumulated in the second-stage refrigerant bowl 35 can pass through a portion of the partition plate 40 that is immersed in the liquid refrigerant accumulated in the second-stage refrigerant bowl 35. To form. Here, the liquid passage hole 40 a is a hole that penetrates the partition plate 40.

また、通液孔40aに代えて、図14や図15に示すように、仕切板40の2段冷媒桶35に溜まった液冷媒に浸る部分と2段冷媒桶35との間に、2段冷媒桶35に溜まった液冷媒が通過可能な通液隙間40b、40cを確保するようにしてもよい。ここで、通液隙間40b(図14参照)は、液冷媒散布装置30をタンク10の長手方向に沿って見た際に、仕切板40の側端の一部を切り欠く等によって形成された部分である。また、通液隙間40c(図15参照)は、液冷媒散布装置30をタンク10の長手方向に沿って見た際に、仕切板40の下端の一部を切り欠く等によって形成された部分である。   Further, in place of the liquid passage hole 40a, as shown in FIG. 14 and FIG. 15, a two-stage refrigerant bowl 35 is interposed between the portion of the partition plate 40 immersed in the liquid refrigerant and the two-stage refrigerant bowl 35. The liquid passage gaps 40b and 40c through which the liquid refrigerant accumulated in the refrigerant bowl 35 can pass may be secured. Here, the liquid passing gap 40b (see FIG. 14) is formed by cutting out a part of the side end of the partition plate 40 when the liquid refrigerant spraying device 30 is viewed along the longitudinal direction of the tank 10. Part. Further, the liquid passage gap 40c (see FIG. 15) is a portion formed by cutting out a part of the lower end of the partition plate 40 when the liquid refrigerant spraying device 30 is viewed along the longitudinal direction of the tank 10. is there.

これにより、ここでは、仕切板40によって2段冷媒桶35が分割されるが、通液孔40aや通液隙間40b、40cによって分割された小さい2段冷媒桶間で液冷媒の行き来が可能になっている。このため、ここでは、仕切板40によって2段冷媒桶35が分割されるにもかかわらず、分割された小さい2段冷媒桶間の液冷媒の貯留量の偏りを抑えることができる。   As a result, the two-stage refrigerant bowl 35 is divided by the partition plate 40 here, but the liquid refrigerant can be transferred between the small two-stage refrigerant bowls divided by the liquid passage holes 40a and the liquid passage gaps 40b and 40c. It has become. For this reason, here, although the two-stage refrigerant bowl 35 is divided by the partition plate 40, it is possible to suppress the deviation of the amount of liquid refrigerant stored between the divided small two-stage refrigerant bowls.

−仕切板の変形例2−
上記の実施形態及びその変形例1(図2〜図8、図12〜図15)の構成では、仕切板40の上端が1段冷媒桶34の底壁34a近傍、又は、底壁34aに接触する程度の高さ位置にある。
-Modification of partition plate 2-
In the configuration of the above-described embodiment and Modification 1 (FIGS. 2 to 8 and FIGS. 12 to 15), the upper end of the partition plate 40 is in contact with the vicinity of the bottom wall 34a of the first-stage refrigerant bowl 34 or the bottom wall 34a. It is in the height position to do.

