JP2014018830A - Method for producing mechanical or electronic component - Google Patents

Method for producing mechanical or electronic component Download PDF

Info

Publication number
JP2014018830A
JP2014018830A JP2012159776A JP2012159776A JP2014018830A JP 2014018830 A JP2014018830 A JP 2014018830A JP 2012159776 A JP2012159776 A JP 2012159776A JP 2012159776 A JP2012159776 A JP 2012159776A JP 2014018830 A JP2014018830 A JP 2014018830A
Authority
JP
Japan
Prior art keywords
mechanical
changed
manufacturing
physical quantities
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012159776A
Other languages
Japanese (ja)
Inventor
Seiji Matsunaga
正治 松長
Yoshiji Anno
義治 安納
Hidenobu Mori
秀伸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2012159776A priority Critical patent/JP2014018830A/en
Priority to CN201310287493.7A priority patent/CN103567412A/en
Publication of JP2014018830A publication Critical patent/JP2014018830A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Factory Administration (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing mechanical or electronic component, the method enabling suppression of failure occurrence while maintaining a changed certain dimension of a mechanical or electronic component in a case where a failure occurs after the dimension is changed.SOLUTION: A method includes the steps of: identifying a failure occurring when a mechanical or electronic component is produced in a case where one of dimensions of the mechanical or electronic component is changed; mapping the identified failure to a lower-level event causing the failure by means of a fault tree analysis; obtaining, from the lower-level event, a group of physical quantities except for a physical quantity corresponding to a dimension related to the change; changing at least one of the group of physical quantities in a direction of reducing the failure; and producing, using the changed physical quantity, the mechanical or electronic component for which the one of dimensions has been changed.

Description

本願発明は、機械部品又は電子部品の製造方法に関する。   The present invention relates to a method for manufacturing a mechanical part or an electronic part.

新製品の開発や既存製品の改良によって機械部品又は電子部品のある諸元を変更すると、これまで生じていなかった不具合が機械部品又は電子部品の製造時に発生することがある。例えば、鋳造部品において、肉厚を薄くすると、金型内で溶湯が熱量不足となり、溶湯の合流部が十分に融合しないまま境目として残る湯境が発生する。   When certain specifications of a mechanical part or an electronic part are changed by developing a new product or improving an existing product, a problem that has not occurred may occur at the time of manufacturing the mechanical part or the electronic part. For example, in a cast part, when the wall thickness is reduced, the amount of heat of the molten metal in the mold becomes insufficient, and a molten metal boundary remains as a boundary without the molten metal joining part being sufficiently fused.

したがって、機械部品又は電子部品のある諸元を変更する場合には、不具合が発生しない変更の範囲を実験又はシミュレーションによって求め、当該範囲内で変更することが重要である。   Therefore, when changing a specification of a mechanical part or an electronic part, it is important to obtain a range of change in which a defect does not occur by experiment or simulation, and change within the range.

特許文献1は、シミュレーションによって上記湯境の発生を予測する技術を開示しており、この技術を用いれば、湯境を発生させない肉厚を求めることが可能である。   Patent Document 1 discloses a technique for predicting the occurrence of the hot water boundary through simulation. If this technique is used, it is possible to obtain a wall thickness that does not cause a hot water boundary.

特開平9−295121号公報JP-A-9-295121

しかしながら、機械部品又は電子部品のある諸元を変更したことによる不具合は、諸元の変更量を制限することだけでなく、その他の物理量(温度、時間、圧力等の各種製造条件、機械部品又は電子部品の各種諸元、製造装置の各種諸元)を変更することによっても防止することができる。   However, troubles caused by changing certain specifications of mechanical parts or electronic parts not only limit the amount of change of specifications, but also other physical quantities (various manufacturing conditions such as temperature, time, pressure, etc., mechanical parts or It can also be prevented by changing various specifications of the electronic component and various specifications of the manufacturing apparatus.

例えば、鋳造部品において肉厚を薄くして湯境が発生した場合であれば、薄くした肉厚はそのままで射出速度、昇圧時間等の物理量を変更するようにしても、湯境を防止できる可能性がある。   For example, if the wall thickness occurs in a cast part with a reduced wall thickness, it is possible to prevent the molten metal boundary by changing the physical quantity such as injection speed and pressurization time while keeping the reduced wall thickness unchanged. There is sex.

本発明は、このような点に鑑みてなされたもので、機械部品又は電子部品のある諸元を変更して不具合が発生する場合に、変更した諸元を維持しつつ不具合の発生を低減できる当該機械部品又は電子部品の製造方法を提供することを目的とする。   The present invention has been made in view of such a point, and when a problem occurs when a specification of a mechanical part or an electronic part is changed, the occurrence of the problem can be reduced while maintaining the changed specification. It aims at providing the manufacturing method of the said mechanical component or electronic component.

本発明のある態様によれば、機械部品又は電子部品の製造方法であって、前記機械部品又は電子部品の諸元の一つを変更した場合に前記機械部品又は電子部品の製造時に生じる不具合を特定し、特定された前記不具合を故障木解析によって前記不具合の原因となる下位事象に展開し、前記下位事象から前記変更に係る諸元に対応する物理量を除く一群の物理量を取得し、前記一群の物理量の少なくとも一つを前記不具合が低減される方向に変更し、前記変更された物理量を用いて前記諸元の一つが変更された前記機械部品又は電子部品を製造する、ことを特徴とする機械部品又は電子部品の製造方法が提供される。   According to an aspect of the present invention, there is provided a method for manufacturing a mechanical component or an electronic component, wherein a problem that occurs when the mechanical component or the electronic component is manufactured when one of the specifications of the mechanical component or the electronic component is changed. Identify and expand the identified defect to a lower event that causes the defect by failure tree analysis, obtain a group of physical quantities excluding the physical quantity corresponding to the specifications related to the change from the lower event, and At least one of the physical quantities is changed in a direction in which the defect is reduced, and the machine part or the electronic part in which one of the specifications is changed is manufactured by using the changed physical quantity. A method of manufacturing a mechanical part or an electronic part is provided.

上記態様によれば、変更することで諸元の変更は維持しつつ不具合を低減することのできる物理量を容易かつ網羅的に求めることができる。そして、当該物理量の少なくとも一つを変更することで、変更した諸元を維持したまま不具合を低減することができる。   According to the above aspect, it is possible to easily and comprehensively determine physical quantities that can reduce defects while maintaining changes in specifications. Then, by changing at least one of the physical quantities, it is possible to reduce defects while maintaining the changed specifications.

本発明の実施形態に係る機械部品又は電子部品の製造方法の手順を示したフローチャートである。It is the flowchart which showed the procedure of the manufacturing method of the machine component or electronic component which concerns on embodiment of this invention. 肉厚を薄くして湯境が発生した場合のFT図の一例である。It is an example of the FT diagram when the wall thickness is reduced and the hot water boundary is generated. 変更する物理量が決定される様子を示した図である。It is the figure which showed a mode that the physical quantity to change was determined. 抜き勾配を小さくして割れが発生した場合のFT図の一例である。It is an example of FT figure when a draft is made small and a crack generate | occur | produces. 変更する物理量が決定される様子を示した図である。It is the figure which showed a mode that the physical quantity to change was determined.

以下の説明では、まず、本発明の実施形態に係る機械部品又は電子部品の製造方法の手順について説明する。そしてその後で、その手順を鋳造部品の製造方法に適用した適用例1及び適用例2について説明する。   In the following description, first, a procedure of a method for manufacturing a mechanical component or an electronic component according to an embodiment of the present invention will be described. And after that, the application example 1 and the application example 2 which applied the procedure to the manufacturing method of cast components are demonstrated.

<製造方法の手順>
図1は、本発明の実施形態に係る機械部品又は電子部品の製造方法の手順を示している。各手順の実行主体は機械部品又は電子部品の製造に携わる作業者であるが、コンピュータによって実行可能な手順についてはコンピュータによって実行するようにしてもよい(例えば、FT図の自動生成)。以下の説明では、便宜上、ある部品Pの諸元X(機械部品又は電子部品の寸法、形状、材質等)を小さくした場合に不具合Yが発生するものとして説明する。
<Procedure of manufacturing method>
FIG. 1 shows a procedure of a method for manufacturing a mechanical component or an electronic component according to an embodiment of the present invention. The execution subject of each procedure is an operator who is engaged in the manufacture of machine parts or electronic components. However, procedures that can be executed by a computer may be executed by a computer (for example, automatic generation of an FT diagram). In the following description, for the sake of convenience, a description will be given assuming that a defect Y occurs when the specification X of a certain component P (size, shape, material, etc. of a mechanical component or an electronic component) is reduced.