ここで、上記の実施形態及びその変形例1のように、2段冷媒桶35が、2段冷媒桶35を下方から見た際(2段冷媒桶35をタンク10の長手方向に沿って見た際も同様)に、1段冷媒桶34よりも外側まではみだした構造を採用する場合には、2段冷媒桶直上空間SSd2は、2段冷媒桶35の上側でかつ1段冷媒桶34の側壁34bよりも外側の1段冷媒桶側方空間SSd3を介して、1段冷媒桶直上空間SSd1及び蒸気主流路空間SSvに連通することになる。このため、1段冷媒桶直上空間SSd1及び/又は蒸気主流路空間SSvから2段冷媒桶直上空間SSd2に対してガス冷媒がさらに流れ込みにくくなるようにするためには、1段冷媒桶直上空間SSd1及び/又は蒸気主流路空間SSvから1段冷媒桶側方空間SSd3へのガス冷媒の流れ込みを抑えることが好ましい。   Here, as in the above embodiment and its modification example 1, when the second-stage refrigerant bowl 35 is viewed from below (see the second-stage refrigerant bowl 35 along the longitudinal direction of the tank 10). Similarly, when a structure that extends beyond the first stage refrigerant tank 34 is employed, the space SSd2 immediately above the second stage refrigerant tank 35 is located above the second stage refrigerant tank 35 and the first stage refrigerant tank 34. The first stage refrigerant tank side space SSd3 outside the side wall 34b is communicated with the first stage refrigerant tank upper space SSd1 and the steam main flow path space SSv. For this reason, in order to make it more difficult for the gas refrigerant to flow from the first stage refrigerant tank upper space SSd1 and / or the steam main flow path space SSv into the second stage refrigerant tank upper space SSd2, the first stage refrigerant tank upper space SSd1. And / or it is preferable to suppress the flow of the gas refrigerant from the steam main flow path space SSv to the first-stage refrigerant side space SSd3.

そこで、ここでは、図16に示すように、仕切板40を1段冷媒桶34の側壁形状に沿って1段冷媒桶34よりも外側まで延出させるようにしている。具体的には、仕切板40の1段冷媒桶34よりも外側にはみ出した部分を、2段冷媒桶35の側壁35bよりも上方位置まで、1段冷媒桶34の側壁34bに沿って延ばすようにしている。   Therefore, here, as shown in FIG. 16, the partition plate 40 is extended to the outside of the first-stage refrigerant bowl 34 along the side wall shape of the first-stage refrigerant bowl 34. Specifically, the portion of the partition plate 40 that protrudes outward from the first-stage refrigerant bowl 34 extends to a position above the side wall 35b of the second-stage refrigerant bowl 35 along the side wall 34b of the first-stage refrigerant bowl 34. I have to.

これにより、ここでは、仕切板40の1段冷媒桶34の側壁34bに沿って延ばした部分によって、1段冷媒桶直上空間SSd1及び/又は蒸気主流路空間SSvから1段冷媒桶側方空間SSd3へのガス冷媒の流れ込みがさらに抑えられることになる。そして、2段冷媒桶直上空間SSd2に流れ込むガス冷媒の流量、ひいてはガス冷媒の流速をさらに低下させることができる。   Thereby, here, the portion extending along the side wall 34b of the first-stage refrigerant bowl 34 of the partition plate 40 causes the first-stage refrigerant bowl side space SSd3 from the first-stage refrigerant bowl upper space SSd1 and / or the steam main flow path space SSv. This further suppresses the flow of the gas refrigerant into the. Further, the flow rate of the gas refrigerant flowing into the space SSd2 directly above the second-stage refrigerant tank, and thus the flow rate of the gas refrigerant can be further reduced.

−仕切板の変形例3−
上記の実施形態(図2〜図8、図12)では、2段桶35に仕切板40が設けられた構成を採用しているが、これに限定されるものではない。
-Modification of partition plate 3-
In said embodiment (FIGS. 2-8, FIG. 12), although the structure by which the partition plate 40 was provided in the two-stage fence 35 is employ | adopted, it is not limited to this.

例えば、図17に示すように、2段冷媒桶35をタンク10の長手方向に複数(ここでは、8個)に分割し、2段冷媒桶35の側壁35bを仕切板40として機能させるようにしている。すなわち、2段冷媒桶35の側壁35bを1段冷媒桶34の底壁34a近傍に達するまで上方に突出させる、又は、1段冷媒桶34の底壁34aに接触するまで上方に突出させるようにしている。   For example, as shown in FIG. 17, the two-stage refrigerant bowl 35 is divided into a plurality (eight in this case) in the longitudinal direction of the tank 10 so that the side wall 35 b of the two-stage refrigerant bowl 35 functions as the partition plate 40. ing. That is, the side wall 35b of the second-stage refrigerant tank 35 protrudes upward until it reaches the vicinity of the bottom wall 34a of the first-stage refrigerant tank 34, or protrudes upward until it contacts the bottom wall 34a of the first-stage refrigerant tank 34. ing.