まず、部品Pの諸元Xを変更した場合に発生する不具合Yを特定する(S1)。不具合Yの特定は、諸元の一つを変更して実際に部品Pを製造して特定しても良いし、コンピュータシミュレーションによって特定しても良い。   First, a defect Y that occurs when the specification X of the component P is changed is specified (S1). The defect Y may be specified by changing one of the specifications and actually manufacturing the part P, or by computer simulation.

次に、故障木解析(FTA:Fault Tree Analysis)を行い、S1で特定された不具合Yを頂上事象とするFT図を作成する(S2)。FT図は、頂上事象をその原因となる複数の下位事象の論理和又は論理積に展開したツリー状の図である(図2、図4参照)。   Next, a fault tree analysis (FTA) is performed, and an FT diagram having the defect Y identified in S1 as a top event is created (S2). The FT diagram is a tree-like diagram in which the top event is expanded into a logical sum or logical product of a plurality of lower events that cause it (see FIGS. 2 and 4).

下位事象は、それぞれ物理量(温度、時間、圧力等の製造条件、部品Pの諸元、部品Pの製造装置の諸元)とそれが過大又は過小であることを示す文言とから構成される。例えば、物理量Aが過大である場合に不具合Yが発生する場合は、下位事象の一つは「Aが大きい」になる。また、S2の展開の結果得られた下位事象には、諸元Xの変更に対応する下位事象である「Xが小さい」が含まれる。   Each lower event is composed of physical quantities (manufacturing conditions such as temperature, time, pressure, etc., specifications of the parts P, specifications of the manufacturing apparatus of the parts P) and words indicating that they are too large or too small. For example, when the defect Y occurs when the physical quantity A is excessive, one of the lower events is “A is large”. Further, the subordinate events obtained as a result of the development of S2 include “X is small”, which is a subordinate event corresponding to the change of the specification X.

次に、複数の下位事象に含まれる物理量をそれぞれ抽出する(S3)。例えば、S2の展開の結果得られた下位事象が「Aが大きい」、「Bが低い」、「Cが長い」、「Xが小さい」であれば、抽出される物理量はA、B、C、Xである。   Next, physical quantities included in the plurality of lower events are extracted (S3). For example, if the subordinate events obtained as a result of the expansion of S2 are “A is large”, “B is low”, “C is long”, and “X is small”, the extracted physical quantities are A, B, C , X.

次に、抽出された複数の物理量から、諸元Xの変更に対応する物理量を除外し、一群の物理量を取得する(S4)。S3で抽出された物理量がA、B、C、Xであれば、一群の物理量はA、B、Cとなる。一群の物理量A、B、Cは、諸元変更を維持したまま製造時の不具合を低減するために変更するのが有効な物理量(変更することで不具合を解消できる物理量の他、変更することで不具合を少しでも解消する方向に作用する物理量を含む)である。   Next, a physical quantity corresponding to the change of the specification X is excluded from the extracted physical quantities, and a group of physical quantities is acquired (S4). If the physical quantities extracted in S3 are A, B, C, and X, the group of physical quantities is A, B, and C. A group of physical quantities A, B, and C is an effective physical quantity that can be changed in order to reduce malfunctions while maintaining specification changes (in addition to physical quantities that can be resolved by changing them) (Including physical quantities that act in the direction to eliminate any problems).

次に、一群の物理量の不具合Yに対する感度(S−N比)を実験によって求める(S5)。このとき、実験計画法を用いて実験計画を立てるようにすれば、少ない実験回数で残った物理量の不具合Yに対する感度を求めることができる。なお、実験計画法は公知の手法であるので、ここでは詳しい説明を省略する。   Next, the sensitivity (S-N ratio) for the defect Y of a group of physical quantities is obtained by experiment (S5). At this time, if an experiment plan is made using the experiment design method, the sensitivity to the defect Y of the physical quantity remaining after a small number of experiments can be obtained. Since the experimental design method is a known method, detailed description thereof is omitted here.