この場合であっても、2段冷媒桶35の側壁35bが、上記の実施形態における仕切板40と同等の機能を果たすことができ、これにより、蒸気主流路空間SSvに1段冷媒桶直上空間SSd1が連通した状態を維持しつつ、2段冷媒桶直上空間SSd2に1段冷媒桶直上空間SS及び/又は蒸気主流路空間SSvからガス冷媒が流れ込むことを妨げる作用を得ることができる。   Even in this case, the side wall 35b of the second-stage refrigerant bowl 35 can perform the same function as the partition plate 40 in the above-described embodiment, whereby the space directly above the first-stage refrigerant bowl in the steam main flow path space SSv. While maintaining the state in which the SSd1 is in communication, it is possible to obtain an effect of preventing the gas refrigerant from flowing from the first stage refrigerant tank upper space SS and / or the steam main flow path space SSv into the second stage refrigerant tank upper space SSd2.

本発明は、1段冷媒桶及び2段冷媒桶を有しておりタンク内の伝熱管群とタンク上部の蒸気出口管との上下方向間に設けられた液冷媒散布装置によって冷媒入口管を通じてタンク内に供給される気液二相状態の冷媒のうちの液冷媒を伝熱管群に流下させ、伝熱管群によって液冷媒を蒸発させる流下液膜式蒸発器に対して、広く適用可能である。   The present invention has a first-stage refrigerant tank and a second-stage refrigerant tank, and the tank is formed through the refrigerant inlet pipe by the liquid refrigerant spraying device provided between the heat transfer pipe group in the tank and the vapor outlet pipe in the upper part of the tank. The present invention can be widely applied to a falling liquid film evaporator in which liquid refrigerant of gas-liquid two-phase refrigerant supplied into the heat flow pipe group is caused to flow down to the heat transfer tube group and the liquid refrigerant is evaporated by the heat transfer tube group.

1 流下液膜式蒸発器
10 タンク
17 冷媒入口管
18 蒸気出口管
20 伝熱管群
21 伝熱管
30 液冷媒散布装置
34 1段冷媒桶
34a 底壁
34b 側壁
35 2段冷媒桶
35b 側壁
40 仕切板
40a 通液孔
40b、40c 通液隙間
DESCRIPTION OF SYMBOLS 1 Falling liquid film type evaporator 10 Tank 17 Refrigerant inlet pipe 18 Steam outlet pipe 20 Heat-transfer tube group 21 Heat-transfer pipe 30 Liquid refrigerant spraying device 34 1st stage | paragraph refrigerant | coolant tub 34a Bottom wall 34b Side wall 35 Two-stage refrigerant | coolant tub 35b Side wall 40 Partition plate 40a Fluid passage hole 40b, 40c Fluid passage gap

特開平8−189726号公報JP-A-8-189726

Claims (5)