次に、最も高い感度の物理量を不具合Yが低減される方向に変更する(S6)。例えば、上記物理量A、B、CのうちAの感度が最も高ければ、物理量Aを不具合Yが低減される方向、すなわち、小さくなる方向に変更する。   Next, the physical quantity with the highest sensitivity is changed in a direction in which the defect Y is reduced (S6). For example, if the sensitivity of A is the highest among the physical quantities A, B, and C, the physical quantity A is changed in the direction in which the defect Y is reduced, that is, the direction in which it is reduced.

次に、S6で変更後の物理量を用いて部品Pを製造した場合に不具合が発生するか検証する(S7)。この検証は、部品Pを実際に製造して行ってもよいし、コンピュータシミュレーションで行ってもよい。   Next, it is verified whether or not a failure occurs when the component P is manufactured using the changed physical quantity in S6 (S7). This verification may be performed by actually manufacturing the component P or may be performed by computer simulation.

最も高い感度の物理量を変更したことによって不具合が発生しなくなれば、以後、その物理量を用いて部品Pを製造する(S8)。   If the trouble does not occur due to the change in the physical quantity having the highest sensitivity, the part P is manufactured using the physical quantity (S8).

依然として不具合が発生する場合は、一群の物理量のうち次に感度が高い物理量を不具合Yが低減される方向に変更し(S8→S6)、不具合が発生するかの検証を再び行う(S7)。   If the problem still occurs, the physical quantity having the next highest sensitivity among the group of physical quantities is changed in a direction in which the defect Y is reduced (S8 → S6), and the verification as to whether the problem occurs is performed again (S7).

以後、不具合が発生しなくなるまで、S6、S7の手順を繰り返す。   Thereafter, the procedures of S6 and S7 are repeated until no malfunction occurs.

したがって、以上の手順によれば、変更することで諸元Xの変更は維持したまま不具合Yを低減することのできる物理量を、容易かつ網羅的に抽出することができる。そして、当該物理量の少なくとも一つを変更することで、変更した諸元Xを維持しつつ不具合を低減することができる(請求項1に対応する効果)。   Therefore, according to the above procedure, it is possible to easily and comprehensively extract physical quantities that can reduce the defect Y while maintaining the change of the specification X by changing. Then, by changing at least one of the physical quantities, it is possible to reduce defects while maintaining the changed specifications X (effect corresponding to claim 1).

また、一群の物理量の不具合Yに対する感度を求め、最も感度の高い物理量から順に変更するようにしたことにより、少ない手順で不具合Yを発生させない製造方法(物理量の組み合わせ)を効率的に見つけ出し、不具合Yを発生させることなく諸元Xが変更された製品Pを製造することができる(請求項2に対応する効果)。   In addition, by obtaining the sensitivity to a defect Y of a group of physical quantities and changing them in order from the most sensitive physical quantity, it is possible to efficiently find a manufacturing method (a combination of physical quantities) that does not cause the defect Y with a small number of procedures. A product P in which the specification X is changed can be manufactured without generating Y (effect corresponding to claim 2).

<実施例1>
実施例1は、上記製造方法を鋳造部品の製造に適用した場合である。鋳造部品においては、肉厚を薄くすると、金型内で溶湯が熱量不足となり、溶湯の合流部が十分に融合しないまま境目として残る湯境が発生する。通常であれば、湯境が発生しない肉厚の下限値を求め、肉厚を下限値に制限することで湯境の発生を防止する。
<Example 1>
Example 1 is a case where the said manufacturing method is applied to manufacture of a casting component. In cast parts, when the wall thickness is reduced, the molten metal in the mold becomes insufficient in heat, and a molten metal boundary remains as a boundary without the molten metal joining part being sufficiently fused. Normally, the lower limit of the wall thickness at which no hot water boundary is generated is obtained, and the occurrence of the hot water boundary is prevented by limiting the wall thickness to the lower limit value.

しかしながら、上記製造方法によれば、肉厚を薄くしたまま湯境を発生させないようにすることが可能である。   However, according to the above manufacturing method, it is possible to prevent a hot water boundary from being generated while the thickness is reduced.

図1を参照しながらその手順について説明する。   The procedure will be described with reference to FIG.

S1では、肉厚を薄くした場合の不具合が「湯境の発生」と特定される。   In S <b> 1, the malfunction when the thickness is reduced is identified as “occurrence of a hot water boundary”.

S2では、「湯境の発生」を頂上事象とするFT図が作成される。図2はこのとき作成されるFT図であり、下位事象には、「離型剤塗布時間が長い」、「ショットタイムラグが長い」、「低速射出速度が遅い」、「真空ゲート面積が小さい」、「高速射出速度が遅い」、「肉厚が薄い」、「溶湯圧が低い」及び「昇圧時間が長い」が含まれる。上位事象と下位事象との関係は全て論理和である。なお、実際のFT図はさらに他の下位事象も含まれるが、ここでは理解を容易にするため、代表的な下位事象のみを示している。   In S <b> 2, an FT diagram having “the occurrence of a hot water boundary” as a top event is created. FIG. 2 is an FT diagram created at this time. Subordinate events include “long release agent application time”, “long shot time lag”, “low speed injection speed is slow”, “vacuum gate area is small”. , “Low injection speed is slow”, “thin wall thickness”, “low melt pressure” and “long pressurization time” are included. All the relations between the upper event and the lower event are logical sums. The actual FT diagram further includes other lower events, but only representative lower events are shown here for easy understanding.

S3では、下位事象に含まれる物理量が抽出される。実施例1では、「離型剤塗布時間」、「ショットタイムラグ」、「低速射出速度」、「真空ゲート面積」、「高速射出速度」、「肉厚」、「溶湯圧」及び「昇圧時間」が抽出される(図3の(a))。   In S3, the physical quantity included in the lower event is extracted. In Example 1, “release agent application time”, “shot time lag”, “low speed injection speed”, “vacuum gate area”, “high speed injection speed”, “wall thickness”, “molten metal pressure”, and “pressure increase time” Is extracted ((a) of FIG. 3).

S4では、抽出された物理量から、諸元の変更(肉厚を薄くしたこと)に対応する物理量である「肉厚」が除外され、「離型剤塗布時間」、「ショットタイムラグ」、「低速射出速度」、「真空ゲート面積」、「高速射出速度」、「溶湯圧」及び「昇圧時間」が一群の物理量として取得される(図3の(b))。   In S4, “thickness” which is a physical quantity corresponding to the change in specifications (thinning the thickness is reduced) is excluded from the extracted physical quantities, and “release agent application time”, “shot time lag”, “slow speed” The “injection speed”, “vacuum gate area”, “high speed injection speed”, “molten metal pressure”, and “pressure increase time” are acquired as a group of physical quantities ((b) in FIG. 3).

S5では、一群の物理量の「湯境の発生」に対する感度(S−N比)が実験によって求められる(図3の(c))。   In S5, the sensitivity (S—N ratio) of a group of physical quantities to “occurrence of a hot water boundary” is determined by experiment ((c) in FIG. 3).

S6〜S8では、「湯境の発生」が防止されるまで、一群の物理量のうち感度の高い物理量から順に「湯境の発生」が低減される方向に変更される。実施例1では、「高速射出速度」、「昇圧時間」、「溶湯圧」・・・・の順に感度が高いので、この順に変更される(図3(d))。   In S <b> 6 to S <b> 8, until the “occurrence of hot water boundary” is prevented, the “physical water boundary” is changed in order from the physical quantity with the highest sensitivity among the group of physical quantities. In Example 1, since the sensitivity is high in the order of “high-speed injection speed”, “pressure increase time”, “molten metal pressure”,..., They are changed in this order (FIG. 3D).

この手順によれば、薄い肉厚を維持したまま、「湯境の発生」を防止することが可能である(請求項3に対応する効果)。   According to this procedure, it is possible to prevent “occurrence of a hot water boundary” while maintaining a thin wall thickness (effect corresponding to claim 3).

<実施例2>
実施例2も実施例1と同じく、上記製造方法を鋳造部品の製造に適用した場合である。鋳造部品においては、抜き勾配を小さくすると、離型抵抗が大きくなり、鋳造部品に割れが発生する。通常であれば、割れが発生しない抜き勾配の下限値を求め、抜き勾配を下限値に制限することで割れの発生を防止する。
<Example 2>
In the second embodiment, as in the first embodiment, the above manufacturing method is applied to the manufacture of cast parts. In cast parts, if the draft is reduced, the mold release resistance increases and cracks occur in the cast parts. If it is normal, the lower limit value of the draft angle at which no cracks are generated is obtained, and cracking is prevented by limiting the draft angle to the lower limit value.