上部に蒸気出口管(18)が設けられたタンク(10)内に配置されており、複数の伝熱管(21)を有する伝熱管群(20)と、
前記タンク内の前記伝熱管群と前記蒸気出口管との上下方向間において、前記タンクに設けられた冷媒入口管(17)を通じて前記タンク内に供給される気液二相状態の冷媒のうちの液冷媒を溜めた後に下方に流下させる1段冷媒桶(34)と、前記1段冷媒桶から流下する液冷媒を溜めた後に下方の前記伝熱管群に流下させる2段冷媒桶(35)と、を有する液冷媒散布装置(30)と、
を備えており、前記伝熱管内を流れる熱媒体と前記2段冷媒桶から流下する液冷媒との熱交換によって液冷媒を蒸発させる流下液膜式蒸発器において、
前記2段冷媒桶から前記1段冷媒桶の底壁(34a)近傍に達するまで上方に突出する、前記2段冷媒桶から前記1段冷媒桶の底壁に接触するまで上方に突出する、又は、前記1段冷媒桶の底壁から前記2段冷媒桶に向かって下方に突出する仕切板(40)を設ける、
流下液膜式蒸発器(1)。
A heat transfer tube group (20) having a plurality of heat transfer tubes (21) disposed in a tank (10) provided with a steam outlet tube (18) at the top;
Of the refrigerant in the gas-liquid two-phase state supplied into the tank through the refrigerant inlet pipe (17) provided in the tank between the heat transfer pipe group in the tank and the vapor outlet pipe. A first-stage refrigerant tank (34) that flows down after storing liquid refrigerant, and a two-stage refrigerant tank (35) that stores liquid refrigerant flowing down from the first-stage refrigerant tank and then flows down to the heat transfer tube group below. A liquid refrigerant spraying device (30),
A falling liquid film evaporator that evaporates the liquid refrigerant by heat exchange between the heat medium flowing in the heat transfer tube and the liquid refrigerant flowing down from the two-stage refrigerant tank,
Projects upward from the second stage refrigerant tank until it reaches the vicinity of the bottom wall (34a) of the first stage refrigerant tank, projects upward from the second stage refrigerant tank until it contacts the bottom wall of the first stage refrigerant tank, or A partition plate (40) protruding downward from the bottom wall of the first-stage refrigerant tank toward the second-stage refrigerant tank;
A falling film evaporator (1).
前記仕切板(40)は、前記2段冷媒桶(35)に溜まった液冷媒に浸るように配置されており、
前記仕切板のうち前記2段冷媒桶に溜まった液冷媒に浸る部分に、前記2段冷媒桶に溜まった液冷媒が通過可能な通液孔(40a)が形成されている、又は、前記仕切板の前記2段冷媒桶に溜まった液冷媒に浸る部分と前記2段冷媒桶との間に、前記2段冷媒桶に溜まった液冷媒が通過可能な通液隙間(40b、40c)が確保されている、
請求項1に記載の流下液膜式蒸発器(1)。
The partition plate (40) is disposed so as to be immersed in the liquid refrigerant accumulated in the two-stage refrigerant tank (35),
A liquid passage hole (40a) through which the liquid refrigerant stored in the second-stage refrigerant tank can pass is formed in a portion of the partition plate that is immersed in the liquid refrigerant stored in the second-stage refrigerant tank, or the partition A liquid passage gap (40b, 40c) through which the liquid refrigerant accumulated in the second-stage refrigerant tank can pass is secured between a portion of the plate immersed in the liquid refrigerant collected in the second-stage refrigerant tank and the second-stage refrigerant tank. Being
A falling film evaporator (1) according to claim 1.
前記仕切板(40)は、前記2段冷媒桶(35)の側壁(35b)の高さ位置よりも上側の高さ位置に達するまで上方に突出している、
請求項1又は2に記載の流下液膜式蒸発器(1)。
The partition plate (40) protrudes upward until it reaches a height position above the height position of the side wall (35b) of the two-stage refrigerant tank (35).
The falling film evaporator (1) according to claim 1 or 2.
前記2段冷媒桶(35)は、複数に分割されており、
前記2段冷媒桶の側壁(35b)が、前記仕切板(40)を構成している、
請求項1に記載の流下液膜式蒸発器(1)。
The second-stage refrigerant tank (35) is divided into a plurality of parts,
The side wall (35b) of the second-stage refrigerant bowl constitutes the partition plate (40).
A falling film evaporator (1) according to claim 1.
前記2段冷媒桶(35)は、前記2段冷媒桶を下方から見た際に、前記1段冷媒桶(34)よりも外側まではみだしており、
前記仕切板(40)は、前記1段冷媒桶(34)の側壁(34b)形状に沿って前記1段冷媒桶よりも外側まで延出している、
請求項1〜4のいずれか1項に記載の流下液膜式蒸発器(1)。
The second-stage refrigerant tank (35) protrudes outside the first-stage refrigerant tank (34) when the second-stage refrigerant tank is viewed from below.
The partition plate (40) extends to the outside of the first-stage refrigerant bowl along the side wall (34b) shape of the first-stage refrigerant bowl (34).
The falling film evaporator (1) according to any one of claims 1 to 4.
JP2012162727A 2012-07-23 2012-07-23 Downward flow liquid film type evaporator Pending JP2014020752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162727A JP2014020752A (en) 2012-07-23 2012-07-23 Downward flow liquid film type evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162727A JP2014020752A (en) 2012-07-23 2012-07-23 Downward flow liquid film type evaporator