しかしながら、上記製造方法によれば、抜き勾配を小さくしたまま割れを発生させないようにすることが可能である。   However, according to the above manufacturing method, it is possible to prevent cracks from occurring while keeping the draft angle small.

図1を参照しながらその手順について説明する。   The procedure will be described with reference to FIG.

S1では、抜き勾配を小さくした場合の不具合が「割れの発生」と特定される。   In S <b> 1, the failure when the draft is reduced is identified as “cracking”.

S2では、「割れの発生」を頂上事象とするFT図が作成される。図4はこのとき作成されるFT図であり、下位事象には、「冷却水量が多い」、「低速射出速度が遅い」、「チルタイムが長い」、「ショットタイムラグが大きい」、「離型剤濃度が薄い」、「溶湯圧が高い」及び「抜き勾配が小さい」が含まれる。上位事象と下位事象との関係は全て論理和である。なお、実際のFT図はさらに他の下位事象も含まれるが、ここでは理解を容易にするため、代表的な下位事象のみを示している。   In S2, an FT diagram having “the occurrence of cracking” as a top event is created. FIG. 4 is an FT diagram created at this time. Subordinate events include “large amount of cooling water”, “low low speed injection speed”, “long chill time”, “large shot time lag”, “release agent” “Concentration is low”, “High melt pressure” and “Low draft” are included. All the relations between the upper event and the lower event are logical sums. The actual FT diagram further includes other lower events, but only representative lower events are shown here for easy understanding.

S3では、下位事象に含まれる物理量が抽出される。実施例2では、「冷却水量」、「低速射出速度」、「チルタイム」、「ショットタイムラグ」、「離型剤濃度」、「溶湯圧力」及び「抜き勾配」が抽出される(図5の(a))。   In S3, the physical quantity included in the lower event is extracted. In Example 2, “cooling water amount”, “low speed injection speed”, “chill time”, “shot time lag”, “release agent concentration”, “molten metal pressure”, and “draft gradient” are extracted (FIG. 5 ( a)).

S4では、抽出された物理量から、諸元の変更(抜き勾配を小さくしたこと)に対応する物理量である「抜き勾配」が除外され、「冷却水量」、「低速射出速度」、「チルタイム」、「ショットタイムラグ」、「離型剤濃度」及び「溶湯圧力」が一群の物理量として取得される(図5の(b))。   In S4, the “draft” that is a physical quantity corresponding to the change in the specifications (the draft is reduced) is excluded from the extracted physical quantity, and “cooling water amount”, “low speed injection speed”, “chill time”, "Shot time lag", "release agent concentration", and "molten metal pressure" are acquired as a group of physical quantities ((b) of FIG. 5).

S5では、一群の物理量の「割れの発生」に対する感度(S−N比)が実験によって求められる(図5の(c))。   In S5, the sensitivity (S-N ratio) for the “occurrence of cracks” of a group of physical quantities is obtained by experiment ((c) in FIG. 5).

S6〜S8では、「割れの発生」が防止されるまで、一群の物理量のうち感度の高い物理量から順に「割れの発生」が低減される方向に変更される。実施例2では、「チルタイム」、「離型剤濃度」、「冷却水量」・・・・の順に感度が高いので、この順に変更される(図5(d))。   In S <b> 6 to S <b> 8, until the occurrence of “cracking” is prevented, the “physical cracking” is changed in order from the physical quantity with the highest sensitivity among the group of physical quantities. In Example 2, since sensitivity is high in the order of “chill time”, “release agent concentration”, “cooling water amount”,..., The order is changed in this order (FIG. 5D).

この手順によれば、小さな抜き勾配を維持したまま、「割れの発生」を防止することが可能である(請求項4に対応する効果)。   According to this procedure, it is possible to prevent “occurrence of cracks” while maintaining a small draft (effect corresponding to claim 4).

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above, but the above embodiment is merely one example of application of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not.

例えば、ここでは鋳造部品の製造方法に適用した実施例1及び2を示したが、本発明は、機械部品又は電子部品の製造に広く適用できるものである。   For example, although Embodiments 1 and 2 applied to the method for manufacturing a cast part are shown here, the present invention can be widely applied to the manufacture of mechanical parts or electronic parts.