Publications (1)

Publication Number Publication Date
JP2014020752A true JP2014020752A (en) 2014-02-03

Family

ID=50195833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162727A Pending JP2014020752A (en) 2012-07-23 2012-07-23 Downward flow liquid film type evaporator

Country Status (1)

Country Link
JP (1) JP2014020752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002784A1 (en) * 2014-07-01 2016-01-07 ダイキン工業株式会社 Falling film evaporator
US20170254573A1 (en) * 2016-03-07 2017-09-07 Daikin Applied Americas Inc. Heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002784A1 (en) * 2014-07-01 2016-01-07 ダイキン工業株式会社 Falling film evaporator
JP2016014494A (en) * 2014-07-01 2016-01-28 ダイキン工業株式会社 Falling film evaporator
CN106662382A (en) * 2014-07-01 2017-05-10 大金工业株式会社 Falling film evaporator
EP3165850A4 (en) * 2014-07-01 2017-06-28 Daikin Industries, Ltd. Falling film evaporator
US9810458B2 (en) 2014-07-01 2017-11-07 Daikin Industries, Ltd. Falling film evaporator
CN106662382B (en) * 2014-07-01 2018-05-25 大金工业株式会社 Downward film evaporator
US20170254573A1 (en) * 2016-03-07 2017-09-07 Daikin Applied Americas Inc. Heat exchanger
US10746441B2 (en) * 2016-03-07 2020-08-18 Daikin Applied Americas Inc. Heat exchanger

Similar Documents

Publication Publication Date Title
JP5850099B2 (en) Flowing film evaporator
WO2016002723A1 (en) Falling film evaporator
JP2014020755A (en) Downward flow liquid film type evaporator
JP6701372B2 (en) Heat exchanger
CN105593625B (en) Heat exchanger
JP6423221B2 (en) Evaporator and refrigerator
JP7364930B2 (en) Heat exchanger
EP2930454B1 (en) Heat exchanger
US11029094B2 (en) Heat exchanger
JP4701147B2 (en) 2-stage absorption refrigerator
JP2014020753A (en) Downward flow liquid film type evaporator
JP2014020754A (en) Downward flow liquid film type evaporator
JP2014020752A (en) Downward flow liquid film type evaporator
JP2011027296A (en) Liquid distributor, shell-type heat exchanger using this, and absorption refrigerator using these
JP2014020723A (en) Downward flow liquid film type evaporator
US20220178595A1 (en) Liquid refrigerant sprayer and falling liquid film type evaporator
JP2011196632A (en) Ebullient cooling device
JP2019135418A (en) Shell-and-tube heat exchanger
US10845125B2 (en) Heat exchanger
JP5123834B2 (en) Shell and tube heat exchanger
JP6116113B2 (en) Condenser and condensing system provided with the same
JP2009068724A (en) Absorption refrigerator
JP7098680B2 (en) Evaporator
JP6956868B2 (en) Shell and tube heat exchanger
KR102173354B1 (en) Cold reserving heat exchanger