また、上記実施形態では、下位事象から物理量を抽出した後に、諸元の変更に係る物理量を除いているが、下位事象から諸元の変更に係る事象を除いたものから物理量を抽出するようにしても同じである。   In the above embodiment, after extracting the physical quantity from the lower level event, the physical quantity related to the change of the specification is excluded, but the physical quantity is extracted from the lower level event excluding the event related to the change of the specification. It is the same.

Claims (4)

機械部品又は電子部品の製造方法であって、
前記機械部品又は電子部品の諸元の一つを変更した場合に前記機械部品又は電子部品の製造時に生じる不具合を特定し、
特定された前記不具合を故障木解析によって前記不具合の原因となる下位事象に展開し、
前記下位事象から前記変更に係る諸元に対応する物理量を除く一群の物理量を取得し、
前記一群の物理量の少なくとも一つを前記不具合が低減される方向に変更し、
前記変更された物理量を用いて前記諸元の一つが変更された前記機械部品又は電子部品を製造する、
ことを特徴とする機械部品又は電子部品の製造方法。
A method of manufacturing a mechanical part or an electronic part,
Identifying a problem that occurs when manufacturing the mechanical part or electronic part when one of the specifications of the mechanical part or electronic part is changed,
Expand the identified defect to a lower event that causes the defect by failure tree analysis,
Obtain a group of physical quantities excluding the physical quantities corresponding to the specifications related to the change from the subordinate events,
Changing at least one of the group of physical quantities in a direction in which the defect is reduced;
Producing the machine part or electronic part in which one of the specifications is changed using the changed physical quantity;
A method for manufacturing a mechanical part or an electronic part.
請求項1に記載の機械部品又は電子部品の製造方法であって、
前記一群の物理量の前記不具合に対する感度をそれぞれ求め、
前記不具合が発生しなくなるまで、前記一群の物理量のうち前記不具合に対する感度が高い物理量から順に前記不具合が低減される方向に変更する、
ことを特徴とする機械部品又は電子部品の製造方法。
A method of manufacturing a mechanical part or an electronic part according to claim 1,
Obtaining the sensitivity of the group of physical quantities to the defect,
Until the problem does not occur, the physical quantity of the group of physical quantities is changed in a direction in which the problem is reduced in order from a physical quantity having high sensitivity to the problem,
A method for manufacturing a mechanical part or an electronic part.
請求項1又は2に記載の機械部品又は電子部品の製造方法であって、
前記機械部品又は電子部品は鋳造部品であり、
前記不具合は前記鋳造部品を薄肉化した場合に発生する湯境である、
ことを特徴とする機械部品又は電子部品の製造方法。
A method of manufacturing a mechanical part or an electronic part according to claim 1 or 2,
The mechanical part or electronic part is a cast part,
The defect is a hot water boundary that occurs when the cast part is thinned.
A method for manufacturing a mechanical part or an electronic part.
請求項1又は2に記載の機械部品又は電子部品の製造方法であって、
前記機械部品又は電子部品は鋳造部品であり、
前記不具合は前記鋳造部品の抜き勾配を減らした場合に発生する前記鋳造部品の割れである、
ことを特徴とする機械部品又は電子部品の製造方法。
A method of manufacturing a mechanical part or an electronic part according to claim 1 or 2,
The mechanical part or electronic part is a cast part,
The defect is a crack in the cast part that occurs when the draft angle of the cast part is reduced.
A method for manufacturing a mechanical part or an electronic part.
JP2012159776A 2012-07-18 2012-07-18 Method for producing mechanical or electronic component Pending JP2014018830A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012159776A JP2014018830A (en) 2012-07-18 2012-07-18 Method for producing mechanical or electronic component
CN201310287493.7A CN103567412A (en) 2012-07-18 2013-07-10 Method for manufacturing mechanical parts or electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159776A JP2014018830A (en) 2012-07-18 2012-07-18 Method for producing mechanical or electronic component

Publications (1)

Publication Number Publication Date
JP2014018830A true JP2014018830A (en) 2014-02-03

Family

ID=50040611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159776A Pending JP2014018830A (en) 2012-07-18 2012-07-18 Method for producing mechanical or electronic component

Country Status (2)

Country Link
JP (1) JP2014018830A (en)
CN (1) CN103567412A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222027A (en) * 1988-07-11 1990-01-24 Komatsu Ltd Failure diagnostic apparatus for injection molding machine
JPH02128824A (en) * 1988-11-09 1990-05-17 Toshiba Mach Co Ltd Optimum molding condition setting machine for injection molding machine
JP2000263208A (en) * 1999-03-18 2000-09-26 Toshiba Mach Co Ltd Plunger sleeve for die casting machine
JP2002307156A (en) * 2001-04-11 2002-10-22 Toyota Industries Corp Die casting method and die unit
JP2002351538A (en) * 2001-05-24 2002-12-06 Honda Motor Co Ltd Method for managing manufacturing process
JP2005084993A (en) * 2003-09-09 2005-03-31 Mitsubishi Electric Corp Fault diagnosis support device
JP2007326114A (en) * 2006-06-06 2007-12-20 Kyocera Chemical Corp Die apparatus for casting and method for manufacturing casting
JP2009301134A (en) * 2008-06-10 2009-12-24 Omron Corp Ft diagram creation program, ft diagram creation apparatus, recording medium, and ft diagram creation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542166B (en) * 2011-12-31 2014-10-15 电子科技大学 Dynamic fault tree analysis method for system with correlated failure mode
CN102530027B (en) * 2012-01-13 2014-09-17 中国铁道科学研究院铁道科学技术研究发展中心 High-speed rail risk analysis and control method and high-speed rail risk analysis and control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222027A (en) * 1988-07-11 1990-01-24 Komatsu Ltd Failure diagnostic apparatus for injection molding machine
JPH02128824A (en) * 1988-11-09 1990-05-17 Toshiba Mach Co Ltd Optimum molding condition setting machine for injection molding machine
JP2000263208A (en) * 1999-03-18 2000-09-26 Toshiba Mach Co Ltd Plunger sleeve for die casting machine
JP2002307156A (en) * 2001-04-11 2002-10-22 Toyota Industries Corp Die casting method and die unit
JP2002351538A (en) * 2001-05-24 2002-12-06 Honda Motor Co Ltd Method for managing manufacturing process
JP2005084993A (en) * 2003-09-09 2005-03-31 Mitsubishi Electric Corp Fault diagnosis support device
JP2007326114A (en) * 2006-06-06 2007-12-20 Kyocera Chemical Corp Die apparatus for casting and method for manufacturing casting
JP2009301134A (en) * 2008-06-10 2009-12-24 Omron Corp Ft diagram creation program, ft diagram creation apparatus, recording medium, and ft diagram creation method

Also Published As

Publication number Publication date
CN103567412A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN105628511B (en) A kind of high temperature alloy creep life prediction technique
Lindecke et al. Optimization of support structures for the laser additive manufacturing of TiAl6V4 parts
Salvati et al. Elucidating the mechanism of fatigue crack acceleration following the occurrence of an underload
JPWO2018020681A1 (en) Setting method, inspection method, defect evaluation apparatus and manufacturing method of structure
US11796980B2 (en) Additive-manufactured object design supporting device and additive-manufactured object design supporting method
CN103200779B (en) A kind of printed circuit board spacing drawing process
CN103991556B (en) A kind of load measurement method
JP2014018830A (en) Method for producing mechanical or electronic component
Bose et al. Reducing rejection rate of castings using Simulation Model
Kao et al. Computer-Aided Engineering (CAE) simulation for the robust gating system design: improved process for investment casting defects of 316L stainless steel valve housing
JP2006228065A5 (en)
CN104368800A (en) Methods for simulating oxides in aluminum castings
JP2013237093A (en) Sand mold casting plan producing system, program, sand mold casting plan producing method, and casting
JP2010102700A5 (en)
JP5757432B2 (en) Device or part manufacturing method
Kulkarni The feature-based computational geometry and secondary air system modelling for virtual gas turbines
Voronin et al. Virtual Simulator for Making Castings Without Cracks Skills Development
Kimura et al. FEM stress analysis of the cooling hole of an HPDC die
JP2023049823A (en) Casting defect predictor
JP6070135B2 (en) Mold seizure prediction method and program
JP5915218B2 (en) Mold life prediction device
JP6447404B2 (en) Mold design method
Che et al. Technology analysis and optimization for high pressure casting of the gearbox shell of a drill
An et al. Structural analysis of SMART RPV lower head under ERVC conditions during a severe accident
Chen An optimized design of injection molding process parameters for supporting-foot plastic part based on CAE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150113